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We present perturbative analytical results of the Landau level quasienergy spectrum, autocorrelation function,
and out-of-plane pseudospin polarization for a single graphene sheet subject to intense circularly polarized
Terahertz radiation. For the quasienergy spectrum, we find a striking nontrivial level-dependent dynamically
induced gap structure. This photoinduced modulation of the energy band structure gives rise to shifts of the
revival times in the autocorrelation function and it also leads to modulation of the oscillations in the dynamical
evolution of the out-of-plane pseudospin polarization, which measures the angular momentum transfer between
light and graphene electrons. For a coherent state, chosen as an initial pseudospin configuration, the dynamics
induces additional quantum revivals of the wave function that manifest as shifts of the maxima and minima of
the autocorrelation function, with additional partial revivals and beating patterns. These additional maxima and
beating patterns stem from the effective dynamical coupling of the static eigenstates. We discuss the possible
experimental detection schemes of our theoretical results and their relevance in new practical implementation of
radiation fields in graphene physics.
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I. INTRODUCTION

The dynamical control of the transport properties of Dirac
fermions in the condensed matter realm is currently an intense
research topic. These Dirac fermions have been shown to
emerge as the low energy excitations of two-dimensional
systems with a honeycomb lattice structure as it occurs in
graphene [1–3]. Recent theoretical [4–6] and experimental
[7] works have discussed the role of radiation fields in
the manipulation of the transport properties of monolayer
graphene samples. By focusing on the Terahertz frequency
regime, particular attention is paid to the tunability of the
induced band gaps. In addition, the possibility of generating
topological insulating behavior was theoretically put forward
both in the static [8] and dynamical regimes [9–11].

In presence of a perpendicular quantizing magnetic field
B = Bẑ, the static spectrum of single layer graphene possesses
a

√
B field dependence which strikingly contrasts the linear

B dependence for conventional nonrelativistic 2DEG [1]. In
addition, the n = 0 Landau level (LL) has only one sublattice
occupied at each Dirac point. Considering the LL scenario and
a topological contribution given by an excitonic gap the authors
of Ref. [12] predict the appearance of Rabi oscillations when
the system’s initial quantum state is prepared by means of a
short electric pulse and the subsequent dynamics is controlled
by the oscillations between the dynamically coupled LL.

In this work we theoretically analyze the dynamical manip-
ulation of the LL structure of charge carriers on suspended
monolayer graphene when a periodically driving radiation
field is applied perpendicular to the sample. A similar setup
was proposed in Ref. [13], where a Gaussian laser pulse is

*To whom correspondence should be addressed:
alexander.lopez@physik.uni-regensburg.de

introduced and the resulting dynamics is analyzed. In that
work, the authors discuss the dynamics of Zitterbewegung
which is described in terms of the radiation field emitted by
the accelerated charge carriers in graphene. In our proposal
we consider a continuous laser field and thus make use of
Floquet’s theorem to recast the dynamics in an explicitly
time-independent fashion but without need to resort to infinite-
dimensional Fourier-mode expansion. Our approach has the
advantage of providing an analytical description of the driven
evolution of relevant physical quantities as the pseudospin
polarization which is a measure of the angular momentum ex-
change among the charge carriers and the radiation field [14].
In the following we explicitly show how our semianalytical
results are relevant at high values of the quantizing magnetic
field B, where the coupling to the radiation field leads to
nontrivial qualitative modifications of the dynamical behavior
of relevant physical quantities within the perturbative regime.
To the best of our knowledge, our work constitutes the first
approach to the photoinduced modulation of the Landau level
structure in single-layer graphene in presence of an intense
and continuously applied laser field. However, we would like
to mention that a recent work [15] has addressed the role of
intense radiation field. Yet, the authors of this work consider a
quantized radiation field and do not address the Landau level
structure scenario in single-layer graphene.

The paper is organized as follows. In Sec. II we present
the model and summarize the perturbative results for the
quasienergy spectrum. In Sec. III we study the dynamics of the
autocorrelation function and pseudospin polarization for two
initially prepared states. First we consider an eigenstate of the
static Hamiltonian that has vanishing pseudospin polarization
in the static regime. Next, we present the same analysis for an
initially prepared coherent state, with static finite pseudospin
polarization and highlight the main differences with respect
to the other initial configuration. In Sec. IV we discuss our
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main results and in Sec. V we present concluding remarks and
argue on the experimental implementation of our proposed
theoretical setup. Finally, in the Appendix we summarize
some mathematical calculations arising during the perturbative
analysis.

