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Abstract

Small and inexpensive computing devices are becoming potential players in the Internet arena. Smart constrained devices are used for
collecting or generating information which is later relayed to the designated servers. The information gathered must be adequately protected
against all kinds of attacks during storage and transmission. However, most smart constrained devices have limited resources and unable to
run most of the classical protocols that provide robust security.

This article presents a lightweight mutual authentication protocol for resource constrained heterogeneous computing devices with high
mobility. Our solution is novel as it facilitates two resource constrained devices to autonomously perform mutual authentication and
establish a session key without sharing common parameters beforehand. Our proposed lightweight protocol is symmetric and uses simple
primitives such as XoR, comparison and keyed-Hashed Message Authentication Code (HMAC) during mutual authentication. Moreover,
our protocol requires minimum storage for storing few keys and parameters locally. The protocol is formally verified using AVISPA tool.
Keywords: Security, Low energy footprint, lightweight security, Validation, Mutual Authentication, Heterogeneous Constrained Computing Devices, Symmetric Protocol

1 Introduction

S mart constrained computing devices are slowly becoming major
players in the Internet arena dominated by the era of ubiquitous
computing. There is a steady emergence of platforms [5], [18]

that allow smart constrained computing devices to independently
interconnect and interact with other parties over the Internet in ways
that were not initially envisaged.

Before harnessing the full potential brought by these technologies
into our daily lives we must first address core security and privacy is-
sues pertaining to the information stored and exchanged. Technology
growth forces smart constrained devices to release the information
gathered on real-time basis. However, this poses new challenges [26],
[7], [31] because constrained devices do not have enough capabilities
to provide access rights to various external entities [3] without the
help of a powerful central server.

Using the current centralized server models, services provided
by smart devices in remote geographical locations may be regularly
interrupted due to the lack of reliable connectivity between smart
computing devices and centralized server. Likewise, it is challenging
to grant access control when the interaction between smart con-
strained devices and external parties cannot be known in advance,
nonetheless, appropriate access rights must be assigned to each re-
questing party in order to allow smooth authentication and reliable
access to the information. In such cases, a reliable solution necessi-
tates authentication to proceed without a persistent connection to
the central server.

In this paper we address the issue of securing data stored or
exchanged by smart computing devices in the absence of the central-
ized server. We propose a serverless mutual authentication protocol
for mobile resource-constrained devices. Our protocol is symmetric,
lightweight and uses simple primitives like keyed-Hash Message
Authentication Code (HMAC), XoR and comparison operations to
validate authenticity of all parties accessing data in smart devices.

The rest of this paper is organized as follows, section 2 presents
a scenario pertaining to the protocol discussed in this article while
section 3 presents related work. Section 4 discusses our proposed
protocol and section 5 validates our protocol using AVISPA tool.
Protocol’s analysis is done in section 6 and section 7 concludes.

2 Serverless Protocol Scenario and Features

Imagine a scenario where tracking devices are attached to containers
in transit from one geographic location to another. Tracking devices

collect and log crucial information in the course of the trip but also
serve as identifiers for respective containers they are attached to.
On transiting custom checkpoints, controllers possessing mobile per-
sonal digital assistants (PDAs) must authenticate to tracking devices
before identifying and accessing stored information, for instance
container number, type of merchandise, destination e.t.c. But, PDAs
must obtain prior authorization to access information in tracking
devices from a remote central server, which is only accessible via the
network.

One way to accomplish this task requires PDAs to establish per-
sistent connections to the central server during the authentication
process. However, in case of network unavailability, the protocol
breaks down and PDAs cannot communicate with tracking devices.
The journey must be delayed until connection is established. This
leads to unnecessary inconveniences.

Alternatively, PDAs may connect once or twice to the central
server, whenever the network is available during the day, download
appropriate authentication data and store them locally. In that case,
PDAs can autonomously authenticate tracking devices without the
need of a persistent connection to the central server. This guaran-
tees reliable authentication between legitimate PDAs and tracking
devices, even when the central server is unavailable or incapacitated.

