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. First, we prove that the convergence in the a.s. sense exists when the integrand is Hölder continuous and the integrator is a continuous semimartingale. Second, we investigate the second order convergence in the Brownian motion case.

Introduction

We consider a complete probability space (Ω, F, F t , P ), which satisfies the usual hypotheses. The notation (ucp) will stand for the convergence in probability, uniformly on the compact sets in time.

1. Let X be a real continuous (F t )-semimartingale. In the usual stochastic calculus, the quadratic variation and the stochastic integral with respect to X play a central role. In [START_REF] Russo | The generalized covariation process and Itô formula[END_REF], [START_REF] Russo | Itô formula for C 1 -functions of semimartingales[END_REF] and [START_REF] Russo | Stochastic calculus with respect to continuous finite quadratic variation processes[END_REF], Russo and Vallois extended these notions to continuous processes. Let us briefly recall their main definitions. Definition 1.1 Let X be a real-valued continuous process, (F t )-adapted, and H be a locally integrable process. The forward integral t 0 Hd -X is defined as

t 0 Hd -X = lim →0 (ucp) 1 t 0 H u (X u+ -X u ) du,
if the limit exists. The quadratic variation is defined by

[X] t = lim →0 (ucp) 1 t 0 (X u+ -X u ) 2 du 1
if the limit exists.

In the article, X will stand for a real-valued continuous (F t )-semimartingale and (H t ) t 0 for an (F t )-progressively measurable process. If H is continuous, then, according to Proposition 1.1 of [START_REF] Russo | The generalized covariation process and Itô formula[END_REF], the limits in (1.1) exist and coincide with the usual objects. In order to work with adapted processes only, we change u + into (u + ) ∧ t in the above integrals. This change does not affect the limit (cf (3.3) of [START_REF] Russo | Elements of stochastic calculus via regularisation[END_REF]). Consequently,

t 0 H u dX u = lim →0 (ucp) 1 t 0 H u X (u+ )∧t -X u du, (1.1) 
and

< X > t = lim →0 (ucp) 1 t 0 X (u+ )∧t -X u 2 du (1.2)
where t 0 H u dX u is the usual stochastic integral and < X > is the usual quadratic variation of X.

2. First, we determine sufficient conditions under which the convergences in (1.1) and (1.2) hold in the almost sure sense. Let us mention that some results in this direction have been obtained in [START_REF] Gradinaru | Approximation at first and second order of morder integrals of the fractional Brownian motion and of certain semimartingales[END_REF] and [START_REF] Karandikar | On almost sure convergence results in stochastic calculus[END_REF].

We say that a process Y is locally Hölder continuous if, for all T > 0, there exist α ∈]0, 1] and a finite (random) constant C Y such that

|Y s -Y u | C Y |u -s| α ∀u, s ∈ [0, T ], a.s. (1.3) 
Our first result related to stochastic integral is the following.

Theorem 1.2 If (H t ) t 0 is adapted and locally Hölder continuous, then

lim →0 1 t 0 H u (X (u+ )∧t -X u )du = t 0 H u dX u , (1.4) 
in the sense of almost sure convergence, uniformly on the compact sets in time.

Our assumption related to (H t ) is simple but too strong as shows item 1 of Theorem 1.7 below. In [START_REF] Karandikar | On almost sure convergence results in stochastic calculus[END_REF], a general result of a.s. convergence of sequences of stochastic integrals has been given. However it cannot be applied to obtain (1.4) (see Remark 2.3).

We now consider the convergence of -integrals to the bracket of X.

Proposition 1.3 If X is locally Hölder continuous, then

lim →0 1 t 0 (X (u+ )∧t -X u ) 2 du =< X > t , (1.5) 
in the sense of almost sure convergence, uniformly on the compact sets in time. Moreover, if K is a continuous process,

lim →0 1 t 0 K u (X (u+ )∧t -X u ) 2 du = t 0 K u d < X > u , (1.6) 
in the sense of almost sure convergence.

3. Under the assumptions given in Theorem 1.2, we have an approximation scheme of • 0 H s dX s which converges a.s. According to Remark 2.1, the (a.s.) rate of convergence of is of order α , when X has a finite variation and H is α-Hölder continuous. Therefore, it remains to determine the rate of convergence when X is a local martingale. This leads to introduce

∆ (H, t) = 1 √ 1 t 0 H u (X (u+ )∧t -X u )du - t 0 H u dX u , t ≥ 0 (1.7)
where H is a progressively measurable and locally bounded process.

In order to study the limit in distribution of the family of processes ∆ (H, t), t ≥ 0 as → 0, a two-steps strategy has been adopted. First, we consider the case where X = H = B and B denotes the standard Brownian motion. Second, using a functional theorem of convergence we determine the limit of ∆ (H, t), t ≥ 0 . Note that in [START_REF] Gradinaru | Approximation at first and second order of morder integrals of the fractional Brownian motion and of certain semimartingales[END_REF], some related results have been proven.

a) Suppose that X = H = B. In that case, using stochastic Fubini's theorem (cf relation (4.8) with Φ = 1) we have:

∆ (B, t) = -W (t) + R 1 (B, t),
where

W (t) = t 0 G (u)dB u , G (u) = 1 √ u (u-) + (B u -B s )ds, (1.8) 
and

R 1 (B, t) := 1 √ t∧ 0 s -1 B s dB s .
From Lemma 4.4, the process R 1 (B, •) does not contribute to the limit since

R 1 (B, •) (ucp) 
→ 0, as → 0. Therefore, the convergence of ∆ (B, •) reduces to the one of W . We determine, more generally, in Theorem 1.4 below the limit of the pair W , B . Theorem 1.4 (W (t), B t ) t 0 converges in distribution to (σW t , B t ) t 0 , as → 0, where W is a standard Brownian motion, independent from B, and σ 2 = 1 3 . b) We now investigate the convergence of (∆ (H, t)) t 0 . We restrict ourselves to processes H of the type As for X, we assume that it is a Brownian martingale with representation :

H t = H 0 + M t + V t where 1. H 0 is F 0 -measurable,
X t = t 0 Φ(u)dB u , t ≥ 0 (1.9)
where (Φ(u)) is predictable, locally bounded and right-continuous at 0.

From now on, (W t ) denote a standard Brownian motion independent from (B t ),

and σ := 1 √ 3 .
Using functional results of convergence (Proposition 3.2 and Theorem 5.1 in [START_REF] Jakubowski | Convergence en loi des suites d'intégrales stochastiques sur l'espace D 1 de Skorokhod[END_REF]) and Theorem 1.4, we obtain the following result.

Theorem 1.5 1. For any 0 < t 1 < • • • < t n , the random vector (∆ (H 0 , t 1 ), . . . , ∆ (H 0 , t n )) converges in law to σH 0 Φ(0) N 0 , • • • , N 0 , where N 0 is a standard Gaussian r.v, independent from F 0 .