II. MODEL

In this section we focus on the low energy properties
of noninteracting spinless charge carriers in a suspended
monolayer graphene subject to a perpendicular, uniform, and
constant magnetic field B = Bẑ. The dynamics is governed by
Dirac’s Hamiltonian. In coordinate representation it reads

Hη(r) = vF (ηπxσx + πyσy), (1)

where vF ∼ 106 m/s is the Fermi velocity in graphene. In
addition, the canonical momenta πj = pj + eAj (j = x,y)
contain the vector potential (∇ × A = B), −e is the electronic
charge (e > 0), and η = ±1 describes the valley degree
of freedom. Using the definition of the magnetic length
l−2
B = eB/� and the cyclotron energy �ωc = √

2vF �/lB the
Hamiltonian Eq. (1) at each K (K ′) Dirac point, which
corresponds to η = +1 (η = −1), can be written in the form

H+1 = �ωc

(
0 a

a† 0

)
, (2)

H−1 = −�ωc

(
0 a†

a 0

)
, (3)

where the annihilation and creation operators are defined by
standard relations as

a = lB(πx − iπy)√
2

and a† = lB(πx + iπy)√
2

.

The eigenenergies of the Hamiltonian (1) are then

Es,η
n = sη

√
n�ωc, (4)

with s = ±1. Positive (negative) values of sη represents the
conduction (valence) band at each Dirac point. In addition, the
integer quantum number n = 0,1,2 . . . labels the Landau level
(LL) structure of monolayer graphene. Using the eigenstates
|n〉 of the operator a†a, the corresponding eigenstates |ϕs,η

n 〉
read

∣∣ϕs,+1
n

〉 = 1√
2

(
s|n − 1〉

|n〉
)

, (5)

∣∣ϕs,−1
n

〉 = 1√
2

( −s|n〉
|n − 1〉

)
, (6)

for n �= 0. The zero energy eigenstate (n = 0) is given in each
case by

∣∣ϕ+1
0

〉 =
(

0
|0〉

)
, (7)

∣∣ϕ−1
0

〉 =
(|0〉

0

)
. (8)

Due to time-reversal symmetry, we have T H+1T = H−1. Let
us now consider the effect of intense circularly polarized

Terahertz electromagnetic radiation, incident perpendicularly
to the sample. We assume that the beam radiation spot is large
enough compared to the lattice spacing so we can neglect any
spatial variation. According to the standard light-matter inter-
action formulation, the dynamical effects of a monochromatic
radiation field incident perpendicular to the sample can be
described by means of a time-dependent vector potential

A(t) = E
ω

(cos ωt,δ sin ωt), (9)

where E and ω are, respectively, the amplitude and frequency
of the electric field given in turn by the standard relation
E(t) = −∂tA(t). In addition, we are using δ = +1 (δ = −1)
for right (left) circular polarization. We are using circular
polarization because it has been shown to provide the
maximal photoinduced band gap [16]. Starting from the
ordinary dipolar interaction term −ep · A(t), introduced to
the tight-binding Hamiltonian via the Peierls substitution, we
can evaluate the effects of the driving at each Dirac point as

Vη = evF [ησxAx(t) + δσyAy(t)], (10)

which explicitly reads

Vη = ξη(σx cos ωt + ηδσy sin ωt), (11)

with the effective coupling constant ξ = evFE/ω. This makes
the total Hamiltonian

Hη(t) = Hη + Vη(t), (12)

periodic in time Hη(t + T ) = Hη(t), with T = 2π/ω the
period of oscillation of the driving field. Therefore, if we
focus on the K Dirac point (η = 1), the physics at the K ′
Dirac point (η = −1) can be easily found by the substitutions
ξ → −ξ and ω → −ω.

Thus, let us focus on the K point physics and afterwards
we can make the necessary substitutions. In order to simplify
the notation we set H+1 = H0 and V+1(t) = V (t). Hence,
defining rising σ+ and lowering σ− pseudospin operators by
the standard formulas

σ± = σx ± iσy

2
,

the time-dependent interaction potential can be rewritten as

V (t) = ξ (e−iδωtσ+ + eiδωtσ−). (13)

Now we invoke Floquet’s theorem which states that the
time evolution operator of the system induced by a periodic
Hamiltonian can be written in the form [17]

U (t) = P (t)e−iHF t/�, (14)

with P (t) a periodic unitary matrix and HF a time-independent
dynamical generator referred to as the Floquet Hamiltonian.
The eigenvalues of the Floquet Hamiltonian HF represent
the quasienergy spectrum of the periodically driven system.
Typically, in order to solve for the quasienergy spectrum,
one can expand each term of the time-dependent Schrödinger
equation in Fourier space and numerically solve an infinite
eigenvalue problem. Instead, we will take a perturbative
approach as discussed below.

