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Abstract

We consider the convergence of the approximation schemes related to Itô’s
integral and quadratic variation, which have been developed in [13]. First,
we prove that the convergence in the a.s. sense exists when the integrand is
Hölder continuous and the integrator is a continuous semimartingale. Second,
we investigate the second order convergence in the Brownian motion case.
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1 Introduction

We consider a complete probability space (Ω,F ,Ft, P ), which satisfies the
usual hypotheses. The notation (ucp) will stand for the convergence in prob-
ability, uniformly on the compact sets in time.

1. Let X be a real continuous (Ft)-semimartingale. In the usual stochastic
calculus, the quadratic variation and the stochastic integral with respect to X
play a central role. In [10], [11] and [12], Russo and Vallois extended these
notions to continuous processes. Let us briefly recall their main definitions.

Definition 1.1 Let X be a real-valued continuous process, (Ft)-adapted, and
H be a locally integrable process. The forward integral

∫ t
0
Hd−X is defined as∫ t

0

Hd−X = lim
ε→0

(ucp)
1

ε

∫ t

0

Hu (Xu+ε −Xu) du,

if the limit exists. The quadratic variation is defined by

[X]t = lim
ε→0

(ucp)
1

ε

∫ t

0

(Xu+ε −Xu)
2 du
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if the limit exists.

In the article, X will stand for a real-valued continuous (Ft)-semimartingale
and (Ht)t>0 for an (Ft)-progressively measurable process. If H is continuous,
then, according to Proposition 1.1 of [10], the limits in (1.1) exist and coincide
with the usual objects. In order to work with adapted processes only, we
change u+ ε into (u+ ε)∧ t in the above integrals. This change does not affect
the limit (cf (3.3) of [13]). Consequently,∫ t

0

HudXu = lim
ε→0

(ucp)
1

ε

∫ t

0

Hu

(
X(u+ε)∧t −Xu

)
du, (1.1)

and

< X >t= lim
ε→0

(ucp)
1

ε

∫ t

0

(
X(u+ε)∧t −Xu

)2
du (1.2)

where
∫ t

0
HudXu is the usual stochastic integral and < X > is the usual

quadratic variation of X.

2. First, we determine sufficient conditions under which the convergences in
(1.1) and (1.2) hold in the almost sure sense. Let us mention that some results
in this direction have been obtained in [2] and [5].

We say that a process Y is locally Hölder continuous if, for all T > 0, there
exist α′ ∈]0, 1] and a finite (random) constant CY such that

|Ys − Yu| 6 CY |u− s|α
′ ∀u, s ∈ [0, T ], a.s. (1.3)

Our first result related to stochastic integral is the following.

Theorem 1.2 If (Ht)t>0 is adapted and locally Hölder continuous, then

lim
ε→0

1

ε

∫ t

0

Hu(X(u+ε)∧t −Xu)du =

∫ t

0

HudXu, (1.4)

in the sense of almost sure convergence, uniformly on the compact sets in time.

Our assumption related to (Ht) is simple but too strong as shows item 1 of
Theorem 1.7 below. In [5], a general result of a.s. convergence of sequences
of stochastic integrals has been given. However it cannot be applied to obtain
(1.4) (see Remark 2.3).

We now consider the convergence of ε-integrals to the bracket of X.

Proposition 1.3 If X is locally Hölder continuous, then

lim
ε→0

1

ε

∫ t

0

(X(u+ε)∧t −Xu)
2du =< X >t, (1.5)
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in the sense of almost sure convergence, uniformly on the compact sets in time.
Moreover, if K is a continuous process,

lim
ε→0

1

ε

∫ t

0

Ku(X(u+ε)∧t −Xu)
2du =

∫ t

0

Kud < X >u, (1.6)

in the sense of almost sure convergence.

3. Under the assumptions given in Theorem 1.2, we have an approximation

scheme of

∫ ·
0

HsdXs which converges a.s. According to Remark 2.1, the (a.s.)

rate of convergence of is of order εα, when X has a finite variation and H is α-
Hölder continuous. Therefore, it remains to determine the rate of convergence
when X is a local martingale. This leads to introduce

∆ε(H, t) =
1√
ε

[
1

ε

∫ t

0

Hu(X(u+ε)∧t −Xu)du−
∫ t

0

HudXu

]
, t ≥ 0 (1.7)

where H is a progressively measurable and locally bounded process.

In order to study the limit in distribution of the family of processes
(
∆ε(H, t), t ≥

0
)

as ε → 0, a two-steps strategy has been adopted. First, we consider the
case where X = H = B and B denotes the standard Brownian motion.
Second, using a functional theorem of convergence we determine the limit
of
(
∆ε(H, t), t ≥ 0

)
. Note that in [2], some related results have been proven.

a) Suppose that X = H = B. In that case, using stochastic Fubini’s theorem
(cf relation (4.8) with Φ = 1) we have:

∆ε(B, t) = −Wε(t) +R1
ε (B, t),

where

Wε(t) =

∫ t

0

Gε(u)dBu, Gε(u) =
1

ε
√
ε

∫ u

(u−ε)+
(Bu −Bs)ds, (1.8)

and

R1
ε (B, t) :=

1√
ε

∫ t∧ε

0

(s
ε
− 1
)
BsdBs.

From Lemma 4.4, the process R1
ε (B, ·) does not contribute to the limit since

R1
ε (B, ·)

(ucp)→ 0, as ε → 0. Therefore, the convergence of ∆ε(B, ·) reduces to
the one of Wε. We determine, more generally, in Theorem 1.4 below the limit
of the pair

(
Wε, B

)
.

Theorem 1.4 (Wε(t), Bt)t>0 converges in distribution to (σWt, Bt)t>0, as ε→
0, where W is a standard Brownian motion, independent from B, and σ2 = 1

3
.

b) We now investigate the convergence of (∆ε(H, t))t>0. We restrict ourselves
to processes H of the type Ht = H0 +Mt + Vt where
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1. H0 is F0-measurable,

2. Mt is a Brownian martingale, i.e. Mt =

∫ t

0

ΛsdBs, where (Λt) is pro-

gressively measurable, locally bounded and is right-continuous with left-
limits.

3. V is a continuous process, which is Hölder continuous with order α > 1/2,
vanishing at time 0.

Note that if Vt =

∫ t

0

vsds, where (vt)t>0 is progressively measurable and locally

bounded, then above condition 3 holds with α = 1 and in that case, (Ht) is a
semimartingale.

As for X, we assume that it is a Brownian martingale with representation :

Xt =

∫ t

0

Φ(u)dBu, t ≥ 0 (1.9)

where (Φ(u)) is predictable, locally bounded and right-continuous at 0.

From now on,

(Wt) denote a standard Brownian motion independent from (Bt),

and

σ :=
1√
3
.

Using functional results of convergence (Proposition 3.2 and Theorem 5.1 in
[4]) and Theorem 1.4, we obtain the following result.

Theorem 1.5 1. For any 0 < t1 < · · · < tn, the random vector (∆ε(H0, t1),
. . . ,∆ε(H0, tn)) converges in law to σH0Φ(0)

(
N0, · · · , N0

)
, where N0 is

a standard Gaussian r.v, independent from F0.

2. If V is a process which is locally Hölder continuous of order α > 1
2
, then

∆ε(V, t) converges to 0 in the ucp sense as ε→ 0.

3. If Mt =

∫ t

0

ΛsdBs, then the process (∆ε(M, t))t>0 converges in distribu-

tion to (σ
∫ t

0
ΛuΦ(u)dWu)t>0 as ε→ 0.

4. If H0 = 0, M and V are as in points (2) − (3) above, then (∆ε(M +
V, t))t>0 converges in law to (σ

∫ t
0

ΛuΦ(u)dWu)t>0 as ε→ 0.