2. If V is a process which is locally Hölder continuous of order α > 1 2 , then ∆ (V, t) converges to 0 in the ucp sense as → 0.

If

M t = t 0 Λ s dB s , then the process (∆ (M, t)) t 0 converges in distribu- tion to (σ t 0 Λ u Φ(u)dW u ) t 0 as → 0. 4. If H 0 = 0, M and V are as in points (2) -(3) above, then (∆ (M + V, t)) t 0 converges in law to (σ t 0 Λ u Φ(u)dW u ) t 0 as → 0.
Let us discuss the assumptions of Theorem 1.5. As for item 2, the conclusion is false if α ≤ 1/2. Indeed, if we take V t = B t then, t → V t is α-Hölder with α < 1/2, however, as shows Theorem 1. 

H t = h1I {t=0} + i 0 h i 1I {t∈]a i ,a i+1 ]} .
1. Suppose that X is continuous, then,

1 t 0 H s (X (s+ )∧t -X s )ds converges
almost surely to t 0 H s dX s , uniformly on the compact sets in time, as → 0.

2. Suppose h = 0 and X is defined by (1.9). Associated with a sequence (N i ) i∈N of i.i.d. r.v's with Gaussian law N (0, 1), independent from B consider the piecewise and left-continuous process:

Z s := σ h 0 Φ(0)N 0 1 {0<s≤a 1 } + i≥1 (h i -h i-1 )Φ(a i )N i 1 {a i <s≤a i+1 } , s > 0 and Z 0 = 0.
Suppose that Φ is right-continuous at any point a i . Then, for any fixed

times 0 ≤ s 1 < • • • < s n , (B s , s ≥ 0), ∆ (H, s 1 ), • • • , ∆ (H, s n ) converges in law to (B s , s ≥ 0), Z s 1 , • • • , Z sn as → 0.
A weak version of Theorem 1.7 has been given in Section 6.3 of [START_REF] Bérard | Approximation du temps local et intégration par régularisation[END_REF].

Note that the family of processes ∆ (H, t), t ≥ 0 cannot converge in the Skorokhod space to a right continuous process Z 0 (t), t ≥ 0 . Indeed, according to Theorem 1.7, the map t ∈]0, a 1 [ → Z 0 (t) should be constant and not null. This contradicts the fact that Z 0 (0) = 0.

In [START_REF] Russo | The generalized covariation process and Itô formula[END_REF], convergence in distribution of sequences of stochastic integrals are considered. We discuss in Remark 4.2 the link between Rootzen's result and ours.

4.

Let us finally present our result of convergence in distribution related to the quadratic variation.

Let us consider

∆ (2) (K, t) = 1 √ 1 t 0 K u (B (u+ )∧t -B u ) 2 du - t 0 K u du , (1.11) 
where(K s ) is locally bounded and progressively measurable.

Proposition 1.8 Let (K s ) be a predictable, right-continuous with left limits and locally bounded process. Then, (∆ (2) (K, t)) t 0 converges in distribution to

(2σ t 0 K u dW u ) t 0 , as → 0.
5. Let us briefly detail the organization of the paper. Section 2 contains the proofs of the almost convergence results, i.e. Theorem 1.2 and Proposition 1.3. Then, the proof of Theorem 1.4 (resp. Propositions 1.6, 1.8 and Theorems 1.5, 1.7) is (resp. are) given in Section 3 (resp. Section 4).

In the calculations, C will stand for a generic constant (random or not). We will use several times a stochastic version of Fubini's theorem, which can be found in Section IV.5 of [START_REF] Revuz | of Grundlehren der Mathematischen Wissenschaften[END_REF].

2 Proof of Theorem 1.2 and Proposition 1.3

We begin with the proof of Theorem 1.2 in Points 1-4 below. Then, we deduce Proposition 1.3 from Theorem 1.2 in Point 5.

1. Let T > 0. We suppose that (H t ) t 0 is locally Hölder continuous of order α and we study the almost sure convergence of

I (t) := 1 t 0 H u (X (u+ )∧t -X u )du to I(t) := t 0 H u dX u , as → 0, uniformly on t ∈ [0, T ].
By stopping, we can suppose that (X t ) 0 t T and < X > T are bounded by a constant.

Let X = X 0 + M + V be the canonical decomposition of X, where M is a continuous local martingale and V is an adapted process with finite variation. It is clear that I (t) -I(t) can be decomposed as

I (t) -I(t) = 1 t 0 H u (M (u+ )∧t -M u )du - t 0 H u dM u + 1 t 0 H u (V (u+ )∧t -V u )du - t 0 H u dV u .
Then, Theorem 1.2 will be proved as soon as I (t) -I(t) converges to 0, in the case where X is either a continuous local martingale or a continuous finite variation process.

We deal with the finite variation case in Point 2. As for the martingale case, the study is divided in two steps:

1. First, we prove that there is a sequence ( n ) n∈N such that I n (t) converges almost surely to I(t) and n → 0 (see Point 3 below).

2. Second, we show that I (t) converges almost surely to 0, uniformly for t ∈ [0, T ] (see Point 4 below).

2.

Suppose that X has a finite variation, writing X (u+ )∧t -X u = (u+ )∧t u dX s and using Fubini's theorem yield to:

I (t) -I(t) = t 0 1 s (s-) + H u du -H s dX s , = t 0 1 s (s-) + (H u -H s )du dX s - t∧ 0 -s H s dX s .
Using the Hölder property (1.3) (in the first integral) and the fact that H is bounded by a constant (in the second integral), we have for all t ∈ [0, T ]:

|I (t) -I(t)| T 0 1 s (s-) + C H |u -s| α du d|X| s + 0 -s C d|X| s C H α |X| T + C(|X| -|X| 0 ). (2.1)
Consequently, I (t) -I(t) converges almost surely to 0, as → 0, uniformly on any compact set in time.

Remark 2.1 Note that (2.1) implies that :

sup 0≤t≤T t 0 H s X (s+ )∧t -X s ds - t 0 H s dX s ≤ C α
when (H t ) is α-Hölder continuous and X has finite variation.

3.

