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THE STOKES OPERATOR WITH NEUMANN BOUNDARY

CONDITIONS IN LIPSCHITZ DOMAINS

MARIUS MITREA, SYLVIE MONNIAUX AND MATTHEW WRIGHT

Abstract. In the first part of the paper we give a satisfactory definition of the Stokes
operator in Lipschitz domains in Rn when boundary conditions of Neumann type are con-
sidered. We then proceed to establish optimal global Sobolev regularity results for vector
fields in the domains of fractional powers of this Neumann-Stokes operator. Finally, we
study existence, regularity and uniqueness of mild solutions of the Navier-Stokes system
with Neumann boundary conditions.

Contents

1. Introduction 1
2. Preliminaries 6
3. Conormal derivative in Besov-Triebel-Lizorkin spaces 10
4. Sesquilinear forms and their associated operators 15
5. Fractional powers and semigroup theory 18
6. The definition of the Neumann-Stokes operator 21
7. The Stokes scale adapted to Neumann boundary conditions 24
8. The Poisson problem for the Stokes operator with Neumann conditions 28
9. Domains of fractional powers of the Neumann Stokes operator: I 29
10. Domains of fractional powers of the Neumann Stokes operator: II 31
11. Navier-Stokes equations 36
11.1. Existence 37
11.2. Regularity 41
11.3. Uniqueness 42
References 44

1. Introduction

Let Ω be a domain in Rn, n ≥ 2, and fix a finite number T > 0. The Navier-Stokes
equations are the standard system of PDE’s governing the flow of continuum matter in
fluid form, such as liquid or gas, occupying the domain Ω. These equations describe the
change with respect to time t ∈ [0, T ] of the velocity and pressure of the fluid. A widely
used version of the Navier-Stokes initial boundary problem, equipped with a Dirichlet
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boundary condition, reads

(1.1)





∂~u

∂t
−∆x~u+∇xπ + (~u · ∇x)~u = 0 in (0, T ]× Ω,

divx ~u = 0 in [0, T ]× Ω,

Trx ~u = 0 on [0, T ]× ∂Ω,

~u(0) = ~u0 in Ω,

where ~u is the velocity field and π denotes the pressure of the fluid. One of the strategies
for dealing with (1.1), brought to prominence by the pioneering work of H. Fujita, and
T. Kato in the 60’s, consists of recasting (1.1) in the form of an abstract initial value
problem

(1.2)





~u′(t) + (A~u)(t) = ~f(t) t ∈ (0, T ),

~f(t) := −PD

[
(~u(t) · ∇x)~u(t)

]
,

~u(0) = ~u0,

which is then converted into the integral equation

(1.3) ~u(t) = e−tA~u0 −

∫ t

0

e−(t−s)APD

[
(~u(s) · ∇x)~u(s)

]
ds, 0 < t < T,

then finally solving (1.3) via fixed point methods (typically, a Picard iterative scheme).
In this scenario, the operator PD is the Leray (orthogonal) projection of L2(Ω)n onto the
space HD := {~u ∈ L2(Ω)n : div ~u = 0 in Ω, ν ·~u = 0 on ∂Ω}, where ν is the outward unit
normal to Ω, and A is the Stokes operator, i.e. the Friedrichs extension of the symmetric
operator PD ◦ (−∆D), where ∆D is the Dirichlet Laplacian, to an unbounded self-adjoint
operator on the space HD.

By relying on the theory of analytic semigroups generated by self-adjoint operators,
Fujita and Kato have proved in [11] short time existence of strong solutions for (1.1)
when Ω ⊂ R3 is bounded and sufficiently smooth. Somewhat more specifically, they have
shown that if Ω is a bounded domain in R3 with boundary ∂Ω of class C 3, and if the initial
datum ~u0 belongs to D(A

1

4 ), then a strong solution can be found for which ~u(t) ∈ D(A
3

4 )
for t ∈ (0, T ), granted that T is small. Hereafter, D(Aα), α > 0, stands for the domain of
the fractional power Aα of A.

An important aspect of this analysis is the ability to describe the size/smoothness of
vector fields belonging to D(Aα) in terms of more familiar spaces. For example, the
estimates (1.18) and (2.17) in [11] amount to

(1.4) D(Aγ) ⊂ C
α(Ω)3 if 3

4
< γ < 1 and 0 < α < 2(γ − 3

4
),

which plays a key role in [11]. Although Fujita and Kato have proved (1.4) via ad hoc
methods, it was later realized that a more resourceful and elegant approach to such
regularity results is to view them as corollaries of optimal embeddings for D(Aα), α > 0,
into the scale of vector-valued Sobolev (potential) spaces of fractional order, Lp

s(Ω)
3,

1 < p <∞, s ∈ R. This latter issue turned out to be intimately linked to the smoothness
assumptions made on the boundary of the domain Ω. For example, Fujita and Morimoto
have proved in [12] that

(1.5) ∂Ω ∈ C
∞ =⇒ D(Aα) ⊂ L2

2α(Ω)
3, 0 ≤ α ≤ 1,

whereas the presence of a single conical singularity on ∂Ω may result in the failure of
D(A) to be included in L2

2(Ω)
3.
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The issue of extending the Fujita-Kato approach to the class of Lipschitz domains has
been recently resolved in [29]. In the process, several useful global Sobolev regularity
results for the vector fields in the fractional powers of the Stokes operator have been
established. For example, it has been proved in [29] that for any Lipschitz domain Ω in
R3,

D(A
3

4 ) ⊂ Lp
3

p

(Ω)3 ∀ p > 2,(1.6)

∀α > 3
4

∃ p > 3 such that D(Aα) ⊂ Lp
1(Ω)

3,(1.7)

D(Aγ) = L2
2γ,z(Ω)

3 ∩ HD, 0 < γ < 3
4
,(1.8)

where, if s > 0, L2
s,z(Ω) is the subspace of L2

s(Ω) consisting of functions whose extension

by zero outside Ω belongs to L2
s(R

n). Also, it was shown in [29] that for any Lipschitz
domain Ω in R3 there exists ε = ε(Ω) > 0 such that

(1.9) 3
4
< γ < 3

4
+ ε =⇒ D(Aγ) ⊂ C

2γ−3/2(Ω)3,

in agreement with the Fujita-Kato regularity result (1.4). For related work, as well
as further pertinent references, the reader is referred to, e.g., O.A. Ladyzhenskaya [22],
R.Temam [41], M.E.Taylor [39], Y.Giga and T.Miyakawa [13], and W. von Wahl [43].

The aim of this paper is to derive analogous results in the case when Neumann-type
boundary conditions are considered in place of the Dirichlet boundary condition. Dictated
by specific practical considerations (such as phenomena translating into free boundary
problems), several scenarios are possible. For example, the Neumann condition

(∇~u+∇~u⊤)ν − πν = 0 on (0, T )× ∂Ω,(1.10)

(recall that ν stands for the outward unit normal to ∂Ω) has been frequently used in the
literature. From a physical point of view, it is convenient to view (1.10) as T (~u, π)ν = 0
on (0, T )×∂Ω, where T (~u, π) := ∇~u+(∇~u)⊤−π denotes the stress tensor. In other words,
in the case of a free boundary, (1.10) is expressing the absence of stress on the interface
separating the two media. A more detailed account in this regard can be found in, e.g.,
D.D. Joseph’s monograph [17]. See also the articles [38], [14], [15], and the references
therein. Another Neumann-type condition of interest is

∂ν~u− πν = 0 on (0, T )× ∂Ω.(1.11)

This has been employed in [8] (in the stationary case). Here we shall work with a one-
parameter family of Neumann-type boundary conditions,

[(∇~u)⊤ + λ (∇~u)]ν − πν = 0 on (0, T )× ∂Ω,(1.12)

indexed by λ ∈ (−1, 1] (in this context, (1.10), (1.11) correspond to choosing λ = 1 and
λ = 0, respectively). Much as in the case of the Fujita-Kato approach for (1.1), a basic
ingredient in the treatment of the initial Navier-Stokes boundary problem with Neumann
boundary conditions, i.e.,

(1.13)





∂~u

∂t
−∆x~u+∇xπ + (~u · ∇x)~u = 0 in (0, T ]× Ω,

divx ~u = 0 in [0, T ]× Ω,

[(∇x~u)
⊤ + λ (∇x~u)]ν − πν = 0 on [0, T ]× ∂Ω,

~u(0) = ~u0 in Ω,
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is a suitable analogue of the Stokes operator A = PD ◦ (−∆D) discussed earlier. As a
definition for this, we propose taking the unbounded operator

Bλ : D(Bλ) ⊂ HN −→ HN ,(1.14)

where we have set HN := {~u ∈ L2(Ω)n : div ~u = 0 in Ω}, with domain

D(Bλ) :=
{
~u ∈ L2

1(Ω)
n ∩ HN : there exists π ∈ L2(Ω) so that −∆~u+∇π ∈ HN

and such that [(∇~u)⊤ + λ (∇~u)]ν − πν = 0 on ∂Ω
}
,(1.15)

(with a suitable interpretation of the boundary condition) and acting according to

Bλ~u := −∆~u +∇π, ~u ∈ D(Bλ),(1.16)

In order to be able to differentiate this from the much more commonly used Stokes
operator A = PD ◦ (−∆D), we shall call the latter the Dirichlet-Stokes operator and
refer to (1.15)-(1.16) as the Neumann-Stokes operator.

Let us now comment on the suitability of the Neumann-Stokes operator Bλ vis-a-vis
to the solvability of the initial Navier-Stokes system with Neumann boundary conditions
(1.13). To this end, denote by PN the orthogonal projection of L2(Ω)n onto the space
HN = {~u ∈ L2(Ω)n : div ~u = 0 in Ω}. In particular,

PN(∇q) = 0 for every q ∈ L2
1(Ω) with Tr q = 0 on ∂Ω.(1.17)

Proceed formally and assume that ~u, π solve (1.13) and that q solves the inhomogeneous
Dirichlet problem





∆q = ∆π in Ω,

q
∣∣∣
∂Ω
= 0.

(1.18)

Then ∇π −∇q is divergence-free. Based on this and (1.17) we may then compute

PN(∇π) = PN(∇π −∇q) = ∇π −∇q = ∇(π − q).(1.19)

Since π−q has the same boundary trace as π, it follows that [(∇~u)⊤+λ (∇~u)]ν−(π−q)ν =
0 on ∂Ω. Consequently,

Bλ(~u) = −∆ ~u +∇(π − q) = PN(−∆ ~u+∇π).(1.20)

Thus, when PN is formally applied to the first line in (1.13) we arrive at the abstract
evolution problem

(1.21)





~u′(t) + (Bλ~u)(t) = ~f(t) t ∈ (0, T ),

~f(t) := −PN

[
(~u(t) · ∇x)~u(t)

]
,

~u(0) = ~u0,

which is the natural analogue of (1.2) in the current setting. This opens the door for
solving (1.13) by considering the integral equation

(1.22) ~u(t) = e−tBλ~u0 −

∫ t

0

e−(t−s)BλPN

[
(~u(s) · ∇x)~u(s)

]
ds, 0 < t < T.

In fact, in analogy with [40] where a similar issue is raised for the Dirichlet-Stokes
operator, we make the following:
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Conjecture. For a given bounded Lipschitz domain Ω ⊂ R3 there exists ε = ε(Ω) > 0
such that the Neumann-Stokes operator associated generates an analytic semigroup on
{~u ∈ Lp(Ω)3 : div ~u = 0} provided 3/2− ε < p < 3 + ε.

The range of p’s in the above conjecture is naturally dictated by the mapping properties
of the Neumann-Leray projection which happens to extend to a well-defined bounded
operator

(1.23) PN : Lp(Ω)3 −→ {u ∈ Lp(Ω)3 : div u = 0}

precisely for 3/2 − ε < p < 3 + ε where ε = ε(Ω) > 0. Indeed, in a recent paper, [30],
M.Mitrea and S.Monniaux have proved the version of the above conjecture corresponding
to the Stokes system equipped with boundary conditions which, in the case of C 2 domains,
coincides with the standard Navier’s slip boundary conditions

(1.24)

{
ν · ~u = 0 on (0, T )× ∂Ω

[(∇~u+∇~u⊤)ν]tan = 0 on (0, T )× ∂Ω,

if one neglects surface tension effects (responsible for a zero-order term, involving the
curvature of the boundary).

In summary, the interest in the functional analytic properties of the Neumann-Stokes
operator Bλ in (1.15)-(1.16) is justified.

We establish sharp global Sobolev regularity results for vector fields in D(Bα
λ ), the

domain of fractional powers of Bλ. Our main results in this regard parallel those for the
Dirichlet-Stokes operator which have been reviewed in the first part of the introduction.
For the sake of this introduction, we wish to single out several such results. Concretely,
for a Lipschitz domain Ω in Rn we show that

(1.25) D(B
s
2

λ ) =
{
~u ∈ L2

s(Ω)
n : div ~u = 0 in Ω

}
if 0 ≤ s ≤ 1,

and

D(Bα
λ ) ⊂

⋃

p> 2n
n−1

Lp
1(Ω)

n if α > 3
4
.(1.26)

Also, when n = 3,

D(Bα
λ ) ⊂ C

2α−3/2(Ω̄)3 if 3
4
< α < 3

4
+ ε,(1.27)

D(B
3

4

λ ) ⊂ L3
1(Ω)

3,(1.28)

and when n = 2,

D(Bα
λ ) ⊂ C

2α−1(Ω̄)2 if 3
4
< α < 3

4
+ ε,(1.29)

for some small ε = ε(Ω) > 0.
It should be noted that, in the case when ∂Ω ∈ C ∞, the initial boundary value problem

(1.13) has been treated (when λ = 1) by G.Grubb and V. Solonnikov in [14], [15], [38]
(cf. also the references therein for relevant, earlier work). In this scenario, the typical de-
parture point is the regularity result D(B1) ⊂ L2

2(Ω)
n, which nonetheless is irreconcilably

false in the class of Lipschitz domains considered here. Most importantly, the pseudo-
differential methods used in these references are no longer applicable in the non-smooth
setting we treat. We wish to emphasize that overcoming the novel, significant difficul-
ties caused by allowing domains with irregular boundaries represents the main technical
achievement of the current paper.
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Key ingredients in the proof of the regularity results (1.25)-(1.28) are the sharp results
for the well-posedness of the inhomogeneous problem for the Stokes operator equipped
with Neumann boundary conditions in a Lipschitz domain Ω in Rn, with data from Besov
and Triebel-Lizorkin spaces from [32]. This yields a clear picture of the nature of D(Bλ).

On the other hand, known abstract functional analytic results allow us to identifyD(B
1/2
λ ).

Starting from these, other intermediate fractional powers can then be treated by relying
on certain (non-standard) interpolation techniques.

The organization of the paper is as follows. In Section 2 we collect a number of pre-
liminary results of function theoretic nature. Section 3 is devoted to a discussion of
the meaning and properties of the conormal derivative [(∇~u)⊤ + λ (∇~u)]ν − πν on ∂Ω
when Ω ⊂ Rn is a Lipschitz domain and ~u, π belong to certain Besov-Triebel-Lizorkin
spaces. Section 4 is reserved for a review of the definitions and properties of linear op-
erators associated with sesquilinear forms. Next, in Section 5, we collect some basic
abstract results about semigroups and fractional powers of self-adjoint operators. The
rigorous definition of the Neumann-Stokes operator Bλ is given in Section 6. Among

other things, here we show that Bλ is self-adjoint on HN and identify D(B
1/2
λ ). The scale

V p,s(Ω) := {~u ∈ Lp
s(Ω)

n : div ~u = 0} is investigated in Section 7 where we show that,
for certain ranges of indices, this is stable under complex interpolation and duality. In
Section 8 we record an optimal, well-posedness result for the Poisson problem for the
Stokes system with Neumann-type boundary conditions in Lipschitz domains, with data
from Besov-Triebel-Lizorkin spaces, recently established in [32]. The global Sobolev reg-
ularity of vector fields belonging to D(Bα

λ ) for α ∈ [0, 1] is discussed in Section 9 and
Section 10, when the underlying domain is Lipschitz. Finally, in the last section, we
treat the solvability of (1.22), thus complementing results obtained in [29] for the Stokes
operator equipped with Dirichlet boundary conditions.

Acknowledgments. This work has been completed while the authors had been visiting
Université Aix-Marseille 3 and the University of Missouri-Columbia, whose hospitality
they wish to gratefully acknowledge.