Let us discuss the assumptions of Theorem 1.5. As for item 2, the conclusion
is false if α ≤ 1/2. Indeed, if we take Vt = Bt then, t 7→ Vt is α-Hölder with
α < 1/2, however, as shows Theorem 1.4, the limit of

(
∆ε(V, t)

)
equals (σWt)
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and is not null. It is likely too strong to suppose that (Ht) is a semimartingale
: we can show (see Proposition 1.6 below) that

(
∆ε(H, t), t ≥ 0

)
converges in

distribution where Ht = h(Bt) and h is only supposed to be of class C1. Note
that in this case (Ht) is a Dirichlet process. However, if (Ht) is a stepwise
and progressively measurable process then, we have the convergence in law
of the finite dimensional distributions of

(
∆ε(H, t), t ≥ 0

)
but this family of

processes does not converge in distribution (see Theorem 1.7 below).

Next, we consider the convergence of ∆ε(h(B), ·) for a large class of functions
h. A function h : R → R is said to subexponential if there exist C1, C2 > 0
such that

|h(x)| ≤ C1e
C2|x|, x ∈ R. (1.10)

Proposition 1.6 Suppose that h is a function of class C1 such that h(0) = 0
and h′ is subexponential. Then,

(
∆ε(h(B), t), t ≥ 0

)
converges in distribution

as ε→ 0 to
(
σ

∫ t

0

h′(Bs)Φ(s)dWs, t ≥ 0
)
.

According to Exercise 3.13, chap. V in [8] we have :

h(Bt) = E
(
h(Bt)

)
+

∫ t

0

H(t, s)dBs, t ≥ 0

where H(t, s) = ϕ(t, s, Bs) and ϕ(t, s, x) := E
(
h′(x+Bt−s)

)
.

Consequently
(
H(t, s), 0 ≤ s ≤ t

)
is progressively measurable but depends on

t, therefore item 3 of Theorem 1.5 cannot be applied.

c) We now focus on the case where (Ht) is a stepwise and progressively mea-

surable process. We study the a.s. convergence of
1

ε

∫ ·
0

Hu

(
X(u+ε)∧t −Xu

)
du

towards

∫ ·
0

HudXu and the convergence in distribution of ∆ε(H, ·) as ε goes

to 0.

Theorem 1.7 Let (ai)i∈N be an increasing sequence of real numbers which
satisfies a0 = 0 and an → ∞. Let h, (hi)i∈N be r.v.’s such that hi is Fai-
measurable, h is F0-measurable. Let H be the progressively measurable and
stepwise process:

Ht = h1I{t=0} +
∑
i>0

hi1I{t∈]ai,ai+1]}.

1. Suppose that X is continuous, then,
1

ε

∫ t

0

Hs(X(s+ε)∧t−Xs)ds converges

almost surely to

∫ t

0

HsdXs, uniformly on the compact sets in time, as

ε→ 0.
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2. Suppose h = 0 and X is defined by (1.9). Associated with a sequence
(Ni)i∈N of i.i.d. r.v’s with Gaussian law N (0, 1), independent from B
consider the piecewise and left-continuous process:

Zs := σ
(
h0Φ(0)N01{0<s≤a1}+

∑
i≥1

(hi−hi−1)Φ(ai)Ni1{ai<s≤ai+1}

)
, s > 0

and Z0 = 0.

Suppose that Φ is right-continuous at any point ai. Then, for any fixed
times 0 ≤ s1 < · · · < sn,(

(Bs, s ≥ 0),
(
∆ε(H, s1), · · · ,∆ε(H, sn)

))
converges in law to

(
(Bs, s ≥ 0),

(
Zs1 , · · · , Zsn

))
as ε→ 0.

A weak version of Theorem 1.7 has been given in Section 6.3 of [1].

Note that the family of processes
(
∆ε(H, t), t ≥ 0

)
cannot converge in the

Skorokhod space to a right continuous process
(
Z0(t), t ≥ 0

)
. Indeed, accord-

ing to Theorem 1.7, the map t ∈]0, a1[ 7→ Z0(t) should be constant and not
null. This contradicts the fact that Z0(0) = 0.

In [10], convergence in distribution of sequences of stochastic integrals are
considered. We discuss in Remark 4.2 the link between Rootzen’s result and
ours.

4. Let us finally present our result of convergence in distribution related to
the quadratic variation.

Let us consider

∆(2)
ε (K, t) =

1√
ε

[
1

ε

∫ t

0

Ku(B(u+ε)∧t −Bu)
2du−

∫ t

0

Kudu

]
, (1.11)

where(Ks) is locally bounded and progressively measurable.

Proposition 1.8 Let (Ks) be a predictable, right-continuous with left limits

and locally bounded process. Then, (∆
(2)
ε (K, t))t>0 converges in distribution to

(2σ
∫ t

0
KudWu)t>0, as ε→ 0.

5. Let us briefly detail the organization of the paper. Section 2 contains the
proofs of the almost convergence results, i.e. Theorem 1.2 and Proposition 1.3.
Then, the proof of Theorem 1.4 (resp. Propositions 1.6, 1.8 and Theorems 1.5,
1.7) is (resp. are) given in Section 3 (resp. Section 4).

In the calculations, C will stand for a generic constant (random or not). We
will use several times a stochastic version of Fubini’s theorem, which can be
found in Section IV.5 of [8].
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2 Proof of Theorem 1.2 and Proposition 1.3

We begin with the proof of Theorem 1.2 in Points 1-4 below. Then, we deduce
Proposition 1.3 from Theorem 1.2 in Point 5.

1. Let T > 0. We suppose that (Ht)t>0 is locally Hölder continuous of order
α′ and we study the almost sure convergence of

Iε(t) :=
1

ε

∫ t

0

Hu(X(u+ε)∧t −Xu)du to I(t) :=

∫ t

0

HudXu,

as ε→ 0, uniformly on t ∈ [0, T ].

By stopping, we can suppose that (Xt)06t6T and < X >T are bounded by a
constant.

Let X = X0 + M + V be the canonical decomposition of X, where M is a
continuous local martingale and V is an adapted process with finite variation.
It is clear that Iε(t)− I(t) can be decomposed as

Iε(t)− I(t) =

(
1

ε

∫ t

0

Hu(M(u+ε)∧t −Mu)du−
∫ t

0

HudMu

)
+

(
1

ε

∫ t

0

Hu(V(u+ε)∧t − Vu)du−
∫ t

0

HudVu

)
.

Then, Theorem 1.2 will be proved as soon as Iε(t) − I(t) converges to 0, in
the case where X is either a continuous local martingale or a continuous finite
variation process.

We deal with the finite variation case in Point 2. As for the martingale case,
the study is divided in two steps:

1. First, we prove that there is a sequence (εn)n∈N such that Iεn(t) converges
almost surely to I(t) and εn → 0 (see Point 3 below).

2. Second, we show that Iε(t) converges almost surely to 0, uniformly for
t ∈ [0, T ] (see Point 4 below).

2. Suppose that X has a finite variation, writing X(u+ε)∧t−Xu =
∫ (u+ε)∧t
u

dXs

and using Fubini’s theorem yield to:

Iε(t)− I(t) =

∫ t

0

(
1

ε

∫ s

(s−ε)+
Hudu−Hs

)
dXs,

=

∫ t

0

(
1

ε

∫ s

(s−ε)+
(Hu −Hs)du

)
dXs −

∫ t∧ε

0

ε− s
ε

HsdXs.

Using the Hölder property (1.3) (in the first integral) and the fact that H is
bounded by a constant (in the second integral), we have for all t ∈ [0, T ]:

7



|Iε(t)− I(t)| 6
∫ T

0

(
1

ε

∫ s

(s−ε)+
CH |u− s|αdu

)
d|X|s +

∫ ε

0

ε− s
ε

C d|X|s

6 CHε
α|X|T + C(|X|ε − |X|0). (2.1)

Consequently, Iε(t) − I(t) converges almost surely to 0, as ε → 0, uniformly
on any compact set in time.

Remark 2.1 Note that (2.1) implies that :

sup
0≤t≤T

∣∣∣ ∫ t

0

Hs

X(s+ε)∧t −Xs

ε
ds−

∫ t

0

HsdXs

∣∣∣ ≤ Cεα

when (Ht) is α-Hölder continuous and X has finite variation.