Accordingly, for our problem we can find approximate
solutions to the dynamics by modifying slightly the analytical
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strategy presented in Ref. [18]. Then, one finds that the
excitation number operator Na , defined as

Na =
(

a†a + 1

2

)
1 + σz

2
, (15)

which commutes with the Hamiltonian H0 and satisfies the
eigenvalue equation

Na

∣∣ϕs
n

〉 = n
∣∣ϕs

n

〉
. (16)

Na generates a time-dependent unitary transformation
|
(t)〉 = P (t)|�(t)〉 given as

P (t) = exp(−iNaδωt), (17)

such that the time-dependent Schrödinger equation

i�∂t |
(t)〉 = H (t)|
(t)〉 (18)

can be transformed with a time-independent operator HF

governing the dynamics of the problem

i�∂t |�(t)〉 = HF |�(t)〉, (19)

where HF and |�(t)〉 are the Floquet Hamiltonian and Floquet
eigenstate, respectively. Doing the explicit calculation, HF is
found to be given by

HF = H0 − Naδ�ω + ξσx. (20)

In the following we focus on recent experiments in the far
infrared frequency domain [7] for which �ω ≈ 10 meV and
we consider values of the electric field intensities E ∼ 0.15
MV/m. Then one gets for the coupling constant ξ ≈ 10 meV
which, for frequencies ω in the Terahertz domain leads to
ξ ≈ �ω. This value is an order of magnitude smaller than the
Landau level separation �ωc ≈ 116 meV, for B = 10 T. For
larger frequencies and stronger magnetic field intensities, the
ratio ξ/�ωc tends to be smaller. Therefore, we can perform
a perturbative treatment in the effective coupling parameter
λ = ξ/�ωc < 1.

We should remark that although our radiation field is
intense, it is one order of magnitude smaller than the numerical
estimates used in Ref. [6] for which one gets E ∼ 1.5 MV/m.
Yet, the experimental setup used in Ref. [7] consisted of
infrared radiation field with power P = 20 mW, sample areas
equal to A = 3 × 3 mm2 and A = 5 × 5 mm2; thus, one gets
electric field intensities of order E ∼ 1 kV/m, which in turn
leads to ξ ∼ 3 meV. In this manner, our perturbative results
would allow for an analytical treatment of future experimental
extensions of the work described in Ref. [7], in case they would
include a quantizing magnetic field in their study. It would
also allow for larger values of the radiation field intensity
with photoinduced features in the Landau level structure of
single-layer graphene as it is described in the following.

For this purpose we transform the Hamiltonian (20) as
H = e(λ/2)I−HF e−(λ/2)I− , where we have introduced the anti-
Hermitian operator I− = a†σ− − aσ+. Evaluating up to first
order we get

H ≈ HF + λ

2
[I−,HF ]. (21)

Evaluation of the commutator gives (in the Appendix we
summarize the explicit derivations)

[I−,HF ] = −�ωc[2Na + λ(a† + a)]σz, (22)

and defining the shifted operator b = a + λ one gets, to leading
order in λ, the effective Hamiltonian

H = �ωc(b†σ− + bσ+) − δ�ωNb − ξNbσz, (23)

where we have introduced the shifted number operator

Nb = b†b + 1 + σz

2
.

In Eq. (23) we have neglected the additive higher order terms


V = �ωλ(b† + b) − λ2
�ω, (24)

which can be dealt with by higher order perturbation theory.
Thus, the approximate quasienergies are found to be given as

εs
m = s�ωc

√
m

√
1 + mλ2, mod �ω, (25)

which can be rewritten as

εs
m = s

√
m(�ωc)2 + (mξ )2, mod �ω. (26)

Then, to this order of approximation, all quasienergies corre-
sponding to the m �= 0 LL are shifted, whereas the m = 0
remains insensitive to the radiation field. This shift of all
but the m = 0 quasienergy LL spectrum agrees with the
result reported in Ref. [19] for bilayer graphene. Yet, a more
detailed derivation by means of second order perturbation
theory shows that there is a small O(λ4) energy correction
due to first nondiagonal terms in Eq. (24) which couple all
adjacent LL. This higher order corrections could be important
at low quantizing magnetic fields for which the condition
λ = ξ/�ωc ≈ 1 could be satisfied.