In the two next points, X is a continuous martingale. We proceed as in step 2 above: observing that X (u+ )∧t -X u =

(u+ )∧t u dX s and using Fubini's stochastic theorem come to

I (t) -I(t) = t 0 1 s (s-) + H u du -H s dX s . (2.2) Thus, (I (t) -I(t)) t∈[0,T ] is a continuous local martingale. Moreover, E(< I -I > t ) is bounded since H and < X > are bounded on [0, T ]. Let us introduce p = 2(1-α) α 2
+ 1. This explicit expression of p in terms of α will be used later at the end of Point 4. Burkholder-Davis-Gundy inequalities give:

E sup t∈[0,T ] |I (t) -I(t)| p c p E   T 0 1 s (s-) + H u du -H s 2 d < X > s p 2   .
The Hölder property (1.3) implies that:

1 s (s-) + H u du -H s 1 s s- |H u -H s | du C H α , s, 1 s (s-) + H u du -H s 1 s 0 |H u -H s | du + -s |H s | C α , s < . a) Suppose that in (1.3), C H ≤ C for some C. Consequently, sup 0≤s≤T 1 s (s-) + H u du -H s ≤ C α (2.3) and E sup t∈[0,T ] |I (t) -I(t)| p C αp E[< X > T ] p 2 C αp .
Then, for any δ > 0, Markov inequality leads to :

P sup t∈[0,T ] |I (t) -I(t)| > δ C αp δ p . (2.4)
Let us now define ( n ) n∈N by n = n -2 pα for all n > 0. Replacing by n in (2.4) comes to: 

P sup t∈[0,T ] |I n (t) -I(t)| > δ C δ p n -2 . Since ∞ n=1 n -2 < ∞,
|Y u -Y v | ≤ Lip(Y, t)|u -v| β , u, v ∈ [0, t].
Proof of Lemma 2.2. Set :

Lip(Y, t) := sup 0≤u,v≤t | Y (u, v)|, t ≥ 0 where Y (u, v) := Y u -Y v |u -v| β when u = v and 0 otherwise.
Lemma 2.2 follows from the continuity of Y .

For all

∈]0, 1[, let n = n( ) denote the integer such that ∈] n+1 , n ].
Then, we decompose I (t) -I(t) as follows:

I (t) -I(t) = (I (t) -I n (t)) + (I n (t) -I(t)).
(2.5) gives the almost sure convergence of I n (t) to I(t), uniformly on [0, T ]. Therefore, the a.s convergence of I (t) -I(t) to 0 , uniformly on [0, T ], will be obtained as soon as I (t) -I n (t) goes to 0, uniformly on [0, T ].

From the definition of I (t), it is easy to deduce that we have:

I (t) -I n (t) = 1 t 0 H u X (u+ )∧t du - t 0 H u X (u+ n)∧t du + 1 - 1 n t 0 H u (X (u+ n)∧t -X u )du .
The changes of variable either v = u + or v = u + n lead to

I (t) -I n (t) = 1 t+ (H v--H v-n ) X v∧t dv (2.6) + n - n t n (H v-n -H v ) X v dv + R (t),
where we gather under the notation R (t) all the remaining terms. Let us observe that R (t) is the sum of terms which are of the form 

|R (t)| C n - ∀t ∈ [0, T ]. (2.7)
By Hölder property (1.3), we get

|H v--H v-n | C( n -) α , |H v-n -H v | C H α n . (2.8)
Since X and H are bounded, we can deduce from (2.6), (2.7) and (2.8) that:

|I (t) -I n (t)| C ( n -) α + ( n -) α n n + -n , ∀t ∈ [0, T ]. (2.9) 
Using the definition of n , easy calculations lead to :

n - Cn -1 , ( n -) α Cn 2(1-α) pα -α , ( n -) α n n n -2 p -1+ 2 pα n 2(1-α) pα -α .
Note that p = 2(1-α)

α 2
+ 1 implies that 2(1-α) pα -α < 0. As a result, I (t) -I n (t) goes to 0 a.s, uniformly on [0, T ], as → 0.

Remark 2.3 Let (H t ) be an progressively measurable process. Suppose for simplicity that (X t ) is a local semimartingale. Let ( n ) denote a sequence of decreasing positive numbers converging to 0 as n → ∞. Applying Theorem 2 in [START_REF] Karandikar | On almost sure convergence results in stochastic calculus[END_REF] to (2.2) gives the a.s. convergence of Note that inequality (2.9) permit to prove the a.s. of I n (u) as soon as

sup 0≤u≤T I n (u) -I (u) to 0 as n → ∞, provided that n≥1 sup 0≤u≤T H u - 1 n u (u-n)+ H r dr 2 < ∞, a.s. ( 2 
lim n→∞ ( n -) α = lim n→∞ ( n -) α n n = lim n→∞ -n = 0.
Since varies in [ n+1 , n ], then

( n -) α ≤ ( n -n+1 ) α n+1 .
It is easy to prove that

( n -n+1 ) α n+1 ∼ ρ α n (1+ρ)α-ρ , n → ∞.
Therefore ρ has to be chosen such that

(1 + ρ)α -ρ > 0, i.e. ρ < α 1 -α . Recall that ρ > 1/α, then 1 α < α 1 -α . This condition is equivalent to α > α 0 := √ 5 -1 2
. This inequality is not necessarily satisfied since it is only supposed that α belongs to ]0, 1[. Finally, our Theorem 1.2 is not a consequence of Theorem 2 of [START_REF] Karandikar | On almost sure convergence results in stochastic calculus[END_REF].

5.

In this item X is supposed to be a locally Hölder continuous semimartingale. Note that replacing X by X -X 0 does not change (1.5). Therefore we may suppose that X 0 = 0.

It is clear that

1 t 0 (X (u+ )∧t -X u ) 2 du equals 1 t 0 X 2 (u+ )∧t du - t 0 X 2 u du -2 t 0 X u (X (u+ )∧t -X u )du .
Making the change of variable v = u + in the first integral, we easily get :

1 t 0 (X (u+ )∧t -X u ) 2 du = X 2 t - 1 t∧ 0 X 2 v dv - 2 t 0 X u (X (u+ )∧t -X u )du.
Since X is continuous, 1 t∧ 0 X 2 v dv tends to 0 a.s, uniformly on [0, T ]. Therefore, it can be deduced from Theorem 1.2 :

lim →0 1 t 0 (X (u+ )∧t -X u ) 2 du = X 2 t -2 t 0 X u dX u (a.s.).
Itô 's formula implies that the right-hand side of the above identity equals to < X > t .

Replacing (u + ) ∧ t by u + in either (1.5) or (1.6) does not change the limit. Then, identity (1.5) may be interpreted as follows : the measures 1 (X u+ -X u ) 2 du converges a.s. to the measure d < X > u . That implies the a.s. convergence of

1 t 0 K u (X (u+ )∧t -X u ) 2 du to t 0 K u d < X > u ,
for any continuous process K.

3 Proof of Theorem 1.4

Recall that W (t) and G (t) are defined by (1.8). We study the convergence in distribution of the two dimensional process (W (t), B t ), as → 0. First, we determine the limit in law of W (t). In Point 1 we demonstrate preliminary results. Then, we prove the convergence of the moments of W (t) in Point 2. By the method of moments, the convergence in law of W (t) for a fixed time is proven in Point 3. We deduce the finite-dimensionnal convergence in Point 4. Finally, Kolmogorov criterion concludes the proof in Point 5. Then, we briefly sketch in Point 6 the proof of the joint convergence of (W (t)) t 0 and (B t ) t 0 . The approach is close to the one of (W (t)) t 0 .