3. In the two next points, X is a continuous martingale. We proceed as in

step 2 above: observing that X(u+ε)∧t −Xu =
∫ (u+ε)∧t
u

dXs and using Fubini’s
stochastic theorem come to

Iε(t)− I(t) =

∫ t

0

(
1

ε

∫ s

(s−ε)+
Hudu−Hs

)
dXs. (2.2)

Thus, (Iε(t) − I(t))t∈[0,T ] is a continuous local martingale. Moreover, E(<
Iε − I >t) is bounded since H and < X > are bounded on [0, T ].

Let us introduce p = 2(1−α)
α2 + 1. This explicit expression of p in terms of α

will be used later at the end of Point 4. Burkholder-Davis-Gundy inequalities
give:

E

(
sup
t∈[0,T ]

|Iε(t)− I(t)|p
)
6 cpE

(∫ T

0

(
1

ε

∫ s

(s−ε)+
Hudu−Hs

)2

d < X >s

) p
2

 .
The Hölder property (1.3) implies that:∣∣∣∣1ε

∫ s

(s−ε)+
Hudu−Hs

∣∣∣∣ 6 1

ε

∫ s

s−ε
|Hu −Hs| du 6 CHε

α, ε 6 s,∣∣∣∣1ε
∫ s

(s−ε)+
Hudu−Hs

∣∣∣∣ 6 1

ε

∫ s

0

|Hu −Hs| du+
ε− s
ε
|Hs| 6 Cεα, s < ε.

a) Suppose that in (1.3), CH ≤ C for some C. Consequently,

sup
0≤s≤T

∣∣∣∣1ε
∫ s

(s−ε)+
Hudu−Hs

∣∣∣∣ ≤ Cεα (2.3)

and

E

(
sup
t∈[0,T ]

|Iε(t)− I(t)|p
)
6 CεαpE[< X >T ]

p
2 6 Cεαp.
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Then, for any δ > 0, Markov inequality leads to :

P

(
sup
t∈[0,T ]

|Iε(t)− I(t)| > δ

)
6
Cεαp

δp
. (2.4)

Let us now define (εn)n∈N? by εn = n−
2
pα for all n > 0. Replacing ε by εn in

(2.4) comes to:

P

(
sup
t∈[0,T ]

|Iεn(t)− I(t)| > δ

)
6
C

δp
n−2.

Since
∞∑
n=1

n−2 <∞, the Borel-Cantelli lemma implies that:

lim
n→∞

sup
t∈[0,T ]

|Iεn(t)− I(t)| = 0, a.s. (2.5)

b) Using localization and Lemma 2.2 below we can reduce to the case where
CH is bounded by a constant. That implies (2.5).

Lemma 2.2 Let (Yt) be an adapted process and locally Hölder continuous with
index α. Then for any β ∈]0, α[ there exists a continuous and adapted process(
Lip(Y, t)

)
such that

|Yu − Yv| ≤ Lip(Y, t)|u− v|β, u, v ∈ [0, t].

Proof of Lemma 2.2. Set :

Lip(Y, t) := sup
0≤u,v≤t

|Ỹ (u, v)|, t ≥ 0

where Ỹ (u, v) :=
Yu − Yv
|u− v|β

when u 6= v and 0 otherwise.

Lemma 2.2 follows from the continuity of Ỹ . �

4. For all ε ∈]0, 1[, let n = n(ε) denote the integer such that ε ∈]εn+1, εn].
Then, we decompose Iε(t)− I(t) as follows:

Iε(t)− I(t) = (Iε(t)− Iεn(t)) + (Iεn(t)− I(t)).

(2.5) gives the almost sure convergence of Iεn(t) to I(t), uniformly on [0, T ].
Therefore, the a.s convergence of Iε(t)− I(t) to 0 , uniformly on [0, T ], will be
obtained as soon as Iε(t)− Iεn(t) goes to 0, uniformly on [0, T ].

From the definition of Iε(t), it is easy to deduce that we have:

Iε(t)− Iεn(t) =
1

ε

(∫ t

0

HuX(u+ε)∧tdu−
∫ t

0

HuX(u+εn)∧tdu

)
+

(
1

ε
− 1

εn

)(∫ t

0

Hu(X(u+εn)∧t −Xu)du

)
.

9



The changes of variable either v = u+ ε or v = u+ εn lead to

Iε(t)− Iεn(t) =
1

ε

∫ t+ε

ε

(Hv−ε −Hv−εn)Xv∧tdv (2.6)

+
εn − ε
εεn

(∫ t

εn

(Hv−εn −Hv)Xvdv

)
+Rε(t),

where we gather under the notation Rε(t) all the remaining terms. Let us

observe that Rε(t) is the sum of terms which are of the form 1
ε

∫ b
a
. . . dv where

|a − b| 6 εn − ε or
(

1
ε
− 1

εn

) ∫ b
a
. . . dv where |a − b| 6 εn. Since H and X are

bounded on [0, T ], we have

|Rε(t)| 6 C
εn − ε
ε

∀t ∈ [0, T ]. (2.7)

By Hölder property (1.3), we get

|Hv−ε −Hv−εn| 6 C(εn − ε)α, |Hv−εn −Hv| 6 CHε
α
n. (2.8)

Since X and H are bounded, we can deduce from (2.6), (2.7) and (2.8) that:

|Iε(t)− Iεn(t)| 6 C
((εn − ε)α

ε
+

(εn − ε)εαn
εεn

+
ε− εn
ε

)
, ∀t ∈ [0, T ]. (2.9)

Using the definition of εn, easy calculations lead to :

εn − ε
ε
6 Cn−1,

(εn − ε)α

ε
6 Cn

2(1−α)
pα

−α,
(εn − ε)εαn

εεn
6 n−

2
p
−1+ 2

pα 6 n
2(1−α)
pα

−α.

Note that p = 2(1−α)
α2 + 1 implies that 2(1−α)

pα
−α < 0. As a result, Iε(t)− Iεn(t)

goes to 0 a.s, uniformly on [0, T ], as ε→ 0.

Remark 2.3 Let (Ht) be an progressively measurable process. Suppose for
simplicity that (Xt) is a local semimartingale. Let (εn) denote a sequence of
decreasing positive numbers converging to 0 as n → ∞. Applying Theorem
2 in [5] to (2.2) gives the a.s. convergence of sup

0≤u≤T

∣∣Iεn(u) − Iε(u)
∣∣ to 0 as

n→∞, provided that

∑
n≥1

(
sup

0≤u≤T

∣∣∣Hu −
1

εn

∫ u

(u−εn)+

Hrdr
∣∣∣)2

<∞, a.s. (2.10)

Suppose that (Ht) is locally Hölder with index α. According to (2.3), relation

(2.10) holds if
∑
n≥1

εαn <∞. To simplify the discussion suppose that εn = 1/nρ,

with ρ > 0. Obviously, the previous sum is finite if and only if ρα > 1.
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Note that inequality (2.9) permit to prove the a.s. of Iεn(u) as soon as

lim
n→∞

(εn − ε)α

ε
= lim

n→∞

(εn − ε)εαn
εεn

= lim
n→∞

ε− εn
ε

= 0.

Since ε varies in [εn+1, εn], then

(εn − ε)α

ε
≤ (εn − εn+1)α

εn+1

.

It is easy to prove that

(εn − εn+1)α

εn+1

∼ ρα

n(1+ρ)α−ρ , n→∞.

Therefore ρ has to be chosen such that (1+ρ)α−ρ > 0, i.e. ρ <
α

1− α
. Recall

that ρ > 1/α, then
1

α
<

α

1− α
. This condition is equivalent to α > α0 :=

√
5− 1

2
. This inequality is not necessarily satisfied since it is only supposed

that α belongs to ]0, 1[. Finally, our Theorem 1.2 is not a consequence of
Theorem 2 of [5].

5. In this item X is supposed to be a locally Hölder continuous semimartingale.
Note that replacing X by X − X0 does not change (1.5). Therefore we may
suppose that X0 = 0.