Let us now analyze some physical consequences of the
radiation field on the Landau level structure of monolayer
graphene with focus on the interplay among the quantizing
magnetic field and the light-matter interaction. To begin with,
we notice that the quasienergies are defined up to multiples of
ω; therefore, a better physical characterization of the energy
spectrum for the driven system is provided by the mean
energies [17]

ε̄s
m = εs

m − ω
∂εs

m

∂ω
, (27)

which are invariant under εs
m → εs

m + l�ω, for l being an
integer. Doing the explicit calculation the mean energies are
found to be given by the expression

ε̄s
m = s

(
m(�ωc)2 + 2m2ξ 2√
m(�ωc)2 + m2ξ 2

)
, (28)

where we remember the definition of the effective coupling to
the radiation field as ξ = evFE/ω.

As can be seen in Fig. 1, these mean energies are plotted as a
function of the quantizing magnetic field B, for different values
of the Landau level index changing the effective coupling ξ . We
notice that, at intermediate light-coupling strength, the energy
resolution of these levels becomes much better and could
experimentally be tested for not so large quantizing magnetic
fields B. Moreover, we find that to this order of approximation
the LL become gapped, with the striking feature that the
photoinduced gap is level dependent. These gap openings
appear except for the m = 0 level which, as discussed before,
remains insensitive to the radiation field.
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FIG. 1. (Color online) Approximate mean energies for the driven
scenario (continuous lines) as a function of the quantizing magnetic
field B. The dotted lines represent the undriven spectra for the
corresponding LL. We notice a level-dependent energy gap that leads
to nontrivial behavior of physical quantities, as discussed below (see
main text).

Below we will deal with the photoinduced dynamical
features and therefore we give the corresponding normalized
Floquet eigenstates for m �= 0,

∣∣ψs
m

〉 =
(

sf −s
m |m − 1〉
f s

m|m〉
)

, (29)

where we have defined the coefficients

f s
m =

√
εm + smξ

2εm

, (30)

with εm = |εs
m|. In addition, the zero energy eigenstate (m = 0)

is still given by |ϕ0〉, i.e.,

|ψ0〉 =
(

0
|0〉

)
. (31)

III. PSEUDOSPIN AND AUTOCORRELATION
FUNCTION DYNAMICS

Now that we have found the approximate Floquet eigen-
states and quasienergies, we explore other dynamical features
of the driven LL configuration by evaluating the mean values
of the pseudospin polarization operator and its relation to the
autocorrelation function dynamics [20].

For this purpose, let us first assume that the system is
initially prepared in an eigenstate of the Hamiltonian H0,

|
(0)〉 = ∣∣ϕs
m

〉
, (32)

with m �= 0. In the Floquet basis (29), the initial state is written
as ∣∣ϕs

m

〉 =
∑

s ′=±s

Dss ′
m

∣∣ψs ′
m

〉
, (33)

where the expansion coefficients are given by

Dss ′
m = 1√

2

(
f s ′

m + ss ′f −s ′
m

)
. (34)

Taking into account that the |ψ±
m 〉 states are degenerate

eigenstates of Nb, the unitary operator e−iNbωt would just
contribute a phase e−iωmt . Using the Hamiltonian (23) the
evolved state can be written as

|
(t)〉 =
∑

s ′=±s

Dss ′
m (t)e−is ′εmt/�

∣∣ψs ′
m

〉
, (35)

where we have introduced the time-dependent coefficients
Dss ′

m (t) = Dss ′
m e−iωmt . Let us then consider the dynamics for

the autocorrelation function and pseudospin polarization σz(t)
operators from which we can respectively infer the feasibility
of manipulating the polarization state of the sample and the
dipole moment radiation emitted by the driven sample. It is
important to remark at this point that studying the out-of-plane
pseudospin polarization is a means of detecting the angular
momentum exchange between the Dirac fermions in graphene
and the circularly polarized radiation field, as can be inferred
from the discussion in the recent literature about the role of
σz in describing the total angular momentum content of the
system [14].

With these ideas in mind, we first begin by evaluating the
pseudospin polarization

σz(t,ξ ) = 〈
(t)|σz|
(t)〉. (36)

For the chosen initial state we find σz(t,0) = 0. When
expression (36) is evaluated we find after some algebraic
manipulations

σz(t,ξ ) = 2s
√

m3ξ�ωc

ε2
m

sin2 εmt/�. (37)

We note that for vanishing values of the coupling to the radia-
tion field ξ → 0 one has σz(t,0) = 0. Therefore, once the elec-
tromagnetic field is present the pseudospin oscillations are a
manifestation of the angular momentum exchange among the
radiation field and the charge carriers in graphene [14].

