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In rotating machinery vibration analysis, the synchronous average is perhaps the most
widely used technique for extracting periodic components. Periodic components are
typically related to gear vibrations, misalignments, unbalances, blade rotations, recipro-
cating forces, etc. Their separation from other random components is essential in

However, synchronous averaging theoretically requires the machine to operate under
stationary regime (i.e. the related vibration signals are cyclostationary) and is otherwise
jeopardized by the presence of amplitude and phase modulations. A first object of this
paper is to investigate the nature of the nonstationarity induced by the response of a
linear time-invariant system subjected to speed varying excitation. For this purpose, the
concept of a cyclo-non-stationary signal is introduced, which extends the class of
cyclostationary signals to speed-varying regimes. Next, a “generalized synchronous
average’’ is designed to extract the deterministic part of a cyclo-non-stationary vibration
signal—i.e. the analog of the periodic part of a cyclostationary signal. Two estimators of
the GSA have been proposed. The first one returns the synchronous average of the signal
at predefined discrete operating speeds. A brief statistical study of it is performed, aiming
to provide the user with confidence intervals that reflect the "quality" of the estimator
according to the SNR and the estimated speed. The second estimator returns a smoothed
version of the former by enforcing continuity over the speed axis. It helps to reconstruct
the deterministic component by tracking a specific trajectory dictated by the speed profile
(assumed to be known a priori).The proposed method is validated first on synthetic sig-
nals and then on actual industrial signals. The usefulness of the approach is demonstrated
on envelope-based diagnosis of bearings in variable-speed operation.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

In most mechanical systems, gears and rolling-element bearings constitute the core elements of the power transmission
chain. Therefore, their diagnosis is critical to ensure the security of the equipment and avoid possible breakdowns in the
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Nomenclature

card Κr
� �

number of cycles belonging to regime r
Κr set of cycle indices belonging to regime r
mY ðθÞ SA of Y
mY ðθ;ωÞ GSA of Y
mY θ

� �
GSA trajectory tracked for a given speed pro-
file ω¼ω θ

� �
bmY ðθ;ωrÞraw estimator of the GSA of Y at ωrbmY ðθ;ωÞ smoothed estimator of the GSA of Y
PY ðθ;ωrÞ mean instantaneous power of Y at ωr

t time variable
δω speed resolution
Δω speed varying margin
E �f g ensemble averaging operator
E �jAf g ensemble average operator conditioned to

event A
θ angle variable
θ angular location in the cycle: θϵ 0;Θ

� �
Θ angular period
ωr central angular frequency at regime r
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system. Interestingly, it was shown that these components—when operating under constant regime—produce symptomatic
cyclostationary (CS) vibrations that can be identified and characterized by dedicated tools [1]. Specifically, gears are likely to
generate first-order cyclostationary (CS1) vibrations characterized by a periodic mean, whereas rolling-element bearings
generate second-order cyclostationary (CS2) vibrations characterized by a periodic autocovariance function. The former are
deterministic in nature, whilst the latter are random. Their separation is of high practical importance for differential
diagnosis [2–4].

In this context, the synchronous average (SA) is a powerful tool for extracting periodic components [5,6]. Based on prior
knowledge of the desired component, it consists of segmenting the temporal signal into blocks of length equal to the signal
period and averaging them together to extract the periodic waveform. The “residual signal”—which constitutes the random
part—is then obtained by subtracting the estimated periodic part from the original signal. The principle of the SA assumes
the periodic waveform to be stable in time, which in turn requires a constant speed. However, in practice, such a condition is
difficult to obtain: the operating speed often undergoes some fluctuations which are likely to jeopardize the effectiveness of
the SA, even if very low. Since repetitive patterns in rotating machines are intrinsically locked to specific angular positions, it
thus makes sense to synchronize the SA with respect to angle rather than to time. This problem has found several practical
solutions such as angular sampling or resampling (also known as “computed order tracking” [7]): whereas the former
directly acquires the signal at constant angular intervals, the latter uses a tachometer to resample the time signal at constant
angular increments by interpolation [8,9]. In this case, the cyclostationary property holds in the angle domain and, con-
sequently, the SA is applied on the (resampled) signal. Incidentally, this facilitates the averaging operation since each
angular period then comprises the same (whole) number of angular increments. Nevertheless, the change from a temporal
to an angular variable raises issues about the actual nature of cyclostationarity of rotating machine signals. This was for
instance addressed in Ref. [10] where the authors explored the concept of angle-CS signals and provided the conditions of its
equivalence with the time-CS.

In the case of high speed fluctuations, signals are subjected to significant distortions that jeopardize the effectiveness of
the SA. These distortions are basically introduced by (i) variations of the machine power intake and (ii) the effect of linear
time-invariant (LTI) transfers. Whereas the first effect essentially results in amplitude modulation, the second one also
induces phase modulation. The latter phenomenon was originally inspected in Ref. [11], before being revisited in Ref. [12]
through a comprehensive theoretical analysis. Non-periodic modulations obviously invalidate the (angle-) CS assumption
and call for a more general description of nonstationary signals. In accordance, “cyclo-non-stationarity” (CNS), a new class
recently introduced in Ref. [13], appears to be a good candidate to describe speed-varying signals: it enfolds highly non-
stationary signals undergoing long-term structural changes in their properties, yet preserving at the same time short-term
cyclic rhythms locked to the angular evolution.

The consideration of CNS signals requires the revision of existing CS tools and in particular of the SA. In order to
accommodate the SA with the phase blur resulting from the transmission path effect, Stander and Heyns [11] proposed an
enhanced version coined “phase domain averaging”—comprising a phase correction of the cycles before the averaging
operation. The phase information was returned by Hilbert demodulation of a high-energy harmonic (such as a meshing
order) of the resampled acceleration signal. Later, a simpler variant was provided in Ref. [14], coined the “improved syn-
chronous average”, which consists in resampling the signal with a virtual tachometer signal synthesized via the demodu-
lated phase. This work was inspired from Ref. [9] which introduced a technique to perform angular resampling using the
acceleration signal of a gearbox operating under limited speed fluctuation.