1. We begin by calculating the moments of W (t) and G (u). We denote by L = the equality in law.

Lemma 3.1 E |G (u)| 2 = (u∧ ) 3 3 σ 2 . Moreover, for all k ∈ N, there exists a constant m k such that E |G (u)| k m k , ∀u 0, > 0.
Proof. First, we apply the change of variable s = u -(u ∧ )r in (1.8). Then, using the identity

(B u -B u-v ; 0 v u) L = (B v ; 0 v u)
and the scaling property of B, we get 

G (u) L = (u ∧ ) √ u ∧ √ 1 0 B r dr.
E |G (u)| k = (u ∧ ) 3k 2 3k 2 σ k E |N | k . (3.1) Taking k = 2 gives E |G (u)| 2 = (t∧ ) 3 3 σ 2 . Using u ∧ and (3.1), we get E[|G (u)| k ] m k with m k = σ k E |N | k . Lemma 3.2 For all k 2, there exists a constant C(k) such that ∀t 0, E |W (t)| k C(k) t k 2 .
Moreover, for k = 2, we have

E W (u) -W ((u -) + ) 2 σ 2 , ∀u 0.
Proof. The Burkhölder-Davis-Gundy inequality and (1.8) give

E |W (t)| k c(k)E t 0 (G (u)) 2 du k 2
.

Then, Jensen inequality implies:

E t 0 (G (u)) 2 du k 2 t k 2 -1 E t 0 |G (u)| k du .
Finaly, applying Lemma 3.1 comes to

E |W (t)| k c(k)m k t k 2 .
The case k = 2 can be easily treated via (1.8) and Lemma 3.1:

E W (u) -W ((u -) + ) 2 = u (u-) + E (G (v)) 2 dv, = u (u-) + σ 2 (v ∧ ) 3 3 dv σ 2 .

2.

Let us now study the convergence of the moments of W (t).

Proposition 3.3 lim →0 E (W (t)) 2n = E (σW t ) 2n , ∀n ∈ N, t 0. ( 3.2) 
Proof. a) We prove Proposition 3.3 by induction on n 1.

For n = 1, from Lemma 3.1, we have:

E (W (t)) 2 = t 0 E (G (u)) 2 du = t 0 σ 2 (u ∧ ) 3 3 du.
Then, E [(W (t)) 2 ] converges to

σ 2 t = E[(σW t ) 2 ].
Let us suppose that (3.2) holds. First, we apply Itô's formula to (W (t)) 2n+2 . Second, taking the expectation reduces to 0 the martingale part. Finally, we get

E (W (t)) 2n+2 = (2n + 2)(2n + 1) 2 t 0 E (W (u)) 2n (G (u)) 2 du. (3.3) b)
We admit for a while that

E (W (u)) 2n (G (u)) 2 -→ σ 2 E (σW u ) 2n , ∀u 0. (3.4)
Using Cauchy-Schwarz inequality and Lemmas 3.1, 3.2 give:

E (W (u)) 2n (G (u)) 2 E (W (u)) 4n E (G (u)) 4 C(4n)u 2n m 4 C(4n)m 4 u n .
Consequently, we may apply Lebesgue's theorem to (3.3), we have

lim →0 E (W (t)) 2n+2 = (2n + 2)(2n + 1) 2 σ 2 t 0 E (σW u ) 2n du, = (2n + 2)(2n + 1) 2 σ 2n+2 t 0 u n (2n)! n! 2 n du, = (2n + 2)! (n + 1)! 2 n+1 (σ √ t) 2n+2 = E (σW t ) 2n+2 .
c) We have now to prove (3.4). If u = 0, E (W (0)) 2n (G (0)) 2 = 0 = σ 2 E (σW 0 ) 2n . If u > 0, it is clear that:

E (W (u)) 2n (G (u)) 2 = E W ((u -) + ) 2n (G (u)) 2 + ξ (u), (3.5) 
where

ξ (u) = E (W (u)) 2n -W ((u -) + ) 2n (G (u)) 2 .
Since G (u) is independent from F (u-) + , we have

E W ((u -) + ) 2n (G (u)) 2 = E W ((u -) + ) 2n E (G (u)) 2 .
Finally, plugging the identity above in (3.5) gives:

E (W (u)) 2n (G (u)) 2 = E (W (u)) 2n E (G (u)) 2 + ξ (u) + ξ (u), where ξ (u) = E W ((u -) + ) 2n -(W (u)) 2n E (G (u)) 2 .
Lemma 3.1 implies that E (G (u)) 2 tends to σ 2 as → 0. The recurrence hypothesis implies that E (W (u)) 2n converges to E (σW u ) 2n as → 0. It remains to prove that ξ (u) and ξ (u) tend to 0 to conclude the proof.

The identity a 2n -b 2n = (a -b) 2n-1 k=0 a k b 2n-1-k implies that ξ (u) is equal to the sum 2n-1 k=0 S k ( , u), where

S k ( , u) = E W (u) -W ((u -) + ) (G (u)) 2 (W (u)) k (W ((u -) + )) 2n-1-k .
Applying four times the Cauchy-Schwarz inequality yields to:

|S k ( , u)| E W (u) -W ((u -) + ) 2 1 2 E (G (u)) 8 1 4 × E(W (u)) 8k 1 8 E(W ((u -) + )) 16n-8-8k 1 8 .
Lemmas 3.1 and 3.2 lead to

|S k ( , u)| C(k)T n-1 2 √ , ∀u ∈ [0, T ].
Consequently, ξ (u) tends to 0 as → 0. Using the same method, it is easy to prove that ξ (u) tends to 0 as → 0.

3. From Proposition 3.3, it easy to deduce the convergence in law of W (t) (t being fixed).

Proposition 3.4 For any fixed t 0, W (t) converges in law to σW t , as → 0. Remark 3.5 Using stochastic Fubini theorem we have

W (t) = 1 √ t 0 u 0 v -(u -) + + dB v dB u .
We keep notation given in [START_REF] Nualart | Peccati Central limit theorems for sequences of multiple stochastic integrals[END_REF]. Let us introduce the function f :

f (u, v) := 1 √ v -(u -) + + 1 {0≤v≤u≤t} . Consequently W (t) = J 1 2 (f ). It is easy to prove that f ∆ 2 t 2 := t 0 u 0 f (u, v) 2 dv du = 12 + t - 3 , t > . Therefore lim →0 f ∆ 2 t = σ √ t.
Proposition 3 in [START_REF] Nualart | Peccati Central limit theorems for sequences of multiple stochastic integrals[END_REF] ensures that W (t) converges in distribution to σW t , as → 0 if and only if Let us recall the method of moments.

lim →0 [0,t] 2 F (s 1 , s 2 ) 2 ds 1 ds 2 = 0 (3.
Proposition 3.6 Let X, (X n ) n∈N be r.v's such that E(|X| k ) < ∞, E(|X n | k ) < ∞, ∀k, n ∈ N and lim k→∞ [E(X 2k )] 1 2k 2k < ∞. (3.7) If for all k ∈ N, lim n→∞ E(X k n ) = E(X k ), then X n converges in law to X as n → ∞.
Proof of Proposition 3.4. Let t 0 be a fixed time. The odd moments of W (t) are null. By Proposition 3.3, the even moments of W (t) tends to σW t . Since σW t is a Gaussian r.v. with variance σ √ t, it is easy to check that (3.7) holds. As a result, W (t) converges in law to σW t .