As discussed in the case of the quasienergies, we could
better quantify the effects of the driving field by evaluating the
average

〈σz〉 = 1

T

∫ T

0
dtσz(t,ξ ), (38)

with the period of the radiation field given as T = 2π/ω. Then
we get the expression

〈σz〉 = s
√

m3ξ�ωc

ε2
m

(1 − sinc 2εmT /�), (39)

with sinc x = sin x/x.
In Fig. 2 we plot the behavior of 〈σz〉 as a function of

the coupling strength ξ . At small ξ = 0.25�ω we see that the
closer the state is to the m = 0 LL the role of the radiation field
in modifying its pseudospin polarization is less relevant and
this is correlated to the fact that, within this regime, the gap
openings seen in the mean quasienergy spectrum are not so
noticeable at different values of the m LL index. In addition, at
large values of the quantizing field, B = 10 T, the value of the
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FIG. 2. (Color online) Approximate mean pseudospin polariza-
tion 〈σz〉 for the driven scenario as given by Eq. (39), plotted as
a function of the quantizing magnetic field B. We have selected
the first four LL m = 1, . . . ,4, at four values of the light-matter
coupling strength. The lower panels show that at large magnetic
fields (B = 10 T) both the m = 3 and m = 4 LL the pseudospin
polarization still remains degenerate. Hence higher order perturbation
terms should be necessary in order to lift this degeneracy.

pseudospin polarization is almost the same at each value of the
m LL index. However, we see in the second upper panel that
already at intermediate values of the relative coupling strength
ξ = 0.5�ω that at large values of the quantizing field B = 10 T
one can discern among the different LL polarization values
which serve to separate each level contribution to this quantity
dynamical behavior. In the lower two panels we show that
this physical picture becomes more obvious at larger values
of ξ , with perfect separation for the contribution from the
m = 1 and m = 2 levels. Yet, the corresponding m = 3 and
m = 4 contributions to the pseudospin polarization remain
degenerate at large B values. One would expect that this
accidental crossing seen as a degeneracy would be removed by
including higher order perturbative contributions, since then
the coupling among nearby levels would lead to additional
splittings in the quasienergy spectrum that would in turn also
lift this accidental pseudospin degeneracy.

In order to discuss more general dynamical features, one
should consider a superposition state. However, in order to do
so we must take into account the feasibility of experimentally
realizing such a superposition state. A paradigmatic case of
such interesting superposition states is given by the coherent
state which are minimal uncertainty wave packets relevant
for studying the classical states of the radiation field in
the sense of being a classical counterpart of the quantum
harmonic oscillator. Since, as in the quantum harmonic
oscillator, the Landau levels in graphene are eigenstates of the
number operator, one should expect that these coherent state
superpositions would be interesting. Indeed, there has been
recently some proposals to analyze the dynamics of coherent
electronic states in graphene nanomechanical resonators [21].
By taking advantage of the intrinsic nonlinear nature of flexural
modes in graphene, the authors of Ref. [21] show that catlike

[22] states can be generated. We follow a different physical
approach. Instead of resorting to nonlinearities of flexural
modes we invoke the light-matter coupling as a mechanism
for studying the evolution of an initially prepared coherent
superposition state built from the Landau level eigenstates
described in Sec. II and evaluate the induced pseudospin
polarization effects in order to contrast to the results shown
in Fig. 2.

Formally speaking, the coherent state |α〉 is defined by
means of the eigenvalue equation

A|α〉 = α|α〉, (40)

where A = a1. Using the expansion

|α〉 = c0|ϕ0〉 +
∑̄
sn

cs
n

∣∣ϕs
n

〉
, (41)

with
∑̄

sn representing a summation for all n �= 0. Assuming,
without loss of generality, the symmetric scenario c−s

n = cs
n,

one finds that the coherent state is given as

|α〉 = e− |α|2
2

(
|ϕ0〉 + 1√

2

∑̄
sn

αn

√
n!

∣∣ϕs
n

〉)
, (42)

which can be shown to be normalized. If we now evaluate the
mean value of the Hermitian operator A†A in the coherent state
and use the definition given in Eq. (40), we get 〈α|A†A|α〉 =
|α|2. In addition, if we use the coherent state to evaluate the
average of the number operator Na defined in Eq. (16), it is not
difficult to show that we also get 〈α|Na|α〉 = |α|2. In order to
do so, we just need to use the result 〈α|σz|α〉 = −1. Therefore,
the coherent state parameter amplitude |α| is a measure of the
mean number of Landau levels that are excited and corresponds
to the mean photon number in the context of quantum optics.
Thus, we will use it as a control parameter to discuss the
properties of the physical quantities as follows.

In this case, we find for the pseudospin polarization

〈α|σz(t)|α〉 = −e−|α|2 ∑
n

|α|2n

n!