Recently, the same technique was used in Ref. [12] to identify the optimal demodulation band for deterministic/random
separation (DRS) in speed varying conditions. Moreover, the authors in Ref. [15] provided a parametric approach in an
attempt to generalize the SA to the CNS case. Using Hilbert space representation, they decomposed the deterministic
components on to a set of periodic functions multiplied by speed-dependent functions apt to capture long-term evolution
over consecutive cycles. Yet, their method carries the general disadvantages of parametric approaches, namely, the critical
dependence on the basis order. Another attempt was made recently in Ref. [13] where the aim was to remove the deter-
ministic part of the vibrations produced by an internal combustion engine in runup regimes. Assuming a first-order Markov
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dependence of the CNS signal, the authors introduced an operator—coined the “cyclic difference”—based on subtracting
each cycle from the previous one in the resampled signal. Despite the good compliance of this method for the particular
addressed application, it suffers from high variability in the more general setting.

The principal object of this paper is to provide a novel operator, coined the “generalized synchronous average” (GSA),
which happens to be an extension of the classical SA to the CNS case, with the aim of enhancing DRS in variable regime. It is
assumed that the rotational speed is precisely known; its estimation is beyond the scope of this paper and may be found in
references such as [16–25]. This paper is organized as follows: Section 2 states the problem with a particular attention to
formulating the transmission path effect from a CNS view. Section 3 introduces the GSA operator, two dedicated estimators
of it and a statistical study in order to evaluate the estimator quality according to the SNR and the estimated speed. Section 4
validates the effectiveness of the GSA on numerical signals and Section 5 on actual industrial signals. Eventually, in light of
the obtained results, the paper is sealed with a general conclusion in Section 6.
2. Problem statement

This section starts with a brief review of the SA. Then, the transmission path effect is qualitatively addressed with a link
made with CNS.

2.1. Synchronous average: a brief review

The synchronous average (SA)—widely termed as the time synchronous average [26]—is an efficient technique for the
extraction of periodic waveforms from a noisy signal. It consists of averaging periodic sections of the signal—known as cycles
—assuming a priori knowledge of the period. Under the assumption of cycloergodicity [10], the SA is perhaps the best
candidate for estimating the mean function of a CS signals. In practice, it is however jeopardized when applied in the time-
domain due to existing speed fluctuations or if the signal period is not a multiple of the sampling period. In such cases,
angular resampling can be a simple preprocessing solution consisting of expressing the signal in terms of the angular
variable θ of the machine instead of time t. Precisely, let Y θ

� �
be an angle-CS signal of cycleΘ (for instanceΘ¼2π); its SA is

then defined as

mY θ
� 	

¼ lim
M-1

1
2Mþ1

XM
m ¼ �M

Y θþmΘ
� 	

(1)

where 2Mþ1ð Þ stands for the number of averaged cycles and θA 0;Θ
� �

for the angular location in the cycle (i.e. θ¼ θ�kΘ
with k the greatest integer smaller than θ=Θ). The SA is widely used in vibration analysis of rotating machinery to separate
deterministic waveforms (such as produced by imbalances, misalignments, anisotropic rotors, flexible coupling, gear
meshing and other phenomena) from other competing but random sources.

2.2. Transmission path effect

A primary goal in machine diagnostics is to infer the cause of abnormal vibrations. In most cases, accelerometers are
remoted from the sources due to non-intrusion constraints and there exists a transmission path effect characterized by the
transfer function of the structure. In cases where the sensor is intentionally used outside its nominal bandwidth (e.g. as a
shock sensor), its transfer function should be considered as well. Consequently, the measured signal is to be interpreted as
the output of an LTI system. This system is characterized by ordinary differential equations in time, independently of the
excitation nature. As a result, the response of the system to a complex exponential temporal waveform is kept unchanged
except for a phase shift and an amplitude amplification characterized by the system transfer function. In this case, the
transmission path induces maximum amplification and phase shift when the frequency content of the excitation coincides
with a resonance of the transfer function. This also holds true in general for time-CS signals: a LTI system excited by a time-
CS signal returns a time-CS output. However, the situation is not the same for angle-CS signals. In the case of large speed
variations, the corresponding response is instantaneously delayed and amplified/attenuated [11] according to the fluctuating
amplitude and frequency content of the input signal. From a temporal view, the system response is the convolution of a
nonstationary excitation with a LTI transfer function: it is therefore nonstationary as well. Conversely, from an angular point
of view the order content of the excitation remains constant, yet the transfer function becomes angle-varying; therefore, the
response of the system to an angle-CS excitation is CNS in general, and angle-CS in the particular case of periodic, stationary
or cyclostationary operating speed [10] (see Fig. 1).

The present paper is mainly concerned with angle-CS1 excitation and the related transmission path effect on gear
vibrations which jeopardizes the (traditional) SA. The issue can be explained from different but equivalent points of view.
First, according to the previous discussion, the system response is no longer angle-CS1, which invalidates the working
assumption of the SA [12]. Alternatively, from an angular point of view, the averaging process over multiple shaft rotations
usually results in an energy loss principally caused by the induced phase blur. Finally, from the order domain point of view,



LTITime-CS
(stationary speed case)

Time-CS

LTIAngle-CS
(varying speed case)

Angle-CS if the speed is periodic, 
stationary or CS

CNS elsewhere

Fig. 1. Transmission path effect on cyclostationary excitations.
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the SA is equivalent to applying a narrow-band comb filter [27]; yet, the amplitude distortion and the phase blur results in
energy leakage outside the lobes of the comb filter.

In summary, when rotating machines undergo large speed variations, the resulting vibration signals lose their angle-CS
properties; thus, invalidates the application of traditional CS tools such as the SA. The aim of the next section is to char-
acterize such signals which preserve repetitive patterns related to the cyclic behavior of the excitation, yet with angle
(or time) varying properties.

2.3. Speed dependence

This section introduces the basic model that will serve to define the GSA, which consists of Fourier series whose complex
exponentials are function of the angle variable, θ, and the coefficients are only dependent on the speed, ω.

