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1. Introduction

Cumulants are useful quantities for characterizing some important statistical proper-
ties, such as independence, gaussianity, or possible (a)symmetry of probability distribu-
tions. They were first introduced in 1899 by T.N. Thiele under the name half-invariants
(see Hald [1] where Thiele’s original paper is translated into English). Later, in Leonov 
and Shiryaev [2] (translated into English by James R. Brown), they were called semi-
invariants, whereas Lukacs already called them cumulants in his 1955 paper [3].

Higher-order cumulants make it possible to solve problems that are otherwise in-
tractable on the second order. This is typically the case in Independent Component 
Analysis (ICA, as introduced in Comon [4]), where fourth-order cumulants are used to 
blindly separate (over-)determined (i.e. as many as or less sources than sensors) mixtures 
of independent sources (e.g. Cardoso and Souloumiac [5], Albera et al. [6]). Recently, sev-
eral researchers have investigated the use of sixth-order cumulants (Albera et al. [7]) and, 
more generally, cumulants of order 2k, k > 2 (Albera et al. [8]), for the separation of 
under-determined mixtures of sources (i.e. more sources than sensors).

This paper is concerned with the matrix expressions of the cumulants of a random 
vector. Loosely speaking, the cumulant matrix of a random vector is a collection of the 
various cross-cumulants between its elements. It is often convenient to arrange such a 
collection into a matrix (a square symmetric matrix in the case of even order cumulants) 
for both notational and practical reasons. This makes it easier to handle cumulants 
for algorithmic perspectives and to exploit some of their statistical properties, such 
as “matrix redundancy” (see e.g. Albera et al. [7,6,8]). An important example is ICA 
where the blind separation of statistically independent sources is solved by zeroing all 
cross-cumulants between independent sources: if properly set up, the issue then boils 
down to the diagonalization of a cumulant matrix (see Cardoso and Souloumiac [5], 
Kollo [9]).

Unlike moments – which are quite easily obtained by expectation of polynomial func-
tions of the given random vector – there is no simple formula to compute the cumulants. 
Indeed, scalar cumulants are evaluated from lower-order moments by using a well-known 
polynomial formula (see Lukacs [3,2,10] or Mac Cullagh [11]). One calls it Leonov and 
Shiryaev formula, as is usually the case in ICA papers.

It is then easy to re-arrange the scalar (cross-)cumulants of a vector into a matrix. 
The main drawback of this usual approach is to involve lengthy formulae and, when 
calculation is of concern, a computational burden which becomes rapidly prohibitive 
as the dimension of the random vector increases. It is therefore advisable to search 
for direct and more concise expressions of cumulant matrices. One solution is actually 
returned by Neudecker matrix derivatives (Neudecker [12]) (see e.g. Kollo and von Rosen 
[13, pages 187–188]). Unfortunately, it faces two difficulties which limit its practical 
use:

(i) the resulting cumulant matrices are not square except on the second order;
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(ii) matrix derivatives of the logarithm of the characteristic function are hardly tractable 
for orders higher than four and, according to the authors’ knowledge, no formulae 
have ever been derived for those cases.

Limitation (i) can be overcome on the fourth order by using an algebraic technique 
such as proposed by Jinadasa and Tracy [14] and Tracy and Sultan [15] to obtain 
the matrix expression of the fourth-order moment of a Gaussian vector; the same re-
sult is found in Kollo [9], Loperfido [16]. However, point (ii) has not been solved till 
now. This paper gives the expressions of fifth and sixth-order cumulant matrices of a 
real-valued random vector. The expression of the sixth-order cumulant matrix is sym-
metric.

The paper is organized as follows. Section 2 resumes the basic definitions of moments 
and cumulants of a random vector and deduces Leonov and Shiryaev formula as a con-
sequence of the Faà di Bruno formula (following the lines in Lukacs [3] and Hardy [17]). 
The main result of the paper – a theorem providing the formulae of cumulant matrices 
up to order six – is given in Section 3. At the same time a general strategy describes how 
to obtain similar results up to any order. The number of terms in each formula is also 
given. However, the cumbersome aspects of the proofs are postponed to the appendix. 
In Section 4, the formulae are used to get, without pain, i) upper bounds on the rank 
of cumulant matrices and ii) the sixth-order moment matrix of a Gaussian vector. Since 
the latter is a known formula (see for instance Magnus and Neudecker [18], Tracy and 
Sultan [15], and more recently Schott [19]), it somehow validates the expression of the 
cumulant matrix from which it is derived. Finally, Section 5 concludes on the advantages 
implied by the proposed matrix expressions as compared to the classical use of Leonov 
and Shiryaev formula.

2. Generalities on moment and cumulant matrices

This section first recalls the link between the scalar moments and cumulants of a 
random vector in order to pave the way for our main theorem given in Section 3.

2.1. Scalar moments and cumulants

Let x = (x1, . . . , xp)′ be a real-valued random vector of dimension p × 1. Its charac-
teristic function φ is defined on Rp as

φ(u) = E [exp(i(u,x))] = E

⎡
⎣ p∏
j=1

exp(iujxj)

⎤
⎦ , (1)

where E[·] denotes the mathematical expectation, i is the imaginary unit, u =
(u1, . . . , up)′ ∈ R

p and (·)′ denotes the transposition operator.
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Let n ∈ N; vector x is said to admit moments of order n if

E [|x|n] < ∞, (2)

where |x| =
(∑p

j=1 x
2
j

)1/2
stands for the Euclidean norm of Rp. In that case, (i) φ is 

n times differentiable and (ii) all the scalar (cross-)moments of order k ≤ n of x are well 
defined as

(∀(j1, . . . , jk) ∈ [[1, p]]k)

mom(k)(xj1 , . . . , xjk) def= E [xj1 · · ·xjk ] = (−i)k ∂kφ

∂uj1 · · · ∂ujk

(0). (3)

Moreover, since φ is a continuous function on Rp and φ(0) = 1, it is necessarily 
non-zero in a neighborhood of 0 ∈ R

p. The second characteristic function (also referred 
to as the “cumulant function” in the literature),

ψ(u) = log (φ(u)) , (4)

is thus well defined and, thanks to condition (2), it is n times differentiable in a neighbor-
hood of 0. This makes possible the definition of scalar (cross-)cumulants of order k ≤ n

of x as

(∀(j1, . . . , jk) ∈ [[1, p]]k) cum(k)(xj1 , . . . , xjk) def= (−i)k ∂kψ

∂uj1 · · · ∂ujk

(0). (5)

Since Eq. (4) implicitly connects moments to cumulants, it suggests two methods to 
compute the latter in terms of the former:

1. Expansion up to order n of the following function:

ψ(u) = log

⎛
⎝1 +

n∑
k=1

(i)k

k!
∑

(j1,...,jk)∈[[1,p]]k
mom(k)(xj1 , . . . , xjk)uj1 · · ·ujk + o(|u|n)

⎞
⎠
(6)

where the sum in brackets is the Taylor series expansion up to order n of φ(u). This 
method was carried out for instance by Leonov and Shiryaev [2] and by Mac Cullagh 
[11]. It is well adapted to hand calculation, at least for low orders (say n ≤ 4). 
Moreover this method leads also to general formulae which are nothing but special 
cases of the Faà di Bruno formula.