It is clear that 1
ε

∫ t
0
(X(u+ε)∧t −Xu)

2du equals

1

ε

[∫ t

0

X2
(u+ε)∧tdu−

∫ t

0

X2
udu− 2

∫ t

0

Xu(X(u+ε)∧t −Xu)du

]
.

Making the change of variable v = u+ ε in the first integral, we easily get :

1

ε

∫ t

0

(X(u+ε)∧t −Xu)
2du = X2

t −
1

ε

∫ t∧ε

0

X2
vdv −

2

ε

∫ t

0

Xu(X(u+ε)∧t −Xu)du.

Since X is continuous, 1
ε

∫ t∧ε
0

X2
vdv tends to 0 a.s, uniformly on [0, T ]. There-

fore, it can be deduced from Theorem 1.2 :

lim
ε→0

1

ε

∫ t

0

(X(u+ε)∧t −Xu)
2du = X2

t − 2

∫ t

0

XudXu (a.s.).

Itô ’s formula implies that the right-hand side of the above identity equals to
< X >t.

Replacing (u + ε) ∧ t by u + ε in either (1.5) or (1.6) does not change the
limit. Then, identity (1.5) may be interpreted as follows : the measures
1
ε
(Xu+ε − Xu)

2du converges a.s. to the measure d < X >u. That implies

the a.s. convergence of 1
ε

∫ t
0
Ku(X(u+ε)∧t −Xu)

2du to
∫ t

0
Kud < X >u, for any

continuous process K.
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3 Proof of Theorem 1.4

Recall that Wε(t) and Gε(t) are defined by (1.8). We study the convergence in
distribution of the two dimensional process (Wε(t), Bt), as ε→ 0.

First, we determine the limit in law of Wε(t). In Point 1 we demonstrate
preliminary results. Then, we prove the convergence of the moments of Wε(t)
in Point 2. By the method of moments, the convergence in law of Wε(t) for a
fixed time is proven in Point 3. We deduce the finite-dimensionnal convergence
in Point 4. Finally, Kolmogorov criterion concludes the proof in Point 5. Then,
we briefly sketch in Point 6 the proof of the joint convergence of (Wε(t))t>0

and (Bt)t>0. The approach is close to the one of (Wε(t))t>0.

1. We begin by calculating the moments of Wε(t) and Gε(u). We denote by
L
= the equality in law.

Lemma 3.1 E
[
|Gε(u)|2

]
= (u∧ε)3

ε3
σ2. Moreover, for all k ∈ N, there exists a

constant mk such that E
[
|Gε(u)|k

]
6 mk, ∀u > 0, ε > 0.

Proof. First, we apply the change of variable s = u− (u∧ ε)r in (1.8). Then,

using the identity (Bu − Bu−v; 0 6 v 6 u)
L
= (Bv; 0 6 v 6 u) and the scaling

property of B, we get

Gε(u)
L
=

(u ∧ ε)
√
u ∧ ε

ε
√
ε

∫ 1

0

Brdr.

Since
∫ 1

0
Brdr

L
= σN , where σ2 = 1/3 and N is a standard gaussian r.v, we

obtain

E
[
|Gε(u)|k

]
=

(u ∧ ε) 3k
2

ε
3k
2

σkE
[
|N |k

]
. (3.1)

Taking k = 2 gives E
[
|Gε(u)|2

]
= (t∧ε)3

ε3
σ2. Using u ∧ ε 6 ε and (3.1), we get

E[|Gε(u)|k] 6 mk with mk = σkE
[
|N |k

]
.

Lemma 3.2 For all k > 2, there exists a constant C(k) such that

∀t > 0, E
[
|Wε(t)|k

]
6 C(k) t

k
2 .

Moreover, for k = 2, we have

E
[(
Wε(u)−Wε((u− ε)+)

)2
]
6 σ2ε, ∀u > 0.

Proof. The Burkhölder-Davis-Gundy inequality and (1.8) give

E
[
|Wε(t)|k

]
6 c(k)E

[(∫ t

0

(Gε(u))2 du

) k
2

]
.
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Then, Jensen inequality implies:

E

[(∫ t

0

(Gε(u))2 du

) k
2

]
6 t

k
2
−1E

[∫ t

0

|Gε(u)|k du
]
.

Finaly, applying Lemma 3.1 comes to

E
[
|Wε(t)|k

]
6 c(k)mkt

k
2 .

The case k = 2 can be easily treated via (1.8) and Lemma 3.1:

E
[(
Wε(u)−Wε((u− ε)+)

)2
]

=

∫ u

(u−ε)+
E
[
(Gε(v))2] dv,

=

∫ u

(u−ε)+
σ2 (v ∧ ε)3

ε3
dv 6 σ2ε.

2. Let us now study the convergence of the moments of Wε(t).

Proposition 3.3

lim
ε→0

E
[
(Wε(t))

2n] = E
[
(σWt)

2n] , ∀n ∈ N, t > 0. (3.2)

Proof. a) We prove Proposition 3.3 by induction on n > 1.

For n = 1, from Lemma 3.1, we have:

E
[
(Wε(t))

2
]

=

∫ t

0

E
[
(Gε(u))2] du =

∫ t

0

σ2 (u ∧ ε)3

ε3
du.

Then, E [(Wε(t))
2] converges to σ2t = E[(σWt)

2].

Let us suppose that (3.2) holds. First, we apply Itô’s formula to (Wε(t))
2n+2.

Second, taking the expectation reduces to 0 the martingale part. Finally, we
get

E
[
(Wε(t))

2n+2] =
(2n+ 2)(2n+ 1)

2

∫ t

0

E
[
(Wε(u))2n (Gε(u))2] du. (3.3)

b) We admit for a while that

E
[
(Wε(u))2n (Gε(u))2] −→ σ2E

[
(σWu)

2n] , ∀u > 0. (3.4)

Using Cauchy-Schwarz inequality and Lemmas 3.1, 3.2 give:

E
[
(Wε(u))2n (Gε(u))2] 6 √

E
[
(Wε(u))4n]E [(Gε(u))4]

6
√
C(4n)u2nm4 6

√
C(4n)m4u

n.
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Consequently, we may apply Lebesgue’s theorem to (3.3), we have

lim
ε→0

E
[
(Wε(t))

2n+2] =
(2n+ 2)(2n+ 1)

2
σ2

∫ t

0

E
[
(σWu)

2n] du,
=

(2n+ 2)(2n+ 1)

2
σ2n+2

∫ t

0

un
(2n)!

n! 2n
du,

=
(2n+ 2)!

(n+ 1)! 2n+1
(σ
√
t)2n+2 = E

[
(σWt)

2n+2] .
c) We have now to prove (3.4). If u = 0, E

[
(Wε(0))2n (Gε(0))2] = 0 =

σ2E
[
(σW0)2n]. If u > 0, it is clear that:

E
[
(Wε(u))2n (Gε(u))2] = E

[(
Wε((u− ε)+)

)2n
(Gε(u))2

]
+ ξε(u), (3.5)

where
ξε(u) = E

[{
(Wε(u))2n −

(
Wε((u− ε)+)

)2n
}

(Gε(u))2
]
.

Since Gε(u) is independent from F(u−ε)+ , we have

E
[(
Wε((u− ε)+)

)2n
(Gε(u))2

]
= E

[(
Wε((u− ε)+)

)2n
]
E
[
(Gε(u))2] .

Finally, plugging the identity above in (3.5) gives:

E
[
(Wε(u))2n (Gε(u))2] = E

[
(Wε(u))2n]E [(Gε(u))2]+ ξε(u) + ξ̃ε(u),

where
ξ̃ε(u) = E

[(
Wε((u− ε)+)

)2n − (Wε(u))2n
]
E
[
(Gε(u))2] .

Lemma 3.1 implies that E
[
(Gε(u))2] tends to σ2 as ε → 0. The recurrence

hypothesis implies that E
[
(Wε(u))2n] converges to E

[
(σWu)

2n] as ε → 0. It

remains to prove that ξε(u) and ξ̃ε(u) tend to 0 to conclude the proof.