To avoid confusions between angle and time domains, the accent mark “tilde”will refer to the temporal representation of
the signal. Building on the discussion of Section 2.2, a CNS process can be seen as the response ~Y tð Þ ¼ Y t θ

� �� �
of a LTI system,

say ~h tð Þ, to an angle-CS excitation

~X tð Þ ¼ X θ tð Þ� �¼X
α

cαX θ tð Þ� �
ej2παθ tð Þ

Θ ; (2)

where Θ stands for the angular period of X θ tð Þ� �
, cαX θ

� �
are mutually (angle-) stationary Fourier coefficients and

θ tð Þ ¼ R t
0 ω tð Þdt is the angular position of the reference. In short

~Y tð Þ ¼ ~h tð Þ � ~X tð Þ; (3)

where � stands for the convolution product. In the particular case of constant operating speed (i.e. θ tð Þ ¼ω0t) the response
takes the particular form

Y θ
� �¼X

α
cαY θ;ω0
� �

ej2πα
θ tð Þ
Θ ¼

X
α

cαX θ
� �

A αω0=2
� �

ejkΦ αω0=2ð Þ� 	
ej2πα

θ
Θ; αAZ; (4)

where A fð ÞejkΦ fð Þ ¼H fð Þ is the system frequency response function. Actually, Eq. (4) reflects the pivotal role of the speed not
only on the amplitude, but also on the phase of the system response.

In the case of speed varying excitation, the response would turn into a convolution between an angle-CS excitation and
an LTI system, which is less straightforward than Eq. (4) because the input signal would no longer be time-CS in general. One
alternative would be to express the convolution directly in the angular domain, i.e. symbolically

Y θ
� �¼ h θ

� � � Y θ
� �

; (5)

where h θ
� �¼ ~h t θ

� �� �
would then become angle-varying owing to the nonlinearity of the angle-time relationship. In this

case, the Fourier coefficients of the response at a given instant are principally dependent on the operating speed at that
instant, as well as past and future instances of the speed profile. This implies that, beside the operating speed, the Fourier
coefficients of the response are also dependent on its higher derivatives at the evaluated instant, i.e.

~Y tð Þ ¼
X
α

cαY θ tð Þ;ω tð Þ; _ω tð Þ; €ω tð Þ; :::ω tð Þ…� �
ej2πα

θ tð Þ
Θ : (6)

Under mild conditions, the dependence on higher derivative orders can be neglected and the variations of both
amplitude and phase are consequently modeled with an explicit dependence on the speed only:

~Y tð Þ ¼
X
α

cαY θ tð Þ;ω tð Þ� �
ej2πα

θ tð Þ
Θ ; (7)

where cαY θ;ω
� �

stands for the complex Fourier coefficients having a speed-dependent joint probability density function—i.e.
mutually stationary stochastic process for a constant speed ω. The angular representation of a CNS signal can be deduced as

Y θ
� �¼X

α
cαY θ; ~ω θ

� �� �
ej2πα

θ
Θ; (8)

with ~ω θ
� �¼ω t θ

� �� �
. Note that Eq. (7) is perfectly valid for runup regimes (where higher-order derivatives of the speed are

nil) and approximately valid in the case of modest accelerations (i.e. smooth variability of the speed profile). This model
accounts for changes in the signal structure by introducing a dependency of the Fourier coefficient on speed, while the cyclic
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behavior expressed by the complex exponential basis is kept invariant. Therefore, the deterministic part of the system
response—which will be lately extracted by the GSA—shows an explicit dependence on the speed and is expressed in the
angular domain as

M1Y θ
� �¼ E Y θ

� �� �¼
X
α

cαY ω θ
� �� �

ej2πα
θ
Θ (9)

where M1Y θ
� �

denotes the first-order moment of Y θ
� �

, and

cαY ωðθÞ� �¼ E cαY θ;ω
� �jω¼ ðθÞ� �

(10)

denotes the expected value of cαY θ;ω
� �

conditioned on ω (E �jaf g stands for the expected value of � conditioned to a). The
importance of this model is to characterize the nonstationarity of the response and to highlight the effect of the speed on
the signal structure. Hence, the consideration of the speed seems to be compulsory for the investigation of the statistical
moments and, particularly, the mean value. The aim of the next section is to link this model with the CNS class.

2.4. Link with cyclo-non-stationarity

Cyclo-non-stationarity has been recently introduced [13] in an attempt to generalize the CS class to account for possible
long-term variations in the signal statistics while maintaining short-term cyclic rhythms. The model of Eq. (7) is accordance
with such a definition. Specifically, let Θ be the angular period of the excitation; then, building on Eq. (7), the probability
density function of Y θ

� �
,

f Y yð Þ ¼ f Y y;θ;ω
� 	

; (11)

is dependent on both θ and ω (θ is the angular position in the cycle defined in Section 2.1). In particular, the conditional
first-order moment reads

M1Y θ;ω
� 	

¼ E Y θ
� �jθ=Θ¼ θ;ω θ

� �¼ω
n o

¼
X
α

cαY ωð Þej2παθ
Θ; (12)

where ½θ=Θ� stands for the remainder of the fraction θ=Θ, which evidences a dependence of the Fourier coefficients on
speed; this defines a CNS process [28].1
3. The proposed solution

Cyclo-non-stationarity brings to the fore an essential difference between ensemble averaging and angle averaging. The
former means that averaging is applied over all realizations of a stochastic process, whereas the latter implies that averaging
is applied over the time (or angle) variable of a particular realization. In fact, their equivalence is of high practical concern in
most physical applications wherein only one realization is usually available. For CS signals, this is guaranteed by the
cycloergodic assumption under which the ensemble average can be replaced by the SA. The primary aim of the present
section is to introduce an angular operator equivalent to the ensemble average in the CNS case. A consistent estimator is also
provided and a brief statistical study is then performed to assess its performance.

3.1. Generalized synchronous average

As previously shown, the statistics of a CNS signal instantaneously change with speed and thus lose their periodicity. As a
consequence, the validity of cyclic averaging is jeopardized. For this reason, angle averaging should be redefined to account
for the speed dependence and accommodate for the induced changes in the signal. To do so and according to Eq. (11), the
idea is to perform the cyclic average on samples pertaining to the same speed. Thus, one can extent the SA to CNS signals by
introducing a more general operator coined the generalized synchronous average (GSA). Given a CNS signal Y θ

� �
with angular

period Θ and operating under the speed profile ω θ
� �

, the GSA is defined as

mY θ;ω
� 	

¼ lim
δω-0

lim
card Κ

θ;ω

n o
-1

1

card Κθ;ω

n oX
kAΚ

θ;ω

Y θþkΘ
� 	

; (13)

where δω stands for the speed resolution and Κθ;ω ¼ kAℕ ω� δω
2 rω θþkΘ

� 	
oω� δω

2




 on
stands for the set of samples

located at θ and coinciding with speed values in the interval ω� δω
2 ;ω� δω

2

� �
. This operator extracts the first-order CNS

(CNS1) “field” corresponding to the deterministic components of a signal for all the existing operating regimes by explicitly
1 In this reference, a CNS process is defined by a Fourier decomposition of nonstationary complex Fourier coefficient. It is worth noting that this
definition is rather symbolic since it actually comprises all nonstationary signals, the reason it was not adopted by the authors in the present paper.