2. Direct use of the Faà di Bruno formula which returns the partial derivatives of a 
composition of applications. This second method was first used by Lukacs [3] in the 
case of random variables (p = 1).
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Without surprise, these two methods give essentially the same results. However, this 
paper focuses on the second one because of its primary interest in higher orders (say 
n > 4). In fact, there are slightly different Faà di Bruno formulae which differ only by 
the way the terms are collected. One of the simplest formulae is provided by Hardy [17]; 
with the notations of the present paper, it reads

∂k

∂uj1 · · · ∂ujk

f ◦ φ(u) =
∑

π∈P ([[1,k]])

f (|π|) ◦ φ(u)
∏
B∈π

∂|B|∏
l∈B ∂ujl

φ(u) (7)

where f is a function of one variable, P ([[1, k] ]) denotes the set of partitions of the set 
[[1, k] ] def= {1; 2; . . . ; k}, and |E| is the cardinality of set E. For example, with k = 7, 
π = {{2; 3; 6}; {1; 4}; {7}} ∈ P ([[1, 7] ]) and B = {2; 3; 6} ∈ π, one gets

∂|B|∏
l∈B ∂ujl

= ∂3

∂uj2∂uj3∂uj6

. (8)

The main advantage of Eq. (7) is to be fully developed, i.e. it no longer contains 
factorials assigned to the collection of equal partial derivatives when some indices jl
happen to coincide.

In order to compute cumulants in terms of moments, one sets f = log, u = 0 and 
φ(0) = 1 in Eq. (7). Since

f (n)(1) = (−1)n−1(n− 1)! (9)

and, in accordance with Eq. (3),

∂|B|∏
l∈B ∂ujl

φ(0) = i|B|mom(|B|)(xjl : l ∈ B). (10)

By noting that for any π ∈ P ([[1, k] ]) it comes 
∑

B∈π |B| = k, one eventually arrives at 
Leonov and Shiryaev formula:

cum(k)(xj1 , . . . , xjk) =
∑

π∈P ([[1,k]])

(−1)|π|−1(|π| − 1)!
∏
B∈π

mom(|B|)(xjl : l ∈ B).

(11)

Alternatively, in order to compute moments in terms of cumulants, one sets f = exp, 
ψ in place of Φ, u = 0 and ψ(0) = 0 in Eq. (7), so as to obtain

mom(k)(xj1 , . . . , xjk) =
∑

π∈P ([[1,k]])

∏
B∈π

cum(|B|)(xjl : l ∈ B). (12)

This formula will be used in Section 4.2 to find the expression of the sixth-order moment, 
m6(x), of a centered Gaussian random vector x.
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2.2. On the number of terms in Leonov and Shiryaev formula

To give an idea of the complexity of Leonov and Shiryaev formula, one counts the 
number of terms in the sum and product of Eq. (11). First of all, the number of partitions 
of the set [[1, k] ] is known as the Bell number Bk,

Bk =
∣∣P ([[1, k]])

∣∣. (13)

The Bell numbers can be computed by recurrence (see Cameron [20]),

(∀k ≥ 1) Bk =
∑
l=1

(
k − 1
l − 1

)
Bk−l, (14)

even if an explicit formula is known (see later).
Second, it is seen that the number of terms in the product 

∏
B∈π of Eq. (11) is the 

number of parts of the partition π. Consequently it is useful to consider Pr([[1, k] ]), the 
set of partitions of the set [[1, k] ] with r (non-empty) parts, so that Eq. (11) is rewritten 
into

cum(k)(xj1 , . . . , xjk) =
k∑

r=1

∑
π∈Pr([[1,k]])

(−1)r−1(r − 1)!
∏
B∈π

mom(|B|)(xjl : l ∈ B).

(15)

The number of partitions of the set [[1, k] ] with r (non-empty) parts is the (k, r)-th Stirling 
number of the second kind S(k, r) (see Cameron [20]),

S(k, r) =
∣∣Pr([[1, k]])

∣∣. (16)

By noting that there are r!S(k, r) surjective mappings from [[1, k] ] to [[1, r] ], the following 
formula is obtained:

S(k, r) = 1
r!

r∑
j=1

(−1)r−j

(
r

j

)
jk. (17)

Since Bk =
∑k

r=1 S(k, r), this gives an explicit formula for the Bell numbers

(∀k ≥ 1) Bk =
k∑

r=1

1
r!

r∑
j=1

(−1)r−j

(
r

j

)
jk. (18)

Finally, the number of multiplications in Leonov and Shiryaev formula (11) is given by

Nmult(k) =
k∑

r=1
rS(k, r). (19)

Values of Nmult(k) from k = 1 to 6 are given in Table 1.
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Table 1
Number of additions and multiplications in Leonov and 
Shiryaev formula.

k Bk Nmult(k)
1 1 1
2 2 3
3 5 10
4 15 37
5 52 151
6 203 674

2.3. Moment and cumulant matrices

There are many different ways to arrange the pk scalar moments of Eq. (3) in a 
vector (see Meijer [21]) or in a matrix. It is natural to select those arrangements which 
are maximally symmetric as is often practiced in the literature (see e.g. Schott [19], 
Jinadasa and Tracy [14], Tracy and Sultan [15]).

Definition 1 (The moment matrix). The moment matrix of a real-valued random vector 
x = (x1, . . . , xp)′, E [|x|n] < ∞, n ∈ N, of even order 2k ≤ n is defined as

m2k(x) = E
[
⊗kxx′] (dimension pk × pk) (20)

and that of odd order, 2k + 1 ≤ n, as

m2k+1(x) = E
[
⊗kxx′ ⊗ x

]
(dimension pk+1 × pk), (21)

where ⊗ is the Kronecker product (see Eq. (26) below for a definition) and ⊗kxx′ =
xx′ ⊗ · · · ⊗ xx′︸ ︷︷ ︸

k matrices p×p

.

It is easy to verify that all scalar (cross-)moments are included in Definition 1. To 
do so, let decompose x =

∑
j∈[[1,p]] xjej onto the canonical basis of Rp; thus, from 

the multilinearity property of the Kronecker product and the linearity of the expected 
value,

m2k(x) = E
[
⊗kxx′] = E

⎡
⎣⊗k

∑
(j1,j2)∈[[1,p]]2

xj1xj2ej1e′j2

⎤
⎦

= E

⎡
⎣ ∑

(j1,j2)∈[[1,p]]2
xj1xj2ej1e′j2 ⊗ · · · ⊗

∑
(j2k−1,j2k)∈[[1,p]]2

xj2k−1xj2kej2k−1e′j2k

⎤
⎦

=
∑

2k

E
[
xj1xj2 · · ·xj2k−1xj2k

]
ej1e′j2 ⊗ · · · ⊗ ej2k−1e′j2k
(j1,j2,...,j2k−1,j2k)∈[[1,p]]
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=
∑

(j1,j2,...,j2k−1,j2k)∈[[1,p]]2k
mom(2k)(xj1 , . . . , xj2k)ej1e′j2 ⊗ · · · ⊗ ej2k−1e′j2k .

