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Abstract

Rolling element bearing is a crucial component in rotating machinery, so the diagnosis of bearing fault has
attracted a lot of attention in both scientific and application areas. The objective of fault diagnosis can be viewed
as a separation of informative events concerning different types of fault in noisy measurements. Therefore, it
is appealing to model the raw signal as a linear combination of few components with the prior knowledge
and assumption. Hidden Markov model (HMM) is a probabilistic model of joint probability of a collection
of random variables which represent the hidden states as state variables given the observation sequence. In
this paper, an exploring study in rolling element bearing diagnostics based on HMM is investigated and a new
fault separation scheme is proposed. We analyse the performance of the proposed scheme through numerical
experiments and demonstrate its potentiality in industrial applications.

1 Introduction

As crucial components in rotating machinery, rolling element bearing have received constant research at-
tention, in particular for their diagnostis [1]-[4]. Typically when a defect occurs during operation, it excites
some resonances at a specific rate called ‘bearing characteristic frequencies’. The excitation, which is generally
amplitude modulated, embodies all the information concerning different types of faults. In industrial applica-
tions, however, such transient signals are usually embedded in heavy background noise which jeopardizes their
detection. For the sake of separating the fault signature from noisy measurements, a reasonable transformation
should be devised to represent the fault signal and the noise, respectively.

A proper transformation is used to extract the fault property from the acquired raw signal, which enables
the following step to achieve the diagnostic identification. In terms of transform domain, there exists several
feature extraction techniques which can be divided into three main categories: time domain, frequency domain
and time—frequency domain. Intuitively speaking, in terms of statistical signal processing, time domain and
frequency domain analyses are both directly based on the stationary assumption, thus leading to scalar indica-
tors (RMS value, crest factor, kurtosis factor, or some complex combination of them) or vectorial indicators
(signal spectrum, cepstrum or envelope spectrum) [2, 5]. To the contrary, time—frequency domain reveals the
instantaneous features jointly in time and frequency which is appealing for non—stationary signal analysis, e.g.
Wigner—Ville distribution, wavelet transform, and high—order spectral analysis [6]—[8]. However, as it is proved
by Antoni in [2, 4], rolling element bearing vibrations are random cyclostationary.

In our present work, a general algorithm is proposed to implement the decomposition of a vibration signal
into two states: 1) a stationary component with a Gaussian probability density function and 2) a transient signal
with a different Gaussian probability density function. The algorithm is inspired by the Gaussian mixture
problem which has been well addressed in the Data Mining community: it uses the EM algorithm in each
frequency band of a Short-Time Fourier Transform (STFT). The purpose is to capture the maximum-likelihood
estimate of the parameters of an underlying distribution from a given data set and therefore better discriminate
informative signals from noise. It provides a proper classification result for diagnostic identification. This
algorithm is evaluated through simulations which validates the efficiency of the proposed classification scheme
in detecting the transient signals without pre-selected parameters.



The rest of the paper is organized as follows. Section 2 introduces the mathematical description of the
problem, the basic theory of HMM and its solving method, the EM algorithm. In section 3, a classification
scheme based on HMM is proposed. Then, the performance of the proposed algorithm is evaluated through
numerical experiments in section 4. The conclusion is made in section 5.

2 Mathematical model and HMM

2.1 Mathematical description

Our target is to extract the informative signal x(t) embedded in noisy measurement y(t). This simple model
is described by the following equation:

y(t) = x(1) +n(7) (1)

where n(t) denotes an additive zero—mean stationary Gaussian noise with standard deviation ©.

As discussed before, time—frequency representation is apt to reveal the symptomatic property of the en-
ergy distribution to vary with pseudo—periodic intervals in the case of a fault (the mathematical model is
demonstrated in Eq.5). The STFT is a common time—frequency representation that adds a time variable to
the conventional Fourier spectrum in order to study the time—varying characteristics of signal. Therefore, the
decomposition of vibration signal for damage detection is done by applying the STFT in order to capture the
fault signature. Let {w|n] }]nvial be a positive and smooth N,,—long data-—window which shift R samples (from 1
to N) to truncate a segment of x[n] at times kR, ..., kR+N,,-1, and let f; denote the frequency bin index. Then
it is defined as:

kR+N,,—1 .
STFT;C(kafb) — Z Wy [n] x[n] . e_Jzﬂfb”/Nw (2)
n=kR

2.2 Hidden Markov model

A hidden Markov model is a probabilistic model of joint probability of a collection of random variables
which represent the hidden states as state variables given the observation sequence. As a dual random process, a
hidden Markov model has two kinds of stochastic variable, namely the hidden state and the observation vector.
The state sequence is unobservable, but can be estimated by the observation sequence [9]-[11].

As mentioned before, vibration signals can be described as a linear combination of a random cyclostationary
component and a Gaussian stationary noise. In the time—frequency domain, stationary noise is spread over
the whole picture and the informative part is embodied in it. Hence Gaussian mixed model (GMM) can be
employed to model the probability distribution of the observation. We assume that data Y is observed(assume
itis i.i.d.) and X is latent random variables, meaning that it is hidden/unobserved. We assume that a complete
data set exists C = (X,Y) and also specify a joint density function:

p(c[©)=p(xy[0©)=p(x|y,0)p(y|0O) 3)
where ® embodies the mean u and covariance ¢ which belongs to the different states x(latent random variable).
Suppose that we are given a training set {y("), .., y"}, z() ~ Multinomial(¢) (where ¢; > 0,¥%_, ¢, =1, and
the parameter ¢; gives p(z(i) = /), and x1) | D =j~N (1j,X;). Let k denote the number of values that the

z\0’s can take on. The parameters of GMM are thus ¢, 1 and 6. To estimate them, the total likelihood of the
measurement is evaluated:

1(9.1.%) =Y logp(x":¢,11,%)

m k . . .
=Y log ¥, p |29, 2)p(":9) “)



2.3 EM algorithm

Any probability distribution could be described as a mixture of a few Gaussian distributions. To estimate
these parameters of Gaussian densities, maximum-likelihood parameter estimation is employed. However,
there exist latent variables which denote the probability of state. This is what will make the estimation problem
difficult.