CNS1 fieldω

θ

Speed profile ω(θ)

CNS1 Trajectory 
conditioned to ω(θ)

Θ 2Θ 3Θ 4Θ 5Θ 6Θ 7Θ 8Θ 9Θ …    

Fig. 2. Trajectory of a CNS1 signal conditioned to a given speed profile ω(θ). Each horizontal slice in this field associated with a fixed speed value ω

represents a CS process with specific statistics. A CNS process is then a trajectory in this field defined by the speed profile.
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accounting for the speed variable. Note that, in the case of constant speed, say ω0, the set Κθ;ω0
comprises all the cycles for

all θ and the GSA boils down to the classical SA.
Note that the GSA is in general a function of two variables, i.e. angle and speed. Given a particular speed profile ω θ

� �
, the

“trajectory” of the CNS1 component of Y θ
� �

is thus returned by

mY θ
� �¼mY θ¼ θ=Θ;ω¼ω θ

� �� 	
(14)

viewed as a function of θ only—see Fig. 2. Having introduced the GSA, it now remains to propose a consistent estimator that
applies to finite-length signals. This is addressed in the next section.

3.2. Estimation issues

3.2.1. Raw estimator
The practical implementation of the GSA faces several difficulties. In particular, the finite length of the signal prevents the

speed resolution to be infinitely narrow and the number of averages to be infinitely large. Furthermore, the cyclic averaging
operation is pointwise, which makes difficult its application in practice. A natural way to overcome this limitation is to
assume a stationary behavior of the machine regime in each interval ω�δω=2;ωþδω=2

� �
for a given δω40 (i.e. local

stationarity of the speed profile). Stated differently, the signal is supposed to be locally cyclostationary at those speeds. In
details, the speed profile is divided into a predefined set of speed intervals called regimes defined by their central frequency
ωr and the speed resolution δω. Then, each cycle is associated to the regime that is closest to its mean speed value. The raw
estimator of the GSA of a finite-length CNS signal Y θ

� �
, with angular period Θ and operating speed profile ω θ

� �
, is then

defined as

bmY θ;ωr

� 	
¼ 1
card Κr

� �X
kAΚr

Y θþkΘ
� 	

; (15)

where Κr ¼ kAℕ� ωr� δω
2 r 1

Θ

R kΘ
k�1ð ÞΘ ω θ

� �
dθoωr� δω

2




 on
stands for the set of cycles whose mean speed falls in the speed

interval centered at ωr .
When applied on vibration signals, Eq. (15) gives partial but important information about the vibration response at speed

ωr: bmY θ;ωr

� 	
is the estimated deterministic response at ωr , as if the machine was operating steadily at the corresponding

central frequency. The flow-chart of the raw GSA estimator is illustrated in Fig. 3.
Note that the raw estimate of the GSA provides only estimates at the central frequencies of the predefined speed

intervals. The next section provides a solution to recover the CNS1 component at any speed value to solve this issue.

3.2.2. Smoothed estimator
In order to overcome the discrete nature of the raw estimator, an appropriate interpolation method is used to enforce the

continuity along the speed axis by means of few GSA evaluations. In this context, the kernel density estimation (KDE)
method—also termed the Parzen–Rosenblatt window method—provides a non-parametric solution for an efficient
smoothing operation [29,30]. In particular, the smoothed estimator can be obtained for all speeds from Eq. (15) by applying
the KDE

bmY θ;ω
� 	

¼ 1PR
r ¼ 1 kern

ω�ωr
λ

� 	 XR
r ¼ 1

kern
ω�ωr

λ

� �bmY θ;ωr

� 	
(16)

where kern �ð Þ is the kernel and λ is a smoothing parameter called the bandwidth. Note that the denominator is added to
ensure energy conservation. In this context, there are a variety of commonly used kernels such as uniform, triangular,
normal, and others. The normal kernel is the most widely used due its good performances and mathematical convenience.
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ω=f(θ)

θ

Θ Θ Θ Θ

Θ
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cyclostationarity

Local 
cyclostationarity

Fig. 3. Flow-chart of the GSA raw estimator.
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Now having a continuous distribution along the speed axis, the estimator of the deterministic trajectory of the signal can
be deduced from the smoothed estimator

bmY θ
� �¼ bmY θ¼ θ=Θ;ω¼ω θ

� �� 	
: (17)

or directly from the smoothed raw estimator

bmY θ
� �¼ 1PR

r ¼ 1 kern
ω θð Þ�ωr

λ

� 	 XR
r ¼ 1

kern
ω θ
� ��ωr

λ

� �bmY θ;ωr

� 	
(18)

where bmY θ;ωr
� �

is the periodized version of bmY θ;ωr

� 	
over the actual number of periods of Y θ

� �
. It is worth noting that

Eq. (18) requires less computational efforts than Eq. (17), though being actually equivalent (indeed, the latter requires the

assessment of all θ;ω
� 	

couples, whereas the former tracks a specific trajectory in the θ;ω
� 	

plane). Interestingly, the

estimator of Eq. (17) is reminiscent to the “functional” form originally proposed in Ref. [15]; yet it presents numerous
advantages as compared to the latter: in particular, it does neither require to set a model order nor to solve a large system of
equations. The flow-chart of this method is provided in Fig. 4.

3.3. Statistical performances

Since all signals are finite-length in practice, the asymptotic conditions in the GSA definition (see Eq. (15) cannot be met,
resulting in a bias and variance of the raw estimator. The estimation of the GSA is a similar issue as the estimation of
densities (e.g. histograms) frequently encountered in the fields of statistics and data analysis. The estimation accuracy is
thus directly dependent on the discretization of the data, a topic on which a last literature exists [31,32]. The aim of this
section is to provide a statistical study to evaluate the estimator quality according to the SNR and the estimated speed. For
this purpose, the related bias and variance will be subsequently calculated: while the former reflects its asymptotic
deviation from the actual value, the latter evaluates its consistency. Since the efficiency of the smoothed estimator is
conditioned by that of the raw estimator, only the latter will be assessed. Interested readers can find the proofs in Appendix.