(22)

Similarly, for odd orders,

m2k+1(x) =
∑

(j1,...,j2k+1)∈[[1,p]]2k+1

mom(2k+1)(xj1 , . . . , xj2k+1)ej1e′j2 ⊗ · · ·

⊗ ej2k−1e′j2k ⊗ ej2k+1 . (23)

It is then possible to define the cumulant matrix in a similar way as the moment 
matrix.

Definition 2 (The cumulant matrix). Let x = (x1, . . . , xp)′ be a real-valued random vector 
of dimension p × 1, such that E [|x|n] < ∞ for a given n ∈ N. The cumulant matrix of 
even order, 2k ≤ n, of x is a pk × pk matrix defined as

c2k(x) =
∑

(j1,...,j2k)∈[[1,p]]2k
cum(2k)(xj1 , . . . , xj2k)ej1e′j2 ⊗ · · · ⊗ ej2k−1e′j2k (24)

whereas the cumulant matrix of odd order, 2k + 1 ≤ n, is a pk+1 × pk matrix defined as

c2k+1(x) =
∑

(j1,...,j2k+1)∈[[1,p]]2k+1

cum(2k+1)(xj1 , . . . , xj2k+1)ej1e′j2 ⊗ · · ·

⊗ ej2k−1e′j2k ⊗ ej2k+1 . (25)

Remark 3. The matrix cn(x) is of course an unfolded version of the n-th cumulant tensor 
Tn =

{
cum(xi1 , . . . , xin)

}
(see [22]).

Except for the special case of a Gaussian random vector, cumulants are much more 
difficult to compute than moments. Hitherto, the only way to compute the cumulant 
matrix cn(x) has consisted in

1. deriving the pn scalar cumulants from the scalar moments of orders lower than n via 
Eq. (11),

2. arranging the scalar cumulants in a matrix according to Definition 2.

However, Eq. (11) tends to return lengthy expressions that are hardly tractable beyond 
order four or so (see Table 1). The goal of this paper is to compute the cumulant matrix 
cn(x) directly from the moment matrices of orders lower than n, thus providing formulae 
that are much more concise and convenient to handle.
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3. Cumulant matrices from lower-order moment matrices

3.1. Kronecker product and commutation matrices

The main theorem of this paper makes a wide use of the vec operator and the Kro-
necker product. Furthermore, it requires some commutation matrices. The following 
definitions and properties are borrowed from Brewer [23], Magnus and Neudecker [18] or 
Wiens [24].

Let A = (ai,j) be a p × q matrix and aj the j-th column of A; then vecA is the 
pq × 1 vector

vecA =

⎛
⎜⎝

a1
...
aq

⎞
⎟⎠ .

Let further B be an r × s matrix; then the Kronecker product A ⊗ B is defined as the 
pr × qs matrix

A ⊗ B =

⎛
⎜⎝

a1,1B · · · a1,qB
...

. . .
...

ap,1B · · · ap,qB

⎞
⎟⎠ . (26)

⊗ is associative, but not commutative. Furthermore, it acts on the usual matrix product 
according to

(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD),

provided that C is q × t and D is s × u. Use will also be made of the transposition 
property

(A ⊗ B)′ = A′ ⊗ B′.

Definition 4 (Three commutation matrices). Let p ≥ 1 be an integer. The commutation 
matrix Kpp of dimension p2 × p2 is defined as

Kpp =
∑

(i,j)∈[[1,p]]2
eie′j ⊗ eje′i, (27)

where (ei)i∈[[1,p]] stands for the canonical basis of Rp. Let us define two other related 
commutation matrices of dimension p3 × p3:

P3,2 = Ip ⊗ Kpp (28)

P2,1 = Kpp ⊗ Ip, (29)

where Ip is the identity matrix.
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Because of the lack of commutativity of the Kronecker product, these commutation 
matrices will be crucial in the proof of our theorem. In particular, if a, b, and c are three 
vectors of dimension p ×1, the following equalities hold (by straightforward calculations, 
see Brewer [23], Magnus and Neudecker [18] or Wiens [24]):

Kpp(a ⊗ b) = b ⊗ a (30)

P3,2 (a ⊗ b ⊗ c) = a ⊗ c ⊗ b (31)

P2,1 (a ⊗ b ⊗ c) = b ⊗ a ⊗ c. (32)

Since K′
pp = Kpp, it comes P ′

3,2 = P3,2, P ′
2,1 = P2,1, and

(a′ ⊗ b′)Kpp = b′ ⊗ a′ (33)

(a′ ⊗ b′ ⊗ c′)P3,2 = a′ ⊗ c′ ⊗ b′ (34)

(a′ ⊗ b′ ⊗ c′)P2,1 = b′ ⊗ a′ ⊗ c′. (35)

Finally let us emphasize this very special case where no commutation matrix is needed,

a ⊗ b′ = b′ ⊗ a = ab′. (36)

3.2. Statement of results for orders 2 to 6

One is now in a position to state the main result of the paper.

Theorem 1. Let x = (x1, . . . , xp)′ be a real-valued random vector of dimension p ×1, with 
assumed zero-mean for simplicity (E [x] = 0). Let us further assume that E [|x|n] < ∞
for a given integer n ≥ 6 so as to guarantee the existence of moments and cumulants up 
to order six.

Next let us define the four matrices:

K = Ip2 + Kpp (37)

P = Ip3 + P2,1 + P3,2P2,1 (38)

R = Ip3 + P3,2 + P2,1P3,2 (39)

Q = Ip3 + P3,2 + P2,1 + P2,1P3,2 + P3,2P2,1 + P2,1P3,2P2,1 (40)

which depend only on dimension p. Thus, the cumulant matrices of orders 2 to 6 read

c2(x) = m2(x) = E [xx′] (41)

c3(x) = m3(x) = E [xx′ ⊗ x] (42)

c4(x) = m4(x) − K
(
m2(x) ⊗m2(x)

)
− vecm2(x)vec′ m2(x) (43)
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c5(x) = m5(x) − R
(
m3(x) ⊗m2(x)

)
K − P

(
m3(x)′ ⊗ vecm2(x)

)
− vecm3(x)vec′ m2(x) (44)

c6(x) = m6(x) − Γ(4,2)(x) − Γ(3,3)(x) + 2Γ(2,2,2)(x), (45)

respectively, where vec′ m = (vecm)′ and

Γ(4,2)(x) = R
(
m4(x) ⊗m2(x)

)
R′ +

(
M4(x) ⊗ vec′ m2(x)

)
P′

+ P
(
M4(x)′ ⊗ vecm2(x)

)
Γ(3,3)(x) = R

(
m3(x) ⊗m3(x)′

)
P′ + vecm3(x)vec′ m3(x)

Γ(2,2,2)(x) = Q
(
m2(x) ⊗m2(x) ⊗m2(x)

)
+ P

(
m2(x) ⊗ vecm2(x)vec′ m2(x)

)
P′

M4(x) = E [xx′ ⊗ x ⊗ x] .