(
(�ωc)2 cos 2εnt/� + nξ 2

(�ωc)2 + nξ 2

)
.

(43)

This is plotted in Fig. 3 for ξ = 0.25�ω and four representa-
tive values of |α|. In this figure we notice that for small values
of |α| the dynamics of the pseudospin polarization resembles
the pattern for Rabi oscillations since the main contributions
would arise for the interference among the zero and first LL.
Yet, no polarization inversion can be achieved within this
regime.

However, once |α| = 1 the contribution from other LL
states becomes increasingly important to the interference
pattern and the former Rabi oscillations become distorted.
Moreover, at this value of |α|, one can achieve the polarization
inversion for large enough values of time in the long-term
evolution. In the lower panels of Fig. 4 we find that for larger
values (|α| = 4 and |α| = 8) we get a beating pattern showing
a dynamical localization effect that is directly related to a
collective behavior of the driven charge carries in graphene.
We would like to remark that the problem of the population
inversion has already been studied a long time ago by Eberly
et al. [23]. Their model corresponds to a two-level system
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FIG. 3. Time dependence of the pseudospin polarization as given
in Eq. (43). The panels show the dynamical behavior at four
characteristic values |α|. For the numerical evaluation of the series we
have truncated at n = N = 100. The upper panels show the coherence
among the lowest LL, whereas the lower panel show localization
effects approaching the classical behavior, which corresponds to large
values of |α|. See the discussion in the main text.

couple to a single mode radiation field (Jaynes-Cummings
Hamiltonian). In our approach this in turn is given by the static
graphene Hamiltonian for Landau levels written in Eq. (2).
A larger value of the coherent state parameter |α| would
imply larger mean Landau level occupation, and thus the
second term in the numerator of the pseudospin polarization
given in expression (43) would have a larger influence in
the pseudospin inversion since larger n Landau levels would
be occupied which will contribute a higher weight in the
pseudospin polarization [see numerator in Eq. (43)]. Moreover,

FIG. 4. Time dependence of the autocorrelation function as given
in Eq. (44) truncated at n = N = 100. For large |α| = 4 and |α| = 8,
it is the cyclotron frequency ωc instead of the driving frequency ω

which determines the time scale for the revival times. Comparing
to Fig. 3, it is apparent that information on the pseudospin dynamics
can be indirectly inferred from the autocorrelation function dynamics.
See discussion in the main text.

FIG. 5. Time dependence of the autocorrelation function as given
in Eq. (44) truncated at n = N = 100 in absence of radiation field
ξ = 0. In the upper panels we see that at small values of |α| = 0.25
and |α| = 1, the static and driven autocorrelation function are
qualitatively similar. Yet, the photoinduced quantum revivals at larger
times are not seen in the two lower panels as compared to Fig. 4.

since the effective light-matter coupling strength ξ also affects
the phase, as given by the cosine term in Eq. (43) of the
polarization, this interesting interplay forbids the inversion
which is also a signature of the localization and beating effects
shown in Figs. 3(c) and 3(d) and our results extend those found
in the context of Ref. [23].

This physical picture for the coherent state dynamics can
be complemented by studying the autocorrelation function
Cα(t) = 〈α|
(t)〉, which is found to be given as

Cα(t) = e−|α|2 ∑
n

|α|2n

n!

(
cos εnt/� + i

nξ

εn

sin εnt/�

)
. (44)

The autocorrelation function provides additional physical
information of the system since its Fourier transform is
related to the local density of states [20]. Its time evolution
is plotted in Fig. 4 choosing again an effective coupling
strength value of ξ = 0.25�ω and the same values of α as
in Fig. 3 showing the dynamical behavior of the pseudospin
polarization. Comparing Figs. 3 and 4 we see that partial
revivals for the autocorrelation function are correlated to the
beating or localization behavior of the pseudospin polarization.
Therefore, one could indirectly gain information on the
pseudospin dynamics by measuring the time revivals [20]
which means detecting those times for which the wave packet
reconstructs itself. In order to show explicitly the role of the
driving field we have plotted in Fig. 5 the static autocorrelation
function. Comparing the lower right panels in Figs. 4 and 5,
we find that the radiation field induces additional revivals in
accordance to the beating pattern in the pseudospin oscillation,
as seen in Fig. 3.