Fig. 4. Flow-chart of the proposed method.
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3.3.1. Bias
The bias of an estimator is defined by the difference between its statistical expectation and its actual value. For the raw

GSA estimator, there are basically two sources of bias stemming from (i) finite sample effects (i.e. limited card Κr
� �

) and (ii)
the distortion caused by discretizing the speed profile. In this section, only the latter is evaluated due to its direct relation to
the paper topic. Starting from the random response model provided in Eq. (7), it can be shown that the bias takes the
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particular form

Bias bmY θ;ωr

� 	n o
� δω2

24
m}

Y θ;ωr

� 	
(19)

where mY θ;ω
� 	

is the actual GSA of Y θ
� �

and m}
Y θ;ω
� 	

¼ 2 mY θ;ω
� 	� 	

=ω2. Obviously, there are two parameters that

govern the bias, namely the speed resolution, δω, and the second derivative of the actual GSA with respect to speed. The
former—which is controllable—is the most intuitive: the narrower δω is, the more similar the corresponding cycle statistics
are, and consequently, the more accurate the estimation is. The latter, however, is an uncontrollable parameter which

requires careful interpretation. When mY θ;ω
� 	

is seen as a function of ω, it is systematically underestimated at peaks

where m}
Y θ;ωr

� 	
o0 (e.g. at resonances) and overestimated at deeps where m}

Y θ;ωr

� 	
40. In short, the estimator is

asymptotically unbiased as the speed resolution is made infinitely narrow. In practice, for a finite signal length, the speed
resolution should be carefully selected so that the number of averaged cycles in a regime remains sufficient.

3.3.2. Variance
It is of prime importance to calculate the variance of the proposed estimator in order to assess its consistency as well as

the influential parameters. It can be shown that, neglecting the finite sample effect, the variance of the raw GSA estimator is

Var bmY θ;ωr

� 	n o
� 1
card Κr

� � PY θ;ωr

� 	
þδω2

24
P}
Y θ;ωr

� 	
 �
; (20)

where

PY θ;ω
� 	

¼mY2
c
θ;ω

� 	
(21)

stands for the mean instantaneous power of the signal with Yc θ
� �¼ Y θ

� ��mY θ
� �

and P}
Y θ;ω
� 	

¼ 2 PY θ;ω
� 	� 	

=ω2. Clearly,

the raw GSA estimator is asymptotically consistent due to its nil variance for an infinite signal length. Also, it depends on the
signal random part as well as its second derivative with respect to ω when evaluated at speed ωr . Moreover, the speed
resolution δω plays a remarkable role which can, when it is narrow enough, lessens the effect of the second derivate term.
In general, the raw GSA estimator shows a typical bias-variance trade-off: to reduce the bias δω must be small, whereas to
reduce the variance δω� 1=card Κr

� �
must be high. Thus, the only way to reduce both the bias and the variance is by

increasing the signal length.
Eventually, an obvious assumption in this estimation is that the accuracy of the available rotation speed is superior to the

speed resolution ω used for the discretizing the speed in the GSA estimation. In practice, this is guaranteed by selecting an
encoder with a sufficient resolution when measuring the rotation speed. Nevertheless, the limited accuracy of the measured
(or estimated) rotation speed induces another source of error, a topic which is for instance investigated in Ref. [33]. The
impact of this type of error on the GSA is just as for the SA and has been thoroughly studied in Refs. [10,34]. In situation with
high speed fluctuations, the effect of this error is negligible as compared to that induced by the limited number of averaged
cycles.
4. Numerical validation

The aim of this section is twofold. First, the transmission path effect and the limitation of the classical SA are numerically
illustrated in a simple way. Second, the effectiveness of the GSA estimation is addressed together with its influential
parameters.

4.1. Limitation of the classical SA

A natural way to model the effect of the transmission path in rotating machines is by exciting a single degree-of-freedom
(dof) system by a constant-amplitude chirp. Though being physically simplistic,2 the chirp is chosen with constant ampli-
tude to clearly reveal the amplitude distortion. Fig. 5(a) illustrates the time evolution of the reference instantaneous fre-
quency f i tð Þ ¼ 2tþ10, (b) represents the excitation chirp synchronous with the 15th order i.e. ~X tð Þ ¼ sin 2π U15

R t
0 f i sð Þds

� 	
,

and (c) and (d) represents the amplitude and the phase spectrum of the simulated system, respectively, with impulse
response

~h tð Þ ¼ A
ωd

e� jξωnt sin ωdtð Þ ~U tð Þ; (22)
2 In general, the excitation is subjected to an energy modulation owing to changes of the machine power intake as the speed varies. Yet, these changes
can still be generally modeled as a speed dependent amplitude distortion in the response.
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Fig. 5. Academic example illustrating the limitation of the SA when applied to a single dof system excited by a linear chirp. (a) Reference instantaneous
frequency, (b) constant amplitude linear chirp synchronous with the 15th order of the reference instantaneous frequency, (c) amplitude and (d) phase
spectrum of the single dof linear system, (e) angular resampled response, (f) response order spectrum, (g) SA, (h) SA order spectrum, (i) residual signal, and
(j) residue order spectrum. Note that the SA energy comprises only 13.94% of the response energy.
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with A¼ 10; ξ¼ 0:05; ωn ¼ 2π�200, ωd ¼ωn

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ξ2

q
, and ~U tð Þ the Heaviside function used to enforce the system causality.

The sampling rate is set to 1 kHz and no noise is added to evidence only the distortion effect on the SA estimation. First, a
numerical convolution is performed to simulate the system response. Then, the response is resampled according to the
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reference instantaneous frequency; this is displayed in Fig. 5(e) with the corresponding order spectrum in (f). Clearly, the
amplitude distortion is prominent in the angular domain and manifests itself with long-term energy modulations, whereas
the phase blur is materialized by leakage in the vicinity of the excitation order 15.