2. Preliminaries

We shall call an open, bounded, nonempty set, with connected boundary Ω ⊂ Rn a
Lipschitz domain if for every point x∗ ∈ ∂Ω there is a rotation of the Euclidean coordinates
in Rn, a neighborhood O of x∗ and a Lipschitz function ϕ : Rn−1 → R such that

Ω ∩O = {x = (x′, xn) ∈ Rn : xn > ϕ(x′)} ∩ O.(2.1)

In this scenario, we let dσ stand for the surface measure on ∂Ω, and denote by ν the
outward unit normal to ∂Ω. Next, for k ∈ N and p ∈ (1,∞), we recall the classical
Sobolev space

(2.2) Lp
k(Ω) :=

{
f ∈ Lp(Ω) : ‖f‖W k,p(Ω) :=

∑

|γ|≤k

‖∂γf‖Lp(Ω) <∞
}
,

(throughout the paper, all derivatives are taken in the sense of distributions) and set

Lp
k,z(Ω) := the closure of C ∞

c (Ω) in Lp
k(Ω).(2.3)

Then for every k ∈ N and 1 < p, p′ <∞ with 1/p+ 1/p′ = 1, we have

Lp
−k(Ω) :=

{∑

|γ|≤k

∂γfγ : fγ ∈ Lp(Ω)
}
=

(
Lp′

k,z(Ω)
)∗

.(2.4)
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Moving on, for s ∈ (0, 1), 1 ≤ p ≤ ∞, denote by

(2.5) Bp,p
s (∂Ω) :=

{
f ∈ Lp(∂Ω) :

(∫

∂Ω

∫

∂Ω

|f(x)− f(y)|p

|x− y|n−1+sp
dσxdσy

) 1

p

< +∞
}
,

the Besov class on ∂Ω. We equip this with the natural norm

‖f‖Bp,p
s (∂Ω) := ‖f‖Lp(∂Ω) +

(∫

∂Ω

∫

∂Ω

|f(x)− f(y)|p

|x− y|d−1+sp
dσxdσy

)1/p

.(2.6)

For s ∈ (0, 1) and 1 < p, p′ <∞ with 1/p+ 1/p′ = 1, we also set

Bp,p
−s (∂Ω) :=

(
Bp′,p′

s (∂Ω)
)∗

.(2.7)

In the sequel, we shall occasionally write L2
s(∂Ω) in place of B2,2

s (∂Ω) for s ∈ (−1, 1).
Recall that if p ∈ (1,∞) and Ω ⊂ Rn is a Lipschitz domain, then the trace operator

(2.8) Tr : Lp
1(Ω) −→ Bp,p

1−1/p(∂Ω)

is well-defined, linear and bounded (cf. [16]).
Next, introduce

H := {~u ∈ L2(Ω)n : div ~u = 0 in Ω}(2.9)

which is a closed subspace of L2(Ω)n (hence, a Hilbert space when equipped with the
norm inherited from L2(Ω)n). Also, set

V := L2
1(Ω)

n ∩ H(2.10)

which is a closed subspace of L2
1(Ω)

n hence, a reflexive Banach space when equipped with
the norm inherited from L2

1(Ω)
n.

Lemma 2.1. If Ω ⊂ Rn is a Lipschitz domain then

V →֒ H continuously and densely.(2.11)

Proof. The continuity of the inclusion mapping in (2.11) is obvious. To prove that this
has a dense range, fix ~u ∈ H. Then it has been proved in [21] that there exists a smooth
domain O and ~w ∈ L2(O)n with the following properties:

Ω ⊂ O, div ~w = 0 in O, ~w
∣∣
Ω
= u.(2.12)

In analogy with (2.9), (2.10), set

H(O) := {~v ∈ L2(O)n : div~v = 0 in O}, V(O) := L2
1(O)n ∩H(O).(2.13)

Then the following Hodge-Helmholtz-Weyl decompositions are valid

L2
1(O)n = V(O)⊕∇

[
L2
2(O) ∩ L2

1,z(O)
]
,(2.14)

L2(O)n = H(O)⊕
[
∇L2

1,z(O)
]
.(2.15)

These can be obtained constructively as follows. Granted thatO is a smooth domain (here,
it suffices to have ∂O ∈ C 1,r for some r > 1/2), the Poisson problem with homogeneous
Dirichlet boundary condition {

∆q = f ∈ L2(O),

q ∈ L2
2(O) ∩ L2

1,z(O),
(2.16)

is well-posed, and we denote by

G : L2(O) −→ L2
2(O) ∩ L2

1,z(O), Gf = q,(2.17)
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the solution operator associated with (2.16). By the Lax-Milgram lemma, the latter
further extends to a bounded, self-adjoint operator

G : L2
−1(O) −→ L2

1,z(O).(2.18)

With I denoting the identity operator, if we now consider

P := I −∇ ◦G ◦ div,(2.19)

then in each instance below

P : L2
1(O)n −→ V(O), P : L2(O)n −→ H(O),(2.20)

P is a well-defined, linear and bounded operator. Furthermore, in the second case in
(2.20), P actually acts as the orthogonal projection. Indeed, this is readily verified using
the fact that

P = P ∗ in L2(O)n and P
∣∣∣
H(O)

= I, the identity operator.(2.21)

The Hodge-Helmholtz-Weyl decompositions (2.14)-(2.15) are then naturally induced by
decomposing the identity operator according to

I = P +∇ ◦G ◦ div,(2.22)

both on L2
1(O)n and on L2(O)n.

After this preamble, we now turn to the task of establishing (2.11). Choose a sequence
~wj ∈ L2

1(O)n, j ∈ N, such that ~wj → ~w in L2(O)n as j → ∞. Then ~w = P ~w =
limj→∞ P ~wj in L

2(O)n and ~uj := [P ~wj]|Ω ∈ V for every j ∈ N. Since these considerations
imply that ~u = ~w|Ω = limj→∞ ~uj in L

2(Ω)n, (2.11) follows. �

Remark 2.2. An inspection of the above proof shows that, via a similar argument, we
have that

P : C
∞(Ω) →֒ H ∩ C

∞(Ω) boundedly.(2.23)

Thus, ultimately,

{~u ∈ C
∞(Ω)n : div ~u = 0 in Ω} →֒ H densely.(2.24)

Next, recall that ν stands for the outward unit normal to Ω, and introduce the following
closed subspace of L2

1/2(∂Ω)
n:

L2
1/2,ν(∂Ω) :=

{
~ϕ ∈ L2

1/2(∂Ω)
n :

∫

∂Ω

ν · ~ϕ dσ = 0
}
.(2.25)

Our goal is to show that the trace operator from (2.8) extends to a bounded mapping

Tr : V −→ L2
1/2,ν(∂Ω)(2.26)

which is onto. In fact, it is useful to prove the following more general result.

Lemma 2.3. Assume that Ω ⊂ Rn is a Lipschitz domain, with outward unit normal ν
and surface measure dσ. Also, fix 1 < p < ∞ and s ∈ (1/p, 1 + 1/p). Then the trace
operator from (2.8) extends to a bounded mapping

Tr :
{
~u ∈ Lp

s(Ω)
n : div ~u = 0

}
−→

{
~ϕ ∈ Bp,p

s−1/p(∂Ω)
n :

∫

∂Ω

ν · ~ϕ dσ = 0
}
,(2.27)

which is onto.
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Proof. The fact that (2.27) is well-defined, linear and bounded is clear from the properties
of (2.8) and the fact that

∫

∂Ω

ν · Tr ~u dσ =

∫

Ω

div ~u dx = 0,(2.28)

whenever ~u ∈ Lp
s(Ω)

n is divergence-free. To see that (2.27) is also onto, consider ~ϕ ∈
Bp,p

s−1/p(∂Ω)
n satisfying

∫

∂Ω

ν · ~ϕ dσ = 0(2.29)

and solve the divergence equation




div ~u = 0 in Ω,

~u ∈ Lp
s(Ω)

n,

Tr ~u = ~ϕ on ∂Ω.

(2.30)

For a proof of the fact that this is solvable for any ~ϕ ∈ Bp,p
s−1/p(∂Ω)

n satisfying (2.29) see

[27]. This shows that the operator (2.27) is indeed onto. �

Moving on, for λ ∈ R fixed, let

(2.31) aαβjk (λ) := δjkδαβ + λ δjβδkα, 1 ≤ j, k, α, β ≤ n,

and, adopting the summation convention over repeated indices, consider the differential
operator Lλ given by

(Lλ~u)α := ∂j(a
αβ
jk (λ)∂kuβ) = ∆uα + λ ∂α(div ~u), 1 ≤ α ≤ n.(2.32)

Next, assuming that λ ∈ R and ~u, π are sufficiently nice functions in a Lipschitz domain
Ω ⊂ Rn with outward unit normal ν, define the conormal derivative

∂λν (~u, π) :=
(
νja

αβ
jk (λ)∂kuβ − ναπ

)
1≤α≤n

=
[
(∇~u)⊤ + λ(∇~u)

]
ν − πν on ∂Ω,(2.33)

where ∇~u = (∂kuj)1≤j,k≤n denotes the Jacobian matrix of the vector-valued function ~u,
and ⊤ stands for transposition of matrices. Introducing the bilinear form

Aλ(ξ, ζ) := aαβjk (λ)ξ
α
j ζ

β
k , ∀ ξ, ζ n× n matrices,(2.34)

we then have the following useful integration by parts formula:

(2.35)

∫

Ω

〈Lλ~u−∇π, ~w〉 dx =

∫

∂Ω

〈∂λν (~u, π), ~w〉 dσ −

∫

Ω

{
Aλ(∇~u,∇~w)− π(div ~w)

}
dx.

In turn, this readily implies that
∫

Ω

〈Lλ~u−∇π, ~w〉 dx−

∫

Ω

〈Lλ ~w −∇ρ, ~u〉 dx =

∫

∂Ω

{
〈∂λν (~u, π), ~w〉 − 〈∂λν (~w, ρ), ~u〉

}
dσ

+

∫

Ω

{
π(div ~w)− ρ(div ~u)

}
dx.(2.36)

Above, it is implicitly assumed that the functions involved are reasonably behaved near
the boundary. Such considerations are going to be paid appropriate attention to in each
specific application of these integration by parts formulas.
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3. Conormal derivative in Besov-Triebel-Lizorkin spaces

For 0 < p, q ≤ ∞ and s ∈ R, we denote the Besov and Triebel-Lizorkin scales in Rn by
Bp,q

s (Rn) and F p,q
s (Rn), respectively (cf., e.g., [42]). Next, given Ω ⊂ Rn Lipschitz domain

and 0 < p, q ≤ ∞, α ∈ R, we set

(3.1)

Ap,q
α (Ω) := {u ∈ D ′(Ω) : ∃ v ∈ Ap,q

α (Rn) with v|Ω = u},

Ap,q
α,0(Ω) := {u ∈ Ap,q

α (Rn) with supp u ⊆ Ω},

Ap,q
α,z(Ω) := {u|Ω : u ∈ Ap,q

α,0(Ω)},

where A ∈ {B,F}. Finally, we let Bp,q
s (∂Ω) stand for the Besov class on the Lipschitz

manifold ∂Ω, obtained by transporting (via a partition of unity and pull-back) the stan-
dard scale Bp,q

s (Rn−1). We shall frequently use the abbreviation

Lp
s(Ω) := F p,2

s (Ω), 1 < p <∞, s ∈ R.(3.2)

As is well-known, this is consistent with (2.2) and (2.4).
The existence of a universal linear extension operator, from Lipschitz domains to the

entire Euclidean space, which preserves smoothness both on the Besov and the Triebel-
Lizorkin scales has been established by V. Rychkov. In [37], he proved the following:

Theorem 3.1. Let Ω ⊂ Rn be a Lipschitz domain and denote by RΩu := u|Ω the op-
erator of restriction to Ω. Then there exists a linear, continuous operator EΩ, mapping
distributions in Ω into tempered distributions in Rn, such that whenever 0 < p, q ≤ +∞,
s ∈ R, then

(3.3) EΩ : Ap,q
s (Ω) −→ Ap,q

s (Rn) boundedly, satisfying RΩ ◦ EΩf = f, ∀ f ∈ Ap,q
s (Ω),

for A = B or A = F , in the latter case assuming p <∞.

Let us also record here a useful lifting result for fractional order Sobolev spaces on Lips-
chitz domains, which has been proved in [27].

Proposition 3.2. Let 1 < p <∞ and s ∈ R. Then for any distribution u in the Lipschitz
domain Ω ⊂ Rn, the following implication holds:

(3.4) ∇u ∈ Lp
s−1(Ω)

n =⇒ u ∈ Lp
s(Ω).

The following useful consequence of Proposition 3.2 (cf. [32] for a direct proof) will be
used frequently in this paper.

Corollary 3.3. Let Ω ⊂ Rn, n ≥ 2, be a Lipschitz domain and suppose that 1 < p <∞.
Then there exists a finite constant C > 0 depending only on n, p, and the Lipschitz
character of Ω such that every distribution u ∈ Lp

−1(Ω) with ∇u ∈ Lp
−1(Ω)

n has the
property that u ∈ Lp(Ω) and

(3.5) ‖u‖Lp(Ω) ≤ C‖∇u‖Lp
−1

(Ω)n + C diam (Ω) ‖u‖Lp
−1

(Ω)

holds.

Concerning RΩ, the restriction to Ω, let us point out that

(3.6) RΩ : Lp
s,0(Ω) −→ Lp

s,z(Ω), 1 < p <∞, s ∈ R,

is a linear, bounded, onto operator. This permits the factorization

(3.7) Lp
s,0(Ω)

pr
−−−→

Lp
s,0(Ω)

{u ∈ Lp
s(Rn) : supp u ⊆ ∂Ω}

RΩ

−−−→ Lp
s,z(Ω), 1 < p <∞, s ∈ R,
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where the first arrow is the canonical projection onto the factor space, and the second
arrow is an isomorphism. Moreover, since

(3.8) 1 < p <∞, −1 + 1/p < s =⇒ {u ∈ Lp
s(R

n) : supp u ⊆ ∂Ω} = 0

then

(3.9) RΩ : Lp
s,0(Ω) −→ Lp

s,z(Ω) isomorphically if 1 < p <∞, s > −1 + 1/p.

In this latter case, its inverse is the operator of extension by zero outside Ω, denoted by
tilde, i.e.,

(3.10) Lp
s,z(Ω) ∋ u 7−→ ũ ∈ Lp

s,0(Ω), 1 < p <∞, −1 + 1/p < s.

In particular, this allows the identification

(3.11) Lp
s,0(Ω) ≡ Lp

s,z(Ω), ∀ p ∈ (1,∞), ∀ s > −1 + 1/p.

Let us also point out that, if 1 < p <∞ and s ∈ R, we have the continuous embedding

(3.12) Lp
s,z(Ω) →֒ Lp

s(Ω)

and, in fact,

(3.13) Lp
s(Ω) = Lp

s,z(Ω) if s < 1
p

and 1
p
− s /∈ N.

Moreover, for every j = {1, ..., n}

∂j : L
p
s(Ω) −→ Lp

s−1(Ω),

∂j : L
p
s,0(Ω) −→ Lp

s−1,0(Ω),

∂j : L
p
s,z(Ω) −→ Lp

s−1,z(Ω),

(3.14)

are well-defined, linear, bounded operators.
Later on, we shall need duality results for the scales introduced at the beginning of

this section. Throughout, all duality pairings on Ω are extensions of the natural pairing
between test functions and distributions on Ω. As far as the nature of the dual of Lp

s(Ω)
is concerned, when 1 < p, p′ <∞, 1/p+ 1/p′ = 1 and s ∈ R we have that

C̃ ∞
c (Ω) ∋ ϕ̃ 7−→ ϕ ∈ C

∞
c (Ω) extends to

an isomorphism Ψ : Lp
s,0(Ω) −→

(
Lp′

−s(Ω)
)∗

.(3.15)

Above, tilde denotes the extension by zero outside Ω, and the extension in question is
achieved via density, as the inclusions

C̃ ∞
c (Ω) →֒ Lp

s,0(Ω), 1 < p <∞, s ∈ R,(3.16)

C
∞
c (Ω) →֒

(
Lp
s(Ω)

)∗

, 1 < p <∞, s ∈ R,(3.17)

have dense ranges. In what follows, we shall frequently identify the spaces Lp
s,0(Ω) and(

Lp′

−s(Ω)
)∗

without making any specific reference to the isomorphism Ψ in (3.15). For

example, we shall write that

Lp
s(Rn)

〈
u, v

〉
Lp′

−s(R
n)

=
Lp
s(Ω)

〈
RΩu, v

〉
Lp′

−s,0(Ω)
,

∀ u ∈ Lp
s(R

n), ∀ v ∈ Lp′

−s,0(Ω).
(3.18)
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Other duality results of interest are
(
Lp
s,z(Ω)

)∗

= Lp′

−s(Ω) if 1 < p <∞ and s > −1 + 1
p
,(3.19)

and
(
Lp
s(Ω)

)∗

= Lp′

−s,z(Ω) if 1 < p <∞ and s < 1
p
.(3.20)

In particular, if 1 < p <∞,

(3.21)
(
Lp
s(Ω)

)∗

= Lp′

−s(Ω), ∀ s ∈ (−1 + 1/p, 1/p).

The duality in (3.19) is related to the duality in (3.15) via

(3.22) s > −1 + 1/p =⇒





Lp
s,0(Ω)

〈
u, v

〉
Lp′

−s(R
n)

=
Lp
s,z(Ω)

〈
RΩu , RΩv

〉
Lp′

−s(Ω)
,

∀ u ∈ Lp
s,0(Ω), ∀ v ∈ Lp′

−s(R
n).

As a consequence,

s > −1 + 1/p =⇒





Lp
s,0(Ω)

〈
ũ, w

〉
Lp′

−s(R
n)

=
Lp
s,z(Ω)

〈
u , RΩw

〉
Lp′

−s(Ω)
,

∀ u ∈ Lp
s,z(Ω), ∀w ∈ Lp′

−s(R
n),

(3.23)

and, hence,

−1 + 1/p < s < 1/p =⇒





Lp
s,0(Ω)

〈
ũ, w

〉
Lp′

−s(R
n)

=
Lp
s(Ω)

〈
u,RΩw

〉
Lp′

−s(Ω)
,

∀ u ∈ Lp
s(Ω), ∀w ∈ Lp′

−s(R
n).