Our proposed scenario’s network architecture contains three
types of communicating parties - Central Server (CS), Lightweight Re-
sponder (LR) and Lightweight Initiator (LI).
1. Central Server (CS): A powerful server with unlimited resources
that controls access between LI and LRs and administers LRs.
2. Lightweight Initiator (LI): A terminal accessing information
stored in LRs. LI has enough resources in terms of computing
power and storage space.
3. Lightweight Responder (LR): A resource constrained terminal
with limited resources in terms of storage capacity, computation
power and energy. LR constantly collects and stores sensitive data.
Each LR has a secret key KC provided by CS and a static timestamp
TC initialized by CS during device setup. LRs can be RFID Tags,
NFC Tags or other constrained data capturing devices. LR is the
most important player in the scenario that our proposed protocol
aims at protecting.

In our scenario, LRs are geographically distributed in form of
clusters. A cluster is a collection of LRs within a small geographic
region sharing the same secret key KC that is used to verify authen-
ticity of external entities interacting with LRs within a cluster. LI
is an external device accessing information stored in LRs within a
given cluster. Prior to accessing LRs in a cluster, LI must securely
connect to CS and request authorization to access LRs within a given
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cluster. LI’s request contains its geographic position, authenticating
parameters and the identifier IDL. As CS knows all legitimate
LRs and LR clusters, their secret keys and respective geographic
positions, it replies to LI by providing necessary parameters for
accessing requested cluster of LRs. Some of these parameters are
LI’s key KL, access rights AR, Time Window WS and list of temporary
identities Lj for LRs within a cluster.

Our proposed scenario has the following basic features:
1. Constrained resources: LRs cannot memorize credentials and
access control rights [10], [36] for each LI due to limited resources.
2. No prior knowledge of each other: LI and LR have no knowledge
of each other’s existence prior to mutual authentication phase.
3. Absence of Server during authentication session: CS may not
be available during mutual authentication phase due to unreliable
connectivity.
4. Scalability: Within a cluster, LIs and LRs can freely interact.
5. Trust relationship: LR and LI do not have mutual trust. The trust
relationship is built during authentication with the help of CS, even
if it is not actively involved in the authentication process.

3 Related Work

Various security protocols for constrained devices have been put
forward, most of which advocate the availability of a persistent con-
nection to the central server during authentication [1], [24]. However,
connection-oriented model faces major limitations [32], especially in
the era of ubiquitous computing, where devices can be located any-
where without a guarantee of reliable connectivity [20]. Intermittent
connectivity may render protocols unavailable during long periods
of time. This is one of the major reasons behind the efforts to seek
alternative and reliable solutions. This section analyzes some of the
proposed serverless protocols for constrained devices.

In 2008, Tan et al. [32] first introduced Serverless search and authen-
tication RFID protocol. Tan et al. suggested that protocol’s reliability
can be guaranteed by eliminating a persistent link between an RFID
reader and the backend during authentication process. Their pro-
posal included downloading necessary information that can allow
a reader to autonomously authenticate tags. However, Tan et al.’s
protocol was found to be vulnerable to traceability, impersonation
and privacy attacks by the authors of [30]. In 2009 Lin et al. [21]
proposed a serverless RFID authentication protocol which improved
the computational performance of Tan et al. protocol. However,
as pointed out by authors of [19], Lin et al.’s, like with Tan et al.’s,
proposed protocol performed a one sided authentication, where the
reader authenticates the tag but the tag does not authenticate the
reader. Moreover, authors of [19] reveal that Lin et al.’s protocol is
also vulnerable to impersonation attack.

Hoque et al. [15] proposed a serverless, untraceable authenti-
cation, and forward secure protocol for RFID tags. Hoque et al.
claim that their protocol safeguards both reader and tags against
common attacks without the need of backend server’s intervention.
But, Deng et al. [11] found that Hoque et al.’s authentication protocol
was susceptible to data desynchronization attack and proposed an
improvement. Deng et al.’s proposed authentication protocol was
designed to withstand data desynchronization attacks, but the au-
thors of [29] found that Deng et al.’s protocol is still vulnerable to
data desynchronization attack after two protocol runs.

The authors of [2] proposed ERAP, the ECC based RFID Authenti-
cation Protocol, which performs mutual authentication between the
reader and the authorized RFID tags without the need of persistent
connection to the backend server. This scheme was found vulnerable
to denial of service attack by authors of [23]. The authors of [33]
propose (HOA) HLR Offline Authentication, the authentication scheme
suitable for low-power mobile devices based on ECC. However this
protocol requires prior knowledge of each communicating entity and
too much CPU and memory resources as tags must perform ECC
point multiplication and modular operations.