4.

Next, we prove the finite-dimensionnal convergence.

Proposition 3.7 Let 0 < t 1 < t 2 < • • • < t n .
Then, (W (t 1 ), . . . , W (t n )) converges in law to (σW t 1 , . . . , σW tn ), as → 0.

Proof. We take n = 2 for simplicity. We consider 0 < t 1 < t 2 and ∈ ]0, t 1 ∧ (t 2 -t 1 )[. Since t 1 > , note that (u -) + = u -for u ∈ [t 1 , t 2 ]. We begin with the decomposition:

W (t 2 ) = W (t 1 ) + 1 √ t 2 t 1 + u u- (B u -B s )ds dB u + R 1 (t 1 , t 2 ),
where

R 1 (t 1 , t 2 ) = 1 √ t 1 + t 1 u u-(B u -B s )ds dB u . Let us note that W (t 1 ) is independent from 1 √ t 2 t 1 + u u-(B u -B s )ds dB u . Let us introduce B t = B t+t 1 -B t 1 , t 0. B is a standard Brownian motion.
The changes of variables u = t 1 +v and r = s-t 1 in

t 2 t 1 + u u-(B u -B s )ds dB u leads to W (t 2 ) = W (t 1 ) + Θ (t 1 , t 2 ) + R 2 (t 1 , t 2 ) + R 1 (t 1 , t 2 ), (3.8) 
where

Θ (t 1 , t 2 ) = 1 √ t 2 -t 1 0 v (v-) + (B v -B r )dr dB v , R 2 (t 1 , t 2 ) = 1 √ 0 v 0 (B v -B r )dr dB v .
Straightforward calculation shows that E (R 

5.

We end the proof of the convergence in law of the process (W (t)) t 0 by showing that the family of the laws of (W (t)) t 0 is tight as ∈]0, 1].

Lemma 3.8 There exists a constant K such that

E |W (t) -W (s)| 4 K|t -s| 2 , 0 s t, > 0.
Proof. Applying Burkhölder-Davis-Gundy inequality, we obtain:

E |W (t) -W (s)| 4 cE t s (G (u)) 2 du 2 c(t-s) t s E (G (u)) 4 du. Using Lemma 3.1, we get E |W (t) -W (s)| 4
c m 4 (t -s) 2 and ends the proof (see Kolmogorov Criterion in Section XIII-1 of [START_REF] Revuz | of Grundlehren der Mathematischen Wissenschaften[END_REF]).

6.

To prove the joint convergence of (W (t), B t ) t 0 to (σW t , B t ) t 0 , we mimick the approach developed in Points 1-5 above.

6.a. Convergence (W (t), B t ) to (σW t , B t ), t being fixed. First, we prove that lim →0 E(W p (t)B q t ) = E((σW t ) p B q t ), p, q ∈ N.

(3.9) Let us note that the limit is null when either p or q is odd.

Using Itô's formula, we get

E [(W (t)) p B q t ] = p(p -1) 2 α 1 (t, ) + q(q -1) 2 α 2 (t, ) + pqα 3 (t, ),
where

α 1 (t, ) = t 0 E (W (u)) p-2 B q u (G (u)) 2 du, α 2 (t, ) = t 0 E (W (u)) p B q-2 u du, α 3 (t, ) = t 0 E (W (u)) p-1 B q-1 u G (u) du.
To demonstrate (3.9), we proceed by induction on q, then by induction on p, q being fixed. First, we apply (3.9) with q -2 instead of q, then we have directly:

lim →0 α 2 (t, ) = t 0 E [(σW u ) p ] E B q-2 u du.
As for α 1 (t, ), we write

(W (u)) p-2 = (W (u)) p-2 -W ((u -) + ) p-2 + W ((u -) + ) p-2 B q u = B q u -B q (u-) + + B q (u-) + .
We proceed similarly with α 3 (t, ). Reasoning as in Point 2 and using the two previous identities, we can prove:

lim →0 α 1 (t, ) = σ 2 t 0 E (σW u ) p-2 E [B q u ] du and lim →0 α 3 (t, ) = 0.
Consequently, when either p or q is odd, then lim →0 α i (t, ) = 0, (i = 1, 2) and therefore: lim

→0 E(W p (t)B q t ) = 0 = E((σW t ) p B q t ).
It remains to determine the limit in the case where p and q are even. Let us denote p = 2p and q = 2q . Then we have lim

→0 α 1 (t, ) = t 0 σ 2 (p -2)! 2 p -1 (p -1)! u p -1 σ p-2 q! 2 q (q )! u q du = (p -2)! q! 2 p +q -1 (p -1)! (q )! (p + q ) σ p t p +q , lim →0 α 2 (t, ) = t 0 p! 2 p (p )! σ p u p (q -2)! 2 q -1 (q -1)! u q -1 du = p! (q -2)! 2 p +q -1 (p )! (q -1)! (p + q ) σ p t p +q .
Then, it is easy to deduce

lim →0 E [(W (t)) p B q t ] = p! 2 p (p )! σ p t p q! 2 q (q )! t q = E [(σW t ) p ] E [B q t ] .
Next, we use a two dimensional version of the method of moments: Proposition 3.9 Let X, Y, (Y n ) n∈N (X n ) n∈N be r.v. whose moments are finite. Let us suppose that X and Y satisfy (3.7) and that ∀p, q ∈ N,

lim n→∞ E(X p n Y q n ) = E(X p Y q ). Then, (X n , Y n ) converges in law to (X, Y ) as n → ∞.
Since W t and B t are Gaussian r.v's, they both satisfy (3.7). Consequently, (W (t), B t ) converges in law to (σW t , B t ) as → 0.