It is worth noting that the nature of the deterministic component changes at the system output (see Eq. (9): whereas the
excitation is angle-periodic, the response is not albeit it conserves cyclic rhythms related to the excitation. As a matter of
fact, these rhythms are captured by the complex exponential kernels in Eq. (9). Last, the SA and the corresponding residue
are computed and displayed in Fig. 3(g) and (i), together with their order spectra in Fig. 5(h) and (j), respectively. Noticeably,
the SA energy forms only 13.94% of the deterministic signal energy, indicating a poor estimation even in the absence of
random noise.
4.2. Evaluation of the GSA

First, it is beneficial to illustrate the GSA on the previous simulated response. For this purpose, the speed varying margin
is first divided into 20 non-overlapping regimes of 1 Hz width (i.e. δω¼ 2π rad=s) and the smoothed estimator of the GSA is
applied on the noise-free signal. The smoothed parameter of the interpolation kernel (normal window) is chosen equal to
the speed resolution. Results are displayed in Fig. 6 wherein (a) represents the deterministic component as well as the GSA
estimate and (b) illustrates their corresponding order spectra. A significant enhancement over the SA is seen: the GSA
estimate has the ability of tracking the temporal variations of the amplitude and of the phase, capturing 92.43% of the actual
signal energy. It is also noticed that the estimator underestimates the actual response in the vicinity of the resonance
(around cycle 20,000) as predicted by the statistical analysis of Section 3.3.1.

Second, a white Gaussian noise is added on the response to obtain a SNR¼2 and the signal duration is enlarged 10 times
(i.e. one million samples) while keeping the same speed variation. In an attempt to evaluate the influence of the speed
resolution, the GSA is estimated for different interval widths (4 Hz, 1.5 Hz, 0.5 Hz and 0.33 Hz). One can notice the poor
estimation when performed on 4 Hz width, whereas significant enhancement is perceived as δω decreases. With the aim of
quantifying this dependence, the GSA energy is evaluated with respect to the actual response energy for different speed
resolutions, δω¼ Δω

R (where Δω is the speed varying margin) and results are depicted in Fig. 7(b). In accordance to the
statistical results obtained in Section 3.3.1, the estimated energy increases with resolution R (i.e. the interval width
decreases) so as to finally reach an asymptotic value. Note that the difference between the asymptotic and the ideal value
(100%) corresponds to the estimator bias for the selected parameters.

Eventually, it is noteworthy that the speed resolution cannot be taken arbitrary small because the number of averages,
card Κr

� �
, then decreases to zero. Therefore, a trade-off is to be made between these quantities. Accordingly, it is also

beneficial to evaluate the estimation accuracy with respect to the signal length. To do so, the evolution of the estimated GSA
energy is calculated with respect to the signal length for different speed resolutions, yet conserving the same speed var-
iation (see Fig. 8). Interestingly, the obtained curves consist of a transient and a steady state: whereas the former reflects the
stochastic variability of the estimator, the latter is representative of the bias. This illustrates the bias-variance trade-off.
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Fig. 6. (a) Actual deterministic response and GSA estimate together with their (b) order spectra. The estimation comprises 92.43% of the energy of the
actual response.
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5. Experimental validation

Similarly to the SA, the field of applications of the GSA covers multiple mechanical applications such as: machine
diagnostics, separation of mechanical sources and identification of mechanical system [1]. This section reports a typical
example in the field of rotating machine diagnostic, where deterministic gear related components contribute to the SES and
mask the bearing fault signature—originally random. The aim is to show how to take advantage of the GSA to enhance the
envelope-based diagnosis of rolling element bearings when operating under nonstationary condition. After a brief
description of the test rig and experimental protocol, the concept of the GSA is demonstrated on gear vibration signals. Then,
the GSA is used to extract the gear signal from its noisy environment. Last, the benefit of the separation is illustrated by
analyzing the envelope of the residual signal in order to diagnose the bearings.

5.1. Test rig and experimental protocol

The test rig used in this paper is located at Cetim3 and illustrated in Fig. 9. It essentially comprises an asynchronous
motor supplied by a variable-speed drive to control the motor speed, followed by a spur gear with 18 teeth and ratio of 1.
The gear is subjected to excessive wear. Two identical rolling element bearings are installed behind the spur gear; the
healthy one (denoted as B1) is closer to the gears than the faulty one (denoted as B2) which is coupled to an alternator by
means of a belt to impose a constant load. Bearing characteristics are listed in Table 1. An optical keyphasor of type “Brawn”
is fixed close to the motor output to measure the rotational shaft position. In addition, two accelerometers, hereafter
denoted as “Acc1” and “Acc2”, are respectively branched on bearings B1 and B2 in the Z-direction to measure the produced
vibrations. The sampling rate is set to 25.6 kHz.

First, experimental tests are conducted wherein five different constant speeds are imposed by the speed drive during 10 s
in order to obtain five records for each accelerometer. Fig. 10 illustrates the raw signals measured by accelerometers Acc1
and Acc2 at the chosen speeds 650, 950, 1250, 1550 and 1850 rev/min. The importance of such an experiment is to obtain an
3 Technical Center for Mechanical Industries—Senlis, France.
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Fig. 9. The test rig located at CETIM.

Table 1
Characteristic of the rolling element bearing (Deep groove ball 6820).

Pitch diameter
[mm]

Rolling element
diameter [mm]

Number of roll-
ing elements

Contact
angle

Outer, housing,
diameter [mm]

Inner, bore, dia-
meter [mm]

Ball pass order-
outer race
(BPOO)

Ball pass order-
inner race
(BPOI)

25 6 8 0.00 35 15 3.04 4.96
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actual reference of the machine behavior at the chosen operating speeds (which explains why they have been uniformly
separated to systematically cover the machine operating margin). In the second experiment, a runup (from 500 to 2000 rev/
min) and a random speed profile (between 500 and 2500 rev/min) are imposed to the electric motor over 52 s; the acquired
acceleration signals are illustrated in Fig. 11 together with their corresponding speed profiles. Whereas the former type of
speed profile is frequently met in rotor dynamics, the latter is for instance encountered in wind turbine applications.

5.2. Validation of the GSA

5.2.1. Evaluation of GSA under different speed profiles
By construction, the GSA theoretically returns the SA of a vibration signal at any operating speed independently of the

speed profile in the record. The principal object of this section is to experimentally evidence this statement. For this purpose,
the GSA is applied on variable speed records at some speeds, while the SA is applied on the constant-speed records at the same
speeds. Since comparisons should be performed on estimations, the corresponding estimator errors (i.e. bias and variance)
should be considered. Thus, the bias and the variance of the GSA should be theoretically calculated by means of the
equations developed in Section 3.3, and used to build a threshold. The idea is to evaluate whether the difference between
the GSA- and SA-based estimate are below the estimation threshold. If so, the aforementioned statement will be experi-
mentally demonstrated.