The idea to use timestamp during authentication of constrained
devices was first introduced by Tsudik [34]. Tsudik’s idea was quite
novel but curious due to the fact that most of the constrained devices

do not have embedded clocks to keep track of the time. Tsudik sug-
gested that RFID reader should periodically broadcast timestamp of
its current time. A tag, within the proximity of reader, receives and
compares the broadcast timestamp with a stored timestamp value.
If the former is strictly greater than the latter, the tag computes a
response derived from its permanent key and the new timestamp.
Otherwise, the tag replies with a pseudorandom to confuse the ad-
versary and thwart narrowing attacks. According to Tsudik [34], a
narrowing attack occurs when the adversary queries a tag with a
particular timestamp and then later tries to identify the same tag
by querying a candidate tag with a timestamp slightly above the
previous one.

However, Tsudik’s idea is vulnerable to Denial of Service (DoS)
attacks. An adversary can easily desynchronize the tag by sending
the timestamp value that is ahead of time. This idea was later im-
proved by authors of [8] by moving the attack from the resource
constrained tag to the powerful backend server. The improvement
aimed at thwarting DoS attacks against the tags but it also resulted
to an exhaustive search to the backend server.

4 Serverless Mutual Authentication Protocol

Our protocol leverages on the power of CS’s knowledge on LR clus-
ters with their respective credentials to facilitate authentication, even
though CS does not actively participate during mutual authentication
phase. To further facilitate authentication between two constrained
devices, our protocol uses timestamp as one of the parameters during
authentication between LI and LR.

4.1 Security and Privacy Requirements

Our proposed authentication protocol must fulfill the following
requirements.
1. Mutual Authentication: Our protocol must perform mutual au-
thentication between LR and LI prior to data exchange session in
order to thwart impersonation attacks.
2. Key Exchange: Our protocol must securely establish a common
key between LR and LI to be used during data exchange session.
3. Freshness: Messages exchanged during mutual authentication
session must be fresh. Our protocol uses timestamp and random
values to enforce freshness.

4.2 Privacy and Security threat models

Several attacks may be launched against our protocol. We propose
privacy and security games to model possible threats and demon-
strate how relisient our protocol can be against attacks.
Game 1: β masquerades as LI

• Phase 1.1: β eavesdrops several exchanges between one or
more LR and various LIs.

• Phase 1.2: β sends message b1 and then message b3 to LR.
β wins the game if he can reply LR with a valid message b3.

Game 2: β tracks LRi
• Phase 2.1: β colludes with a legitimate device LI and listens to

exchanges between LI and responder LR1 and then between
LI and LR2.

• Phase 2.2: Challenger selects LRi, i ∈ {1, 2}, β listens to ex-
changes between LI and LRi, and β sends a guess i value to
the challenger.
β wins the game if i is correct. The protocol is considered
private if β cannot win the game with probability greater than
0.5.

Game 3: β depletes LR’s resources
• Phase 3.1: β eavesdrops messages b1 between LIs and LRs.
• Phase 3.2: β sends forged b1 messages to a targeted LR within

a cluster.
β wins the game if he can successfully deplete LR’s battery
within 12 hours (This corresponds to an overnight attack).
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4.3 Assumptions

1. All LRs running our protocol are capable of performing simple
primitives such as Keyed-Hash Message Authentication Code (HMAC),
comparison and XOR. In this article, HMAC is based on SHA1 (Se-
cure Hash Algorithm 1) [13] and its output is truncated to the 128 bits
(energy saving). However, our protocol can work with any HMAC.
2. Pseudo Random Number Generator (PRNG) and HMAC are robust.
3. CS and LI share secret parameters used to launch a secure channel,
e.g. via secure protocol https, for exchanging secret information.
4. CS shares a secret key KC with each LR. KC is common among all
legitimate LRs within a specific cluster.
5. LI’s periodic key KL is used to solicit LRs within a specific cluster
sharing the same key KC, provided Time Window WS is still valid.