3.3. Outline of the proof and counting of the terms in the formulae

The sketch of the proof consists of

(a) injecting Eq. (11) that returns cumulants in terms of moments into Eqs. (24) and 
(25) which define cumulant matrices;

(b) expressing the terms of the resulting sum with moment matrices.

Let us detail the first step in the case of even orders n = 2k (the principle is identical 
for odd orders):

cn(x) =
∑

(j1,...,jn)∈[[1,p]]n

⎛
⎝ ∑

π∈P ([[1,n]])

(−1)|π|−1(|π| − 1)!
∏
B∈π

mom(|B|)(xjl : l ∈ B)

⎞
⎠

× ej1e′j2 ⊗ · · · ⊗ ejn−1e′jn
=

∑
s∈P (n)

(−1)|s|−1(|s| − 1)!Γs(x) (46)

where P (n) denotes the set of partitions of the integer n, that is the set of all s =
(s1, . . . , sl), where s1 ≥ · · · ≥ sl ≥ 1 are integers such that s1 + . . . + sl = n; |s| denotes 
the length of s (that is the number l of integers in s) and

Γs(x) =
∑

π∈Ps([[1,n]])

⎛
⎝ ∑

(j1,...,jn)∈[[1,p]]n

∏
B∈π

mom(|B|)(xjl : l ∈ B)ej1e′j2 ⊗ · · · ⊗ ejn−1e′jn

⎞
⎠

︸ ︷︷ ︸
Tπ

,

(47)
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Table 2
p(n) (resp. p(n) − p(n − 1)) number of terms (resp. non-zero terms) in formula (46).
n p(n, 1) p(n, 2) p(n, 3) p(n, 4) p(n, 5) p(n, 6) p(n) p(n) − p(n − 1)
1 1 1
2 1 1 2 1
3 1 1 1 3 1
4 1 2 1 1 5 2
5 1 2 2 1 1 7 2
6 1 3 3 2 1 1 11 4

with Ps([[1, n] ]) the set of partitions of the set [[1, n] ] of type s. A partition of the set [[1, n] ]
of type s, where s = (s1, . . . , sl) is a partition of the integer n, is a partition of [[1, n] ]
with l parts B1, . . . , Bl such that |Bj | = sj for all j ∈ [[1, l] ]. For instance, for n = 4,

P (4) = {(4); (3, 1); (2, 2); (2, 1, 1); (1, 1, 1, 1)} , (48)

and for s = (2, 2), |s| = 2 and

Ps([[1, 4]]) = {{{1; 2}; {3; 4}}; {{1; 3}; {2; 4}}; {{1; 4}; {2; 3}}} . (49)

Now let us compute the number of terms in the previous formulae.

Number of terms in formula (46). The number of partitions of n is usually named p(n) =
|P (n)|. There is no simple formula for p(n) and the easiest way to compute p(n) is to 
consider p(n, k), the number of partitions of n with k parts. Of course it comes

p(n) =
n∑

k=1

p(n, k), (50)

p(n, 1) = 1 and p(n, n) = 1. Moreover, this recurrence equation

p(n, k) = p(n− 1, k − 1) + p(n− k, k), (51)

is obtained because p(n −1, k−1) is also the number of partitions of n with k parts with
smallest one equal to 1, whereas p(n −k, k) is the number of partitions of n with k parts 
different from 1.

Number of non-zero terms in formula (46). As E [x] = 0 was assumed, one has 
mom(1)(xj) = 0 for all j ∈ [[1, p] ]. Thus Γs(x) = 0 for all s = (s1, . . . , sl) with sl = 1. 
Besides, (s1, . . . , sl−1, 1) is a partition of n if and only if (s1, . . . , sl−1) is a partition of 
n − 1. Finally, the number of non-zero terms in formula (46) is given by p(n) − p(n − 1).

Table 2 summarizes the previous results from n = 1 to 6.

Number of terms in the formula (47). Given s = (s1, . . . , sl), a partition of n, one has 
to compute ps(n) = |Ps([[1, n] ])|, the number of partitions of the set [[1, n] ] of type s. If 
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si 	= si′ for all i 	= i′, it is easy to see that ps(n) = n!
s1!···sl! . If not, one has to take in 

account permutations between the equal values of si, so that the general result is

ps(n) = n!
s1! · · · sl!k1! · · · kr!

, (52)

where k1, . . . , kr are the respective numbers of the different values taken by the si. For 
example,

p(2,2)(4) = |P(2,2)([[1, 4]])| = 4!
2!2!2! = 3, (53)

as seen directly from Eq. (49).
For the second step, it is convenient to browse set P (n) in the lexicographic order 

as suggested in Eq. (48) so that the first term in Eq. (46) will correspond to s = (n), 
|s| = 1, Ps([[1, n] ]) = {{{1; · · · ;n}}}; that is the partition π = {{1; · · · ;n}} with one 
block B = {1; · · · ;n} such that

Γ(n)(x) = T{{1;···;n}} =
∑

(j1,...,jn)∈[[1,p]]n
mom(n)(xjl : l ∈ B)ej1e′j2 ⊗ · · · ⊗ ej2k−1e′jn

= mn(x). (54)

In addition, in each product 
∏

B∈π of (47), blocks B will be browsed from the largest 
one to the smallest one, as suggested again by Eq. (48).

The calculation of c3(x) to c6(x) according to these principles is postponed to Ap-
pendix A.

4. Two immediate consequences

4.1. Upper bounds on the rank of cumulant matrices

Corollary 2. Let x be a real-valued random vector of dimension p × 1 such that 
E [|x|n] < ∞ for a given integer n ≥ 6. Then, its cumulant matrices of orders 2 to 6
have their rank upper-bounded as follows:

rank
(
c2(x)

)
≤ p (55)

rank
(
c3(x)

)
≤ p (56)

rank
(
c4(x)

)
≤ p(p + 1)

2 (57)

rank
(
c5(x)

)
≤ p(p + 1)

2 (58)

rank
(
c6(x)

)
≤ p(p + 1)(p + 2)

6 . (59)
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Proof. The first two inequalities are obvious. For the other ones, let us introduce

K̃ = 1
2K and Q̃ = 1

6Q, (60)

where K and Q are matrices of dimension p2 × p2 and p3 × p3, as given in Eqs. (37) and 
(40), respectively. By using the symmetry properties of cumulants, it comes that

c4(x) = K̃c4(x), c5(x) = c5(x)K̃, and c6(x) = Q̃c6(x), (61)

from which the following majorations immediately follows:

rank
(
c4(x)

)
≤ rank

(
K̃
)
, rank

(
c5(x)

)
≤ rank

(
K̃
)
, and

rank
(
c6(x)

)
≤ rank

(
Q̃
)
. (62)