6.b. Finite-dimensional convergence. Let 0 < t 1 < t 2 . We prove that (W (t 1 ), W (t 2 ), B t 1 , B t 2 ) converges in law to (σW t 1 , σW t 2 , B t 1 , B t 2 ). We apply decomposition (3.8) to W (t 2 ). By Point 6.a, (W (t 1 ), B t 1 ) converges in law to (σW t 1 , B t 1 ) and (Θ (t

1 , t 2 ), B t 2 - B t 1 ) converges to (σW t 2 -σW t 1 , B t 2 -B t 1 ). Since (Θ (t 1 , t 2 ), B t 2 -B t 1 ) is independent from (W (t 1 ), B t 1 ), we can conclude that (W (t 1 ), W (t 2 ), B t 1 , B t 2 ) converges in law to (σW t 1 , σW t 2 , B t 1 , B t 2 ).
Consider a predictable, right-continuous with left-limits process (Γ u ) such that : Γ, W converges in distribution to Γ, σW , →

In (4.1), the pair Γ, W is considered as an element of

D [0, T ] × C [0, T ] . Proposition 4.1 1. Let F : Ω × C [0, T ] , σ(B u , u ≥ 0) ⊗ B c [0, T ] →
R be a bounded an measurable map and such that for any ω, F (ω, •) is continuous. Then :

lim →0 E F (•, W ) = E F (•, σW ) . (4.2) 
2. Under (4.1), the process

t 0 Γ u dW (u) t 0 converges in distribution to σ t 0 Γ u dW u t 0 as → 0, where (Γ u ) is independent of (W u ).
Proof of Proposition 4.1 1) Denote H the set of σ(B u , u ≥ 0)-measurable and bounded r.v.'s A such that lim

→0 E AΘ(W ) = E AΘ(σW ) = E(A)E Θ(σW ) , (4.3) 
where Θ : C [0, T ] → R is continuous and bounded.

It is clear that H is a linear vector space. Let A n , n ≥ 1 be a sequence of elements in H which satisfies a) A n , n ≥ 1 converges uniformly to a bounded element A either b) n → A n is non-decreasing and the limit A is bounded.

Since

E AΘ(W ) -E AΘ(σW ) = E (A -A n )Θ(W ) +E A n Θ(W ) -E A n Θ(σW ) E (A n -A)Θ(σW )
we have

E AΘ(W ) -E AΘ(σW ) ≤ CE |A-A n | + E A n Θ(W ) -E A n Θ(σW ) .
Consequently, A ∈ H.

Consider the set C of r.v.'s of the type f (B t 1 , • • • , B tn ) where f is continuous and bounded. Theorem 1.4 implies that C ⊂ H. Then, (4.3) is direct consequence of Theorem T20 p 28 in [START_REF] Meyer | Probabilités et potentiel[END_REF].

According to Proposition 2.4 in [START_REF] Jacod | Sur un type de convergence intermédiaire entre la convergence en loi et la convergence en probabilité[END_REF], relations (4.3) and (4.2) are equivalent.

2) Denote F 0 : D [0, T ] × C [0, T ] → R a bounded and continuous function. Property (4.1) is a direct consequence of item 1 of Proposition 4.1 applied with :

F (ω, w) := F 0 (Γ s (ω), 0 ≤ s ≤ T ), w , w ∈ C [0, T ] .
Recall that W is a continuous martingale, which converges in distribution to σW as → 0. Then, by Proposition 3.2 of [START_REF] Jakubowski | Convergence en loi des suites d'intégrales stochastiques sur l'espace D 1 de Skorokhod[END_REF], W satisfies the condition of uniform tightness. Consequently, from Theorem 5.1 of [START_REF] Jakubowski | Convergence en loi des suites d'intégrales stochastiques sur l'espace D 1 de Skorokhod[END_REF] and (4.1), we can deduce that for any predictable, right-continuous with left-limits process Γ,

• 0 Γ u dW (u) converges in distribution to σ • 0 Γ u dW (u).
Remark 4.2 1. The convergence in item 1 of Proposition 4.1 corresponds to the stable convergence, cf [START_REF] Jacod | Sur un type de convergence intermédiaire entre la convergence en loi et la convergence en probabilité[END_REF].

2. According to relation (2.2), we have

∆ (H, t) = 1 √ t 0 1 s (s-) + H u du -H s dB s .
Let us apply the general result obtained in [START_REF] Rootzen | Limit distribution for the error in approximations of stochastic integrals[END_REF]. Let ( n ) be a sequence of positive numbers converging to 0 as n → ∞. For any t > 0, suppose : where τ (t) denotes a continuous process and (P ) stands for the convergence in probability.

1 n t 0 1 n s (s-n) + H u du -H s 2 ds (P ) -→ τ (t), n → ∞ (4.
Then, from Theorem 1.2 in [START_REF] Rootzen | Limit distribution for the error in approximations of stochastic integrals[END_REF] we can deduce that

∆ n (H, t), t ≥ 0 (d) -→ W (τ (t)) t ≥ 0 , n → ∞ (4.6)
where (W t ) is a standard Brownian motion independent from τ (t) .

Suppose that (H t ) is of the type

H t = H 0 + t 0 Λ s dB s + V t , where (Λ t )
and (V t ) satisfy the assumptions given in Theorem 1.5. Note that

σ t 0 Λ u dW u , t ≥ 0 (d) = W σ 2 t 0 Λ 2 u du , t ≥ 0 .
Therefore (4.6) suggests to prove (4.4) with

τ (t) := σ 2 t 0 Λ 2 u du, t ≥ 0.
We have tried without any success to directly prove (4.4) and (4.5). In the particular case H t = B t , the calculations are tractable. Theorem 1.2 in [START_REF] Rootzen | Limit distribution for the error in approximations of stochastic integrals[END_REF] may be applied : ∆ n (B, t), t ≥ 0 converges in distribution to (σW t , t ≥ 0), as n → ∞. However, this result is not sufficient to have the convergence of ∆ n (H, t), t ≥ 0 since we need the convergence of ∆ n (B, t), B t and the convergence of the previous pair of processes is not given by Theorem 1.2 in [START_REF] Rootzen | Limit distribution for the error in approximations of stochastic integrals[END_REF].

2. Some preliminary results related to the proof of Theorem 1.5.

Lemma 4.3 Let ξ (t), t ≥ 0 be a family of processes. Suppose there exists a increasing sequence (T n ) n≥1 of random times such that T n ↑ ∞ as n → ∞ and for any n ≥ 1, ξ (t ∧ T n ), t ≥ 0 converges in the ucp sense to 0, as → 0.

Then ξ (t), t ≥ 0 converges in the ucp sense to 0, as → 0, i.e. for any T > 0, sup 0≤s≤T |ξ (s)| → 0 in probability as → 0.

Lemma 4.4 Denote (K t ) an progressively measurable process which is rightcontinuous at 0, K 0 = 0 and locally bounded. Set :

R 1 (K, t) := 1 √ t∧ 0 K s s -1 dB s , t ≥ 0. (4.7) 
Then R 1 (K, t), t ≥ 0 converges in the ucp sense to 0.

Proof of Lemma 4.4. Since (K t ) is locally bounded there exists a increasing sequence of stopping times (T n ) n≥1 such that T n ↑ ∞ as n → ∞ and |K(t ∧ T n )| ≤ n, for any t ≥ 0. Then, according to Lemma 4.3 it is sufficient to prove that R 1 (K, t), t ≥ 0 converges in the ucp sense to 0 when (K t ) is bounded.