To do so, the SA is applied to both acceleration signals on the constant-speed records of the first experiment (which is
nothing else then the GSA applied to stepwise speed profile) in order to obtain a reference against which the GSA can be
compared. Since the gears have a unit ratio, the reference period used in the average is set equal to the gear rotation, which
makes possible to account for gear modulations. Next, the GSA is performed on the same accelerometer signal (Acc1) as in
the case of (i) runup and (ii) random speed varying profiles. In order to evaluate the statistical performance of the estimator,
it is proposed to compute the average values of the absolute bias and of the variance with respect to the SA.4 The average
absolute bias at the operating speed ωr is estimated by averaging the absolute value returned by Eq. (19) over the cycle
duration, i.e.

bb ωrð Þ ¼ 1
Θ

Z Θ

0
Bias bmY θ;ωr

� 	n o


 


dθ; (23)

whereas the average variance is estimated by averaging the value returned by Eq. (20) over the cycle duration, i.e.

bσ2 ωrð Þ ¼ 1
Θ

Z Θ

0
Var bmY θ;ωr

� 	n o


 


dθ; (24)
4 The distributions mY ̅θ ;ωr
� �

and PY ̅θ ;ωr
� �

are returned by the SAs of the signals and of the residual powers, respectively, applied on the constant-
speed records of the first experiment.
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Having an estimate of the average bias and variance, the level of the estimation error can be evaluated as

thres¼ bb ωrð Þþ3Ubσ ωrð Þ: (25)

In the runup case, the comparisons between the GSA estimates and the SA-based references are displayed in Fig. 12 for
the shaft speeds (a) 650, (b) 950, (c) 1250, (d) 1550 and (e) 1850 rev/min (the speeds under which the first experiment has
been conducted); the absolute value of the corresponding estimation errors are illustrated in (f)–(j) together with the
calculated thresholds. Results for the case of varying speed profile are reported in Fig. 13. In general, the similarity between
the estimated signatures is remarkable for both cases: the estimation error mostly stays below the threshold at the
exception of some phase mismatch at 1250 rev/min (see the third raw in Figs. 12 and 13). This confirms the model given in
Eq. (9). Also, since the estimation performance does not show dependence on the speed profile (runup or random variable
speed), one can claim that signal statistics do not depend on higher derivatives of θ, which validates the assumption leading
to Eq. (7). It is worth noting that, despite being below the threshold, the estimation errors of the regimes 650 rev/min (see
Figs. 12(f) and 13(f)) and 1850 rev/min (see Figs. 12(j) and 13(j)) are high. According to Eq. (20), the high error in the former
is due to the low number of cycles associated with the regime, while the high error in the second is due to the high mean
instantaneous power.

Next, the GSA applied on runup and random speed profiles are compared in Fig. 14. The similarity of the compared plots
indicates the invariance of the process properties (i.e. the CNS field) whatever the speed trajectory. Last, the GSA is applied



Fig. 11. (a) Runup speed profile and (b) its corresponding acceleration signals (Acc1 and Acc2). (c) Random speed profile and (d) its corresponding
acceleration signals (Acc1 and Acc2).
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Fig. 12. Comparison between the SA of Acc1 signal acquired at constant speeds and the GSA of the same accelerometer acquired in runup: (a) 650 rev/min,
(b) 950 rev/min, (c) 1250 rev/min, (d) 1550 rev/min, (e) 1850 rev/min; (f)–(j) are the absolute differences of the plots in (a)–(e) respectively and their
corresponding threshold.
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on signal Acc1 of the runup speed profile (Fig. 11(b)) together with the classical SA. Results are displayed in Fig. 15 wherein
the same unit scale is used to evidence the amplitude differences. As expected from the theory, the deterministic com-
ponent varies with speed in terms of phase and energy (see Fig. 15(b–f)) which results in an attenuation of the SA magnitude
(see Fig. 15(a)).

5.2.2. Extraction of the gear contribution
In the following, the efficiency of the GSA in extracting the deterministic component is investigated. For this purpose, the

GSA is applied on vibration signals produced under runup and random regimes in order to extract the deterministic gear
related components under both cases. The GSA estimates of signals Acc1 and Acc2 in runup computed with 20 non-
overlapped intervals are displayed in Fig. 16(a) and (d) runup and the corresponding amplitude order spectra are displayed
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Fig. 13. Comparison between the SA of signal Acc1 acquired at constant speeds and the GSA of the same accelerometer acquired in random variable speed:
(a) 650 rev/min, (b) 950 rev/min, (c) 1250 rev/min, (d) 1550 rev/min, (e) 1850 rev/min; (f)–(j) are the absolute differences of the plots in (a)–(e) respectively
and their corresponding threshold.

Fig. 14. Comparison between the GSA of signal Acc1 acquired at runup and the GSA of the same accelerometer acquired at random variable speed:
(a) 650 rev/min, (b) 950 rev/min, (c) 1250 rev/min, (d) 1550 rev/min, (e) 1850 rev/min; (f)–(j) are the close-ups between 0 and 0.3 rev of plots (a)–
(e) respectively.
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Fig. 15. Classical SA (a) and GSA applied on signal Acc1 in runup speed profile for the speeds (b) 650 rev/min (c), 950 rev/min (d), 1250 rev/min (e),
1550 rev/min and (f) 1850 rev/min. The same unit scale is used to evidence the differences.
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Fig. 16. (a) GSA of signal Acc1 in runup speed regime estimated with 20 non-overlapping intervals, (b) its amplitude order spectrum and (c) its zoom
around the 1st meshing order. (d) GSA estimate of signal Acc2 in random speed regime estimated with 20 non-overlapping intervals, (e) its amplitude
order spectrum and (f) its zoom around the 1st meshing order.
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in (b) and (e), respectively. Observing its evolution in the angular domain (see Fig. 16(a) and (d)), the GSA is able to track the
energy variations of the deterministic component.