4.4 Protocol Notations

Table 1 presents notations used in the protocol. Access Rights (AR) is
a code for access levels and rights that LI has pertaining to the data
stored in LR. In our protocol, AR is represented in form of a code,
like Unix file permissions, with Read, Write and Execute options. HK
is a secret parameter that LI uses to securely pass initial parameters
to LRs. LR’s static timestamp TC is initialized by a default times-
tamp value Tinit during initial configuration by CS. Time Window
WS = [T0||TZ] is a 64 bits parameter made from two timestamps, 32
bits start timestamp T0 and 32 bits end timestamp TZ parameters
used to show KL’s validity.

Table 1: Protocol notations with size estimations

Parameter name Symbol Bits

LI’s system Time TLI 32
LR’s stored timestamp TC 32
Start Time Window T0 32
End Time Window TZ 32
Time Window WS 64
LI’s Identifier IDL 128
LI’s Key KL 128
LR’s identifier Idi 128
LR’s cluster Key KC 128
Derived session key KS 128
Timestamp signature HT 128
Random Value R1 128
Access Rights AR 128
LI’s secret code HK 128
List of LRs temporary identities Lj -

4.5 Protocol Description

The proposed protocol operates in two phases. Phase A involves inter-
action between LI and CS, and Phase B involves interaction between
LI and LR.

Phase A: Interaction between CS and LI

LI requests authorization from CS to access information stored in
LRs. CS also uses this phase to synchronize time with LI. LI securely
connects to CS and sends message a1 for requesting authorization
to access a cluster of LRs in its vicinity. Message a1 contains LR’s
identifier IDL and its geographic location. CS receives LI’s request
and generates a list Lj of temporary identities for each LR within a
cluster (cf. Line (4)), LI’s key KL (cf. Line (5)) and secret code HK
(cf. Line (6)). CS sends back message a2 via the established secure
channel (cf. Line (7)). LI receives and decrypts message a2 from CS
containing KL, HK , AR, WS and Lj.

LI
a1−→ CS : Request (1)

CS : Get Time Window : WS = [T0, TZ ] (2)

: ∀ LI generate IdTempi = HMACIdi (T0) (3)

: Create list Lj = {IdTemp1 , IdTemp2 , ..., IdTempi} (4)

: KL = HMACKC (IDL||AR||WS) (5)

: HK = HMACKC (WS) (6)

LI
a2←− CS : KL, HK , WS, AR, Lj (7)

LI : Get KL, HK , WS, AR, Lj (8)

Listing 1: Authorization phase between CS and LI

Phase B: Mutual Authentication Between LR and LI

Mutual authentication between LI and LR is completed in three
exchanges without assistance from CS.

LI encrypts its identifier IDL using its secret code HK (cf. Line
(10)) and calculates timestamp signature HT (cf. Line (11)). LI broad-
casts message b1 containing eID, timestamp TLI , timestamp signature
HT , together with Access Rights AR, and Time Window WS from CS.
LI precalculates and stores in a table the values of H1i corresponding
to each IdTempi (cf. Line (12)). This step facilitates the search of H1i

values once message b2 is received.
Upon receipt of message b1, LR verifies TZ and TLI against its

stored timestamp TC, where TZ is last 32 bits of timestamp WS
as explained in Section 4.4. LI aborts the current session if the
timestamp parameters are not correct.

B1. Validation of Key KL
Each valid LR can easily calculate HK using WS and KC (cf. Line (16)),
then use it to recover ID′L (cf. Line (17)) which is used to calculate
K′L (cf. Line (18)). Using K′L, LR authenticates timestamp signature
HT (cf. Line (20)). If HT is invalid, the session is terminated, else
LR updates its timestamp TC (cf. Line (21)). A valid HT in Line (20)
proves the validity of key KL used by LI.

After verification of KL, LR generates a temporary identity using
its identifier Id and T0 from WS (cf. Line (24)) and also generates
a signature H1 for TLI (cf. Line (25)). Likewise, LR generates a
random R1 (cf. Line (26)), which is used to calculate a cipher e1 and
a signature H2 (cf. Lines (27) and (28)). Cipher e2 and signatures H1
and H2 are sent to LI via message b2.

B2. Authentication of LR
LI receives message b2 and quickly finds a value that corresponds
to a signature H1 within a table of precaculated H1i values. Once
found, R′1 can be easily recovered as indicated in Line (31) and
its validity tested by comparing calculated H′2 against the received
H2. Validity of Line (33) authenticates LR in LI and prompts LI to
calculate HR = HMACIdTemp (R′1). HR is sent to LR.