In that case, using Doob's inequality we get :

E sup t∈[0,T ] R 1 (K, t) 2 ≤ C E 0 K(s) 2 s -1 2 ds ≤ C sup 0≤s≤ E K(s) 2
where T > 0.

Recall that (K s ) is bounded, s → K(s) is right continuous at 0, K(0) = 0, then the dominated convergence theorem implies that lim

→0 sup 0≤s≤ E K(s) 2 = 0.
This proves that sup

t∈[0,T ] R 1 (K, t) goes to 0 in L 2 (Ω).
Note that under (1.9 

(B (s+ )∧t -B s ) 2 = 2 (s+ )∧t s (B u -B s )dB u + (s + ) ∧ t -s.

Reporting in ∆

(2) (K, t) and applying stochastic Fubini's theorem lead to

∆ (2) (K, t) = 2 t 0 K u dW (u) + R 1 (t) + R 2 (t),
where

R 1 (t) := 2 √ t 0 u (u-) + (K s -K u )(B u -B s )ds dB u R 2 (t) := 1 √ t (t-) + K s (t -s -)ds.
Note that Proposition 4.1 (with Γ = K) ensures the convergence in distribution of

• 0 K u dW (u) to σ • 0 K u dW (u). Since s → K s is locally bounded, then lim →0 sup t∈[0,T ]
|R 2 (t)| = 0 a.s.

To prove that R 1 (ucp) → 0, we may assume that K is bounded (cf Lemma 4.3). Using the Cauchy-Schwarz and Doob inequalities, we obtain successively :

E sup 0≤t≤T (R 1 ) 2 ≤ C 3 T 0 E u (u-) + (K s -K u )(B s -B u )ds 2 du ≤ C 2 T 0 du u (u-) + E (K s -K u ) 4 E (B s -B u ) 4 ds ≤ C T 0 sup s≤u≤(s+ )∧t E (K s -K u ) 4 ds
Since K is bounded and right-continuous, then the term in the right-hand side of the above inequality goes to 0 as → 0.

4. Proof of Point (1) of Theorem 1.5. Using (4.8) we have :

∆ (H 0 , t) = H 0 ∆ (1, t) + R 1 (Φ, t) = H 0 R 1 (Φ, t) = H 0 Φ(0)N + H 0 R 1 Φ -Φ(0), t
where < t and

N := 1 √ 0 u -1 dB u , < t.
The r.v N has a centered Gaussian distribution, with variance

E(N 2 ) = 0 u -1 2 du = 1 3 = σ. According to Lemma 4.4, R 1 Φ -Φ(0), • (ucp) 
→ 0 as → 0.

5. Proof of Point (2) of Theorem 1.5. Since (H t ) = (V t ) is continuous and

V 0 = 0 then, Lemma 4.4 applied with K = ΦH implies that R 1 (ΦH, •) (ucp) 
→ 0 as → 0.

Let T > 0. According to Lemmas 4.3 and 2.2, we may suppose that Φ is bounded and :

|V s -V u | ≤ C|u -v| β , u, v ∈ [0, T ], β > 1 2 .
As a result,

1 √ u (u-) + (V s -V u )ds 1 √ u u- C |s -u| β ds C β-1 2 and E sup t∈[0,T ] ∆ (V, t) 2 ≤ C 2β-1 .
Using (4.8), item 2 of Theorem 1.5 follows.

6. Proof of Point (3) of Theorem 1.5.

a) Recall that M t = t 0 Λ r dB r and ∆ (M, t) = - 1 √ t 0 u (u-) + (M u -M s )ds Φ(u)dB u .
Let s < u, we have

M u -M s = Λ (u-) + (B u -B s ) + u s Λ r -Λ (u-) + dB r .
Using (1.8) we get :

∆ (M, t) = - t 0 Λ u -Φ(u)dW (u) + R 2 (t) + R 3 (t), (4.10) 
where

R 2 (t) := - t 0 Λ (u-) + -Λ u -Φ(u)dW (u) and R 3 (t) = - 1 √ t 0 u (u-) + (r -(u -) + )(Λ r -Λ (u-) + )dB r Φ(u)dB u .
b) Suppose for a while that R 2 and R 3 converge in the ucp sense to 0, as → 0. Then, Proposition 4.1 with Γ = Λ implies that the convergence of ∆ (H, •) to

σ • 0 Λ u -Φ(u)dW u . Note that • 0 Λ u Φ(u)dW u = • 0 Λ u -Φ(u)dW u a.s.
c) Let us prove that R 3 converge in the ucp sense to 0. The proof related to R 2 is similar and easier; it is left to the reader. From Lemma 4.3, we can suppose that Λ u , 0 ≤ u ≤ T and Φ(u), 0 ≤ u ≤ T are bounded. Then, using Burkholder-Davies-Gundy and Hölder inequalities we get : Using the dominated convergence theorem and the fact that t → Λ t has leftlimits we can conclude that the right-hand side in the above inequality goes to 0 as → 0. Consequently, sup 0≤t≤T |R 3 (t)| goes to 0 in L 2 (Ω). 

E sup 0≤t≤T R 3 (t)
→ 0, as → 0. We claim that R 3 has the same behavior. By localization and Lemma 4.3 we may suppose that Φ is bounded. Using Doob's and Hölder inequalities we obtain :

E sup 0≤t≤T R 3 (t) 2 ≤
Cδ(h , ) It can be proved that lim →0 δ(φ, ) = 0 as soon as φ is subexponential. As a result, sup t≤T R 3 (t) goes to 0 in L 2 (Ω) as → 0.

8. Proof of Theorem 1.7

a) The a.s. converges comes from the continuity of t → X t and the identity ∆ (H, t) = h 0 Φ(0)G 0 ( ) + R 1 Φ -Φ(0), , 0 < t ≤ a 1 , 0 < < t where R 1 Φ -Φ(0), has been defined by (4.7) and

G 0 ( ) := 1 √ 0 s -1 dB s .
More generally when t ∈]a i , a i+1 ], < (t -a i ) ∧ (a i -a i-1 ) and i ≥ 1, we have

∆ (H, t) = ∆ (H, a i ) + (h i -h i-1 ) Φ(a i )G i ( ) + R 1 with G i ( ) := 1 √ a i + a i s -a i -1 dB s R 1 := 1 √ a i + a i s -a i -1 Φ(s) -Φ(a i ) dB s
As a result for any t ∈]a i , a i+1 ] we have :

∆ (H, t) = h 0 Φ(0)G 0 ( ) + h 1 -h 0 Φ(a 1 )G 1 ( ) + • • • + h i -h i-1 Φ(a i )G i ( )

+ h i -h i-1 R 1
where < (a 1 -a 0 ) ∧ • • • ∧ (a i -a i-1 ) ∧ (t -a i ). (4.11) Recall that Φ has been supposed to be right-continuous at a i , then Lemma 4.4 may be applied : R 1 (ucp) → 0, as → 0. As a result, the term R 1 gives no contribution to the limit of ∆ (H, •). 