(3.24)

See the discussion in [29].
Moving on, we shall need a refinement of (2.8) in the context of of Besov and Triebel-

Lizorkin spaces (cf. [16], [25]). To state this result, let (a)+ := max {a, 0}.

Proposition 3.4. Let Ω be a Lipschitz domain in Rn and assume that the indices p, s
satisfy n−1

n
< p ≤ ∞ and (n− 1)(1

p
− 1)+ < s < 1. Then the following hold:

(i) The restriction to the boundary extends to a linear, bounded operator

(3.25) Tr : Bp,q

s+ 1

p

(Ω) −→ Bp,q
s (∂Ω) for 0 < q ≤ ∞.

For this range of indices, Tr is onto and has a bounded right inverse

(3.26) Ex : Bp,q
s (∂Ω) −→ Bp,q

s+ 1

p

(Ω).

As far as the null-space of (3.25) is concerned, if n−1
n
< p <∞, (n−1)(1/p−1)+ < s < 1

and 0 < q <∞, then

(3.27) Bp,q
s+1/p,z(Ω) =

{
u ∈ Bp,q

s+1/p(Ω) : Tr u = 0
}
,

and

(3.28) C
∞
c (Ω) →֒ Bp,q

s+1/p,z(Ω) densely.

(ii) Similar considerations hold for

(3.29) Tr : F p,q

s+ 1

p

(Ω) −→ Bp,p
s (∂Ω)
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with the convention that q = ∞ if p = ∞. More specifically, Tr in (3.29) is a linear,
bounded, operator which has a linear, bounded right inverse

(3.30) Ex : Bp,p
s (∂Ω) −→ F p,q

s+ 1

p

(Ω).

Also, if n−1
n
< p <∞, (n− 1)(1/p− 1)+ < s < 1 and min {1, p} ≤ q <∞, then

(3.31) F p,q
s+1/p,z(Ω) =

{
u ∈ F p,q

s+1/p(Ω) : Tr u = 0
}
,

and

(3.32) C
∞
c (Ω) →֒ F p,q

s+1/p,z(Ω) densely.

Let X be a Banach space with dual X∗. For every n × n matrix F = (F α
j )α,j with

entries from X , every n × n matrix G = (Gβ
k)β,k with entries from X∗, and each λ ∈ R,

we set

AX
λ (F,G) := aαβjk (λ) X〈F

α
j , G

β
k〉X∗ ,(3.33)

where X〈·, ·〉X∗ is the duality pairing between X and X∗, and aαβjk (λ) are as in (2.31). In
the sequel, our notation will not emphasize the dependence of 〈·, ·〉 and Aλ on X ; however,
the particular nature of X should be clear from the context in each case.

Let Ω ⊂ Rn, n ≥ 2, be a bounded Lipschitz domain and assume that 1 < p, q < ∞,

0 < s < 1. If ~u ∈ Bp,q

s+ 1

p

(Ω)n, π ∈ Bp,q

s+ 1

p
−1
(Ω) and ~f ∈ Bp,q

s+ 1

p
−2,0

(Ω)n are such that

∆~u−∇π = ~f |Ω in Ω, then as suggested by (2.36), it is natural to define

∂λν (~u, π)~f ∈ Bp,q
s−1(∂Ω)

n =
(
Bp′,q′

1−s (∂Ω)
n
)∗

,

1/p+ 1/p′ = 1, 1/q + 1/q′ = 1, λ ∈ R,(3.34)

by setting 〈
∂λν (~u, π)~f ,

~ψ
〉

:=
〈
~f
∣∣
Ω
,Ex(~ψ)

〉
+ Aλ

(
∇~u,∇Ex(~ψ)

)

−
〈
π, div Ex(~ψ)

〉
, ∀ ~ψ ∈ Bp′,q′

1−s (∂Ω)
n,(3.35)

where Ex is the extension operator introduced in Proposition 3.4. The conditions on
the indices p, q, s ensure that all duality pairings in the right-hand side of (3.35) are

well-defined. Similar considerations apply to the case when ~u, π, ~f belong to appropri-
ate Triebel-Lizorkin spaces (in which case the conormal ∂λν (~u, π)~f belongs to a suitable

diagonal boundary Besov space).

Remark 3.5. Since the conormal ∂λν (~u, π)~f has been defined for a class of (triplets of)

functions ~u, π, ~f for which the expression
[
(∇~u)⊤+λ(∇~u)

]
ν−πν is, in the standard sense

of the trace theory, utterly ill-defined on ∂Ω, it is appropriate to remark that (~u, π, ~f) 7→

∂λν (~u, π)~f is not an extension of the operation (~u, π) 7→ Tr
[
(∇~u)⊤+λ(∇~u)

]
ν−Tr π ν in an

ordinary sense. In fact, it is more appropriate to regard the former as a “re-normalization”

of the latter trace, in a fashion that depends strongly on the choice of ~f ∈ Ap,q
s+1/p−2,0(Ω)

n

as an extension of ∆ ~u−∇π ∈ Ap,q
s+1/p−2,z(Ω)

n.

To further shed light on this issue, recall that, for ~u ∈ L2
1(Ω)

n, π ∈ L2(Ω), ∆~u − ∇π

is naturally defined as a linear functional in (L2
1,0(Ω)

n)∗. The choice of ~f is the choice
of an extension of this linear functional to a functional in (L2

1(Ω)
n)∗ = L2

−1,0(Ω)
n. As
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an example, consider ~u ∈ L2
1(Ω)

n, π ∈ L2(Ω), and suppose that actually ~u ∈ L2
2(Ω)

n,

π ∈ L2
1(Ω) so Tr

[
(∇~u)⊤ + λ(∇~u)

]
ν − Tr π ν is well defined in L2(∂Ω)n. In this case,

∆~u −∇π ∈ L2(Ω)n has a “natural” extension ~f0 ∈ L2
−1,0(Ω)

n (i.e., ~f0 is the extension of

∆~u−∇π to Rn by setting this equal zero outside Ω). Any other extension ~f1 ∈ L2
−1,0(Ω)

n

differs from ~f0 by a distribution ~η ∈ L2
−1(R

n)n supported on ∂Ω. As is well-known, the
space of such distributions is nontrivial. In fact, we have

∂λν (~u, π)~f0 = Tr
[
(∇~u)⊤ + λ(∇~u)

]
ν − Tr π ν in L2(∂Ω)n,(3.36)

but if ~η 6= 0 then ∂λν (~u, π)~f0 is not equal to ∂λν (~u, π)~f1. Indeed, by linearity we have that

∂λν (~u, π)~f1 = ∂λν (~u, π)~f0 + ∂λν (~0, 0)~η and (3.35) shows that
〈
∂λν (~0, 0)~η,

~ψ
〉
=

〈
~η,Ex(~ψ)

〉
(3.37)

for every ~ψ ∈ L2
1/2(∂Ω)

n. Consequently, ∂λν (~0, 0)~η 6= 0 if ~η 6= 0.

We continue by registering an natural integration by parts formula, which builds on
the definition of the “renormalized” conormal (3.35).

Proposition 3.6. Assume that Ω ⊂ Rn is a Lipschitz domain. Fix s ∈ (0, 1), as well as
1 < p, q <∞, and denote by p′, q′ the Hölder conjugate exponents of p and q, respectively.

Next, suppose that ~w ∈ Ap′q′

1−s+1/p′(Ω)
n, ~u ∈ Ap,q

s+ 1

p

(Ω)n, π ∈ Ap,q

s+ 1

p
−1
(Ω) and ~f ∈

Ap,q

s+ 1

p
−2,0

(Ω)n are such that ∆~u − ∇π = ~f |Ω in Ω (where, as usual, A ∈ {B,F}). Then,

for every λ ∈ R, the following integration by parts formula holds:〈
∂λν (~u, π)~f , Tr ~w

〉
=

〈
~f
∣∣
Ω
, ~w

〉
+ Aλ

(
∇~u,∇~w

)
−
〈
π, div ~w

〉
.(3.38)

Proof. By linearity, it suffices to show that〈
~f
∣∣
Ω
, ~w

〉
+ Aλ

(
∇~u,∇~w

)
−
〈
π, div ~w

〉
= 0(3.39)

if ~w, ~u, π, ~f are as in the statement of the proposition and, in addition, Tr ~w = 0. Note

that the latter condition entails that ~w ∈ Ap′,q′

1−s,z(Ω)
n by (3.27), (3.31). Thus, by (3.28),

(3.32), ~w can be approximated in Ap′,q′

1−s,z(Ω)
n by a sequence of vector fields ~wj ∈ C ∞

c (Ω)n.

Since, thanks to the fact that ∆~u−∇π = ~f |Ω as distributions in Ω, we have
〈
~f
∣∣
Ω
, ~wj

〉
+ Aλ

(
∇~u,∇~wj

)
−

〈
π, div ~wj

〉
= 0, j ∈ N,(3.40)

we can obtain (3.39) by letting j → ∞. �

In order to continue, we introduce the following adaptations of the Besov and Triebel-
Lizorkin scales to the Stokes operator

Bp,q
s (Ω) :=

{
(~u, π, ~f) ∈ Bp,q

s+ 1

p

(Ω)n ⊕ Bp,q

s+ 1

p
−1
(Ω)⊕ Bp,q

s+ 1

p
−2,0

(Ω)n :

∆~u−∇π = ~f |Ω

}
,(3.41)

and

Fp,q
s (Ω) :=

{
(~u, π, ~f) ∈ F p,q

s+ 1

p

(Ω)n ⊕ F p,q

s+ 1

p
−1
(Ω)⊕ F p,q

s+ 1

p
−2,0

(Ω)n :

∆~u−∇π = ~f |Ω

}
.(3.42)
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Corollary 3.7. Suppose that Ω ⊂ Rn is a Lipschitz domain, and assume that s ∈ (0, 1),
1 < p, q <∞, 1/p+ 1/p′ = 1/q + 1/q′ = 1. Then

〈
~f
∣∣
Ω
, ~w

〉
−

〈
~g
∣∣
Ω
, ~u
〉

=
〈
∂λν (~u, π)~f , Tr ~w

〉
−

〈
∂λν (~w, ρ)~g , Tr ~u

〉

+
〈
π, div ~w

〉
−

〈
ρ, div ~u

〉
(3.43)

provided either

(~u, π, ~f) ∈ Bp,q
s (Ω), (~w, ρ,~g) ∈ Bp′,q′

1−s (Ω),(3.44)

or

(~u, π, ~f) ∈ Fp,q
s (Ω), (~w, ρ,~g) ∈ Fp′,q′

1−s (Ω).(3.45)

Proof. This follows from (3.38) much as (2.36) follows from (2.35). �

4. Sesquilinear forms and their associated operators

In this section we describe a few basic facts on sesquilinear forms and linear operators
associated with them. Throughout, given two Banach spaces X , Y , we denote by B

(
X ,Y

)

the space of linear, bounded operators from X into Y , equipped with the strong operator
norm. Also, we let IX stand for the identity operator on X . Finally, we adopt the
convention that if X is a Banach space then X ∗ denotes the adjoint space of continuous
conjugate linear functionals on X , also known as the conjugate dual of X . In this scenario,
we let X 〈·, ·〉X ∗ denote the duality pairing between X and X ∗.

Let H be a complex separable Hilbert space with scalar product (·, ·)H (antilinear in
the first and linear in the second argument), V a reflexive Banach space continuously and
densely embedded into H. Then also H embeds continuously and densely into V∗, i.e.,

(4.1) V →֒ H →֒ V∗ continuously and densely.

Here the continuous embedding H →֒ V∗ is accomplished via the identification

(4.2) H ∋ u 7→ (·, u)H ∈ V∗.

In particular, if the sesquilinear form

(4.3) V〈·, ·〉V∗ : V × V∗ → C

denotes the duality pairing between V and V∗, then

(4.4) V〈u, v〉V∗ = (u, v)H, u ∈ V, v ∈ H →֒ V∗,

that is, the V,V∗ pairing V〈·, ·〉V∗ is compatible with the scalar product (·, ·)H in H.
Let T ∈ B(V,V∗). Since V is reflexive, i.e. (V∗)∗ = V, one has

(4.5) T : V → V∗, T ∗ : V → V∗

and

(4.6) V〈u, Tv〉V∗ = V∗〈T ∗u, v〉(V∗)∗ = V∗〈T ∗u, v〉V = V〈v, T ∗u〉V∗.

Self-adjointness of T is then defined as the property that T = T ∗, that is,

(4.7) V〈u, Tv〉V∗ = V∗〈Tu, v〉V = V〈v, Tu〉V∗, u, v ∈ V,

nonnegativity of T is defined as the demand that

(4.8) V〈u, Tu〉V∗ ≥ 0, u ∈ V,
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and boundedness from below of T by c ∈ R is defined as the property that

(4.9) V〈u, Tu〉V∗ ≥ c‖u‖2H, ∀ u ∈ V.

(Note that, by (4.4), this is equivalent to V〈u, Tu〉V∗ ≥ c V〈u, u〉V∗ for all u ∈ V.)
Next, let the sesquilinear form a(·, ·) : V × V → C (antilinear in the first and linear in

the second argument) be V-bounded. That is, there exists a ca > 0 such that

(4.10) |a(u, v)| ≤ ca‖u‖V‖v‖V , u, v ∈ V.

Then Ã defined by

(4.11) Ã :

{
V → V∗,

v 7→ Ãv = a(·, v),

satisfies

(4.12) Ã ∈ B(V,V∗) and V

〈
u, Ãv

〉
V∗

= a(u, v), u, v ∈ V.

In the sequel, we shall refer to Ã as the operator induced by the form a(·, ·).
Assuming further that a(·, ·) is symmetric, that is,

(4.13) a(u, v) = a(v, u), u, v ∈ V,

and that a is V-coercive, that is, there exists a constant C0 > 0 such that

(4.14) a(u, u) ≥ C0‖u‖
2
V , u ∈ V,

respectively, then,

(4.15) Ã : V → V∗ is bounded, self-adjoint, and boundedly invertible.

Moreover, denoting by A the part of Ã in H, defined by

D(A) :=
{
u ∈ V : Ãu ∈ H

}
⊆ H, A := Ã

∣∣
D(A)

: D(A) → H,(4.16)

then A is a (possibly unbounded) self-adjoint operator in H satisfying

A ≥ C0IH,(4.17)

D
(
A1/2

)
= V.(4.18)

In particular,

(4.19) A−1 ∈ B(H).

The facts (4.1)–(4.19) are a consequence of the Lax–Milgram theorem and the sec-
ond representation theorem for symmetric sesquilinear forms. Details can be found, for
instance, in [3, §VI.3, §VII.1], [7, Ch. IV], and [23].

Next, consider a symmetric form b(·, ·) : V ×V → C and assume that b is bounded from
below by cb ∈ R, that is,

(4.20) b(u, u) ≥ cb‖u‖
2
H, u ∈ V.

Introducing the scalar product (·, ·)V(b) : V × V → C (with associated norm ‖ · ‖V(b)) by

(4.21) (u, v)V(b) := b(u, v) + (1− cb)(u, v)H, u, v ∈ V,

turns V into a pre-Hilbert space (V; (·, ·)V(b)), which we denote by V(b). The form b is
called closed if V(b) is actually complete, and hence a Hilbert space. The form b is called
closable if it has a closed extension. If b is closed, then

(4.22) |b(u, v) + (1− cb)(u, v)H| ≤ ‖u‖V(b)‖v‖V(b), u, v ∈ V,
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and

(4.23) |b(u, u) + (1− cb)‖u‖
2
H| = ‖u‖2V(b), u ∈ V,

show that the form b(·, ·) + (1 − cb)(·, ·)H is a symmetric, V-bounded, and V-coercive
sesquilinear form.

Hence, by (4.11) and (4.12), there exists a linear map

(4.24) B̃cb :

{
V(b) → V(b)∗,

v 7→ B̃cbv := b(·, v) + (1− cb)(·, v)H,

with

(4.25) B̃cb ∈ B(V(b),V(b)∗) and V(b)

〈
u, B̃cbv

〉
V(b)∗

= b(u, v)+ (1− cb)(u, v)H, u, v ∈ V.

Introducing the linear map

(4.26) B̃ := B̃cb + (cb − 1)Ĩ : V(b) → V(b)∗,

where Ĩ : V(b) →֒ V(b)∗ denotes the continuous inclusion (embedding) map of V(b) into

V(b)∗, one obtains a self-adjoint operator B in H by restricting B̃ to H,

D(B) =
{
u ∈ V : B̃u ∈ H

}
⊆ H, B = B̃

∣∣
D(B)

: D(B) → H,(4.27)

satisfying the following properties:

B ≥ cbIH,(4.28)

D
(
|B|1/2

)
= D

(
(B − cbIH)

1/2
)
= V,(4.29)

b(u, v) =
(
|B|1/2u, UB|B|1/2v

)
H

(4.30)

=
(
(B − cbIH)

1/2u, (B − cbIH)
1/2v

)
H
+ cb(u, v)H(4.31)

= V(b)

〈
u, B̃v

〉
V(b)∗

, u, v ∈ V,(4.32)

b(u, v) = (u,Bv)H, u ∈ V, v ∈ D(B),(4.33)

D(B) = {v ∈ V : there exists fv ∈ H such that

b(w, v) = (w, fv)H for all w ∈ V},(4.34)

Bu = fu, u ∈ D(B),

D(B) is dense in H and in V(b).(4.35)

Properties (4.34) and (4.35) uniquely determine B. Here UB in (4.31) is the partial
isometry in the polar decomposition of B, that is,

(4.36) B = UB|B|, |B| = (B∗B)1/2.