Since matrices K̃ and Q̃ are idempotent (see Schott [19, Theorem 1]), their rank is 
returned by their trace. Thus,

rank
(
K̃
)

= Tr(K̃) = 1
2 Tr(Ip2 + Kpp) = 1

2
(
p2 + Tr(Kpp)

)
. (63)

The trace of the commutation matrices is given Magnus and Neudecker [18] by

Tr(Kab) = 1 + gcd(a− 1, b− 1), (64)

where gcd stands for “greatest common divisor”. This implies, in particular, Tr(Kpp) = p; 
therefore,

rank
(
K̃
)

= 1
2
(
p2 + p

)
= p(p + 1)

2 . (65)

Similarly,

rank
(
Q̃
)

= Tr(Q̃) = 1
6 Tr(Q)

= 1
6 Tr

(
Ip3 + Ip ⊗ Kpp + Kpp ⊗ Ip + Kpp2 + Kp2p + (Kpp ⊗ Ip)Kp2p

)
= 1

6
(
p3 + p2 + p2 + p + p + p2)

= p3 + 3p2 + 2p
6 = p(p + 1)(p + 2)

6 . � (66)
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4.2. The sixth-order moment matrix of a Gaussian vector

The matrix expression of the sixth-order moment of a Gaussian vector (so-called
Isserlis’ theorem or Wick’s theorem) has been the aim of several research works. It has 
been provided by Neudecker [12], Magnus and Neudecker [18], Tracy and Sultan [15], 
and more recently by Schott [19]. It happens to be a direct corollary of Theorem 1.

Corollary 3. Let z ∼ N (0p, Σ) be a zero-mean, real-valued, Gaussian vector. Its fourth 
and sixth-order moment matrix reads

m4(z) = K
(
Σ⊗ Σ

)
+ vecΣvec′ Σ (67)

m6(z) = E(zz′ ⊗ zz′ ⊗ zz′) = Q
(
Σ ⊗ Σ ⊗ Σ

)
+ P

(
Σ⊗ vecΣ ⊗ vec′ Σ

)
P′ (68)

where matrices Q and P are defined in Theorem 1.

Proof. Since z is Gaussian, all its cumulants of order greater than two are equal to 
zero, whence result (67). Therefore, the only non-zero term in Eq. (12), with k = 6, 
corresponds to the partition of type (2, 2, 2). Hence,

m6(z) = Γ(2,2,2)(z), (69)

where

Γ(2,2,2)(z)

=
∑

π∈P(2,2,2)([[1,6]])

⎛
⎝ ∑

(j1,...,j6)∈[[1,p]]6

∏
B∈π

cum(2)(zjl : l ∈ B)ej1e′j2 ⊗ ej3e′j4 ⊗ ej5e′j6

⎞
⎠ .

(70)

This quantity is given by Eq. (A.70), wherein m2(z) = c2(z) = Σ. �
Remark 5. In the scalar case (p = 1), Eq. (67) and Eq. (68) reduce to the well-known 
result (see for example Schott [19])

m2α(z) = (2α)!
2αα! σ

2α. (71)

Indeed, if p = 1, one obtains Σ = vecΣ = vec′ Σ = σ2, K = 2, P = 3 and Q = 6. 
Thus (67) and (68) become respectively m4(z) = 2σ2σ2 + σ2σ2 = 3σ4 and m6(z) =
6σ2σ2σ2 + 9σ2σ2σ2 = 15σ6 which are in accordance with the formula (71).
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Table 3
Number of additions and multiplications in Leonov and Shiryaev formula (LS) versus the concise formulae 
(CF).

Additions Multiplications
(LS) (CF) (LS) (CF)

c4(x) 15p4 (p2 − 1)p4 37p4 (p2 + 1)p4

c5(x) 52p5 (2p3 + p2)p5 151p5 (2p3 + p2 + 3)p5

c6(x) 203p6 (9p3 − 2)p6 674p6 (9p3 + 7)p6

5. Computational cost of the concise formulae

Let us compare the computational cost of the proposed concise formulae (CF) of The-
orem 1 with the classical repeated used of Leonov and Shiryaev formula (LS). Suppose 
that all moments and moment matrices of the zero-mean random vector x of dimension 
p × 1 have been already computed.

With LS, any of the pn terms of cn(x) requires the same number of additions and 
multiplications as given in Table 1.

With CF, one has to take into account the matrix products, the Kronecker products 
and the sums of matrices. The product of a p × q matrix with a q × r matrix requires 
pr(q − 1) additions and prq multiplications, whereas the Kronecker product of a p × q

matrix with an r×s matrix requires no additions but pqrs multiplications (see Eq. (26)).
The results for c4(x), c5(x) and c6(x) are gathered in Table 3.
Without surprise the number of operations required for cn(x) are O(pn) with LS 

and O(pn+2) or O(pn+3) with CF because of the products of “big matrices” in the 
concise formulae. This shows that the advantages of the concise formulae do not reside 
in computational complexity. However the construction of the matrix cn(x) in (LS) 
cases requires n imbricated loops whereas it is realized by usual matrix operations with 
CF. Finally, the proposed formulae have a definite advantage when they come to be 
coded with high-level matrix/array programming language, such as Matlab®. By way 
of an example (Ould-Baba [25]), it has been verified by the authors that the numerical 
computation of the empirical cumulant matrices of orders five and six with dimension 
p = 6 are about 150 times faster than with coded with LS formula (version 7 of Matlab 
used on a laptop computer with 2.10GHz clock and 4Go RAM).

6. Conclusion

This paper has introduced a methodology for deriving explicit formulae for the cu-
mulant matrices of a random vector in terms of moment matrices of lower orders. The 
methodology reproduces known formulae up to order four and returns new ones at orders
five and six, which are all embodied in Theorem 1. In principle, it can also be applied to 
address higher orders. Such formulae of the cumulant matrices have several advantages. 
First, from the notational point of view, they are quite concise. Second, from the theoret-
ical point of view, they evidence a direct link with moment matrices. As a consequence, 
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the moment matrices of a random Gaussian vector – which have been of some inter-
est in the literature – are easily found by setting the cumulant matrix to zero (e.g. see 
Corollary 3). In addition, they make possible to upper-bound the rank of the cumulant 
matrices as described in Corollary 2. These properties have considerable importance in 
applications such as independent component analysis (ICA) Comon [4], which strongly 
rely on the use of the cumulant matrices of order four – the Quadricovariance Albera 
et al. [6] – or six – the Hexacovariance Albera et al. [8]. In this case, the upper-bound 
on the rank of the cumulant matrices indicates the maximum number of independent 
sources that can be separated. In addition, the majority of results introduced in reference 
Loperfido [26], Loperfido [27] for the third and fourth moment and cumulant matrices 
can be easily generalized to the fifth and sixth moment and cumulant matrices.

Appendix A. Proof of Theorem 1 (page 401)

The formulae are obtained under the assumption of a zero-mean process but are 
generally true after centering a non-zero-mean process.