The identity a2n − b2n = (a− b)
∑2n−1

k=0 akb2n−1−k implies that ξε(u) is equal to
the sum

∑2n−1
k=0 Sk(ε, u), where

Sk(ε, u) = E
[(
Wε(u)−Wε((u− ε)+)

)
(Gε(u))2 (Wε(u))k(Wε((u− ε)+))2n−1−k] .

Applying four times the Cauchy-Schwarz inequality yields to:

|Sk(ε, u)| 6
[
E
(
Wε(u)−Wε((u− ε)+)

)2
] 1

2 [
E (Gε(u))8] 1

4

×
[
E(Wε(u))8k

] 1
8
[
E(Wε((u− ε)+))16n−8−8k

] 1
8 .

Lemmas 3.1 and 3.2 lead to

|Sk(ε, u)| 6 C(k)T n−
1
2
√
ε, ∀u ∈ [0, T ].

Consequently, ξε(u) tends to 0 as ε→ 0. Using the same method, it is easy to
prove that ξ̃ε(u) tends to 0 as ε→ 0.

3. From Proposition 3.3, it easy to deduce the convergence in law of Wε(t) (t
being fixed).
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Proposition 3.4 For any fixed t > 0, Wε(t) converges in law to σWt, as
ε→ 0.

Remark 3.5 Using stochastic Fubini theorem we have

Wε(t) =
1

ε
√
ε

∫ t

0

(∫ u

0

(
v − (u− ε)+

)
+
dBv

)
dBu.

We keep notation given in [7]. Let us introduce the function fε :

fε(u, v) :=
1

ε
√
ε

(
v − (u− ε)+

)
+

1{0≤v≤u≤t}.

Consequently Wε(t) = J1
2 (fε).

It is easy to prove that(
‖fε‖∆2

t

)2
:=

∫ t

0

(∫ u

0

fε(u, v)2dv
)
du =

ε

12
+
t− ε

3
, t > ε.

Therefore
lim
ε→0
‖fε‖∆2

t
= σ
√
t.

Proposition 3 in [7] ensures that Wε(t) converges in distribution to σWt, as
ε→ 0 if and only if

lim
ε→0

∫
[0,t]2

Fε(s1, s2)2ds1ds2 = 0 (3.6)

where

Fε(s1, s2) :=

∫ t

0

(
fε(u, s1)fε(u, s2) + fε(s1, u)fε(s2, u)

)
du.

Identity (3.6) can be shown by tedious calculations. This gives a new proof of
Proposition 3.4.

Let us recall the method of moments.

Proposition 3.6 Let X, (Xn)n∈N be r.v’s such that E(|X|k) <∞, E(|Xn|k) <
∞,∀k, n ∈ N and

limk→∞
[E(X2k)]

1
2k

2k
<∞. (3.7)

If for all k ∈ N, limn→∞E(Xk
n) = E(Xk), then Xn converges in law to X as

n→∞.

Proof of Proposition 3.4. Let t > 0 be a fixed time. The odd moments of
Wε(t) are null. By Proposition 3.3, the even moments of Wε(t) tends to σWt.
Since σWt is a Gaussian r.v. with variance σ

√
t, it is easy to check that (3.7)

holds. As a result, Wε(t) converges in law to σWt.

4. Next, we prove the finite-dimensionnal convergence.

15



Proposition 3.7 Let 0 < t1 < t2 < · · · < tn. Then, (Wε(t1), . . . ,Wε(tn))
converges in law to (σWt1 , . . . , σWtn), as ε→ 0.

Proof. We take n = 2 for simplicity. We consider 0 < t1 < t2 and ε ∈
]0, t1 ∧ (t2 − t1)[. Since t1 > ε, note that (u − ε)+ = u − ε for u ∈ [t1, t2]. We
begin with the decomposition:

Wε(t2) = Wε(t1) +
1

ε
√
ε

∫ t2

t1+ε

(∫ u

u−ε
(Bu −Bs)ds

)
dBu +R1

ε (t1, t2),

where R1
ε (t1, t2) = 1

ε
√
ε

∫ t1+ε

t1

(∫ u
u−ε(Bu −Bs)ds

)
dBu. Let us note that Wε(t1)

is independent from 1
ε
√
ε

∫ t2
t1+ε

(∫ u
u−ε(Bu −Bs)ds

)
dBu.

Let us introduce B′t = Bt+t1 − Bt1 , t > 0. B′ is a standard Brownian motion.

The changes of variables u = t1+v and r = s−t1 in
∫ t2
t1+ε

(∫ u
u−ε(Bu −Bs)ds

)
dBu

leads to
Wε(t2) = Wε(t1) + Θε(t1, t2) +R2

ε (t1, t2) +R1
ε (t1, t2), (3.8)

where

Θε(t1, t2) =
1

ε
√
ε

∫ t2−t1

0

(∫ v

(v−ε)+
(B′v −B′r)dr

)
dB′v,

R2
ε (t1, t2) =

1

ε
√
ε

∫ ε

0

(∫ v

0

(B′v −B′r)dr
)
dB′v.

Straightforward calculation shows that E
[
(R1

ε (t1, t2))
2
]

and E
[
(R2

ε (t1, t2))
2
]

are bounded by Cε. Thus, R1
ε (t1, t2) and R1

ε (t1, t2) converge to 0 in L2(Ω).
Proposition 3.4 gives the convergence in law of Θε(t1, t2) to σ(Wt2 −Wt1) and
the convergence in law of Wε(t1) to σWt1 , as ε→ 0.

Since Wε(t1) and Θε(t1, t2) are independent, the decomposition (3.8) implies
that (Wε(t1),Wε(t2)−Wε(t1)) converges in law to (σWt1 , σ(Wt2 −Wt1)), as
ε→ 0. Proposition 3.4 follows immediately.

5. We end the proof of the convergence in law of the process (Wε(t))t>0 by
showing that the family of the laws of (Wε(t))t>0 is tight as ε ∈]0, 1].

Lemma 3.8 There exists a constant K such that

E
[
|Wε(t)−Wε(s)|4

]
6 K|t− s|2, 0 6 s 6 t, ε > 0.

Proof. Applying Burkhölder-Davis-Gundy inequality, we obtain:

E
[
|Wε(t)−Wε(s)|4

]
6 cE

[(∫ t

s

(Gε(u))2 du

)2
]
6 c(t−s)

∫ t

s

E
[
(Gε(u))4

]
du.
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Using Lemma 3.1, we get E
[
|Wε(t)−Wε(s)|4

]
6 cm4(t − s)2 and ends the

proof (see Kolmogorov Criterion in Section XIII-1 of [8]).

6. To prove the joint convergence of (Wε(t), Bt)t>0 to (σWt, Bt)t>0, we mimick
the approach developed in Points 1-5 above.

6.a. Convergence (Wε(t), Bt) to (σWt, Bt), t being fixed.
First, we prove that

lim
ε→0

E(W p
ε (t)Bq

t ) = E((σWt)
pBq

t ), p, q ∈ N. (3.9)

Let us note that the limit is null when either p or q is odd.

Using Itô’s formula, we get

E [(Wε(t))
pBq

t ] =
p(p− 1)

2
α1(t, ε) +

q(q − 1)

2
α2(t, ε) + pqα3(t, ε),

where

α1(t, ε) =

∫ t

0

E
[
(Wε(u))p−2Bq

u(Gε(u))2
]
du,

α2(t, ε) =

∫ t

0

E
[
(Wε(u))pBq−2

u

]
du,

α3(t, ε) =

∫ t

0

E
[
(Wε(u))p−1Bq−1

u Gε(u)
]
du.

To demonstrate (3.9), we proceed by induction on q, then by induction on p,
q being fixed.
First, we apply (3.9) with q − 2 instead of q, then we have directly:

lim
ε→0

α2(t, ε) =

∫ t

0

E [(σWu)
p]E

[
Bq−2
u

]
du.