Definition 4.1. The operator B is called the operator associated with the form b(·, ·).

The norm in the Hilbert space V(b)∗ is given by

(4.37) ‖ℓ‖V(b)∗ = sup{V(b)〈u, ℓ〉V(b)∗ : ‖u‖V(b) ≤ 1}, ℓ ∈ V(b)∗,

with associated scalar product,

(4.38) (ℓ1, ℓ2)V(b)∗ = V(b)

〈(
B̃ + (1− cb)Ĩ

)−1
ℓ1, ℓ2

〉
V(b)∗

, ℓ1, ℓ2 ∈ V(b)∗.
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Since

(4.39)
∥∥(B̃ + (1− cb)Ĩ

)
v
∥∥
V(b)∗

= ‖v‖V(b), v ∈ V,

the Riesz representation theorem yields

(4.40)
(
B̃ + (1− cb)Ĩ

)
∈ B(V(b),V(b)∗) and

(
B̃ + (1− cb)Ĩ

)
: V(b) → V(b)∗ is unitary.

In addition,

V(b)

〈
u,

(
B̃ + (1− cb)Ĩ

)
v
〉
V(b)∗

=
((
B + (1− cb)IH

)1/2
u,

(
B + (1− cb)IH

)1/2
v
)
H

= (u, v)V(b), u, v ∈ V(b).
(4.41)

In particular,

(4.42)
∥∥(B + (1− cb)IH)

1/2u
∥∥
H
= ‖u‖V(b), u ∈ V(b),

and hence

(4.43) (B + (1− cb)IH)
1/2 ∈ B(V(b),H) and (B + (1− cb)IH)

1/2 : V(b) → H is unitary.

The facts (4.20)–(4.43) comprise the second representation theorem of sesquilinear
forms (cf. [7, Sect. IV.2], [10, Sects. 1.2–1.5], [20, Sect. VI.2.6], [34]).

5. Fractional powers and semigroup theory

Assume that H is a (possibly complex) separable Hilbert space with scalar product
(·, ·)H and that V a reflexive Banach space continuously and densely embedded into H.
Also, fix a sesquilinear form b(·, ·) : V × V → C, which is assumed to be symmetric,
nonnegative, bounded, and which satisfies the following coercivity condition: There exist
C0 ∈ R and C1 > 0 such that

b(u, u) + C0‖u‖
2
H ≥ C1‖u‖

2
V , u ∈ V.(5.1)

As a consequence, ‖ · ‖V(b) ≈ ‖ · ‖V . Thus V(b) = V and, hence, b(·, ·) is also closed.
Let B : D(B) ⊆ H → H be the (possibly unbounded) operator associated with the

form b(·, ·) as in Definition 4.1. In particular, B is self-adjoint and nonnegative. Also,
tIH+B is invertible on H for every t > 0, and ‖t(tIH+B)−1‖B(H,H) ≤ C for t > 0 (cf., e.g.,
Proposition 1.22 on p. 13 in [34]). In fact, there exist θ ∈ (0, π/2) and a finite constant
C > 0 such that Σθ := {z ∈ C : |arg (z − 1)| ≤ θ + π/2} is contained in C \ Spec (B)
(where Spec (B) denotes the spectrum of B as an operator on H) and

(5.2) ‖(zIH +B)−1‖B(H,H) ≤
C

1 + |z|
, z ∈ Σθ,

i.e., B is sectorial. See, e.g., [4, Theorem 3, p. 374 and Proposition 3, p. 380]. In particular,
the operator B generates an analytic semigroup on H according to the formula

(5.3) ezBu :=
1

2πi

∫

Γθ′

e−ζz(ζIH +B)−1u dζ, |arg (z)| < π/2− θ′, u ∈ H,

where θ′ ∈ (θ, π/2) and Γθ′ := {± reiθ
′

: r > 0}. Cf. [4] and [35] for a more detailed
discussion in this regard.

Moving on, we denote by {EB(µ)}µ∈R the family of spectral projections associated with
B, and for each u ∈ H introduce the function ρu by

(5.4) ρu : R −→ [0,∞), ρu(µ) := (EB(µ)u, u)H = ‖EB(µ)u‖
2
H.
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Clearly, ρu is bounded, non-decreasing, right-continuous, and

(5.5) lim
µ↓−∞

ρu(µ) = 0, lim
µ↑∞

ρu(µ) = ‖u‖2H, ∀ u ∈ H.

Hence, ρu generates a measure, denoted by dρu, in a canonical manner. A function
f : R → C is then called dEB-measurable if it is dρu-measurable for each u ∈ H. As is
well-known, all Borel measurable functions are dEB-measurable functions. For a Borel
measurable function f : R → C we then define the (possibly) unbounded operator by
setting

D(f(B)) :=
{
u ∈ H :

∫
R
|f |2 dρu < +∞

}

f(B)u :=
∫
R
f(µ) dEB(µ)u, u ∈ D(f(B)).

(5.6)

In particular, for each α ∈ [0, 1], the fractional power Bα of B is a self-adjoint operator

Bα : D(Bα) ⊂ H −→ H.(5.7)

Since in our case B is maximally accretive, then so is Bα if α ∈ (0, 1) and for every
u ∈ D(B) ⊂ D(Bα) we have the representation

(5.8) Bαu =
sin (π z)

π

∫ ∞

0

tαB(tIH +B)−1u
dt

t
.

See [18], [20]. Other properties are discussed in, e.g., A. Pazy’s book [35] and the survey
article [1] by W.Arendt, to which we refer the interested reader. Here we only wish to
summarize some well-known results of T.Kato and J.-L. Lions (see [19], [23]) which are
relevant for our work. Specifically, if B is as above, then

(5.9) D(B1/2) = V

and, with [·, ·]θ denoting the complex interpolation bracket,

(5.10) D(Bθ) = [H, D(B)]θ, 0 ≤ θ ≤ 1.

Hence, by the reiteration theorem for the complex method, the family

(5.11)
{
D(B

s
2 ) : 0 ≤ s ≤ 2

}
is a complex interpolation scale.

In particular,

(5.12) D(Bθ/2) = [H,V]θ, 0 ≤ θ ≤ 1.

We wish to further elaborate on this topic by shedding some light on the nature of
D(Bα) when α ∈ (1/2, 1). This requires some preparations. To get started, denote by

B̃ ∈ B(V,V∗) the operator induced by the form b(·, ·) (so that B is the part of B̃ in H),

and let Ĩ stand for the inclusion of V into V∗. It then follows from (5.1) that

(Ĩ + B̃) ∈ B(V,V∗) is an isomorphism.(5.13)

The idea is to find another suitable context in which the operator Ĩ+B̃ is an isomorphism,
and then interpolate between this and (5.13). However, in contrast to what goes on for
boundedness, invertibility is not, generally speaking, preserved under interpolation. There
are, nonetheless, certain specific settings in which this is true. To discuss such a case recall
that, if (X0, X1) are a couple of compatible Banach spaces, X0 ∩ X1 and X0 + X1 are
equipped, respectively, with the norms

‖x‖X0∩X1
:= max {‖x‖X0

, ‖x‖X1
} , and

‖z‖X0+X1
= inf {‖x0‖X0

+ ‖x1‖X1
: z = x0 + x1, xi ∈ Xi, i = 0, 1} .

(5.14)
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We have:

Lemma 5.1. Let (X0, X1) and (Y0, Y1) be two couples of compatible Banach spaces and
assume that T : X0 +X1 −→ Y0 + Y1 is a linear operator with the property that

T : Xi −→ Yi is an isomorphism, i = 0, 1.(5.15)

In addition, assume that there exist Banach spaces X ′, Y ′ such that the inclusions

X ′ →֒ X0 ∩X1, Y ′ →֒ Y0 ∩ Y1,(5.16)

are continuous with dense range, and that

T : X ′ −→ Y ′ is an isomorphism.(5.17)

Then the operator

T : [X0, X1]θ −→ [Y0, Y1]θ(5.18)

is an isomorphism for each 0 ≤ θ ≤ 1.

Proof. Denote by Ri ∈ B(Yi, Xi), i = 0, 1, the inverses of T in (5.15). Since the operators
R0 and R1 coincide as mappings in B(Y ′, X ′), by density they also agree as mappings in
B(Y0 ∩ Y1, X0 ∩X1). It is therefore meaningful to define

R : Y0 + Y1 −→ X0 +X1, by

R(y0 + y1) := R0(y0) +R1(y1), yi ∈ Yi, i = 0, 1.
(5.19)

Then R is a linear operator which belongs to B(Y0, X0) ∩ B(Y1, X1). Thus, by the inter-
polation property, R maps [Y0, Y1]θ boundedly into [X0, X1]θ for every θ ∈ [0, 1]. In this
latter context, R provides an inverse for T : [X0, X1]θ −→ [Y0, Y1]θ, since RT = IX0∩X1

on X0 ∩X1, which is a dense subspace of [X0, X1]θ, and TR = IY0∩Y1
on Y0 ∩ Y1, which

is a dense subspace of [Y0, Y1]θ. This proves that the operator in (5.18) is indeed an
isomorphism for every θ ∈ [0, 1]. �

After this preamble, we are ready to present the following.

Proposition 5.2. With the above assumptions and notation,

(5.20) D(B
1+θ
2 ) = (Ĩ + B̃)−1

(
D(B

1−θ
2 )

)∗

for every 0 ≤ θ ≤ 1.

Proof. As already remarked above, the operator Ĩ + B̃ : V → V∗ is boundedly invertible.
We claim that

Ĩ + B̃ : D(B) −→ H(5.21)

is invertible as well, when D(B) is equipped with the graph norm u 7→ ‖u‖H + ‖Bu‖H.

Indeed, this operator is clearly well-defined, linear and bounded, since B̃ coincides with
B on D(B). Also, the fact that the operator in (5.13) is one-to-one readily entails that
so is (5.21). To see that the operator (5.21) is onto, pick an arbitrary w ∈ H →֒ V∗. It

follows from (5.13) that there exists u ∈ V →֒ H such that (Ĩ + B̃)u = w. In turn, this

implies that B̃u = w−u ∈ H and, hence, u ∈ D(B). This shows that the operator (5.21)
is onto, hence ultimately invertible.

Interpolating between (5.13) and (5.21) then proves (with the help of Lemma 5.1, (5.9)-
(5.10), and the duality theorem for the complex method) that the operator

(5.22) Ĩ + B̃ : D(B
1+θ
2 ) = [V, D(B)]θ → [V∗,H]θ =

(
[H,V]1−θ

)∗

=
(
D(B

1−θ
2 )

)∗

is an isomorphism, for every 0 ≤ θ ≤ 1. From this, (5.20) readily follows. �
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6. The definition of the Neumann-Stokes operator

In this section we define the Stokes operator when equipped with Neumann boundary
conditions in Lipschitz domains in Rn. Subsequently, in Theorem 6.8, we study the
functional analytic properties of this operator. We begin by making the following:

Definition 6.1. Let Ω ⊂ Rn be a Lipschitz domain and assume that λ ∈ R is fixed. Define
the Stokes operator with Neumann boundary condition as the unbounded operator

Bλ : D(Bλ) ⊂ H −→ H(6.1)

with domain

D(Bλ) :=
{
~u ∈ V : there exists π ∈ L2(Ω) so that ~f := −∆~u +∇π ∈ H

and such that ∂λν (~u, π)~f = 0 in L2
−1/2(∂Ω)

n
}
,(6.2)

and acting according to

Bλ~u := −∆~u +∇π, ~u ∈ D(Bλ),(6.3)

assuming that the pair (~u, π) satisfies the requirements in the definition of D(Bλ) and

where we have identified ~f with its extension by zero outside Ω according to (3.11) (for
p = 2 and s = 0) in the expression ∂λν (~u, π)~f .

As it stands, it is not entirely obvious that the above definition is indeed coherent and
our first order of business is to clarify this issue. We do so in a series of lemmas, starting
with:

Lemma 6.2. If the pair (~u, π) satisfies the requirements in the definition of D(Bλ), then
∆π = 0 in Ω.

Proof. Since the vector fields ~u and ~f := −∆~u +∇π are both divergence-free, it follows

that ∆π = div (−∆~u+∇π) = div ~f = 0. �

Lemma 6.3. If ~u ∈ D(Bλ), then there exists a unique scalar function π ∈ L2(Ω) such

that ~f := −∆~u +∇π ∈ H and ∂λν (~u, π)~f = 0 in L2
−1/2(∂Ω)

n.

Proof. Fix a vector field ~u ∈ D(Bλ) and assume that πj ∈ L2(Ω), j = 1, 2, are such that

~fj := −∆~u+∇πj ∈ H and ∂λν (~u, πj)~fj = 0 in L2
−1/2(∂Ω)

n, for j = 1, 2.(6.4)

Set π := π1 − π2 ∈ L2(Ω), and note that

∇π = ~f1 − ~f2 ∈ H →֒ L2
1(Ω)

n.(6.5)

As a consequence,

π ∈ L2
1(Ω).(6.6)

Next, we employ (3.35) and (6.4) in order to write

0 =
〈
∂λν (~u, π1)~f1 − ∂λν (~u, π2)~f2 ,

~ψ
〉

=
〈
~f1,Ex(~ψ)

〉
+ Aλ

(
∇~u,∇Ex(~ψ)

)
−

〈
π1, div Ex(~ψ)

〉

−
〈
~f2,Ex(~ψ)

〉
− Aλ

(
∇~u,∇Ex(~ψ)

)
+
〈
π2, div Ex(~ψ)

〉

=
〈
~f1 − ~f2,Ex(~ψ)

〉
−
〈
π, div Ex(~ψ)

〉
,(6.7)
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for every ~ψ ∈ L2
1/2(∂Ω)

n. At this stage, we recall (6.5)-(6.6) in order to transform the last

expression in (6.7) into
〈
∇π,Ex(~ψ)

〉
−

〈
π, div Ex(~ψ)

〉
=

〈
Tr π , ν · ~ψ

〉
.(6.8)

In concert with (6.7), this shows that
〈
(Tr π) ν , ~ψ

〉
= 0 for every ~ψ ∈ L2

1/2(∂Ω)
n,(6.9)

from which we may conclude that

Tr π = 0 in L2
1/2(∂Ω)

n.(6.10)

This, (6.6) and Lemma 6.2 amount to saying that π ∈ L2
1(Ω) is harmonic and satisfies

Tr π = 0. Thus, π = 0 in Ω, by the uniqueness for the Dirichlet problem. Hence, π1 = π2
in Ω, as desired. �

Remark 6.4. In particular, Lemma 6.3 implies that there is no ambiguity in defining Bλ~u
as in (6.3).

Recall now the bilinear form (2.34), and consider

bλ(·, ·) : V × V −→ R, bλ(~u,~v) :=

∫

Ω

Aλ(∇~u,∇~v) dx.(6.11)

Our goal is to study this sesquilinear form. This requires some prerequisites which we
now dispense with. First, the following Korn type estimate has been proved in [32].

Proposition 6.5. Let Ω be a Lipschitz domain and assume that 1 < p <∞. Then there
exists a finite constant C > 0 which depends only on p and the Lipschitz character of Ω
such that

(6.12) ‖~u‖Lp
1
(Ω)n ≤ C

{
‖∇~u+∇~u⊤‖Lp(Ω)n2 + C diam (Ω)−1‖~u‖Lp(Ω)n

}
,

uniformly for ~u ∈ Lp
1(Ω)

n.

We shall also need the the following algebraic result from [32] regarding the bilinear form
Aλ(·, ·) from (2.34).

Proposition 6.6. For every λ ∈ (−1, 1] there exists κλ > 0 such that for every n × n-
matrix ξ

(6.13) Aλ(ξ, ξ) ≥ κλ |ξ|
2 for |λ| < 1 and A1(ξ, ξ) ≥ κ1 |ξ + ξ⊤|2.

The following well-known result (cf. [5]) is also going to be useful shortly.

Lemma 6.7. Let Ω be an open subset of Rn, and assume that ~v ∈ [D(Ω)′]n is a vector-
valued distribution which annihilates {~w ∈ C ∞

c (Ω)n : div ~w = 0 in Ω}. Then there exists
a scalar distribution q ∈ D(Ω)′ with the property that ~v = ∇q in Ω.

We are now ready to state and prove the main result of this section. Recall the spaces
V, H from (2.10), (2.9), along with the form bλ(·, ·) from (6.11).

Theorem 6.8. Let Ω ⊂ Rn be a Lipschitz domain and assume that λ ∈ (−1, 1] is
fixed. Then the sesquilinear form bλ(·, ·) introduced in (6.11) is symmetric, bounded,
non-negative, and closed.
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Furthermore, the Neumann-Stokes operator Bλ, originally introduced in (6.1)-(6.3), is
(in the terminology of § 4) the operator associated with bλ(·, ·). As a consequence,

Bλ is self-adjoint and nonnegative on H,(6.14)

−Bλ generates an analytic semigroup on H,(6.15)

D(|Bλ|
1/2) = D(B

1/2
λ ) = V,(6.16)

D(Bλ) is dense both in V and in H.(6.17)

Finally, Spec(Bλ), the spectrum of the operator (6.1)-(6.3) is a discreet subset of [0,∞).