IV. DISCUSSION

We have shown that the radiation field leads to a quasienergy
spectrum with a level dependent gap, except for the m = 0 LL
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which, to leading order, remains insensitive to the radiation
field effects. In addition, we have found that a finite out-
of-plane pseudospin polarization value can arise for initial
states that possess either a finite or vanishing initial value of
σz. As we saw at the beginning of Sec. II, in presence of
the radiation field, the total out-of-plane angular momentum
component jz of the electrons is no longer a constant of
motion. Therefore, the pseudospin oscillations are due to the
angular momentum exchange among the driving field and the
charge carriers in single layer graphene. For the coherent state
a beating pattern emerges in the pseudospin polarization. In
spite of the fact that the interaction is dictated by a periodic
Hamiltonian we find that the dominant or characteristic time
scale for this collective behavior is the cyclotron frequency. We
could expect this behavior of the wave packet at large values of
|α| as a measure of the classical behavior associated with the
cyclotron problem but now realized with Dirac fermions in the
LL quantized regime as was discussed by one of the authors
in Ref. [24]. We must remark that in order to be able to detect
the reported effects an ensemble of coherent states should be
prepared each time, because the measurement process destroys
the state. It should also be remembered that the coherent state
parameter |α| is determined by choosing appropriate values
for the mean values of position and momentum in accordance
to the following prescription:

〈α|x|α〉 = �BRe(α), (45)

〈α|px |α〉 = 1

�B

Im(α). (46)

Another point to be highlighted is that for standard two-
dimensional electron gases the coherent state built from the
Landau levels would remain coherent, i.e., it will evolve in
time in such a manner that it would just oscillate in time around
the prescribed mean values given in Eqs. (45) and (46). More
precisely, its Wigner function representation in phase space
will oscillate in time without deformation. This is known to
be a consequence of the fact that the dependence with the n

quantum number is linear. Yet, in graphene we have a
√

n

and this in turn prevents the coherent state to evolve in such a
coherent manner.

Therefore, the spreading of the wave packet and the
corresponding appearance of the additional revival times at
shorter time values is a direct consequence of the driving field
that even at low coupling can induce interesting dynamical
behavior as shown in Figs. 3 and 4. We supported this last
statement by evaluating the static (ξ = 0) autocorrelation
function as shown in Fig. 5 and found that the second packet
reconstruction (see lower panel for |α| = 8 in Fig. 4) around
tωc = 24 is absent in the static regime.

We would also like to comment that graphene subject to
electromagnetic radiation without quantizing magnetic field
has been discussed in several papers [5]. It has been shown
that for zero momentum (k = 0), the dynamical equation is
exactly solvable and leads to a photoinduced (zero quantizing
magnetic field) mass term that has opposite signs at the two
valleys. Yet, at finite momentum the dynamics is no longer
exactly solvable and one has to resort to numerical analysis by
means of an infinite expansion in Fourier modes. This is why
we consider our results to be a valuable tool in analytically

describing the photoinduced pseudospin effects in the Landau
level structure of monolayer graphene.

We now briefly mention that our values of quantizing
magnetic fields are within experimentally accessible orders.
For instance, in the pioneering paper by Novoselov et al. in
Ref. [25], the authors used a value of quantizing magnetic field
B = 14 T to study the quantum Hall effect in graphene. More-
over, in a following classical paper, their results were extended
up to values of B = 29 T and even B = 45 T for the quantizing
magnetic field [26]. Here it is shown that at these values of
magnetic field, the quantum Hall effect in graphene could be
observed at room temperature that constitutes a breakthrough
in the physics of quantum Hall phases.

V. CONCLUSIONS

We have analyzed the dynamical modulation of physi-
cal quantities for Dirac fermions within the Landau level
quantized regime of single layer graphene subject to intense
circularly polarized Terahertz radiation. To the best of our
knowledge, this is the first analysis of the photoinduced
manipulation of the LL structure in single-layer graphene
subject to a continuously applied intense laser field instead of
a pulsed one. By means of a perturbative analytical treatment
we found very interesting physical features such as a nontrivial
level dependent dynamically induced gap structure. Due to the
angular momentum exchange among the radiation field and the
charge carriers, it also leads to modulation of the oscillations in
the dynamics of the out-of-plane pseudospin polarization, even
for superposition states with an initially vanishing pseudospin
value. We also found that localization effects in the time
evolution of the pseudospin polarization can be kept track of by
measuring the revival times of a wave packet initially prepared
as a coherent state. The reported photoinduced gap modulation
and pseudospin oscillations could be detected through the
re-emitted dipolar radiation from the oscillating charge carriers
as it was proposed in Ref. [13].