A.1. Proof for order 3

The only partition of 3 which does not involve 1 is (3): P(3)([[1, 3] ]) = {{{1; 2; 3}}}. 
Thus

c3(x) = Γ(3)(x) =
∑

(j1,j2,j3)∈[[1,p]]3
mom(3)(xj1 , xj2 , xj3)ej1e′j2 ⊗ ej3 = m3(x). (A.1)

A.2. Proof for order 4

The only partitions of 4 (see Eq. (48)) which do not involve 1 are (4) and (2, 2):

P(4)([[1, 4]]) = {{{1; 2; 3; 4}}}
P(2,2)([[1, 4]]) = {{{1; 2}; {3; 4}}; {{1; 3}; {2; 4}}; {{1; 4}; {2; 3}}} .

In order to avoid any ambiguity, each term of Γ(2,2)(x) will be denoted by Tπ where π is 
the corresponding partition in (47). Therefore,

c4(x) = m4(x) − Γ(2,2)(x) (A.2)

= m4(x) −m2(x) ⊗m2(x)︸ ︷︷ ︸
T{{1;2};{3;4}}

−
∑

(j1,...,j4)∈[[1,p]]4
mom(2)(xj1 , xj3)mom(2)(xj2 , xj4)ej1e′j2 ⊗ ej3e′j4

︸ ︷︷ ︸
T
{{1;3};{2;4}}
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−
∑

(j1,...,j4)∈[[1,p]]4
mom(2)(xj1 , xj4)mom(2)(xj2 , xj3)ej1e′j2 ⊗ ej3e′j4

︸ ︷︷ ︸
T{{1;4};{2;3}}

. (A.3)

For

ej1e′j2 ⊗ ej3e′j4 = ej1 ⊗ e′j2 ⊗ ej3 ⊗ e′j4 = ej1 ⊗ ej3 ⊗ e′j2 ⊗ e′j4
= (ej1 ⊗ ej3) ⊗ (ej2 ⊗ ej4)′ (A.4)

= Kpp(ej3 ⊗ ej1)(ej2 ⊗ ej4)′ = Kpp(ej3e′j2 ⊗ ej1e′j4), (A.5)

it comes

T{{1;3};{2;4}} =

⎛
⎝ ∑

(j1,j3)∈[[1,p]]2
mom(2)(xj1 , xj3)ej1 ⊗ ej3

⎞
⎠

×

⎛
⎝ ∑

(j2,j4)∈[[1,p]]2
mom(2)(xj2 , xj4)ej2 ⊗ ej4

⎞
⎠

′

= vecm2(x)vec′ m2(x), (A.6)

T{{1;4};{2;3}} = Kpp

⎛
⎝ ∑

(j2,j3)∈[[1,p]]2
mom(2)(xj2 , xj3)ej3e′j2

⎞
⎠

⊗

⎛
⎝ ∑

(j1,j4)∈[[1,p]]2
mom(2)(xj1 , xj4)ej1e′j4

⎞
⎠

= Kppm2(x) ⊗m2(x). (A.7)

Upon collecting m2(x) ⊗m2(x), one finally arrives at

c4(x) = m4(x) − Km2(x) ⊗m2(x) − vecm2(x)vec′ m2(x). (A.8)

A.3. Proof for order 5

The only partitions of 5 which do not involve 1 are (5) and (3, 2):

P(5)([[1, 5]]) = {{{1; 2; 3; 4; 5}}}
P(3,2)([[1, 5]]) = {{{1; 2; 3}; {4; 5}}; {{1; 2; 4}; {3; 5}}; {{1; 3; 4}; {2; 5}}; {{2; 3; 4}; {1; 5}};

{{1; 2; 5}; {3; 4}}; {{1; 3; 5}; {2; 4}}; {{2; 3; 5}; {1; 4}}; {{1; 4; 5}; {2; 3}};
{{2; 4; 5}; {1; 3}}; {{3; 4; 5}; {1; 2}}} .
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One may check that P(3,2)([[1, 5] ]) contains 5!
3!2! = 10 elements. As before, each term 

of Γ(3,2)(x) will be denoted as Tπ where π is the corresponding partition in Eq. (47). 
Thus

c5(x) = m5(x) − Γ(3,2)(x), (A.9)

where Γ(3,2)(x) =
∑

π∈P(3,2)([[1,5]]) Tπ. Next, the Tπ’s are computed by factoring 
terms of order 3 in first positions. The principle is illustrated for instance on 
T{{2;3;5};{1;4}}:

T{{2;3;5};{1;4}}

=
∑

(j1,...,j5)∈[[1,p]]5
mom(3)(xj2 , xj3 , xj5)mom(2)(xj1 , xj4)ej1 ⊗ e′j2 ⊗ ej3 ⊗ e′j4 ⊗ ej5

=
∑

(j1,...,j5)∈[[1,p]]5
mom(3)(xj2 , xj3 , xj5)mom(2)(xj1 , xj4)(ej1 ⊗ ej3 ⊗ ej5) ⊗ (e′j2 ⊗ e′j4)

=
∑

(j1,...,j5)∈[[1,p]]5
mom(3)(xj2 , xj3 , xj5)mom(2)(xj1 , xj4)P2,1P3,2(ej3 ⊗ ej5 ⊗ ej1)

⊗ (e′j2 ⊗ e′j4)

= P2,1P3,2
∑

(j1,...,j5)∈[[1,p]]5
mom(3)(xj2 , xj3 , xj5)︸ ︷︷ ︸
=mom(3)(xj3 ,xj2 ,xj5 )

mom(2)(xj1 , xj4)(ej3 ⊗ e′j2 ⊗ ej5)

⊗ (ej1 ⊗ e′j4)

= P2,1P3,2m3(x) ⊗m2(x). (A.10)

Following similar lines,

T{{1;2;3};{4;5}} = m3(x) ⊗m2(x) (A.11)

T{{1;2;4};{3;5}} = m3(x)′ ⊗ vecm2(x) (A.12)

T{{1;3;4};{2;5}} = m3(x) ⊗m2(x)Kpp (A.13)

T{{2;3;4};{1;5}} = P2,1m3(x)′ ⊗ vecm2(x) (A.14)

T{{1;2;5};{3;4}} = P3,2m3(x) ⊗m2(x) (A.15)

T{{1;3;5};{2;4}} = vecm3(x)vec′ m2(x) (A.16)

T{{1;4;5};{2;3}} = P3,2m3(x) ⊗m2(x)Kpp (A.17)

T{{2;4;5};{1;3}} = P3,2P2,1m3(x)′ ⊗ vecm2(x) (A.18)

T{{3;4;5};{1;2}} = P2,1P3,2m3(x) ⊗m2(x).Kpp. (A.19)

The last step is to collect terms in m3(x) ⊗ m2(x), m3(x)′ ⊗ vecm2(x), and 
vecm3(x) vec′ m2(x), respectively:
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Γ(3,2)(x) =
(
Ip3 + P3,2 + P2,1P3,2

)
︸ ︷︷ ︸

R

m3(x) ⊗m2(x)