Proof. Lemma 2.1 ensures that (4.1) holds, hence the formalism from § 4 applies. That
the form bλ(·, ·) in (6.11) is nonnegative, symmetric, sesquilinear and continuous is clear
from its definition. In addition, this form is coercive, hence closed. Indeed, when |λ| < 1
this follows directly from Proposition 6.6, whereas when λ = 1 this is a consequence of
the second inequality in (6.13) and Proposition 6.5.

We next wish to show the coincidence between the domain D(Bλ) of the Neumann-
Stokes operator in (6.2) and the space

{
~u ∈ V : there exists ~f ∈ H such that bλ(~w, ~u) = (~w, ~f)H for all ~w ∈ V

}
.(6.18)

In one direction, fix ~u ∈ V such that there exists ~f ∈ H for which
∫

Ω

Aλ(∇~w,∇~u) dx =

∫

Ω

〈~w, ~f〉 dx for every ~w ∈ V.(6.19)

Specializing (6.19) to the case when ~w ∈ C ∞
c (Ω)n is divergence-free yields, e.g., on account

of (2.35) used with π = 0, that

the distribution ~f +∆~u vanishes on
{
~w ∈ C

∞
c (Ω)n : div ~w = 0 in Ω

}
.(6.20)

Then, by virtue of Lemma 6.7, there exists a scalar distribution π̃ in Ω such that

∇π̃ = ~f +∆~u ∈ L2
−1(Ω)

n.(6.21)

Going further, (6.21) and Corollary 3.3 imply that, in fact,

π̃ ∈ L2(Ω) and ~f = −∆~u+∇π̃ in Ω.(6.22)

At this point we make the claim that there exists a constant c ∈ R with the property
that

π := π̃ − c =⇒ ∂λν (~u, π)~f = 0 in L2
−1/2(∂Ω)

n.(6.23)

To justify this, we first note that (3.38) (used with −~f in place of ~f) and (6.19) force
〈
∂λν (~u, π̃)~f , Tr ~w

〉
= 0 for every ~w ∈ V,(6.24)

hence, further,
〈
∂λν (~u, π̃)~f , ~ϕ

〉
= 0 for every ~ϕ ∈ L2

1/2,ν(∂Ω),(6.25)

by Lemma 2.3. To continue, fix some vector field ~ϕo ∈ L2
1/2(∂Ω)

n with the property that∫
∂Ω
ν · ~ϕo dσ = 1, and define

c :=
〈
∂λν (~u, π̃)~f , ~ϕo

〉
.(6.26)
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Now, given an arbitrary ~ϕ ∈ L2
1/2(∂Ω)

n, set η :=
∫
∂Ω
ν · ~ϕ dσ and compute

〈
∂λν (~u, π̃)~f , ~ϕ

〉
=

〈
∂λν (~u, π̃)~f , ~ϕ− η~ϕo

〉
+ η

〈
∂λν (~u, π̃)~f , ~ϕo

〉

= 0 + 〈c ν , ~ϕ〉,(6.27)

by (6.25), (6.26) and the definition of λ. Since ~ϕ ∈ L2
1/2(∂Ω) is arbitrary, this proves that

∂λν (~u, π̃)~f = c ν in L2
−1/2(∂Ω)

n.(6.28)

Thus,

∂λν (~u, π̃ − c)~f = ∂λν (~u, π̃)~f − ∂λν (~0, c)~0 = c ν − c ν = 0 in L2
−1/2(∂Ω)

n,(6.29)

hence (6.23) holds. Note that (6.22) also ensures that π ∈ L2(Ω) and ~f = −∆~u + ∇π
in Ω. Together, these conditions prove that the space in (6.18) is contained in D(Bλ)
(defined in (6.2)).

Conversely, the inclusion of D(Bλ) into the space in (6.18) is a direct consequence of the
definition of the domain of the Neumann-Stokes operator (in (6.2)) and the integration
by parts formula (3.38).

Once D(Bλ) has been identified with the space in (6.18), the fact that the Neumann-
Stokes operator Bλ, in (6.1)-(6.3) is, in the terminology of § 4, the operator associated
with the form bλ(·, ·) follows from (4.34). Finally, the claim made about Spec (Bλ) is a
consequence of the fact that Bλ is nonnegative and has a compact resolvent. �

7. The Stokes scale adapted to Neumann boundary conditions

Given a Lipschitz domain Ω ⊂ Rn and 1 < p <∞, s ∈ R, we set

(7.1) V s,p(Ω) :=
{
~u ∈ Lp

s(Ω)
n : div ~u = 0 in Ω

}
.

The first main result of this section is to show that the above scale is stable under complex
interpolation.

Theorem 7.1. For each Lipschitz domain Ω ⊂ Rn, the family

(7.2)
{
V s,p(Ω) : 1 < p <∞, s ∈ R

}

is a complex interpolation scale. In other words, if [·, ·]θ stands for the usual complex
interpolation bracket, then

(7.3)
[
V s0,p0(Ω) , V s1,p1(Ω)

]
θ
= V s,p(Ω)

whenever 1 < pi <∞, si ∈ R, i = 0, 1, θ ∈ [0, 1], 1
p
:= 1−θ

p0
+ θ

p1
and s := (1− θ)s0 + θs1.

Before turning to the proof of Theorem 7.1, we recall a version of an abstract interpolation
result from [24].

Lemma 7.2. Let Xi, Yi, i = 0, 1, be two pairs of Banach spaces such that X0 ∩ X1 is
dense in both X0 and X1, and similarly for Y0, Y1. Let D be a linear operator such that
D : Xi → Yi boundedly for i = 0, 1, and consider the following closed subspaces of Xi,
i = 0, 1:

(7.4) Ker (D;Xi) := {u ∈ Xi : Du = 0}, i = 0, 1.

Finally, suppose that there exists a continuous linear mapping G : Yi → Xi with the
property D ◦G = I, the identity on Yi for i = 0, 1. Then, for each 0 < θ < 1,

(7.5) [Ker (D;X0),Ker (D;X1)]θ = {u ∈ [X0, X1]θ : Du = 0}, θ ∈ (0, 1).
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Proof of Theorem 7.1. Denote by Π the harmonic Newtonian potential, i.e., the operator
of convolution with the standard fundamental solution for the Laplacian in Rn. Recall the
universal extension operator EΩ from Theorem 3.1. Without loss of generality, we may
assume that EΩu is supported in a fixed compact neighborhood of Ω for every distribution
u in Ω. Assuming that this is the case, we set

ΠΩ := RΩ ◦ Π ◦EΩ,(7.6)

where, as before, RΩu := u|Ω is the operator of restriction to Ω. Given that Π is smoothing
of order two, it follows that

ΠΩ : Lp
s(Ω) −→ Lp

s+2(Ω), 1 < p <∞, s ∈ R,(7.7)

is a well-defined, linear and bounded operator.
Next, fix p0, p1, p, s0, s1, s, θ as in the statement of the theorem. We shall implement

Lemma 7.2 in which we take

(7.8) Xi := Lpi
si
(Ω)n and Yi := Lpi

si−1(Ω), i = 0, 1,

as well as

(7.9) D := div and G := ∇ΠΩ.

Then since

(7.10) D : Xi −→ Yi, G : Yi −→ Xi, i = 0, 1,

are well-defined, linear and bounded, and since D ◦G = I, the identity, the conclusion in
Theorem 7.1 follows from Lemma 7.2. �

Our next goal is to identify the duals of the spaces in the Stokes scale introduced in
(7.1). As a preamble, we prove the following.

Proposition 7.3. Let Ω be a Lipschitz domain in Rn with outward unit normal ν and
assume that 1 < p <∞, −1 + 1

p
< s < 1

p
. Define the mapping

(7.11) ν· : V s,p(Ω) −→ Bp,p

s− 1

p

(∂Ω)

by setting

(7.12) 〈ν · ~u, φ〉 := 〈~u,∇Φ〉

for each φ ∈

(
Bp,p

s− 1

p

(∂Ω)

)∗

= Bp′,p′

−s+ 1

p

(∂Ω), where Φ ∈ Lp′

1−s(Ω) is such that TrΦ = φ.

Then the above definition is meaningful and the operator (7.11) is bounded in the sense
that

(7.13) ‖ν · ~u‖Bp,p

s− 1
p

(∂Ω) ≤ C‖~u‖Lp
s(Ω)n ,

for some finite C = C(Ω, s, p) > 0. Finally, the range of the operator (7.11)-(7.12) is

(7.14)
{
f ∈ Bp,p

s− 1

p

(∂Ω) : 〈f, 1〉 = 0
}
.

Proof. This follows from Proposition 2.7 in [29] and Proposition 2.1 in [28]. �

Theorem 7.4. Let Ω ⊂ Rn be a Lipschitz domain and fix 1 < p < ∞. Next, for each
−1 + 1/p < s < 1/p, let

(7.15) Js,p : V
s,p(Ω) →֒ Lp

s(Ω)
n
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be the canonical inclusion, and consider its adjoint

(7.16) J∗
s,p : L

p′

−s(Ω)
n −→

(
V s,p(Ω)

)∗

,

where 1/p + 1/p′ = 1. Then the mapping (7.16) is onto and its kernel is precisely

∇[Lp′

1−s,z(Ω)]. In particular,

(7.17) J∗
s,p :

Lp′

−s(Ω)
n

∇
[
Lp′

1−s,z(Ω)
] −→

(
V s,p(Ω)

)∗

is an isomorphism.

Proof. Since V s,p(Ω) is a closed subspace of Lp
s,z(Ω), Hahn-Banach’s theorem immediately

gives that the mapping (7.16) is onto. That (7.17) is an isomorphism will then follow
as soon as we show that KerJ∗

s,p, the null-space of the application (7.16), coincides with

∇[Lp′

1−s,z(Ω)]. In one direction, if ~u ∈ Lp′

−s(Ω)
n =

(
Lp
s(Ω)

n
)∗

is such that J∗
s,p(~u) = 0, then

〈~u,~v〉 = 0 for each ~v ∈ V s,p(Ω). Choosing ~v ∈ C ∞
c (Ω)n such that div~v = 0 in Ω shows,

on account of Lemma 6.7, that there exists a distribution w in Ω such that ∇w = ~u.

Proposition 3.2 then ensures that w ∈ Lp′

1−s(Ω), so that ~u = ∇w ∈ ∇
[
Lp′

1−s(Ω)
]
. There

remains to show that, after subtracting a suitable constant from w, this function can be

made to have trace zero and, hence, belong to Lp′

1−s,z(Ω). To this end, note that for each
~v ∈ V s,p(Ω) we have

0 = 〈~u,~v〉 = 〈∇w,~v〉 = 〈Trw, ν · ~v〉.(7.18)

Then the last claim in Proposition 7.3 shows that Trw is a constant, as wanted.

Conversely, if ~u = ∇Φ ∈ Lp′

−s(Ω)
n for some Φ ∈ Lp′

1−s,z(Ω) then Proposition 7.3 allows
us to write

(7.19) 〈J∗
s,p(~u), ~v〉 = 〈∇Φ, ~v〉 = 〈TrΦ, ν · ~v〉 = 0,

for every ~v ∈ V s,p(Ω). Thus, J∗
s,p(~u) = 0, finishing the proof of the theorem. �

Theorem 7.5. For each Lipschitz domain Ω ⊂ Rn there exists ε = ε(Ω) ∈ (0, 1] with the
following significance. Assume that 1 < p < ∞, −1 + 1/p < s < 1/p and that the pair
(s, 1/p) satisfies either of the following three conditions:

(I) : 0 < 1
p
< 1−ε

2
and − 1 + 1

p
< s < 3

p
− 1 + ε;

(II) : 1−ε
2

≤ 1
p
≤ 1+ε

2
and − 1 + 1

p
< s < 1

p
;(7.20)

(III) : 1+ε
2
< 1

p
< 1 and − 2 + 3

p
− ε < s < 1

p
.

Then

(7.21) Lp
s(Ω)

n = V s,p(Ω)⊕∇
[
Lp
s+1,z(Ω)

]
,

where the direct sum is topological (in fact, orthogonal when s = 0 and p = 2). Further-
more, if

(7.22) P : Lp
s(Ω)

n −→ V s,p(Ω)
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denotes the projection onto the first summand in the decomposition (7.21), then its kernel

is ∇
[
Lp
s+1,z(Ω)

]
. In particular,

(7.23) P :
Lp
s(Ω)

n

∇
[
Lp
s+1,z(Ω)

] −→ V s,p(Ω)

is an isomorphism. Also, the adjoint of the operator

(7.24) Pp,s : L
p
s(Ω)

n P
−→ V s,p(Ω)

Js,p
−→ Lp

s(Ω)
n

is the operator Pp′,−s, where 1/p+ 1/p′ = 1, and

(7.25)
(
V s,p(Ω)

)∗

= V −s,p′(Ω).

Proof. The decomposition (7.21) corresponding to the case when s = 0 has been estab-
lished in [9] via an approach which reduces matters to the well-posedness of the inhomo-
geneous Dirichlet problem for the Laplacian in the Lipschitz domain Ω. The more general
case considered here can be proved in an analogous fashion. With (7.21) in hand, the
claims about the projection (7.22) are straightforward.

Consider next the identification in (7.25). If ~u ∈ V −s,p′(Ω) define Λ~u ∈
(
V s,p(Ω)

)∗
by

setting

Λ~u(~v) := Lp
s(Ω)n

〈
Js,p~v , J−s,p′~u

〉
Lp′

−s(Ω)n
, ∀~v ∈ V s,p(Ω).(7.26)

Note that since −1 + 1/p < s < 1/p, the dual of Lp
s(Ω) is Lp′

−s(Ω), hence the duality
bracket makes sense. Then the mapping

Φ : V −s,p′(Ω) −→
(
V s,p(Ω)

)∗

, Φ(~u) := Λ~u,(7.27)

is well-defined, linear and bounded. Our goal is to show that this is an isomorphism. To
prove that Φ is onto, fix Λ ∈

(
V s,p(Ω)

)∗
. Recall the operator P from (7.22) and note that

Λ ◦ P ∈
(
Lp
s(Ω)

)∗
= Lp′

−s(Ω). That is, there exists ~w ∈ Lp′

−s(Ω) such that

(Λ ◦ P)~u = Lp
s(Ω)n

〈
~w , Js,p~u

〉
Lp′

−s(Ω)n
, ∀ ~u ∈ V s,p(Ω).(7.28)

Then ΛP~w = Φ(P~w) satisfies

ΛP~w(~v) = Lp
s(Ω)n

〈
Js,p~v , J−s,p′P~w

〉
Lp′

−s(Ω)n
= Lp

s(Ω)n

〈
Js,p~v , Pp′,−s ~w

〉
Lp′

−s(Ω)n

= Lp
s(Ω)n

〈
Pp,sJs,p~v , ~w

〉
Lp′

−s(Ω)n
= Lp

s(Ω)n

〈
Js,p~v , ~w

〉
Lp′

−s(Ω)n

= (Λ ◦ P)~v = Λ(~v), ∀~v ∈ V s,p(Ω).(7.29)
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Hence Λ = ΛP~w, proving that Φ is onto. To see that Φ is also one-to-one, we note that if
~u ∈ V −s,p′(Ω) is such that Λ~u = 0, then

Lp
s(Ω)n

〈
Js,p~v , J−s,p′~u

〉
Lp′

−s(Ω)n
= 0 ∀~v ∈ V s,p(Ω)

=⇒ Lp
s(Ω)n

〈
Js,pP~w , J−s,p′~u

〉
Lp′

−s(Ω)n
= 0 ∀ ~w ∈ Lp

s(Ω)

=⇒ Lp
s(Ω)n

〈
Pp,s ~w , J−s,p′~u

〉
Lp′

−s(Ω)n
= 0 ∀ ~w ∈ Lp

s(Ω)

=⇒ Lp
s(Ω)n

〈
~w , Pp′,−sJ−s,p′~u

〉
Lp′

−s(Ω)n
= 0 ∀ ~w ∈ Lp

s(Ω)

=⇒ Lp
s(Ω)n

〈
~w , J−s,p′~u

〉
Lp′

−s(Ω)n
= 0 ∀ ~w ∈ Lp

s(Ω)

=⇒ J−s,p′~u = 0 in Lp′

−s(Ω)
n

=⇒ ~u = 0 in V −s,p′(Ω).(7.30)

This shows that Φ in (7.27) is an isomorphism, thus finishing the proof of (7.25). The
proof of the theorem is therefore completed. �

8. The Poisson problem for the Stokes operator with Neumann

conditions

For a given Lipschitz domain Ω in Rn, n ≥ 2, the range of indices for which the Poisson
problem in Ω for the Stokes operator equipped with Neumann boundary conditions is well-
posed on Besov and Triebel-Lizorkin spaces depends on the dimension n of the ambient
space and the Lipschitz character of Ω. The latter is manifested by a parameter ε ∈ (0, 1]
which can be thought of as measuring the degree of roughness of Ω (thus, the larger ε the
milder the Lipschitz nature of Ω, and the smaller ε, the more acute Lipschitz nature of Ω).
To best describe these regions, for each n ≥ 2 and ε > 0 we let Rn,ε denote the following
sets. For n = 2, R2,ε is the collection of all pairs of numbers s, p with the property that
either one of the following two conditions below is satisfied:

(I2) : 0 ≤ 1
p
< s+ 1+ε

2
and 0 < s ≤ 1+ε

2
,

(II2) : −1+ε
2
< 1

p
− s < 1+ε

2
and 1+ε

2
< s < 1.