As for α1(t, ε), we write

(Wε(u))p−2 = (Wε(u))p−2 −
(
Wε((u− ε)+)

)p−2
+
(
Wε((u− ε)+)

)p−2

Bq
u = Bq

u −B
q
(u−ε)+ +Bq

(u−ε)+ .

We proceed similarly with α3(t, ε). Reasoning as in Point 2 and using the two
previous identities, we can prove:

lim
ε→0

α1(t, ε) = σ2

∫ t

0

E
[
(σWu)

p−2]E [Bq
u] du and lim

ε→0
α3(t, ε) = 0.

Consequently, when either p or q is odd, then limε→0 αi(t, ε) = 0, (i = 1, 2)
and therefore:

lim
ε→0

E(W p
ε (t)Bq

t ) = 0 = E((σWt)
pBq

t ).

17



It remains to determine the limit in the case where p and q are even. Let us
denote p = 2p′ and q = 2q′. Then we have

lim
ε→0

α1(t, ε) =

∫ t

0

σ2 (p− 2)!

2p′−1(p′ − 1)!
up
′−1σp−2 q!

2q′ (q′)!
uq
′
du

=
(p− 2)! q!

2p′+q′−1 (p′ − 1)! (q′)! (p′ + q′)
σptp

′+q′ ,

lim
ε→0

α2(t, ε) =

∫ t

0

p!

2p′ (p′)!
σpup

′ (q − 2)!

2q′−1 (q′ − 1)!
uq
′−1du

=
p! (q − 2)!

2p′+q′−1 (p′)! (q′ − 1)! (p′ + q′)
σptp

′+q′ .

Then, it is easy to deduce

lim
ε→0

E [(Wε(t))
pBq

t ] =
p!

2p′ (p′)!
σptp

′ q!

2q′ (q′)!
tq
′
= E [(σWt)

p]E [Bq
t ] .

Next, we use a two dimensional version of the method of moments:

Proposition 3.9 Let X, Y, (Yn)n∈N(Xn)n∈N be r.v. whose moments are finite.
Let us suppose that X and Y satisfy (3.7) and that ∀p, q ∈ N, limn→∞E(Xp

nY
q
n )

= E(XpY q). Then, (Xn, Yn) converges in law to (X, Y ) as n→∞.

Since Wt and Bt are Gaussian r.v’s, they both satisfy (3.7). Consequently,
(Wε(t), Bt) converges in law to (σWt, Bt) as ε→ 0.

6.b. Finite-dimensional convergence. Let 0 < t1 < t2. We prove that
(Wε(t1),Wε(t2), Bt1 , Bt2) converges in law to (σWt1 , σWt2 , Bt1 , Bt2). We apply
decomposition (3.8) to Wε(t2).

By Point 6.a, (Wε(t1), Bt1) converges in law to (σWt1 , Bt1) and (Θε(t1, t2), Bt2−
Bt1) converges to (σWt2 − σWt1 , Bt2 − Bt1). Since (Θε(t1, t2), Bt2 − Bt1) is
independent from (Wε(t1), Bt1), we can conclude that (Wε(t1),Wε(t2), Bt1 , Bt2)
converges in law to (σWt1 , σWt2 , Bt1 , Bt2).

4 Proofs of Theorems 1.5, 1.7 and Proposi-

tions 1.6, 1.8

1. Convergence in distribution of a family of stochastic integrals
with respect to Wε.

Denote C
(
[0, T ]

)
the set of real valued and continuous functions defined on

[0, T ]. C
(
[0, T ]

)
equipped with the uniform norm is a Banach space. Set

Bc
(
[0, T ]

)
the Borel σ-field on C

(
[0, T ]

)
. Let D

(
[0, T ]

)
be the space of right-

continuous functions with left-limits equipped with the Skorokhod topology.
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Consider a predictable, right-continuous with left-limits process (Γu) such that
: (

Γ,Wε

)
converges in distribution to

(
Γ, σW

)
, ε→ 0. (4.1)

In (4.1), the pair
(
Γ,Wε

)
is considered as an element of D

(
[0, T ]

)
×C

(
[0, T ]

)
.

Proposition 4.1 1. Let F :
(

Ω×C
(
[0, T ]

)
, σ(Bu, u ≥ 0)⊗Bc

(
[0, T ]

))
→

R be a bounded an measurable map and such that for any ω, F (ω, ·) is
continuous. Then :

lim
ε→0

E
(
F (·,Wε)

)
= E

(
F (·, σW )

)
. (4.2)

2. Under (4.1), the process
(∫ t

0

ΓudWε(u)
)
t>0

converges in distribution to(
σ

∫ t

0

ΓudWu

)
t>0

as ε→ 0, where (Γu) is independent of (Wu).

Proof of Proposition 4.1 1) Denote H the set of σ(Bu, u ≥ 0)-measurable
and bounded r.v.’s A such that

lim
ε→0

E
(
AΘ(Wε)

)
= E

(
AΘ(σW )

)
= E(A)E

(
Θ(σW )

)
, (4.3)

where Θ : C
(
[0, T ]

)
→ R is continuous and bounded.

It is clear that H is a linear vector space. Let
(
An, n ≥ 1

)
be a sequence of

elements in H which satisfies

a)
(
An, n ≥ 1

)
converges uniformly to a bounded element A

either

b) n 7→ An is non-decreasing and the limit A is bounded.

Since

E
(
AΘ(Wε)

)
− E

(
AΘ(σW )

)
= E

(
(A− An)Θ(Wε)

)
+E
(
AnΘ(Wε)

)
− E

(
AnΘ(σW )

)
E
(
(An − A)Θ(σW )

)
we have∣∣∣E(AΘ(Wε)

)
−E
(
AΘ(σW )

)∣∣∣ ≤ CE
(
|A−An|

)
+
∣∣∣E(AnΘ(Wε)

)
−E
(
AnΘ(σW )

)∣∣∣.
Consequently, A ∈ H.

Consider the set C of r.v.’s of the type f(Bt1 , · · · , Btn) where f is continu-
ous and bounded. Theorem 1.4 implies that C ⊂ H. Then, (4.3) is direct
consequence of Theorem T20 p 28 in [6].

According to Proposition 2.4 in [3], relations (4.3) and (4.2) are equivalent.
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2) Denote F0 : D
(
[0, T ]

)
×C

(
[0, T ]

)
→ R a bounded and continuous function.

Property (4.1) is a direct consequence of item 1 of Proposition 4.1 applied with
:

F (ω,w) := F0

(
(Γs(ω), 0 ≤ s ≤ T ), w

)
, w ∈ C

(
[0, T ]

)
.

Recall that Wε is a continuous martingale, which converges in distribution to
σW as ε → 0. Then, by Proposition 3.2 of [4], Wε satisfies the condition of
uniform tightness. Consequently, from Theorem 5.1 of [4] and (4.1), we can
deduce that for any predictable, right-continuous with left-limits process Γ,∫ ·

0

ΓudWε(u) converges in distribution to σ

∫ ·
0

ΓudW (u).

�

Remark 4.2 1. The convergence in item 1 of Proposition 4.1 corresponds
to the stable convergence, cf [3].

2. According to relation (2.2), we have

∆ε(H, t) =
1√
ε

∫ t

0

(
1

ε

∫ s

(s−ε)+
Hudu−Hs

)
dBs.

Let us apply the general result obtained in [9]. Let (εn) be a sequence of
positive numbers converging to 0 as n→∞. For any t > 0, suppose :

1

εn

∫ t

0

(
1

εn

∫ s

(s−εn)+
Hudu−Hs

)2

ds
(P )−→ τ(t), n→∞ (4.4)

and

sup
0≤r≤t

1
√
εn

∣∣∣ ∫ r

0

(
1

εn

∫ s

(s−εn)+
Hudu−Hs

)
ds
∣∣∣ (P )−→ 0, n→∞ (4.5)

where
(
τ(t)

)
denotes a continuous process and (P ) stands for the con-

vergence in probability.

Then, from Theorem 1.2 in [9] we can deduce that(
∆εn(H, t), t ≥ 0

) (d)−→
(
W (τ(t)) t ≥ 0

)
, n→∞ (4.6)

where (Wt) is a standard Brownian motion independent from
(
τ(t)

)
.