B3. Authentication of LI
LR receives and verifies HR, if correct, LR authenticates LI (cf. Line
(40)).

B4. Generation of session key KS
Lines (37) and (41) show generations of key KS on LI and LR respec-
tively after a successful mutual authentication session. The session
key KS is generated from random values exchanged between LR and
LI. With a shared session key KS, LR and LI can securely exchange
data, for instance using Advanced Encryption Standard (AES).

LI : Get current timestamp TLI (9)

: eID = HMACHK (TLI)⊕ IDL (10)

: HT = HMACKL (TLI) (11)

: Calculate H1i = HMACIdTempi
(TLI) ∀ IdTempi (12)

LR
b1←− LI : HT , eID , AR , WS, TLI (13)

LR : i f TZ < TC or TZ < TLI or TLI < TC or T0 < TLI (14)

END SESSION (15)

: H′K = HMACKC (WS) (16)

: ID′L = HMACH′K
(TLI)⊕ eID (17)

: K′L = HMACKC (ID′L||AR||WS) (18)

: H′T = HMACK′L
(TLI) (19)
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: i f (H′T == HT) %% LI′s Key KL is valid (20)

TC = TLI (21)

else (22)

END SESSION (23)

: Calculate IdTemp = HMACId(T0) (24)

: H1 = HMACIdTemp (TLI) (25)

: Generate random R1 (26)

: e1 = R1 ⊕ IdTemp (27)

: H2 = HMACIdTemp (R1||K′L) (28)

LI
b2←− LR : e1, H1, H2 (29)

LI : Search f or H1 in a list o f H1i (30)

: R′1 = e1 ⊕ IdTemp (31)

: H′2 = HMACIdTemp (R′1||KL) (32)

: i f (H′2 6= H2) (33)

END SESSION (34)

: else %% AR is authentic (35)

HR = HMACIdTemp (R′1) (36)

KS = HMACIdTemp (R′1||TLI) (37)

LR
b3←− LI : HR (38)

LR : H′R = HMACIdTemp (R1) (39)

: i f (H′R == HR) %% LI is authentic (40)

KS = HMACIdTemp (R1||TLI) (41)

Listing 2: Mutual authentication phase between LI and LR

5 Protocol Validation

We used Automated Validation of Internet Security Protocols and Appli-
cations (AVISPA) [4] tool to validate our protocol. AVISPA’s current
version integrates four back-ends, On-the-fly Model-Checker (OFMC),
Constraint-Logic-based Attack Searcher (CL-AtSe), SAT-based Model-
Checker (SATMC), and Tree Automata based on Automatic Approxima-
tions for the Analysis of Security Protocols (TA4SP). The attacker model
is Dolev-Yao attacker [12] i.e an attacker has full capabilities over
the newtork and can listen or intercept communication, inject new
messages or modify messages in transit. The High Level Protocol
Specification Language (HLPSL) [35] code for our protocol used in
AVISPA is presented in Annex 1.

In Listing 3, AVISPA outputs SAFE from three back-ends, OFMC,
CL-AtSe, and SATMC. This implies that AVISPA could not re-
produce any attack on our proposed protocol. AVISPA gives
INCONCLUSIVE result in TA4SP back-end because TA4SP does
not perform verification. Nevertheless, our protocol is still safe.

OFMC : SAFE
CL−AtSe : SAFE
SATMC : SAFE
TA4SP : INCONCLUSIVE

Listing 3: Validation results after running our protocol in AVISPA

6 Analysis of the Proposed Solution

We analyze our proposed protocol in terms of performance, privacy
and security.

6.1 LR’s Performance Analysis

In our scenario, LR is the most resource constrained device but holds
all the sensitive information, hence we analyze its performance in
the following areas:

Computational Cost: Our proposed protocol uses simple primitives
such as comparison, XoR and HMAC. Among the chosen primitives,
HMAC is more resource demanding. Moreover, HMAC demands
more resources than a normal Hash function but guarantees optimal
security by reducing the number of collisions compared to a normal
Hash function [17].
Storage Cost: Storage is a critical issue in LR, hence our protocol re-
quires only few space for storage as each device stores only minimal
initial parameters - KC, Id and TC, amounting to 288 bits (36 bytes)
for LR. During runtime, our protocol requires a maximum total of
736 bits (92 bytes) of storage in LR (corresponds to Line (18) of our
protocol sequence).
Communication Cost: Constrained devices expend a lot of energy
in transmitting and receiving information [22], [25], [28]. A protocol
with fewer and shorter messages guarantees reduced energy con-
sumption. Our protocol exchanges three messages during mutual
authentication stage with a total of 992 bits (124 bytes).