(8.1)

Corresponding to n = 3, R3,ε is the collection of all pairs s, p with the property that
either of the following two conditions holds:

(I3) : 0 ≤ 1
p
< s

2
+ 1+ε

2
and 0 < s < ε,

(II3) : − ε
2
< 1

p
− s

2
< 1+ε

2
and ε ≤ s < 1.

(8.2)

Finally, corresponding to n ≥ 4, we let Rn,ε denote the collection of all pairs s, p with the
property that

(In) :
n−3

2(n−1)
− ε < 1

p
− s

n−1
< 1

2
+ ε and 0 < s < 1, 1 < p <∞.(8.3)

The following well-posedness result has been recently established in [32].

Theorem 8.1. Let Ω be a bounded Lipschitz domain in Rn, n ≥ 2, with connected
complement, and fix n−1

n
< p ≤ ∞, 0 < q ≤ ∞, and (n − 1)

(
1
p
− 1

)
+
< s < 1. Also,
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assume that λ ∈ (−1, 1] and µ ∈ C \ Spec (Bλ). Then there exists ε = ε(Ω) ∈ (0, 1] such
that the Poisson problem for the Stokes system with Neumann boundary condition

(8.4)
µ~u−∆~u+∇π = ~f

∣∣∣
Ω
, ~f ∈ Bp,q

s+ 1

p
−2,0

(Ω)n, div ~u = 0 in Ω,

~u ∈ Bp,q

s+ 1

p

(Ω)n, π ∈ Bp,q

s+ 1

p
−1
(Ω), ∂λν (~u, π)~f−µ~u = 0 in Bp,q

s−1(∂Ω)
n,

has a unique solution if the pair s, p belongs to the region Rn,ε, described in (8.1)-(8.3).
In addition, the solution satisfies the estimate

(8.5) ‖~u‖Bp,q

s+1
p

(Ω)n + ‖π‖Bp,q

s+1
p−1

(Ω) ≤ C‖~f‖Bp,q

s+1
p−2,0

(Ω)n ,

for some finite constant C = C(Ω, n, p, s, λ, µ) > 0.
Moreover, an analogous well-posedness result holds for the problem

(8.6)
µ~u−∆~u+∇π = ~f

∣∣∣
Ω
, ~f ∈ F p,q

s+ 1

p
−2,0

(Ω)n, div ~u = 0 in Ω,

~u ∈ F p,q

s+ 1

p

(Ω)n, π ∈ F p,q

s+ 1

p
−1
(Ω), ∂λν (~u, π)~f−µ~u = 0 in Bp,p

s−1(∂Ω)
n,

assuming that p, q <∞.

Strictly speaking, the above theorem has been proved in [32] when µ = 0 (in which
case the data must satisfy certain necessary compatibility conditions, and uniqueness is
valid up a finite dimensional space). The method of proof in [32] is constructive as it
relies on integral representation formulas (involving hydrostatic potential operators). As
such, this approach can be easily adapted to the slightly more general case above, since the

difference between the fundamental solutions for the original Stokes system
{
−∆ ~u+∇π =

0 , div ~u = 0
}
and the lower-order perturbation

{
(µ−∆) ~u+∇π = 0 , div ~u = 0

}
is only

weakly singular. We leave the straightforward details to the interested reader.

9. Domains of fractional powers of the Neumann Stokes operator: I

Here we study the global regularity, measured on the Sobolev scale, of vector fields in
the domains of fractional powers of the Neumann Stokes operator. Our first result in this
regard reads as follows:

Theorem 9.1. Let Ω be a Lipschitz domain in Rn and fix λ ∈ (−1, 1]. Then the domain of
the fractional power of the Neumann Stokes operator Bλ introduced in (6.2)-(6.3) satisfies

(9.1) D(B
s
2

λ ) =
{
~u ∈ L2

s(Ω)
n : div ~u = 0

}
if 0 ≤ s ≤ 1,

and

(9.2) ~u ∈ D(B
s
2

λ ) ⇐⇒

{
~u ∈ V and there exists π ∈ L2(Ω) such that

~f := −∆ ~u+∇π ∈ L2
s−2(Ω)

n and ∂λν (~u, π)~f = 0,

granted that s ∈ (3/2, 2].

Proof. Consider the families of spaces
{
V s,2(Ω) : s ∈ R

}
and

{
D(B

s
2 ) : 0 ≤ s ≤ 2

}
.

From Theorem 7.1 and (5.11) we know that both are complex interpolation scales, and

(9.3) D(B0
λ) = H = V 0,2(Ω), D(B

1

2

λ ) = V = V 1,2(Ω).
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Thus, by complex interpolation,

(9.4) D(B
s
2

λ ) = V s,2(Ω), 0 ≤ s ≤ 1,

which gives the description of D(B
s
2

λ ) in (9.1).

To study larger values of s, recall the form bλ(·, ·) and the operator B̃λ induced by it.
From (5.20)-(9.4) we obtain

(9.5) D(B
s
2

λ ) = (Ĩ + B̃λ)
−1
(
V 2−s,2(Ω)

)∗

, 1 ≤ s ≤ 2.

Thus, by (7.25),

(9.6) ~u ∈ D(B
s
2

λ ) ⇐⇒ ~u ∈ V and (Ĩ + B̃λ)~u ∈ V s−2,2(Ω), if 3
2
< s ≤ 2.

Consequently, if s ∈ (3/2, 2], then by taking into account the very definition of B̃λ we
arrive at the conclusion that

(9.7) ~u ∈ D(B
s
2

λ ) ⇐⇒

{
~u ∈ V and ∃ ~f ∈ L2

s−2(Ω)
n such that

〈~f, ~v〉 =
∫
Ω
~u · ~v dx+

∫
Ω
Aλ(∇~u,∇~v) dx, ∀~v ∈ V.

Much as before, by relying on Lemma 6.7, Corollary 3.3 and Proposition 3.6, it follows
from (9.7) that

(9.8) ~u ∈ D(B
s
2

λ ) ⇐⇒

{
~u ∈ V and there exists π ∈ L2(Ω) such that

~f := (1−∆) ~u+∇π ∈ L2
s−2(Ω)

n and ∂λν (~u, π)~f−~u = 0,

With this in hand, (9.2) follows after re-denoting ~f − ~u by ~f . �

It is possible to further extend the scope of the above analysis. In order to facilitate the
subsequent discussion, for each ε ∈ (0, 1], s ∈ [3

2
, 2] and n ≥ 2, define the two dimensional

region

(9.9) Rn,s,ε :=





(θ, 1
p
) : 0 < 1

p
< θ < 1 + 1

p
< 2, θ ≤ s, and

1
2
+ ε > 1

p
− θ

n
≥ 1

2
− s

n
if 3

2
≤ s < n

n−1
+ εn,

1
2
+ ε > 1

p
− θ

n
> − ε

n
if n

n−1
+ εn < s ≤ 2.

The figures below depict the region Rn,s,ε in the case when 3
2
≤ s < n

n−1
+ εn,

slope 1/n

ε

1

1/2

0

1/2−s/n

1/p

θ

slope  1/n

1/2 +  

23/21 s

and when n
n−1

+ εn < s ≤ 2, respectively:
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slope   1/n

ε

n−3
2(n−1)

ε

s

1

1/2

0

slope   1/n

1/p

θ

1/2 +  

23/21

Theorem 9.2. For every Lipschitz domain Ω ⊂ Rn, n ≥ 2, there exists ε = ε(∂Ω) > 0
with the property that for every s ∈ (3/2, 2] and λ ∈ (−1, 1] the following implication
holds:

(9.10) (θ, 1/p) ∈ Rn,s,ε =⇒ D(B
s/2
λ ) ⊂ Lp

θ(Ω)
n.

Proof. The strategy is to combine the characterization (9.2) with the well-posedness re-
sult for the Poisson problem for the Stokes system equipped with Neumann boundary

conditions. In concert, these two results show that D(B
α/2
λ ) ⊂ Lp

θ(Ω)
n provided

(9.11)
∃ s, p belonging to the region Rn,ε such that

θ = s+ 1/p and L2
α−2(Ω) →֒ Lp

θ−2(Ω).

Now, elementary algebra shows that, given α ∈ (3/2, 2], the condition (9.11) holds if and
only if (θ, 1/p) ∈ Rn,α,ε. Clearly, this proves (9.10), after re-adjusting notation. �

Corollary 9.3. For a Lipschitz domain Ω in Rn one has

D(Bα
λ ) ⊂

⋃

p> 2n
n−1

Lp
1(Ω)

n if α > 3
4
.(9.12)

Also, when n = 3,

D(Bα
λ ) ⊂ C

2α−3/2(Ω̄)3 if 3
4
< α < 3

4
+ ε,(9.13)

and when n = 2,

D(Bα
λ ) ⊂ C

2α−1(Ω̄)2 if 3
4
< α < 3

4
+ ε,(9.14)

for some small ε = ε(Ω) > 0.

Proof. These are all immediate consequences of Theorem 9.2 and classical embedding
results. �

10. Domains of fractional powers of the Neumann Stokes operator: II

The aim of this section is to augment the results in Theorem 9.1 by including a de-

scription of D(B
s/2
λ ) in the case when s ∈ (1, 3/2]. See Theorem 10.5 below. We begin

by revisiting the Neumann-Leray projection (7.22), with the goal of further extending the
range of action of this operator.

Lemma 10.1. Assume that Ω is a Lipschitz domain in Rn and that s ∈ R, p, p′ ∈ (1,∞),
1/p+ 1/p′ = 1. Then the operator

P̂s,p : L
p′

−s,0(Ω)
n =

(
Lp
s(Ω)

n
)∗

−→
(
V s,p(Ω)

)∗
(10.1)
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(where we have used the isomorphism Ψ defined in (3.15) to identify Lp′

−s,0(Ω)
n and(

Lp
s(Ω)

n
)∗
) defined by the requirement that

V s,p(Ω)

〈
~v, P̂s,p~u

〉
(V s,p(Ω))∗

= Lp
s(Ω)n

〈
Js,p~v, ~u

〉
(Lp

s(Ω)n)∗
∀~v ∈ V s,p(Ω),(10.2)

is well-defined, linear, bounded and onto. In addition, any two such operators act co-

herently, i.e., P̂s1,p1 = P̂s2,p2 on L
p′
1

−s1,0
(Ω)n ∩ L

p′
2

−s2,0
(Ω)n for any numbers s1, s2 ∈ R and

p1, p2 ∈ (1,∞). Also, the null-space of (10.1)-(10.2) is

Ker
[
P̂ : Lp′

−s,0(Ω)
n −→

(
V s,p(Ω)

)∗]
= ∇

[
Lp′

1−s,0(Ω)
]
.(10.3)

Finally, if corresponding to s = 1 and p = 2 one considers

P̂1,2 : L
2
−1,0(Ω)

n =
(
L2
1(Ω)

n
)∗

−→ V∗,

V

〈
~v, P̂1,2~u

〉
V∗

= L2
1
(Ω)n

〈
J1,2~v, ~u

〉
(L2

1
(Ω)n)∗

∀~v ∈ V,
(10.4)

then the diagram

(10.5)

L2
−1,0(Ω)

n P̂1,2

−−−→ V∗

x
x

L2(Ω)n
P

−−−→ H

in which the vertical arrows are natural inclusions, is commutative. Consequently, the
Neumann-Leray projection (7.22) extends as in (10.4).

Proof. That (10.1)-(10.2) is well-defined and bounded is clear from the continuity of the
inclusion Js,p : V s,p(Ω) →֒ Lp

s(Ω)
n. Using the fact that V s,p(Ω) is a closed subspace of

Lp
s(Ω)

n, the Hahn-Banach theorem, and (3.15), it is straightforward to show that the
operator (10.1) is onto. It is also clear from (10.2) that this family of operators acts in a
mutually compatible fashion.

The left-to-right inclusion in (10.3) is a direct consequence of the fact that

Lp
s(Ω)n

〈
Js,p~v , ∇π

〉
Lp′

−s,0(Ω)n
= 0, ∀~v ∈ V s,p(Ω), ∀ π ∈ Lp′

1−s,0(Ω).(10.6)

In turn, (10.6) follows from a standard density argument (based on the fact that the
inclusion (3.16) has dense range), and the fact that vector fields in V s,p(Ω) are, in the
sense of distribution, divergence-free. To prove the opposite inclusion in (10.3), assume

that ~u ∈ Lp′

−s,0(Ω)
n is such that

Lp
s(Ω)n

〈
Js,p~v, ~u

〉
(Lp

s(Ω)n)∗
= 0, ∀~v ∈ V s,p(Ω).(10.7)

Then, on account of (3.18), for every ~w ∈ C∞
c (Rn)n such that div ~w = 0 in Rn we have

Lp
s(Rn)n

〈
~w, ~u

〉
Lp′

−s(R
n)n

= Lp
s(Ω)n

〈
RΩ ~w, ~u

〉
Lp′

−s,0(Ω)n
= 0,(10.8)

thanks to (10.7), used with ~v := RΩ ~w. With this in hand, Lemma 6.7 then shows that
~u = ∇π for some distribution π in Rn. In fact, since ~u is supported in Ω and Rn \ Ω
is connected, after eventually subtracting a constant it can be arranged that π is also

supported in Ω. Finally, Proposition 3.2 gives that π ∈ Lp′

1−s(R
n) so that, all together,

π ∈ Lp′

1−s,0(Ω). This shows that ~u ∈ ∇
[
Lp′

1−s,0(Ω)
]
and completes the proof of the right-

to-left inclusion in (10.3). Thus, (10.3) holds.
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Next, to show that the diagram (10.5) is commutative, pick ~u ∈ L2(Ω)n and use (7.21)
(with s = 0 and p = 2) in order to decompose it as P~u+∇π for some π ∈ L2

1,z(Ω). Then,
since by (10.6)

(J1,2~v,∇π)L2(Ω)n = 0 ∀~v ∈ V,(10.9)

for every ~v ∈ V we have

V

〈
J1,2~v, P̂1,2~u

〉
V∗

= L2
1
(Ω)n

〈
J1,2~v, ~u

〉
(L2

1
(Ω)n)∗

=
(
J1,2~v, ~u

)
L2(Ω)n

=
〈
J1,2~v,P~u

〉
L2(Ω)n

+
(
J1,2~v,∇π

)
L2(Ω)n

= V

〈
~v,P~u

〉
V∗
.(10.10)

This shows that P̂1,2~u = P~u in V∗, as desired. �

Remark 10.2. A close inspection of the above argument shows that, for each p ∈ (1,∞)
and s ∈ R, the operator (10.1)-(10.2) factors as

(10.11) P̂ : Lp′

−s,0(Ω)
n −→

Lp′

−s,0(Ω)
n

∇
[
Lp′

1−s,0(Ω)
] −→

(
V s,p(Ω)

)∗

,

where the first arrow is the canonical projection onto the quotient space, and the second
arrow is an isomorphism naturally induced by J∗

s,p, the adjoint of (7.15).

Next, let Ω ⊂ Rn be a Lipschitz domain and assume that λ ∈ (−1, 1] has been fixed.

Recall the operator B̃λ induced by the sesquilinear form bλ(·, ·), i.e.,

B̃λ : V −→ V∗, B̃λ~u := bλ(·, ~u) ∈ V∗, ~u ∈ V.(10.12)

Next, fix ~u ∈ V , so that B̃λ~u : V → C is a linear, bounded functional. Since V is
a closed subspace of L2

1(Ω)
n, the Hahn-Banach theorem ensures the existence of some

linear, bounded functional ~f : L2
1(Ω)

n → C with the property that ~f |V = (Ĩ + B̃λ)~u.

Thus, ~f ∈
(
L2
1(Ω)

n
)∗

= L2
1,0(Ω)

n satisfies

L2
1
(Ω)n

〈
~v, ~f

〉
(L2

1
(Ω)n)∗

= V

〈
~v, (Ĩ + B̃λ)~u

〉
V∗

=

∫

Ω

~u · ~v dx+

∫

Ω

Aλ(∇~u,∇~v) dx, ~v ∈ V →֒ L2
1(Ω)

n.(10.13)

Specializing this to the case when ~v belongs to {~v ∈ C ∞
c (Ω)n : div~v = 0 in Ω} shows that

the distribution ~f |Ω − (1 −∆) ~u ∈ L2
−1(Ω)

n annihilates this space. Thus, by Lemma 6.7,
there exists a distribution π in Ω such that

∇π = ~f
∣∣∣
Ω
−(1−∆)~u ∈ L2

−1(Ω)
n.(10.14)

In particular, π ∈ L2(Ω) by Corollary 3.3. Returning with this information back in (10.13)
and invoking (3.38) then shows that, after an eventual re-normalization of π (done by
subtracting a suitable constant, similar in spirit to (6.23)), matters can be arranged so
that

∂λν (~u, π)~f−~u = 0 in L2
−1/2(∂Ω)

n.(10.15)

The stage is now set for proving the following result.