+
(
Ip3 + P3,2 + P2,1P3,2

)
︸ ︷︷ ︸

R

m3(x) ⊗m2(x)Kpp

+
(
Ip3 + P2,1 + P3,2P2,1

)
︸ ︷︷ ︸

P

m3(x)′ ⊗ vecm2(x) + vecm3(x)vec′ m2(x)

= Rm3(x) ⊗m2(x)
(
Ip2 + Kpp

)
︸ ︷︷ ︸

K

+Pm3(x)′ ⊗ vecm2(x)

+ vecm3(x)vec′ m2(x)

= Rm3(x) ⊗m2(x)K + Pm3(x)′ ⊗ vecm2(x)

+ vecm3(x)vec′ m2(x). (A.20)

A.4. Proof for order 6

The 4 partitions of 6 which do not involve 1 are: (6), (4, 2), (3, 3) and (2, 2, 2). Therefore 
c6(x) is a sum of four terms,

c6(x) = m6(x) − Γ(4,2)(x) − Γ(3,3)(x) + 2Γ(2,2,2)(x), (A.21)

the last three of which are detailed hereafter.

Expression of Γ(4,2)(x):

It is seen that P(4,2)([[1, 6] ]) contains 6!
4!2! = 15 elements:

P(4,2)([[1, 6]]) = {{{1; 2; 3; 4}; {5; 6}}; {{1; 2; 3; 5}; {4; 6}}; {{1; 2; 4; 5}; {3; 6}};

{{1; 3; 4; 5}; {2; 6}}; {{2; 3; 4; 5}; {1; 6}}; {{1; 2; 3; 6}; {4; 5}};

{{1; 2; 4; 6}; {3; 5}}; {{1; 3; 4; 6}; {2; 5}}; {{2; 3; 4; 6}; {1; 5}};

{{1; 2; 5; 6}; {3; 4}}; {{1; 3; 5; 6}; {2; 4}}; {{2; 3; 5; 6}; {1; 4}};

{{1; 4; 5; 6}; {2; 3}}; {{2; 4; 5; 6}; {1; 3}}; {{3; 4; 5; 6}; {1; 2}}}

(A.22)

Γ(4,2)(x) =
∑

π∈P(4,2)([[1,6]])

Tπ. (A.23)

In the above equation, each Tπ is computed so that factors of order 4 come first (e.g. 
there will be no such term as m2(x) ⊗m4(x)). For instance,
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T{{1;3;5;6};{2;4}}

=
∑

(j1,...,j6)∈[[1,p]]6
mom(4)(xj1 , xj3 , xj5 , xj6)mom(2)(xj2 , xj4)ej1e′j2 ⊗ ej3e′j4 ⊗ ej5e′j6

=
∑

(j1,...,j6)∈[[1,p]]6
mom(4)(xj1 , xj3 , xj5 , xj6)

× mom(2)(xj2 , xj4)(ej1 ⊗ ej3 ⊗ ej5)(e′j2 ⊗ e′j4 ⊗ e′j6)

=
∑

(j1,...,j6)∈[[1,p]]6
mom(4)(xj1 , xj3 , xj5 , xj6)

× mom(2)(xj2 , xj4)(ej1 ⊗ ej3 ⊗ ej5)(e′j6 ⊗ e′j2 ⊗ e′j4)P2,1P3,2

=
∑

(j1,...,j6)∈[[1,p]]6
mom(4)(xj1 , xj3 , xj5 , xj6)

× mom(2)(xj2 , xj4)(ej1e′j6 ⊗ ej3 ⊗ ej5) ⊗ (e′j2 ⊗ e′j4)P2,1P3,2

= M4(x) ⊗ vec′ m2(x)P2,1P3,2. (A.24)

Following similar lines,

T{{1;2;3;4};{5;6}} = m4(x) ⊗m2(x) (A.25)

T{{1;2;3;5};{4;6}} = M4(x) ⊗ vec′ m2(x) (A.26)

T{{1;2;4;5};{3;6}} = P3,2m4(x) ⊗m2(x) (A.27)

T{{1;3;4;5};{2;6}} = M4(x) ⊗ vec′ m2(x)P2,1 (A.28)

T{{2;3;4;5};{1;6}} = P2,1P3,2m4(x) ⊗m2(x) (A.29)

T{{1;2;3;6};{4;5}} = m4(x) ⊗m2(x)P3,2 (A.30)

T{{1;2;4;6};{3;5}} = M4(x)′ ⊗ vecm2(x) (A.31)

T{{1;3;4;6};{2;5}} = m4(x) ⊗m2(x)P3,2P2,1 (A.32)

T{{2;3;4;6};{1;5}} = P2,1M4(x)′ ⊗ vecm2(x) (A.33)

T{{1;2;5;6};{3;4}} = P3,2m4(x) ⊗m2(x)P3,2 (A.34)

T{{2;3;5;6};{1;4}} = P2,1P3,2m4(x) ⊗m2(x)P3,2 (A.35)

T{{1;4;5;6};{2;3}} = P3,2m4(x) ⊗m2(x)P3,2P2,1 (A.36)

T{{2;4;5;6};{1;3}} = P3,2P2,1M4(x)′ ⊗ vecm2(x) (A.37)

T{{3;4;5;6};{1;2}} = P2,1P3,2m4(x) ⊗m2(x)P3,2.P2,1. (A.38)

The last step is to collect terms in m4(x) ⊗m2(x), M4(x) ⊗vec′ m2(x), and M4(x)′⊗
vecm2(x) respectively:
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Γ(4,2)(x) = (Ip3 + P3,2 + P2,1P3,2)︸ ︷︷ ︸
R

m4(x) ⊗m2(x)

+ (Ip3 + P3,2 + P2,1P3,2)︸ ︷︷ ︸
R

m4(x) ⊗m2(x)P3,2P2,1

+ (Ip3 + P3,2 + P2,1P3,2)︸ ︷︷ ︸
R

m4(x) ⊗m2(x)P3,2

+ M4(x) ⊗ vec′ m2(x) (Ip3 + P2,1 + P2,1P3,2)︸ ︷︷ ︸
P′

+ (Ip3 + P2,1 + P3,2P2,1)︸ ︷︷ ︸
P

M4(x)′ ⊗ vecm2(x)

= R
(
m4(x) ⊗m2(x)

)
R′ +

(
M4(x) ⊗ vec′ m2(x)

)
P′

+ P
(
M4(x)′ ⊗ vecm2(x)

)
. (A.39)

Expression of Γ(3,3)(x):

It is seen that P(3,3)([[1, 6] ]) contains 6!
3!3!2! = 10 elements:

P(3,3)([[1, 6]]) = {{{1; 2; 3}; {4; 5; 6}}; {{1; 2; 4}; {3; 5; 6}}; {{1; 3; 4}; {2; 5; 6}};
{{2; 3; 4}; {1; 5; 6}}; {{1; 2; 5}; {3; 4; 6}}; {{1; 3; 5}; {2; 4; 6}};
{{2; 3; 5}; {1; 4; 6}}; {{1; 4; 5}; {2; 3; 6}}; {{2; 4; 5}; {1; 3; 6}};
{{3; 4; 5}; {1; 2; 6}}} (A.40)