Suppose that (Ht) is of the type Ht = H0 +

∫ t

0

ΛsdBs + Vt, where (Λt)

and (Vt) satisfy the assumptions given in Theorem 1.5. Note that

(
σ

∫ t

0

ΛudWu, t ≥ 0
) (d)

=
(
W
(
σ2

∫ t

0

Λ2
udu
)
, t ≥ 0

)
.
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Therefore (4.6) suggests to prove (4.4) with

τ(t) := σ2

∫ t

0

Λ2
udu, t ≥ 0.

We have tried without any success to directly prove (4.4) and (4.5). In
the particular case Ht = Bt, the calculations are tractable. Theorem 1.2
in [9] may be applied :

(
∆εn(B, t), t ≥ 0

)
converges in distribution to

(σWt, t ≥ 0), as n → ∞. However, this result is not sufficient to have
the convergence of

(
∆εn(H, t), t ≥ 0

)
since we need the convergence of(

∆εn(B, t), Bt

)
and the convergence of the previous pair of processes is

not given by Theorem 1.2 in [9].

2. Some preliminary results related to the proof of Theorem 1.5.

Lemma 4.3 Let
(
ξε(t), t ≥ 0

)
be a family of processes. Suppose there exists a

increasing sequence (Tn)n≥1 of random times such that Tn ↑ ∞ as n→∞ and
for any n ≥ 1,

(
ξε(t ∧ Tn), t ≥ 0

)
converges in the ucp sense to 0, as ε → 0.

Then
(
ξε(t), t ≥ 0

)
converges in the ucp sense to 0, as ε → 0, i.e. for any

T > 0, sup
0≤s≤T

|ξε(s)| → 0 in probability as ε→ 0.

Lemma 4.4 Denote (Kt) an progressively measurable process which is right-
continuous at 0, K0 = 0 and locally bounded. Set :

R1
ε (K, t) :=

1√
ε

∫ t∧ε

0

Ks

(s
ε
− 1
)
dBs, t ≥ 0. (4.7)

Then
(
R1
ε (K, t), t ≥ 0

)
converges in the ucp sense to 0.

Proof of Lemma 4.4. Since (Kt) is locally bounded there exists a increasing
sequence of stopping times (Tn)n≥1 such that Tn ↑ ∞ as n → ∞ and |K(t ∧
Tn)| ≤ n, for any t ≥ 0. Then, according to Lemma 4.3 it is sufficient to prove
that

(
R1
ε (K, t), t ≥ 0

)
converges in the ucp sense to 0 when (Kt) is bounded.

In that case, using Doob’s inequality we get :

E
(

sup
t∈[0,T ]

(
R1
ε (K, t)

)2
)
≤ C

ε
E
(∫ ε

0

K(s)2
(s
ε
− 1
)2
ds
)
≤ C sup

0≤s≤ε
E
(
K(s)2

)
where T > 0.

Recall that (Ks) is bounded, s 7→ K(s) is right continuous at 0, K(0) = 0, then

the dominated convergence theorem implies that lim
ε→0

(
sup

0≤s≤ε
E
(
K(s)2

))
= 0.

This proves that sup
t∈[0,T ]

∣∣R1
ε (K, t)

∣∣ goes to 0 in L2(Ω). �

Note that under (1.9), relation (2.2) implies that :

∆ε(H, t) = ∆̃ε(H, t) +R1
ε (HΦ, t) (4.8)
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where ∆ε(H, t) has been defined by (1.7) and

∆̃ε(H, t) :=
1

ε
√
ε

∫ t

0

(∫ u

(u−ε)+
(Hs −Hu)ds

)
Φ(u)dBu. (4.9)

�

3. Proof of Proposition 1.8. Recall that ∆
(2)
ε (K, t) is defined by (1.11).

Using Itô’s formula, we obtain:

(B(s+ε)∧t −Bs)
2 = 2

∫ (s+ε)∧t

s

(Bu −Bs)dBu + (s+ ε) ∧ t− s.

Reporting in ∆
(2)
ε (K, t) and applying stochastic Fubini’s theorem lead to

∆(2)
ε (K, t) = 2

∫ t

0

KudWε(u) +R1
ε (t) +R2

ε (t),

where

R1
ε (t) :=

2

ε
√
ε

∫ t

0

[∫ u

(u−ε)+
(Ks −Ku)(Bu −Bs)ds

]
dBu

R2
ε (t) :=

1

ε
√
ε

∫ t

(t−ε)+
Ks(t− s− ε)ds.

Note that Proposition 4.1 (with Γ = K) ensures the convergence in distribution

of

∫ ·
0

KudWε(u) to σ

∫ ·
0

KudW (u).

Since s→ Ks is locally bounded, then lim
ε→0

sup
t∈[0,T ]

|R2
ε (t)| = 0 a.s.

To prove that R1
ε

(ucp)→ 0, we may assume that K is bounded (cf Lemma 4.3).
Using the Cauchy-Schwarz and Doob inequalities, we obtain successively :

E
(

sup
0≤t≤T

(R1
ε )

2
)
≤ C

ε3

∫ T

0

E

((∫ u

(u−ε)+
(Ks −Ku)(Bs −Bu)ds

)2
)
du

≤ C

ε2

∫ T

0

du

∫ u

(u−ε)+

√
E
(
(Ks −Ku)4

)
E
(
(Bs −Bu)4

)
ds

≤ C

∫ T

0

(
sup

s≤u≤(s+ε)∧t
E
(
(Ks −Ku)

4
))
ds

Since K is bounded and right-continuous, then the term in the right-hand side
of the above inequality goes to 0 as ε→ 0.

4. Proof of Point (1) of Theorem 1.5. Using (4.8) we have :

∆ε(H0, t) = H0

(
∆̃ε(1, t) +R1

ε (Φ, t)
)

= H0R
1
ε (Φ, t)

= H0Φ(0)Nε +H0R
1
ε

(
Φ− Φ(0), t

)
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where ε < t and

Nε :=
1√
ε

∫ ε

0

(u
ε
− 1
)
dBu, ε < t.

The r.v Nε has a centered Gaussian distribution, with variance

E(N2
ε ) =

∫ ε

0

(u
ε
− 1
)2 du

ε
=

1

3
= σ.

According to Lemma 4.4, R1
ε

(
Φ− Φ(0), ·

) (ucp)→ 0 as ε→ 0.

5. Proof of Point (2) of Theorem 1.5. Since (Ht) = (Vt) is continuous and

V0 = 0 then, Lemma 4.4 applied with K = ΦH implies that R1
ε (ΦH, ·)

(ucp)→ 0
as ε→ 0.

Let T > 0. According to Lemmas 4.3 and 2.2, we may suppose that Φ is
bounded and :

|Vs − Vu| ≤ C|u− v|β, u, v ∈ [0, T ], β >
1

2
.

As a result,∣∣∣∣ 1

ε
√
ε

∫ u

(u−ε)+
(Vs − Vu)ds

∣∣∣∣ 6 1

ε
√
ε

∫ u

u−ε
C |s− u|β ds 6 Cεβ−

1
2

and
E
(

sup
t∈[0,T ]

(
∆̃ε(V, t)

)2
)
≤ Cε2β−1.

Using (4.8), item 2 of Theorem 1.5 follows.

6. Proof of Point (3) of Theorem 1.5.

a) Recall that Mt =

∫ t

0

ΛrdBr and

∆̃ε(M, t) = − 1

ε
√
ε

∫ t

0

(∫ u

(u−ε)+
(Mu −Ms)ds

)
Φ(u)dBu.

Let s < u, we have

Mu −Ms = Λ(u−ε)+(Bu −Bs) +

∫ u

s

(
Λr − Λ(u−ε)+

)
dBr.