Proposition 10.3. Suppose that Ω ⊂ Rn is a Lipschitz domain and that λ ∈ (−1, 1].
Then for every ~u ∈ V there exist

π ∈ L2(Ω) and ~f ∈ L2
−1,0(Ω)

n(10.16)
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such that

(1−∆)~u+∇π = ~f
∣∣∣
Ω

in L2
−1(Ω)

n,(10.17)

∂λν (~u, π)~f−~u = 0 in L2
−1/2(∂Ω)

n,(10.18)

and (Ĩ + B̃λ)~u = P̂1,2
~f in V∗.(10.19)

Furthermore, if ~g ∈ L2
−1,0(Ω)

n is such that P̂1,2 ~g = P̂1,2
~f , then there exists q ∈ L2(Ω)

with the property that

(1−∆)~u+∇(π − q) = ~g
∣∣∣
Ω

in L2
−1(Ω)

n,(10.20)

∂λν (~u, π − q)~g−~u = 0 in L2
−1/2(∂Ω)

n.(10.21)

Proof. The existence of π, ~f as in (10.16) and for which (10.17)-(10.18) are satisfied is clear
from the discussion preceding the statement of the proposition. Hence, there remains to
prove (10.19). This, however, is a direct consequence of Lemma 10.1 and the first equality
in (10.13).

There remains to take care of the claim in the second part of the statement. To this

end, we first note that P̂1,2(~f − ~g) = 0 entails

L2
1
(Ω)n

〈
J1,2~v, ~f − ~g

〉
(L2

1
(Ω)n)∗

= 0, ∀~v ∈ V.(10.22)

Thus, based on (10.3) we may conclude that there exists some scalar function q̂ ∈ L2(Ω)

with the property that (~f − ~g)|Ω = ∇q̂ in L2
−1(Ω). In turn, this and (10.17) yield

(1−∆)~u+∇(π − q̂) = ~g
∣∣∣
Ω

in L2
−1(Ω)

n.(10.23)

Going further, formula (3.38) gives that for every ~w ∈ V →֒ L2
1(Ω)

n

〈
Tr ~w , ∂λν (~u, π − q̂)~g−~u

〉
=

∫

Ω

~w · ~u dx+ Aλ

(
∇~w,∇~u

)

−L2
1
(Ω)n

〈
J1,2 ~w,~g

〉
(L2

1
(Ω)n)∗

.(10.24)

On the other hand, for every ~w ∈ V we have

L2
1
(Ω)n

〈
J1,2 ~w,~g

〉
(L2

1
(Ω)n)∗

= V〈~w, P̂1,2 ~g
〉
V∗

= V〈~w, P̂1,2
~f
〉
V∗

= L2
1
(Ω)n

〈
J1,2 ~w, ~f

〉
(L2

1
(Ω)n)∗

=

∫

Ω

~w · ~u dx+ Aλ

(
∇~w,∇~u

)
,(10.25)

by hypotheses, (10.4), (3.38) and (10.18). Together, this and (10.24) then prove that
〈
∂λν (~u, π − q̂)~g−~u , Tr ~w

〉
= 0, ∀ ~w ∈ V →֒ L2

1(Ω)
n.(10.26)

With this in hand, and by proceeding as in (6.24)-(6.29), we may then conclude that there
exists a constant c ∈ R with the property that if q := q̂− c then (10.20)-(10.21) hold. �

Once again, suppose that Ω ⊂ Rn is a Lipschitz domain and that λ ∈ (−1, 1]. Also, fix
p ∈ (1,∞) and assume that 1/p < s < 1 + 1/p, 1 < p′ < ∞, 1/p + 1/p′ = 1. Then the
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operator B̃λ from (10.12) extends to a bounded mapping

B̃λ : V s,p(Ω) −→
(
V 2−s,p′(Ω)

)∗

,

B̃λ~u := Aλ(·, ~u) ∈
(
V 2−s,p′(Ω)

)∗

, ~u ∈ V s,p(Ω).
(10.27)

A similar line of reasoning as in the proof of Proposition 10.3 (the only significant difference
is that Proposition 3.2 is used in place of Corollary 3.3) then yields the following.

Proposition 10.4. Retain the above notation and conventions. Also, assume that µ ∈ R.
Then for every ~u ∈ V s,p(Ω) there exist

π ∈ Lp
s−1(Ω) and ~f ∈ LP

s+1/p−2,0(Ω)
n(10.28)

such that

(µ−∆)~u+∇π = ~f
∣∣∣
Ω

in Lp
s+1/p−2(Ω)

n,(10.29)

∂λν (~u, π)~f−µ~u = 0 in Bp,p
s−1(∂Ω)

n,(10.30)

and (µĨ + B̃λ)~u = P̂s,p
~f in

(
V 2−s,p′(Ω)

)∗

.(10.31)

The stage has now been set for us to prove the following.

Theorem 10.5. Let Ω ⊂ Rn be a Lipschitz domain and assume that λ ∈ (−1, 1]. Then
the domain of the fractional power of the Neumann-Stokes operator Bλ satisfies

(10.32) D(B
s
2

λ ) =
{
~u ∈ L2

s(Ω)
n : div~u = 0 in Ω

}
if s ∈ (1, 3

2
).

Furthermore, corresponding to s = 3/2, one has that ~u ∈ D(B
3

4

λ ) if and only if




~u ∈ V and ∃ π ∈ L2(Ω), ∃ ~f ∈ L2
−1/2,0(Ω)

n →֒ L2
−1,0(Ω)

n,

such that (1−∆) ~u+∇π = ~f
∣∣∣
Ω

in L2
−1/2(Ω)

n →֒ L2
−1(Ω)

n,

and for which ∂λν (~u, π)~f−~u = 0 in L2
−1/2(∂Ω)

n.

(10.33)

Proof. Assume that s ∈ [1, 2] and recall (9.5). Much as with (9.6), we have

(10.34) ~u ∈ D(B
s
2

λ ) ⇐⇒ ~u ∈ V and (Ĩ + B̃λ)~u ∈
(
V 2−s,2(Ω)

)∗

→֒ V∗.

Now, given ~u ∈ D(B
s
2

λ ), Proposition 10.3 ensures that there exist ~f , π as in (10.16)
such that (10.17)-(10.19) are satisfied. On the other hand, from Lemma 10.1 we know
that the operator (10.1) is onto. This implies that there exists ~g ∈ L2

s−2,0(Ω)
n such

that P̂1,2 ~g = (Ĩ + B̃λ)~u in V∗. Then, according to the second part in the statement of
Proposition 10.3, there exists q ∈ L2(Ω) such that (10.20)-(10.21) hold. As a consequence,
if π̃ := π − q, then for each s ∈ [1, 2],
(10.35)

~u ∈ D(B
s
2

λ ) ⇐⇒





~u ∈ V and ∃ π̃ ∈ L2(Ω), ∃~g ∈ L2
s−2,0(Ω)

n →֒ L2
−1,0(Ω)

n,

such that (1−∆) ~u+∇π̃ = ~g
∣∣∣
Ω

in L2
s−2(Ω)

n →֒ L2
−1(Ω)

n,

and for which ∂λν (~u, π̃)~g−~u = 0 in L2
−1/2(∂Ω)

n.

After adjusting notation, this equivalence with s = 3/2 proves (10.33).
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Assume next that s ∈ (1, 3
2
). With ~u, π̃ and ~g as in the right-hand side of (10.35), let

(~w, ρ) solve

(10.36)





~u ∈ L2
s(Ω)

n, ρ ∈ L2
s−1(Ω),

(1−∆) ~w +∇ρ = ~g
∣∣∣
Ω
,

div ~w = 0 in Ω,

∂λν (~w, ρ)~g−~w = 0 in L2
s−3/2(∂Ω)

n.

That this is possible is ensured by Theorem 8.1. Then the difference (~v, η) := (~u, π̃)−(~w, ρ)
solves the homogeneous system

(10.37)





~v ∈ L2
s(Ω)

n, η ∈ L2
s−1(Ω),

(1−∆)~v +∇η = 0 in Ω,

div~v = 0 in Ω,

∂λν (~v, η)−~v = 0 in L2
−1/2(∂Ω)

n.

This then forces ∂λν (~v, η)−~v = 0 in L2
s−3/2(∂Ω)

n and, hence, ~v = 0, η = 0 in Ω by the

uniqueness part in Theorem 8.1. Thus, ultimately, ~u = ~w ∈ L2
s(Ω)

n and π̃ = ρ ∈ L2
s−1(Ω).

This proves the left-to-right inclusion in (10.32). The opposite implication in (10.32)
then follows from (10.35) and Proposition 10.4 (considered with p = 2 and µ = 1). �

Having established Theorem 10.5, the same argument as in the proof of Theorem 9.2
yields the following:

Corollary 10.6. The end-point case s = 3/2 in (9.10) holds as well. As a corollary, if
n = 3 then

D(B
3

4

λ ) ⊂ L3
1(Ω)

3.(10.38)

It should be noted that this is the counterpart of a similar result for the Dirichlet-Stokes
operator first established in [29].

We conclude this section with the following remark, whose veracity is apparent from a
close inspection of earlier proofs:

Remark 10.7. All regularity results established in this paper for D(Bα
λ ) are also valid in

the case of D((µI + Bλ)
α) if µ ≥ 0. Furthermore, results similar in spirit hold in the

case of the Stokes system with Neumann boundary conditions considered in Lipschitz
subdomains of Riemannian manifolds (cf. [29] for the Dirichlet-Stokes operator in such a
setting).

11. Navier-Stokes equations

In this section, we make use of our earlier analysis of the fractional powers of the Stokes
system in order to study issues such as existence, uniqueness and regularity for the Navier-
Stokes system in bounded Lipschitz subdomains of R3, in the sense of mild solutions as
in (1.22). We are interested in the critical case, as far as functional spaces are concerned,

i.e., ~u0 ∈ D(B
1/4
λ ), where Bλ has been defined in Section 6. The ideas here follow the

lines developed in [29] in the case of Dirichlet boundary conditions.
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11.1. Existence. Let Ω be a bounded Lipschitz domain in R3 and fix λ ∈ (−1, 1]. Then
for each T > 0, define the following Banach space:

FT :=
{
~u ∈ C ([0, T ];D(B

1

4

λ )) ∩ C
1((0, T ];D(B

3

4

λ )) :

sup
0<s<T

‖s
1

2B
3

4

λ ~u(s)‖H + sup
0<s<T

‖s
3

4~u′(s)‖H + sup
0<s<T

‖s
3

2B
3

4

λ ~u
′(s)‖H <∞

}
,(11.1)

where H and Bλ are as in Section 6, endowed with the norm

‖~u‖FT
:= sup

0<s<T
‖B

1

4

λ ~u(s)‖H + sup
0<s<T

‖s
1

2B
3

4

λ ~u(s)‖H

+ sup
0<s<T

‖s
3

4~u′(s)‖H + sup
0<s<T

‖s
3

2B
3

4

λ ~u
′(s)‖H.(11.2)

Following (5.2)-(5.3), −Bλ generates an analytic semigroup. For the convenience of
notation, let us denote the Neumann-Stokes semigroup by

(11.3) (S~u0)(t) := e−tBλ~u0, ~u0 ∈ H, t ≥ 0,

Lemma 11.1. If ~u0 ∈ D(B
1

4

λ ) then S~u0 ∈ FT for each T > 0 and

(11.4) ‖S~u0‖FT
≤ C‖B

1

4

λ ~u0‖H

where C > 0 is a finite constant independent of T > 0.

Proof. Fix some number T > 0, as well as a divergence-free vector field ~u0 ∈ D(B
1

4

λ ).
Since (S~u0)

′(t) = −Bλe
−tBλ~u0 for t > 0, it follows from (5.11) that

S~u0 ∈ C ([0, T ];D(B
1

4

λ )) ∩ C
1((0, T ];D(B

3

4

λ )).(11.5)

We also have that

t
1

2B
3

4

λ (S~u0)(t) = t
1

2B
1

2

λ e
−tBλB

1

4

λ ~u0(11.6)

is bounded from (0, T ) into H. Likewise, the functions

t
3

2B
3

4

λ (S~u0)
′(t) = −t

3

2B
3

2

λ e
−tBλB

1

4

λ ~u0(11.7)

and

t
3

4 (S~u0)
′(t) = −t

3

4B
3

4

λ e
−tBλB

1

4

λ ~u0(11.8)

are bounded from (0, T ) into H. This proves that S~u0 ∈ FT . Now, (11.4) is implicit in
the above analysis. �

Recall the operator P from (7.22) for p = 2, s ∈ (−1
2
, 1
2
) and, for each ~u,~v ∈ FT ,

introduce

(11.9) Φ(~u,~v)(t) :=

∫ t

0

e−(t−s)Bλ(−1
2
P)((~u(s) · ∇)~v(s) + (~v(s) · ∇)~u(s)) ds, 0 < t < T.

Proposition 11.2. The application

(11.10) Φ : FT × FT −→ FT

is well-defined, bilinear, symmetric and continuous. Furthermore,

(11.11) ‖Φ(~u,~v)‖FT
≤ κ‖~u‖FT

‖~v‖FT
, ~u, ~v ∈ FT ,

where κ = κ(Ω) > 0 is a finite constant, independent of T .
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Proof. The fact that Φ is bilinear and symmetric is clear. Moreover, Φ(~u,~v) = e−·Bλ ∗ ~f ,

where ~f is defined by

(11.12) ~f(s) := (−1
2
P)((~u(s) · ∇)~v(s) + (~v(s) · ∇)~u(s)), 0 < s < T.

We have D(B
3

4

λ ) ⊂ L3
1(Ω,R

3) by (10.38) and [D(B
1

4

λ ), D(B
3

4

λ )] 1
2
= D(B

1

2

λ ) ⊂ L6(Ω,R3).

Thus, by Hölder’s inequality, (~u(s) ·∇)~v(s)+(~v(s) ·∇)~u(s) ∈ L2(Ω,R3) for each ~u,~v ∈ FT

and, therefore, ~f(s) ∈ H for s ∈ (0, T ), with

sup
0<s<T

s
3

4‖~f(s)‖H ≤ sup
0<s<T

{
s

3

4

(
‖~u(s)‖L3

1
(Ω,R3)‖~v(s)‖L6(Ω,R3)

+‖~v(s)‖L3
1
(Ω,R3)‖~u(s)‖L6(Ω,R3)

)}

≤ C sup
0<s<T

{
s

3

4

(
‖~u(s)‖

D(B
3
4
λ
)
‖~v(s)‖

1/2

D(B
1
4
λ
)
‖~v(s)‖

1/2

D(B
3
4
λ
)

+‖~v(s)‖
D(B

3
4
λ
)
‖~u‖

1/2

D(B
1
4
λ
)
‖~u(s)‖

1/2

D(B
3
4
λ
)

)}

≤ C sup
0<s<T

{
s

3

4

(
‖B

3

4

λ ~u(s)‖‖B
1

4

λ ~v(s)‖
1/2
H ‖B

3

4

λ~v(s)‖
1/2
H

+‖B
3

4

λ~v(s)‖H‖B
1

4

λ ~u(s)‖
1/2
H ‖B

3

4

λ ~u(s)‖
1/2
H

)}

≤ C‖~u‖FT
‖~v‖FT

.(11.13)

Based on (11.13) and (5.11) we may then estimate

‖B
1

4

λΦ(~u,~v)(t)‖H ≤

∫ t

0

‖B
1

4

λ e
−(t−s)Bλ‖L (H)‖~f(s)‖H ds

≤ C
(∫ t

0

(t− s)−
1

4 s−
3

4 ds
)
‖~u‖FT

‖~v‖FT

≤ C
(∫ 1

0

(1− σ)−
1

4σ− 3

4 dσ
)
‖~u‖FT

‖~v‖FT

≤ C‖~u‖FT
‖~v‖FT

.(11.14)

In order to check that the application [0, T ] ∋ t 7→ Φ(~u,~v)(t) ∈ D(B
1

4

λ ) is continuous, fix

an arbitrary to ∈ [0, T ] and estimate ‖B
1

4

λΦ(~u,~v)(t) − B
1

4

λΦ(~u,~v)(to)‖H by distinguishing
two scenarios: 0 ≤ t ≤ to, and to ≤ t ≤ T . In the first case, we recall a general identity
to the effect that

(11.15) e−tBλ ~w − e−toBλ ~w = Bλ

(∫ to

t

e−τBλ ~w dτ

)
, ∀ ~w ∈ H.

Cf. [35, (2.4), pp. 5]. Formula (11.15) allows us to write

B
1

4

λΦ(~u,~v)(t)− B
1

4

λΦ(~u,~v)(to)

= B
1

4

λ

∫ t

0

Bλ

(∫ to

t

e−(τ−s)Bλ ~f(s) dτ

)
ds+

∫ to

t

B
1

4

λ e
−(t−s)Bλ ~f(s) ds

=: I1 + I2.(11.16)
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Now,

‖I1‖H ≤ C sup
0<s<T

[
s

3

4‖~f(s)‖H

] [∫ t

0

(∫ to

t

dτ

(τ − s)5/4

)
s−

3

4 ds

]

≤ C‖~u‖FT
‖~v‖FT

∫ t

0

[
(to − s)−

1

4 − (t− s)−
1

4

]
s−

3

4 ds −−−→
tրto

0,(11.17)

and

(11.18) ‖I2‖H ≤ C‖~u‖FT
‖~v‖FT

(∫ to

t

(t− s)−
1

4s−
3

4 ds
)
−−−→
tրto

0.