6.2 Security and Privacy Analysis

We analyse our protocol against attack scenarios put forth in Sec-
tion 4.2. This is a complementary analysis to AVISPA’s validation as
it analyses the mechanisms of the exchanged information in details.
Game 1: β masquerades as LI; Referring to Game 1 in Section 4.2, β’s
objective is to send valid messages b1 and b3. That is, β can either
try to crack the key KL along with IDL or generate a valid message
b3 based on previously sniffed messages b2 and b3 during Phase 1.1.

For cracking key KL along with IDL, β is able to spoof LI. One
of the solutions involves extracting values HT and TLI from a known
message b1 and try to crack KL. This assumes that the HMAC
function is not robust to collision attacks, which is contrary to our
assumptions of Section 4.3. Alternativey, β can combine messages
b1, b2 and b3 and try to deduce valuable information. However, all
messages behave like random or pseudo-random strings. Indeed, e1
is randomized thanks to random R1. Values eID, HT , H2 and b3 are
HMAC outputs and, as stated in [14], they behave as pseudo-random
strings and evolve independently from each other as their inputs are
different. As such, whatever the number of sniffed messages b1, b2
and b3 , it is not possible to extract any kind of information, and the
game can not succeed.
Game 2: β tracks LR; Following Game 2 in Section 4.2, LRi responds
for session j with messages e1ij and e2ij which behave as random
or pseudo-random strings. Such that, any response from LR1 is
semantically indistinguishable from responses of LR2, and previous
responses of LR1. Hence, an adversary β is unable to guess with a
probability greater than 0.5 which LRi sent message b2.
Game 3: β depletes LR’s resources; Game 3 in Section 4.2 is a form
of Denial of Service (DoS) attack such that an adversary β constantly
queries LR to utilize its resources and deplete its energy source. Our
protocol tests message b1 using four comparison operations, four HMAC
operations, and one XoR operation to verify validity. Of these opera-
tions, HMAC consumes more energy as explained in section 6.1.

Now, let us quantify the duration of time needed for β to deplete
an alkaine long-life AAA battery with total energy of 5071 Joules [16].
If LR conforms to IEEE 802.15.4 [6] with an antenna frequency of
2.4 GHz band, data rate of 250 Kbps, and power consumption of
1.475W in receive mode [9], then it will take approximately 2 ms
(milliseconds) to receive 480 bits of data sent in message b1 by dissi-
pating 1.475*0.002 = 0.003 Joules. According to [27], HMAC function
consumes 1.16µJ (microjoules) per byte of data. Parameters used in
calculations have a total of 960 bits or 120 bytes for H′K (Equation
(16)), and ID′L (Equation (17)), K′L (Equation (18)), and H′T (Equation
(19)). As such, each request from β costs 1.16*120 = 139.2µJ, which
makes a total of 0.003 Joules for receiving and calculations. With this
consumption rate, it will take 1,706,718 rounds to deplete the battery.
Suppose β sends message b1 to LR every 1 second, it will take around
20 days to deplete the battery, with most of the energy being spent
in receiving message b1. Hence this game cannot succeed.
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7 Conclusion

In this article we presented serverless lightweight mutual authenti-
cation protocol for small mobile resource computing devices. The
protocol has been thoroughly explained, analyzed and its advantages
outlined.

The originality of the protocol is based on the idea that a resource
constrained device can mutually authenticate with another device
without sharing any information. Our lightweight protocol uses
simple primitives such as XoR, comparison and HMAC function,
during mutual authentication and it also requires few storage space
in each communicating party.