We would also like to mention that for values of λ 
 1,
one enters the so called ultrastrong coupling limit in the
context of cavity quantum electrodynamics experiments.
Within this parameter regime, it has been experimentally
shown in Ref. [27] that explicit anticrossings appear in the
energy spectrum. This in turn corresponds to a breakdown of
the Jaynes-Cummings approximation that describes resonant
processes in the two-level problem coupled to a single
mode radiation field. Our exact Floquet Hamiltonian given
in Eq. (20) allows us to explore this ultrastrong coupling
regime beyond the perturbative results presented and could be
the subject of future work where one would expect nonlinear
effects to be relevant in the graphene physics. For instance, as
we already argued in the Discussion section, one could expect
that the accidental degeneracies seen in the panels of Fig. 2, at
large values of the quantizing magnetic field, would be lifted
by a stronger coupling to the radiation field.

Moreover, we would like to remark that although we
perform our analysis for neutral undoped graphene samples,
in the graphene literature the role of doping has been given
special attention since it might modify the effective Fermi
velocity of Dirac fermions [28,29]. The first work [28] shows
that the energy spectrum near the charge neutrality point is
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nonlinear and no gap is found at energies even as close to
the Dirac point as 0.1 meV. On the other hand, the authors
of Ref. [29] show that electron interactions leave the graphene
energy dispersion linear as a function of excitation energy even
for energies within ±200 meV of the Fermi energy. Yet, it has
recently been shown that doping effects might also lead to a
band gap opening in the graphene spectrum (see Ref. [30], and
references therein). In particular, the authors of the work [30]
have reviewed the role of heteroatom doping. Another paper
addresses the tunability of the band gap energy in single-layer
graphene due to manganese oxide nanoparticles by means of
an electrochemical method [31]. This work reports a maximum
value for the induced energy band gap of 0.256 eV. In
addition, another experimental paper [32] deals with the band
gap engineering in monolayer graphene via boron-nitrogen
(BN) doping. They argue that a significant band gap as high
as 600 meV is observed for low BN concentrations and is
attributed to the opening of the π -π∗ band gap of graphene
due to isoelectronic BN doping. Although they do not discuss
the quantized LL regime, we could incorporate these doping
effects in our model by including a phenomenological diagonal
term in the Landau level Hamiltonian given in Eqs. (2) and
(3). This mass term would in turn be proportional to σz and
the valley index η, as required by time reversal invariance.
Thus, one would expect an interesting interplay between the
photoinduced gap openings and the static band gap determined
by doping effects. Yet, we considered undoped graphene in
order to highlight the photoinduced LL dependent band gap
discussed above.

Concerning the actual experimental observation of our
predicted results, we consider that these could motivate the
exploration of larger intensities for the radiation field as given
in the experimental setup in Ref. [7] when their model enters
the Landau level regime. In this sense, we consider that our
work would contribute to explore a physical scenario within
realistic parameter values to discuss the pseudospin physics in
graphene, also taking into account the role of Zitterbewegung
as it is discussed in Ref. [13], extending their results to
initially prepared coherent states when the radiation field is a
monochromatic continuous laser field instead of a pulsed laser.
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APPENDIX: PERTURBATIVE CALCULATION
OF EFFECTIVE HAMILTONIAN FOR SINGLE

LAYER GRAPHENE

In order to get the effective Hamiltonian for single layer
graphene we need to evaluate the following expression:

H = eλ/2I−HF e−λ/2I− , (A1)

with the anti-Hermitian operator

I− = â†σ− − âσ+. (A2)

Using the Baker-Campbell-Hausdorff formula we have

H = HF + λ

2
[I−,HF ] + 1

2!

(
λ

2

)2

[I−,[I−,HF ]] + · · · .

(A3)

The first commutator is worked out explicitly:

[I−,HF ] = [â†σ− − âσ+,HF ]. (A4)

Since HF = ωcI+ − ωN̂a + ξσx and [I−,N̂a] = 0, with I+ =
â†σ− + âσ+, we only need to evaluate two commutators. The
first one gives

[I−,I+] = [â†σ− − âσ+,â†σ− + âσ+] = −2[âσ+,â†σ−]

= −2(â[σ+,â†σ−] + [â,â†σ−]σ+)

= −2(ââ†[σ+,σ−] + [â,â†]σ−σ+)

= −2(ââ†σz + (1 − σz)/2)

= −2(â†âσz + (1 + σz)/2)

= −2(â†â + (1 + σz)/2)σz = −2N̂aσz,

whereas the second one follows as

[I−,σx] = [â†σ− − âσ+,σ− + σ+]

= −â[σ+,σ−] + â†[σ−,σ+]

= −(â + â†)σz.

Upon substitution of these first-order corrections and intro-
duction of the shifted harmonic oscillator operators we get the
effective Hamiltonian given in Eq. (23).
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