The EM algorithm is an efficient iterative procedure to estimate the maximum-likelihood parameter in the
presence of missing or hidden data. It consists of two steps: the E-step and the M—step which are presented
below [12]. In the E—step, the missing data are estimated given the observed data and current estimate of the
model parameters. In the M—step, the likelihood function is maximized under the assumption that the missing
data are known. Convergence is assured since the algorithm is guaranteed to increase the likelihood at each
iteration. Here are the EM iteration steps:

Repeat until convergence:

(E-step) For each i, j, set

W)= p(e = j 509,13

(M-step) Update the parameters:
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3 Bearing fault separation based on GMM

In this study, we propose an informative signal separation scheme based on GMM. It provides a proper
classification result for diagnostic identification. The details of the separation process are as follows:

1. Transform the raw signal into time-frequency domain using STFT (see Eq.2), so that the stationary
component is taken in each segment corresponding to frequency axis and the non-stationary component
is carried by the time axis.

2. Assume the measurement is a mixture of Gaussian distributions (see Eq.3). For each frequency bin, it
consists of two states: a stationary component with a Gaussian probability density function on the one
hand and a transient signal with a different Gaussian probability density function on the other hand.

3. The EM algorithm is employed to estimate the power spectrum of the two states and the probability of
being in any state given the data.

4. Based on the estimated parameters and probability of states, the underlying information can be extracted
(as shown in following section). An indicator of state is calculated and therefore the state decision is
made. Hereafter, a vibration signal is decomposed into two components. Finally, the informative signal
is extracted.

4 Verification on Numerical experiments

The following discussion is based on numerical simulations. First of all, a synthetic signal is generated
which simulates the vibrations (m/s?) excited by an outer—race fault as shown in Figure 1. To see this more
clearly, let us recall the more realistic model for the vibration signal produced by a faulty bearing [2]:
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Figure 1: Synthesised vibration signal: (a) excitation, (b) response, (c) noisy signal with the NSR = 2.

y(t) = f h(t —iT — 1;)A; +n(t)

|—=—o0

&)

where 7; ~ (U = 0,0;) and A; ~ (us = 0,04) account for the uncertainties on the arrival time (jitters) and on
the magnitude of the ith transient, respectively. Therefore a noisy signal y[n] (time duration is 1s, sampling
frequency is 10*Hz) with length N = 10* is produced by Eq.5 as shown in Figure 1(c). The excitation with
averaged interval (T = 0.03s) and response of the system are presented in Figure 1(a)~(b), respectively. For the
random part, o; = 0.01T and o4 = 0.1 are set as shown in Eq.5.
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Figure 2: (a) Spectrum (b) P(state 2|data)

Figure 2 shows the spectrum with Nw = 2° length hanning-window and estimated probability of being in

state 2 given the data, respectively. P(state 2|data) is W(Zi

) _

(29 =2 | x0; ¢, u,L) normalized by differences

between final likelihood at convergence of 1 and 2-component model along frequency—axis. As we can see
in Figure 2, the probability of being in state 2 reveals the spectrum distribution of informative signal which



corresponds to the estimated spectrum of state 2 denoted in red dash line of Figure 3. The estimated spectrum
is normalized between 0 and 1. There are two states which have a constant power spectrum conrresponding to
noise component and a non—flat power spectrum corresponding to transient signal.
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Figure 3: Estimated spectra in state 1 and 2

Therefore, based on the estimated parameters and probabilities of states, some underlying information can
be extracted. As it is displayed in Figure 4(a), an indicator of state is calculated by the summation of estimated
probabilities P(state 2|data) along the frequency—axis and a statistical threshold is set to select these segments
carrying transient signals. The state decision, whether the indicator of state is above or below the threshold
(corresponding to 1 or 0 respectively), is made as shown in Figure 4(b).
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Figure 4: (a) State indicator with statistical threshold in red dash line and (b) State decision

The state decision consists of 0 and 1. So it implements the decomposition of a vibration signal into two
states: a stationary component representing noise and a transient signal contaminated by noise. As we assume
the measurement is recorded in a heavy noise, the influence of high NSR on the separated transient component
should be taken into account. A simple way is to filter the spectrum with revised estimation of spectra based on
the state decision result. Depending on the two separated signals, the re—estimated spectra of state 1 and 2 are
displayed in Figure 5, which shows smoother spectra (especially in state 1 corresponding to noise component)
compared with Figure 3.
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Figure 5: Re-estimated spectra state 1 and 2

According to the previous procedure, Figure 6 displays the separated signals, reference and noisy mea-
surement in time domain which demonstrates the good performance of the proposed fault separation scheme.
Meanwhile, it proves the validity of the estimated parameters and probability of states. It results in the signifi-

cant extraction of underlying informations.
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Figure 6: Noisy measurement, reference and separated signal

5 Conclusion

In this paper, an exploring study in rolling element bearing diagnostis based on HMM is investigated and
a new fault separation scheme is proposed. Though in numerical experiments, the validity of the estimated
parameters and probability of states is demonstrated. The indicator of state results in a state decision which
decomposes the noisy measurement into two components based on different Gaussian distributions. Therefore
the informative signal is discriminated from noise. It provides a proper classification result for diagnostic
identification. What’s more, it reveals the underlying information from a given data set without pre-selected

parameter and has a potentiality in industrial applications.
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