Using (1.8) we get :

∆̃ε(M, t) = −
∫ t

0

Λu−Φ(u)dWε(u) +R2
ε (t) +R3

ε (t), (4.10)
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where

R2
ε (t) := −

∫ t

0

(
Λ(u−ε)+ − Λu−

)
Φ(u)dWε(u)

and

R3
ε (t) = − 1

ε
√
ε

∫ t

0

(∫ u

(u−ε)+
(r − (u− ε)+)(Λr − Λ(u−ε)+)dBr

)
Φ(u)dBu.

b) Suppose for a while that R2
ε and R3

ε converge in the ucp sense to 0, as ε→ 0.
Then, Proposition 4.1 with Γ = Λ implies that the convergence of ∆ε(H, ·) to

σ

∫ ·
0

Λu−Φ(u)dWu. Note that

∫ ·
0

ΛuΦ(u)dWu =

∫ ·
0

Λu−Φ(u)dWu a.s.

c) Let us prove that R3
ε converge in the ucp sense to 0. The proof related

to R2
ε is similar and easier; it is left to the reader. From Lemma 4.3, we can

suppose that
(
Λu, 0 ≤ u ≤ T

)
and

(
Φ(u), 0 ≤ u ≤ T

)
are bounded. Then,

using Burkholder-Davies-Gundy and Hölder inequalities we get :

E
(

sup
0≤t≤T

R3
ε (t)

2
)
≤ C

ε
E

(∫ T

0

{∫ u

(u−ε)+

r − (u− ε)+

ε
(Λr − Λ(u−ε)+)dBr

}2

×Φ(u)2du
)

≤ C

ε

∫ T

0

duE
({∫ u

(u−ε)+

r − (u− ε)+

ε
(Λr − Λ(u−ε)+)dBr

}2)
≤ C

ε

∫ T

0

du

∫ u

(u−ε)+

(r − (u− ε)+

ε

)2

E
(
(Λr − Λ(u−ε)+)2

)
dr

≤ C

∫ T

0

sup
(u−ε)+≤r<u

(
E
(
(Λr − Λ(u−ε)+)2

))
du.

Using the dominated convergence theorem and the fact that t 7→ Λt has left-
limits we can conclude that the right-hand side in the above inequality goes
to 0 as ε→ 0. Consequently, sup

0≤t≤T
|R3

ε (t)| goes to 0 in L2(Ω).

7. Proof of Proposition 1.6

From (4.8), we have :

∆ε

(
h(B), t

)
= ∆̃ε

(
h(B), t

)
+R1

ε

(
h(B)Φ, t

)
where

∆̃ε

(
h(B), t

)
=

1

ε
√
ε

∫ t

0

(∫ u

(u−ε)+

{
h(Bs)− h(Bu)

}
ds

)
Φ(u)dBu.

24



Since :

h(Bs)− h(Bu) = (Bs −Bu)

∫ 1

0

h′
(
Bu + θ(Bs −Bu)

)
dθ

= (Bs −Bu)h
′(Bu)

+(Bs −Bu)

∫ 1

0

{
h′
(
Bu + θ(Bs −Bu)

)
− h′(Bu)

}
dθ

then,

∆ε

(
h(B), t

)
= −

∫ t

0

h′(Bu)Φ(u)dWε(u) +R1
ε

(
h(B)Φ, t

)
+R3

ε (t)

where
(
Wε(u)

)
is the process defined by (1.8) and

R3
ε (t) :=

1√
ε

∫ t

0

{
1

ε

∫ u

(u−ε)+
(Bs −Bu)

[ ∫ 1

0

{
h′
(
Bu + θ(Bs −Bu)

)
−h′(Bu)

}
dθ
]
ds
}

Φ(u)dBu.

Using Proposition 4.1 (with Γ = h′(B)Φ) implies that

∫ ·
0

h′(Bu)Φ(u)dWε(u),

converges in distribution to σ

∫ ·
0

h′(Bu)Φ(u)dW (u), as ε→ 0. Since h(0) = 0,

Lemma 4.4 may be applied : R1
ε

(
h(B)Φ, ·

) (ucp)→ 0, as ε→ 0. We claim that R3
ε

has the same behavior. By localization and Lemma 4.3 we may suppose that
Φ is bounded. Using Doob’s and Hölder inequalities we obtain :

E
(

sup
0≤t≤T

(
R3
ε (t)
)2
)
≤ Cδ(h′, ε)

ε2

∫ T

0

{∫ u

(u−ε)+

√
E
(
[Bs −Bu]4

)
ds

}
du

≤ Cδ(h′, ε)

where

δ(φ, ε) :=

√
sup

0≤θ≤1,0≤u−ε≤s≤u≤T
E
({
φ
(
Bu + θ(Bs −Bu)

)
− φ(Bu)

}4
)
.

It can be proved that lim
ε→0

δ(φ, ε) = 0 as soon as φ is subexponential. As a

result, sup
t≤T

∣∣R3
ε (t)
∣∣ goes to 0 in L2(Ω) as ε→ 0.

8. Proof of Theorem 1.7

a) The a.s. converges comes from the continuity of t 7→ Xt and the identity

1

ε

∫ t

0

Hs

(
Xs+ε −Xs

)
ds =

i−1∑
j=0

hj

(
1

ε

∫ aj+1+ε

aj+1

Xsds−
1

ε

∫ aj+ε

aj

Xsds

)
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+hi

(
1

ε

∫ t+ε

t

Xsds−
1

ε

∫ ai+ε

ai

Xsds

)
where ai ≤ t ≤ ai+1 and i ≥ 0.

b) Let us deal the convergence in distribution. Recall that we supposed that
X = B. Using the definition of ∆ε(H, t), identity (2.2) and easy calculations
we get :

∆ε(H, t) = h0

{
Φ(0)G0(ε) +R1

ε

(
Φ− Φ(0), ε

)}
, 0 < t ≤ a1, 0 < ε < t

where R1
ε

(
Φ− Φ(0), ε

)
has been defined by (4.7) and

G0(ε) :=
1√
ε

∫ ε

0

(s
ε
− 1
)
dBs.

More generally when t ∈]ai, ai+1], ε < (t− ai)∧ (ai − ai−1) and i ≥ 1, we have

∆ε(H, t) = ∆ε(H, ai) + (hi − hi−1)
(
Φ(ai)Gi(ε) + R̃1

ε

)
with

Gi(ε) :=
1√
ε

∫ ai+ε

ai

(s− ai
ε
− 1
)
dBs

R̃1
ε :=

1√
ε

∫ ai+ε

ai

(s− ai
ε
− 1
)(

Φ(s)− Φ(ai)
)
dBs

As a result for any t ∈]ai, ai+1] we have :

∆ε(H, t) = h0Φ(0)G0(ε) +
(
h1 − h0

)
Φ(a1)G1(ε) + · · ·+

(
hi − hi−1

)
Φ(ai)Gi(ε)

+
(
hi − hi−1

)
R̃1
ε

where
ε < (a1 − a0) ∧ · · · ∧ (ai − ai−1) ∧ (t− ai). (4.11)

Recall that Φ has been supposed to be right-continuous at ai, then Lemma

4.4 may be applied : R̃1
ε

(ucp)→ 0, as ε → 0. As a result, the term R̃1
ε gives no

contribution to the limit of ∆ε(H, ·).
Note that Gi(ε) is a Gaussian r.v. with variance σ2 = 1/3 and under (4.11)
the r.v.’s G0(ε), · · · , Gi(ε) are independent and

lim
ε→0

E
(
BsGi(ε)

)
= 0, ∀ s ≥ 0.

Item 2 of Theorem 1.7 follows.
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XV (Univ. Strasbourg, Strasbourg, 1979/1980), Lecture Notes in Math., 850,
529–546, Springer, 1981.
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[11] F. Russo and P. Vallois. Itô formula for C1-functions of semimartingales.
Probab. Theory Related Fields, 104(1):27–41, 1996.

[12] F. Russo and P. Vallois. Stochastic calculus with respect to continuous finite
quadratic variation processes. Stochastics Stochastics Rep., 70(1-2):1–40, 2000.

[13] F. Russo and P. Vallois. Elements of stochastic calculus via regularisation. In
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