Γ(3,3)(x) =
∑

π∈P(3,3)([[1,6]])

Tπ. (A.41)

In the above equation, each Tπ is computed so that factor m3(x) comes first (e.g. there 
will be no such term as m3(x)′ ⊗m3(x)):

T{{1;2;3};{4;5;6}} = m3(x) ⊗m3(x)′ (A.42)

T{{1;2;4};{3;5;6}} = P2,1P3,2m3(x) ⊗m3(x)′P2,1P3,2 (A.43)

T{{1;3;4};{2;5;6}} = m3(x) ⊗m3(x)′P2,1 (A.44)

T{{2;3;4};{1;5;6}} = P3,2m3(x) ⊗m3(x)′P2,1P3,2 (A.45)

T{{1;2;5};{3;4;6}} = P3,2m3(x) ⊗m3(x)′ (A.46)

T{{1;3;5};{2;4;6}} = vecm3(x) ⊗ vec′ m3(x) (A.47)

T{{2;3;5};{1;4;6}} = P2,1P3,2m3(x) ⊗m3(x)′ (A.48)

T{{1;4;5};{2;3;6}} = P3,2m3(x) ⊗m3(x)′P2,1 (A.49)
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T{{2;4;5};{1;3;6}} = m3(x) ⊗m3(x)′P2,1P3,2 (A.50)

T{{3;4;5};{1;2;6}} = P2,1P3,2m3(x) ⊗m3(x)′P2,1. (A.51)

Therefore,

Γ(3,3)(x) = (Ip3 + P3,2 + P2,1P3,2)︸ ︷︷ ︸
R

m3(x) ⊗m3(x)′

+ (Ip3 + P3,2 + P2,1P3,2)︸ ︷︷ ︸
R

m3(x) ⊗m3(x)′P2,1

+ (Ip3 + P3,2 + P2,1P3,2)︸ ︷︷ ︸
R

m3(x) ⊗m3(x)′P2,1P3,2 + vecm3(x) ⊗ vec′ m3

= R
(
m3(x) ⊗m3(x)′

)
P′ + vecm3(x) ⊗ vec′ m3. (A.52)

Expression of Γ(2,2,2)(x):

It is seen that P(2,2,2)([[1, 6] ]) contains 6!
2!2!2!3! = 15 elements:

P(2,2,2)([[1, 6]]) = {{{1; 2}; {3; 4}; {5; 6}}; {{1; 3}; {2; 4}; {5; 6}}; {{2; 3}; {1; 4}; {5; 6}};
{{1; 2}; {3; 5}; {4; 6}}; {{1; 3}; {2; 5}; {4; 6}}; {{2; 3}; {1; 5}; {4; 6}};
{{1; 2}; {4; 5}; {3; 6}}; {{1; 4}; {2; 5}; {3; 6}}; {{2; 4}; {1; 5}; {3; 6}};
{{1; 3}; {4; 5}; {2; 6}}; {{1; 4}; {3; 5}; {2; 6}}; {{3; 4}; {1; 5}; {2; 6}};
{{2; 3}; {4; 5}; {1; 6}}; {{2; 4}; {3; 5}; {1; 6}}; {{3; 4}; {2; 5}; {1; 6}}}

(A.53)

Γ(2,2,2)(x) =
∑

π∈P(2,2,2)([[1,6]])

Tπ. (A.54)

In the above equation, each Tπ is computed by imposing the ordering m2(x) <

vecm2(x) < vec′ m2(x), which amounts to placing first blocks with polarities 
{even}{odd}, then {odd}{odd}, and finally {even}{even}:

T{{1;2};{3;4};{5;6}} = m2(x) ⊗m2(x) ⊗m2(x) (A.55)

T{{1;3};{2;4};{5;6}} = P3,2P2,1m2(x) ⊗ vecm2(x) ⊗ vec′ m2(x)P2,1P3,2 (A.56)

T{{2;3};{1;4};{5;6}} = P2,1m2(x) ⊗m2(x) ⊗m2(x) (A.57)

T{{1;2};{3;5};{4;6}} = m2(x) ⊗ vecm2(x) ⊗ vec′ m2(x) (A.58)

T{{1;3};{2;5};{4;6}} = P3,2P2,1m2(x) ⊗ vecm2(x) ⊗ vec′ m2(x) (A.59)

T{{2;3};{1;5};{4;6}} = P2,1m2(x) ⊗ vecm2(x) ⊗ vec′ m2(x) (A.60)
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T{{1;2};{4;5};{3;6}} = P3,2m2(x) ⊗m2(x) ⊗m2(x) (A.61)

T{{1;4};{2;5};{3;6}} = P3,2P2,1m2(x) ⊗m2(x) ⊗m2(x) (A.62)

T{{2;4};{1;5};{3;6}} = P2,1m2(x) ⊗ vecm2(x) ⊗ vec′ m2(x)P2,1P3,2 (A.63)

T{{1;3};{4;5};{2;6}} = P3,2P2,1m2(x) ⊗ vecm2(x) ⊗ vec′ m2(x)P2,1 (A.64)

T{{1;4};{3;5};{2;6}} = m2(x) ⊗ vecm2(x) ⊗ vec′ m2(x)P2,1 (A.65)

T{{3;4};{1;5};{2;6}} = P2,1m2(x) ⊗ vecm2(x) ⊗ vec′ m2(x)P2,1 (A.66)

T{{2;3};{4;5};{1;6}} = P2,1P3,2m2(x) ⊗m2(x) ⊗m2(x) (A.67)

T{{2;4};{3;5};{1;6}} = m2(x) ⊗ vecm2(x) ⊗ vec′ m2(x)P2,1P3,2 (A.68)

T{{3;4};{2;5};{1;6}} = P2,1P3,2P2,1m2(x) ⊗m2(x) ⊗m2(x). (A.69)

Therefore,

Γ(2,2,2)(x) = (Ip3 + P2,1 + P3,2 + P3,2P2,1 + P2,1P3,2 + P2,1P3,2P2,1)︸ ︷︷ ︸
Q

×m2(x) ⊗m2(x) ⊗m2(x)

+ (Ip3 + P2,1 + P3,2P2,1)︸ ︷︷ ︸
P

m2(x) ⊗ vecm2(x) ⊗ vec′ m2(x)

+ (Ip3 + P2,1 + P3,2P2,1)︸ ︷︷ ︸
P

m2(x) ⊗ vecm2(x) ⊗ vec′ m2(x)P2,1

+ (Ip3 + P2,1 + P3,2P2,1)︸ ︷︷ ︸
P

m2(x) ⊗ vecm2(x) ⊗ vec′ m2(x)P2,1P3,2

= Q
(
m2(x) ⊗m2(x) ⊗m2(x)

)
+ P

(
m2(x) ⊗ vecm2(x) ⊗ vec′ m2(x)

)
P′.

(A.70)

This completes the proof of Theorem 1.
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