Note that G

Since 1 0

 1 B r dr L = σN , where σ 2 = 1/3 and N is a standard gaussian r.v, we obtain

6 ) where F (s 1 , s 2 ) := t 0 f

 6where10 (u, s 1 )f (u, s 2 ) + f (s 1 , u)f (s 2 , u) du. Identity (3.6) can be shown by tedious calculations. This gives a new proof of Proposition 3.4.

2 ×Φ

 2 ) + r -(u -) + (Λ r -Λ (u-) + )dB r r -(u -) + (Λ r -Λ (u-) + )dB r r -(u -) + 2 E (Λ r -Λ (u-) + ) ) + ≤r<u E (Λ r -Λ (u-) + ) 2 du.

7 . 6 From ( 4 . 8 ) 1 0 1 0 0 hR 3 (

 76481103 Proof of Proposition 1., we have :∆ h(B), t = ∆ h(B), t + R 1 h(B)s ) -h(B u ) ds Φ(u)dB u . Since : h(B s ) -h(B u ) = (B s -B u ) h B u + θ(B s -B u ) dθ = (B s -B u )h (B u ) +(B s -B u ) h B u + θ(B s -B u ) -h (B u ) dθ then, ∆ h(B), t = -t (B u )Φ(u)dW (u) + R 1 h(B)Φ, t + R 3 (t)where W (u) is the process defined by(1.8) and u + θ(B s -B u ) -h (B u ) dθ ds Φ(u)dB u . Using Proposition 4.1 (with Γ = h (B)Φ) implies that • 0 h (B u )Φ(u)dW (u), converges in distribution to σ • 0 h (B u )Φ(u)dW (u), as → 0. Since h(0) = 0,Lemma 4.4 may be applied : R 1 h(B)Φ, •

E

  [B s -B u ] 4 ds du ≤ Cδ(h , ) where δ(φ, ) := sup 0≤θ≤1,0≤u-≤s≤u≤T E φ B u + θ(B s -B u ) -φ(B u ) 4 .

  i ( ) is a Gaussian r.v. with variance σ 2 = 1/3 and under (4.11) the r.v.'s G 0 ( ), • • • , G i ( ) are independent and lim →0 E B s G i ( ) = 0, ∀ s ≥ 0. Item 2 of Theorem 1.7 follows.

  2. M t is a Brownian martingale, i.e. M t =

	t
	Λ s dB s , where (Λ t ) is pro-
	0 gressively measurable, locally bounded and is right-continuous with left-
	limits.
	3. V is a continuous process, which is Hölder continuous with order α > 1/2,
	vanishing at time 0.
	Note that if V t =

t 0 v s ds, where (v t ) t 0 is progressively measurable and locally bounded, then above condition 3 holds with α = 1 and in that case, (H t ) is a semimartingale.

  4, the limit of ∆ (V, t) equals (σW t ) and is not null. It is likely too strong to suppose that (H t ) is a semimartingale : we can show (see Proposition 1.6 below) that ∆ (H, t), t ≥ 0 converges in distribution where H t = h(B t ) and h is only supposed to be of class C 1 . Note that in this case (H t ) is a Dirichlet process. However, if (H t ) is a stepwise and progressively measurable process then, we have the convergence in law of the finite dimensional distributions of ∆ (H, t), t ≥ 0 but this family of processes does not converge in distribution (see Theorem 1.7 below). Let (a i ) i∈N be an increasing sequence of real numbers which satisfies a 0 = 0 and a n → ∞. Let h, (h i ) i∈N be r.v.'s such that h i is F a imeasurable, h is F 0 -measurable. Let H be the progressively measurable and stepwise process:

	Next, we consider the convergence of ∆ (h(B), •) for a large class of functions
	h. A function h : R → R is said to subexponential if there exist C 1 , C 2 > 0
	such that	
			|h(x)| ≤ C 1 e C 2 |x| , x ∈ R.	(1.10)
	Proposition 1.6 Suppose that h is a function of class C 1 such that h(0) = 0
	and h is subexponential. Then, ∆ (h(B), t), t ≥ 0 converges in distribution
		t
	as → 0 to σ	h (B s )Φ(s)dW s , t ≥ 0 .
		0
	According to Exercise 3.13, chap. V in [8] we have :
			t
		h(B t ) = E h(B t ) +	H(t, s)dB s , t ≥ 0
			0
	where H(t, s) = ϕ(t, s, B s ) and ϕ(t, s, x) := E h (x + B t-s ) .
	Consequently H(t, s), 0 ≤ s ≤ t is progressively measurable but depends on
	t, therefore item 3 of Theorem 1.5 cannot be applied.
	c) We now focus on the case where (H t ) is a stepwise and progressively mea-surable process. We study the a.s. convergence of 1 • H u X (u+ )∧t -X u du
		•	0
	towards	H u dX u and the convergence in distribution of ∆ (H, •) as goes
	to 0.	0
	Theorem 1.7

  the Borel-Cantelli lemma implies that:

	lim n→∞	t∈[0,T ] sup	|I n (t) -I(t)| = 0, a.s.	(2.5)

b) Using localization and Lemma 2.2 below we can reduce to the case where C H is bounded by a constant. That implies (2.5). Lemma 2.2 Let (Y t ) be an adapted process and locally Hölder continuous with index α. Then for any β ∈]0, α[ there exists a continuous and adapted process Lip(Y, t) such that

  .10) To simplify the discussion suppose that n = 1/n ρ , with ρ > 0. Obviously, the previous sum is finite if and only if ρα > 1.

	Suppose that (H t ) is locally Hölder with index α. According to (2.3), relation
	(2.10) holds if	α n < ∞.
	n≥1	

  X s dswhere a i ≤ t ≤ a i+1 and i ≥ 0. b) Let us deal the convergence in distribution. Recall that we supposed that X = B. Using the definition of ∆ (H, t), identity (2.2) and easy calculations we get :

				+h i	1 t+	X s ds -	1 a i +
					t				a i
	1 t	H s X s+ -X s ds =	i-1	h j	1 a j+1 +	X s ds -	1 a j +	X s ds
	0		j=0		a j+1				a j

Proofs of Theorems 1.5, 1.7 and Propositions 1.6, 1.8 1. Convergence in distribution of a family of stochastic integrals with respect to W . Denote C [0, T ] the set of real valued and continuous functions defined on [0, T ]. C [0, T ] equipped with the uniform norm is a Banach space. Set B c [0, T ] the Borel σ-field on C [0, T ] . Let D [0, T ] be the space of rightcontinuous functions with left-limits equipped with the Skorokhod topology.