Observing its order-domain counterpart (see Fig. 16(a) and (d)), the GSA seems to have a similar behavior of the SA: it
presents equally spaced harmonics as if a comb filter was applied. Yet, when checking these harmonics (see Fig. 16(c) and
(f)), one can clearly notice the energy leakage around the considered orders. This actually means that—in some sense—the
GSA has tracked the (amplitude and phase) distortions due to the TF of the system. It is worth noting that the energy leakage
around the harmonics is dependent on the speed variability in the record. The higher this variability is, the higher the
induced leakage. This can be simply checked by comparing the broadening of the harmonics in Fig. 16(c) and (f). The width
of the harmonics is wider for the random regime than for the runup because speed variability is greater in the former case.

In order to consolidate the GSA results, the next step is to investigate the residual signal obtained from subtracting the
GSA estimate from the original signal. In the case of a perfect estimation, the broadened harmonics related to the deter-
ministic component should be absent from the residues. For this purpose, the amplitude order spectrum of the SA and GSA
residues signals are compared in Fig. 17 for Acc2 signal in runup regime and Acc1 signal in random speed-varying regime. As
expected, the SA fails in both cases to eliminate the deterministic component wherein a significant part of the harmonic still
exists. In details, the SA is equivalent to applying a narrow-band comb filter spaced with the machine order, thus it is unable
to entirely extract the broadened harmonics as they fall outside the lobes of the comb filter. Therefore, once can see a local
fall at all the meshing order harmonics in all the plots of Fig. 17. Interestingly, the GSA evidences almost total suppression,
thus validating its efficiency in extracting the deterministic component in variable speed conditions.
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5.3. Envelope enhancement

In vibration analysis of rotating machine, the squared envelope spectrum (SES) is one of the most efficient indicators for
the assessment of CS2 sources which are typical symptoms of damage in rolling element bearing faults [35]. Similarly to
other CS2 tools, the SES should be applied on the pure random part of the signal; otherwise spurious harmonics may appear
and hide the actual second-order content. In speed varying regimes, the SES is combined with computed order tracking to
obtain an order-domain representation. This section reports a typical issue in the field of rotating machine diagnostic, where
deterministic gear related components contribute to the SES and mask the bearing fault signature—originally random. The
principal object is to investigate the benefits brought by the GSA in enhancing the envelope analysis for bearing fault
detection.

For this purpose, Acc2 signal in runup speed regime is picked up to evaluate the signature of the faulty bearing. Next,
after angular resampling, the SES is applied on the raw signal over the entire order band, on the SA residue and on the GSA
residue as shown in the diagram of Fig. 18. The obtained results are reported in Fig. 19. As expected, the SES of the raw signal
evidences several misleading harmonics synchronous with the reference shaft order, whereas slight enhancement is per-
ceived after removing the SA (see Fig. 19(a) and (b)). Noticeably, the SES of the residual signal after removing the GSA much
better evidences the bearing signature (see Fig. 19(c)), thus demonstrating the utility of the introduced technique for
envelope based vibration analysis.
6. Conclusion

The object of this paper was to extent the synchronous average, traditionally applied to cyclostationary signals, to the
general class of cyclo-non-stationary (CNS) signals wherein the operating speed is allowed to be nonstationary. It has been
shown that, in the case of a system operating under variable speed, cyclo-non-stationarity can be produced by the transfer
function from the excitation to the accelerometer. This phenomenon induces systematic changes in the signal phase and
magnitude, thus changing its structure. These changes have been modeled by means of an explicit dependence on the
speed. As a consequence, the deterministic part loses its (angle-) periodicity, thus jeopardizing the synchronous average.

Therefore, a novel quantity coined the “generalized synchronous average (GSA)” has been introduced to extract the
deterministic part of a CNS signal. This quantity, when evaluated at an arbitrary speed, has the advantage of expressing the
mean value of the signal as if the system was operating steadily at that speed. Two estimators of the GSA have been
proposed. The first one returns the synchronous average of the signal at predefined discrete operating speeds. A brief
statistical study of it is performed, aiming to provide the user with confidence intervals that reflect the “quality” of the
estimator according to the SNR and the estimated speed. The second estimator returns a smoothed version of the former by
enforcing continuity over the speed axis. It helps to reconstruct the deterministic component by tracking a specific tra-
jectory dictated by the speed profile (assumed to be known a priori). The proposed approach has been tested on an actual
benchmark comprising a typical powertrain. The aim was twofold: first to validate the proposed CNS model and the GSA
estimators and second to show the usefulness of the proposed approach for rolling element bearing diagnostics in variable
operating speed. Interestingly, the GSA proved efficient in estimating the deterministic gear contribution, showing con-
siderable enhancement over the classical SA.
Fig. 18. Comparison of the SES of residue, the SES of SA residue and the SES of the GSA residue.



Fig. 19. SES of the (a) resampled signal, (b) the SA residue and (c) the GSA residue applied on signal Acc2 in runup.

D. Abboud et al. / Journal of Sound and Vibration 362 (2016) 305–326324
Limitations of the GSA are inherently related to estimation issues. In particular, it has been assumed that the speed
variations are slower than the signal cycle; although this condition seems reasonable in several applications, it can easily be
relaxed in the general case by averaging portions of signal smaller than cycles. Another issue concerns the setting of the
estimation parameters such as the speed resolution, the number of regimes, and the repartition of the central frequencies. In
the present paper, these settings have been governed by simplicity. For example, the regimes were chosen to be uniformly
distributed along the speed axis. This actually makes the estimation variance dependent on the operating speed; again, this
could easily be alleviated by allowing the speed resolution to be inversely proportional to the speed probability distribution.

Eventually, authors believe that the GSA can be also used for estimating second-order quantities such as instantaneous
autocorrelation or the spectral correlation as functions of speed. As well, it can be applied to other domains such as gear
diagnostics, noise separation in IC engines, etc.
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Appendix

a) Proof of Eq. (19).

Let us now apply the statistical expectation to the raw estimator of the GSA applied to the model in Eq. (8)
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According to Slutsky’s theorem on probability limits, the sample averaging operator 1
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The rest of the proof follows by approximating the distribution of ω by a uniform law in the interval
ωr�δω=2;ωrþδω=2
� �

and after performing a second-order Taylor approximation around ωr .
a) Proof of Eq. (20).

Similarly to the previous proof, the variance is
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Since terms in the sum do not overlap
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is the instantaneous power of the residue (i.e. purely random) that depends on

the speed. According to Slutsky’s theorem
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The rest of the proof follows by approximating the distribution of ω by a uniform law and performing a second-order
Taylor approximation around ωr .
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