Thorough analysis was done to theoretically verify the security
and performance properties of the protocol. The security properties
have also been formally validated using AVISPA tool.
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Annex 1: HLPSL code for Mutual Authentication Protocol

%%ROLE ALICE
role alice ( A, S, B: agent, K: symmetric_key, Succ, H1 : hash_func, M, AR, Na1, Ws : text, SND_SA, RCV_SA,

SND_BA, RCV_BA : channel(dy))
played_by A
def=

local Lj , Na, R1 : text , State : nat, Idr , Ks, Kd, Hk : symmetric_key, H : hash_func
const id : text ,
alice_bob_kd, ks, bob_alice_kd, kd : protocol_id
init State := 0

transition
1. State = 0 /\ RCV_SA(start) =|> State' := 2 /\ SND_SA(A.B.id.M)
2. State = 2 /\ RCV_SA(A.B.AR'.Ws'.Na1'.{Hk'.Lj'.Kd'}_K) =|>

State ' := 4 /\ Na' := new() /\ SND_BA(A.B.{id}_Hk'.AR'.Ws'.Na'.Na1') /\ request(A, B, bob_alice_kd, Kd)
3. State = 4 /\ RCV_BA(A.B.{R1'}_Idr.H1(Kd'.R1').H1(Na)) =|>

State ':= 6/\SND_BA(A.B.H1(R1'))/\ Ks' := H(Na.R1')/\ witness(A, B, bob_alice_kd, H1)/\ secret(Ks, ks, {A, B})
end role
%%ROLE SERVER
role server (A, B, S : agent, K, Kc : symmetric_key, M : text , SND_AS, RCV_AS : channel(dy))
played_by S
def=

local State : nat, Na1, Lj, AR, Ws : text, Hk, Kd : symmetric_key, Hash : hash_func
init State := 1

transition
1. State = 1 /\ RCV_AS(A.{id.M}_K) =|>

State ':= 3 /\ Ws' := new() /\ AR' := new() /\ Kd' := Hash(Kc.id.AR'.Ws') /\ Lj' := new()
/\ Hk' := new()/\ Na1':= new() /\ SND_AS(A.AR'.Ws'.Na1'.{Hk'.Lj'.Kd'}_K)

/\ secret(Kd', bob_alice_kd, {A,S,B})
end role
%%ROLE BOB
role bob( A, B : agent, Succ, H1 : hash_func, AR, Na1, Ws : text, Kc : symmetric_key, SND_AB, RCV_AB :

channel(dy))
played_by B
def=

local State : nat, Idr , Hk, Ks, Kd : symmetric_key, H : hash_func, Na, R1 : text
init State := 5

transition
1. State = 5 /\ RCV_AB(A.B.{id}_Hk.AR'.Ws'.Na'.Na1') =|>

State ' := 7 /\ R1' := new() /\ Kd' := H(Kc.id.AR.Ws) /\ Idr' := H(id.Na1') /\
SND_AB(A.B.{R1'}_Idr.H1(Kd'.R1').H1(Na))

/\ witness(B, A, bob_alice_kd, Kd') /\ request(B, A, alice_bob_kd , H1)
2. State = 7 /\ RCV_AB(A.B.H1(R1')) =|> State' := 9 /\ Ks' := H(Na.R1) /\ secret(Ks', ks, {A,B})

end role
%%ROLE SESSION
role session ( A, S, B : agent, M, AR, Na1, Ws : text, Succ, H : hash_func, K, Kc: symmetric_key)
def=

local SSA, RSA, SBA, RBA, SAS, RAS, SAB, RAB : channel(dy)
composition

alice (A, S, B, K, Succ, H, M, AR, Na1, Ws, SSA, RSA, SBA, RBA) /\server(A, B, S, K, Kc, M, SAS, RAS)
/\bob(A, B, Succ, H, AR, Na1, Ws, Kc, SAB, RAB)

end role
role environment()
def=

const a, s , b: agent, ksi , kc, k, ka, ki : symmetric_key, succ, h: hash_func, id, m, ar, na1, ws : text ,
bob_alice_r1, alice_bob_na: protocol_id

intruder_knowledge = {a, b, s, ki , ws, ar , na1, m, succ, ksi}
composition

session(a, s , b, m, ar, na1, ws, succ, h, k, kc) /\ session(i , s , b, m, ar, na1, ws, succ, h, ki , kc)
end role

goal
%secrecy of shared keys

secrecy_of ks, kd
authentication_on bob_alice_kd
authentication_on alice_bob_na

end goal
environment()
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