Thus, altogether, ‖B
1

4

λΦ(~u,~v)(t)−B
1

4

λΦ(~u,~v)(to)‖H −−−→
tրto

0. In fact, the same is true when

tց to and this ultimately shows that

(11.19) Φ(~u,~v) ∈ C ([0, T ];D(B
1

4

λ )) and sup
0<t<T

‖B
1

4

λΦ(~u,~v)(t)‖H ≤ C‖~u‖FT
‖~v‖FT

for every ~u,~v ∈ FT , where C > 0 is a finite constant, independent of T > 0.
Going further, we estimate

‖B
3

4

λΦ(~u,~v)(t)‖H ≤

∫ t

0

‖B
3

4

λ e
−(t−s)Bλ‖L (H)‖~f(s)‖H ds

≤ C

(∫ t

0

(t− s)−
3

4 s−
3

4 ds

)
‖~u‖FT

‖~v‖FT

≤ C t−
1

2

(∫ 1

0

(1− σ)−
3

4σ− 3

4 dσ
)
‖~u‖FT

‖~v‖FT

≤ C t−
1

2‖~u‖FT
‖~v‖FT

.(11.20)

The continuity of the map (0, T ] ∋ t 7→ B
3

4

λΦ(~u,~v)(t) ∈ H can then be established as
before. In order to estimate the derivative in time of Φ(~u,~v)(t), we first note that for each
s ∈ (0, T )

(11.21) ~f ′(s) = (−1
2
P)((~u′(s) ·∇)~v(s)+ (~u(s) ·∇)~v′(s)+ (~v′(s) ·∇)~u(s)+ (~v(s) ·∇)~u′(s)).

In particular, much as in (11.13),

(11.22) sup
0<s<T

s
7

4‖~f ′(s)‖H ≤ C ‖~u‖FT
‖~v‖FT

.

where C > 0 is independent of T . After this preamble we write

(11.23) Φ(~u,~v)(t) =

∫ t
2

0

e−sBλ ~f(t− s) ds+

∫ t
2

0

e−(t−s)Bλ ~f(s) ds, t ∈]0, T [,

and, therefore,

(11.24) Φ(~u,~v)′(t) = e−
t
2
Bλ ~f( t

2
) +

∫ t
2

0

e−sBλ ~f ′(t− s) ds+

∫ t
2

0

−Bλe
−(t−s)Bλ ~f(s) ds.
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In concert with (11.13) and (11.22), this allows us to estimate

‖Φ(~u,~v)′(t)‖H ≤ C ‖~f( t
2
)‖H + C

∫ t
2

0

‖ − Bλe
−(t−s)Bλ‖L (H)‖~f(s)‖H ds

+C

∫ t
2

0

‖e−sBλ‖L (H)‖~f
′(t− s)‖H ds

≤ C t−
3

4‖~u‖FT
‖~v‖FT

+ C

∫ t
2

0

(t− s)−1s−
3

4 ds ‖~u‖FT
‖~v‖FT

+C

∫ t
2

0

(t− s)−
7

4 ds ‖~u‖FT
‖~v‖FT

≤ C t−
3

4

(
1 +

∫ 1

2

0

(1− σ)−
7

4 dσ +

∫ 1

2

0

(1− σ)−1σ− 3

4 dσ
)
‖~u‖FT

‖~v‖FT

≤ C t−
3

4‖~u‖FT
‖~v‖FT

,(11.25)

where C > 0 is independent of T . Furthermore, by reasoning as before, one can show

that the application (0, T ] ∋ t 7→ Φ(~u,~v)′(t) ∈ D(B
3

4

λ ) is continuous.
Finally,

‖B
3

4

λΦ(~u,~v)
′(t)‖H ≤ C‖B

3

4

λ e
− t

2
Bλ‖L (H)‖~f(

t
2
)‖H + C

∫ t
2

0

‖ − B
7

4

λ e
−(t−s)Bλ‖L (H)‖~f(s)‖H ds

+C

∫ t
2

0

‖B
3

4

λ e
−sBλ‖L (H)‖~f

′(t− s)‖H ds

≤ C t−
3

2‖~u‖FT
‖~v‖FT

+ C

∫ t
2

0

(t− s)−
7

4 s−
3

4 ds ‖~u‖FT
‖~v‖FT

+C

∫ t
2

0

(t− s)−
7

4 s−
3

4 ds ‖~u‖FT
‖~v‖FT

≤ C t−
3

2

(
1 +

∫ 1

2

0

(1− σ)−
7

4σ− 3

4 dσ +

∫ 1

2

0

(1− σ)−
7

4σ− 3

4 dσ
)
‖~u‖FT

‖~v‖FT

≤ C t−
3

2‖~u‖FT
‖~v‖FT

,(11.26)

where, once again, the constant C does not dependent of T .
The above analysis ensures that Φ(~u,~v) ∈ FT whenever ~u,~v ∈ FT . Moreover, from

(11.19), (11.20), (11.25) and (11.26), there exists a constant κ > 0 independent of T > 0
such that (11.11) holds. �

We are now ready to discuss the existence ofmild solutions for the Navier-Stokes system.

Theorem 11.3. Given ~u0 ∈ D(A
1

4 ) and T > 0, the equation

(11.27) u(t) = e−tBλu0 + Φ(~u, ~u)(t), 0 < t < T,

has a unique solution ~u ∈ FT , if either ‖~u0‖D(A
1
4 )

or T are sufficiently small.

Proof. Let T > 0 be given and consider the bilinear, continuous mapping Φ : FT ×FT →
FT defined as in (11.9). As in [11], a solution of (11.27) will be found implementing
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Picard’s fixed point theorem. That is, consider the sequence in {~vj}j of functions in FT

defined by ~v0 := S~u0 and

(11.28) ~vj+1 := ~v0 + Φ(~vj , ~vj), j ∈ N.

As is well-known (cf., e.g., [26, Lemma 20, p. 157]), this sequence converges to the unique
solution ~u ∈ FT of (11.27) provided

(11.29) ‖~v0‖FT
<

1

4κ
,

where κ is the constant appearing in (11.11). In turn, since ‖~v0‖FT
≤ C‖B

1

4

λ ~u0‖H, the
estimate (11.29) is satisfied granted that ‖~u0‖

D(B
1
4
λ
)
is small enough.

To finish the proof, it suffices to show that, irrespective of the size of ‖~u0‖
D(B

1
4
λ
)
, matters

can be arranged so that (11.29) holds by taking T small enough (relative to ‖~u0‖
D(B

1
4
λ
)
).

To see this, we shall make use of the fact that for each ε > 0 there exists ~u0,ε ∈ D(Bλ)

such that ‖B
1

4

λ (~u0 − ~u0,ε)‖H ≤ ε. If we now consider ~v0,ε(t) := S~u0,ε for 0 < t < T , then

(11.30) ‖~v0 − ~v0,ε‖FT
≤ C‖B

1

4

λ (u0 − u0,ε)‖H ≤ Cε,

by (11.4) and, for each fixed ε,

(11.31) ‖~v0,ε‖FT
≤ C T

3

4‖Bλ~u0,ε‖H −−−→
T→0+

0.

By first choosing ε > 0 small enough, we can therefore find T > 0 such that (11.29) is
valid. This concludes the proof of the theorem. �

Remark 11.4. A somewhat smaller space for which the analogues of (11.4) and (11.10)
hold is as follows

F0
T := {~u ∈ FT : lim

τ→0+
‖~u‖Fτ

= 0}.(11.32)

11.2. Regularity. Here, we shall prove that the solution ~u ∈ FT of the fixed point
problem (11.27) is actually a solution of the Navier-Stokes system (1.13) in the suitable
sense, made precise in the theorem below.

Theorem 11.5. Any solution ~u ∈ FT of the problem (11.27) satisfies ~u(0) = ~u0 in Ω and,
in addition, has the following properties. For every t ∈ [0, T ], the field ~u(t, ·) is divergence
free in Ω and there exists π ∈ Lp(0, T ;L2(Ω)) such that −∆xu+∇xπ ∈ Lp(0, T ;L2(Ω)3),
(~u, π) has vanishing conormal derivative (cf. § 3) on ∂Ω, and for which the first equation
in (1.13) is satisfied everywhere in the time variable t ∈ (0, T ] and almost everywhere in
the space variable x ∈ Ω. Furthermore,

(11.33) ~u ∈ Lp
1(0, T ;H) ∩ Lp(0, T ;D(Bλ)), 1 < p < 4

3
,

and matters can be arranged so that

(11.34) lim
τ→0+

‖~u‖Fτ
= 0.

Proof. Assume that ~u ∈ FT solves (11.27) and introduce

(11.35) ~f(s) := −P
[
(~u(s) · ∇x)~u(s)

]
, s ∈ [0, T ].
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From (11.13) we may conclude that ~f ∈ Lp(0, T ;H) whenever 1 < p < 4
3
and, from (11.27),

that ~u = e−·Bλ~u0 + e−·Bλ ∗ ~f . Now, the maximal regularity property for the Neumann-
Stokes operator in H (since −Bλ generates an analytic semigroup in the Hilbert space H;

cf. [6]) and the fact that ~u0 ∈ D(B
1

4

λ ) entail Bλ~u ∈ Lp(0, T ;H) and that ~u solves

(11.36) ~u′(t) + (Bλ~u)(t) = ~f(t) for a.e. t ∈ (0, T ), and ~u(0) = ~u0.

It follows from the definition of the Neumann-Stokes operator Bλ (cf. (6.2)-(6.3)) that
there exists q1 ∈ Lp(0, T ;L2(Ω)) such that

Lp(0, T ;L2(Ω)3) ∋ Bλ~u = −∆x~u+∇xq1(11.37)

Lp(0, T ;L2
−1/2(∂Ω)

3) ∋ ∂λν (u, q1) = 0.(11.38)

Moreover, by the definition of P ((7.22) for p = 2 and s = 0), there exists q2 ∈
Lp(0, T ;L2

1,z(Ω)
3) such that

P[(~u · ∇x)~u] = (~u · ∇x)~u−∇q2.(11.39)

Since (~u · ∇x)~u ∈ C ((0, T ];L2(Ω)3), we also have

q2 ∈ C ((0, T ];L2
1,z(Ω)).(11.40)

Combining (11.37)-(11.39) with (11.36) yields (1.13) with π = q1 − q2. Moreover, since

~u′ ∈ C ((0, T ];H) and ~f ∈ C ((0, T ];H), we may finally conclude from (11.37) and (11.40)
that −∆xu +∇xπ ∈ C ((0, T ];L2(Ω)3). Thus, the Navier-Stokes system (1.13)) holds as
mentioned, whereas (11.34) is a consequence of the remark made at the end of §11.1. �

11.3. Uniqueness. We have already proved that there exists a local mild solution to the
Navier-Stokes system which is unique in the space FT . Following [33], here we shall prove

that, in fact, uniqueness holds in the larger space C ([0, T ];D(B
1

4

λ )).
Prior to formally stating this as a theorem, need to make sense of the non-linearity

Φ(~u, ~u) for fields ~u ∈ C ([0, T ];D(B
1

4

λ )). To this end, for ~u,~v ∈ C ([0, T ];D(B
1

4

λ )) consider

(11.41) ~f(s) :=
(
−1

2
P̂∇x·

)(
~u(s)⊗ ~v(s) + ~v(s)⊗ ~u(s)

)
, s ∈ (0, T ),

where, generally speaking, ~a ⊗~b denotes the matrix (aibj)1≤i,j≤3 for any ~a = (a1, a2, a3)

and ~b = (b1, b2, b3) ∈ R3. In this connection, let us also note that if ~a and ~b are smooth
vector fields then

∇x · (~a⊗~b) = (~a · ∇x)~b+ (div~a)~b.(11.42)

This elementary identity allows us to extend the bilinear form Φ, originally defined on

FT × FT , to the larger space C ([0, T ];D(B
1

4

λ ))× C ([0, T ];D(B
1

4

λ )) in the following sense.

First, if ~u,~v ∈ C ([0, T ];D(B
1

4

λ )) are arbitrary then both ~u ⊗ ~v and ~v ⊗ ~u belong to

C ([0, T ];L
3

2 (Ω)3×3), since D(B
1

4

λ ) ⊂ L3(Ω)3. In particular,

(11.43) ∇x · (~u⊗ ~v + ~v ⊗ ~u) ∈ C ([0, T ];L
3

2

−1(Ω)
3).

We now digress momentarily in order to establish a useful auxiliary result.

Lemma 11.6. The operator P̂, introduced in Lemma 10.1, has the property that

(11.44) B
− 3

4

λ P̂ : L
3

2

−1(Ω)
3 −→ H

in a bounded fashion.
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Proof. Using (3.13) and (3.20), we know from (10.1) that P̂ maps L
3

2

−1(Ω)
3 boundedly into

the space (V 1,3(Ω))
∗
which, in turn, embeds continuously into D(B

3

4

λ )
∗ by (10.38). Since

Bλ is self-adjoint, we also have B
− 3

4

λ

[
D(B

3

4

λ )
∗
]
= H, and (11.44) follows. �

Returning to the mainstream discussion, we note that B
− 3

4

λ f ∈ C ([0, T ];H), by (11.43)
and Lemma 11.6. Therefore, writing

(11.45) Φ(~u,~v)(t) =

∫ t

0

B
3

4

λ e
−(t−s)BλB

− 3

4

λ
~f(s) ds, t ∈ [0, T ],

it follows that

(11.46) Φ : C ([0, T ];D(B
1

4

λ ))× C ([0, T ];D(B
1

4

λ )) −→ C ([0, T ],H)

in a bilinear, bounded fashion. Another useful property of this map is as follows.

Proposition 11.7. For each p ∈ (1,∞) the mapping (11.46) further extends to a bounded
bilinear application

(11.47) Φ : Lp(0, T ;D(B
1

4

λ ))× L∞(0, T ;D(B
1

4

λ )) −→ Lp(0, T ;D(B
1

4

λ )).

Furthermore, the norm of (11.47) is bounded by a constant which depends exclusively on
p.

Proof. For ~u ∈ Lp(0, T ;D(B
1

4

λ )) and ~v ∈ L∞(0, T ;D(B
1

4

λ )), the function f defined in
(11.41) satisfies the estimate

(11.48) ‖B
− 3

4

λ
~f‖Lp(0,T ;H) ≤ Cp‖B

1

4

λ ~u‖Lp(0,T ;H)‖B
1

4

λ~v‖L∞(0,T ;H)

for a finite constant Cp > 0. Then, thanks to the maximal regularity property for Bλ, we
have

B
1

4

λΦ(~u,~v) = Bλ(e
−·Bλ ∗B

− 3

4

λ
~f) ∈ Lp(0, T ;H)(11.49)

and

(11.50) ‖B
1

4

λΦ(~u,~v)‖Lp(0,T ;H) ≤ Cp‖B
1

4

λ ~u‖Lp(0,T ;H)‖B
1

4

λ~v‖L∞(0,T ;H),

as desired. �

We are now in a position to discuss the uniqueness of mild solutions for the Navier-
Stokes system, which is the main result of this subsection. To state it formally, for
a measurable set E ⊂ R and a Banach space X , we set Cb(E;X ) := C (E, ;X ) ∩
L∞(E;X ).

Theorem 11.8. For each ~u0 ∈ D(B
1

4

λ ), there is at most one field ~u ∈ Cb([0, T );D(B
1

4

λ ))
which satisfies (11.27).

Proof. Assume that for some ~u0 ∈ D(B
1

4

λ ) there exist two vector fields ~u1, ~u2 which

belong to Cb([0, T );D(B
1

4

λ )) and which solve (11.27). Then ~w := ~u1 − ~u2 also belongs to

Cb([0, T );D(B
1

4

λ )) and, in addition, satisfies

(11.51) ~w = Φ(~u1, ~u1)−Φ(~u2, ~u2) = Φ(~w, ~u1+~u2) = Φ(~w, ~u1+~u2− 2S~u0)+ 2Φ(~w, S~u0),

where S is the Stokes semigroup (cf. (11.3)).
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The traditional strategy (cf., e.g., [33] and the references therein) is to prove that, for
a fixed p ∈ (1,∞), there exists τ ∈ (0, T ] such that

(11.52) ‖~w‖
Lp(0,τ ;D(B

1
4
λ
))
≤

‖~w‖
Lp(0,τ ;D(B

1
4
λ
))

2
.

Granted this estimate, we may conclude that ~w vanishes on [0, τ) which, in turn, proves
that

{
τ ∈ (0, T ] : ~w(t) = 0 for 0 ≤ t < τ

}
is nonempty. Let us denote its supremum by

τmax. If τmax < T , the continuity of ~w entails ~w(τmax) = 0. In this scenario, the above
scheme can be reiterated, taking τmax as the initial time, and we eventually conclude that
there exists some δ > 0 such that ~w = 0 on [0, τmax + δ). This contradicts the maximality
of τmax and proves that τmax = T . Thus ~w = 0 on [0, T ], as wanted.

There remains to establish (11.52). For starters, we note that for any p ∈ (1,∞),
Proposition 11.7 gives

‖Φ(~w, ~u1 + ~u2 − 2S~u0)‖
Lp(0,τ ;D(B

1
4
λ
))

≤ Cp‖~w‖
Lp(0,τ ;D(B

1
4
λ
))

(
‖~u1 − S~u0‖

L∞(0,τ ;D(B
1
4
λ
))
+ ‖~u2 − S~u0‖

L∞(0,τ ;D(B
1
4
λ
))

)
.(11.53)

Since

‖~uj − S~u0‖L∞(0,τ ;D(A
1
4 ))

−−−→
τ→0+

0, j = 1, 2,(11.54)

it follows that (11.53) is useful for the purpose of establishing (11.52).
There remains to handle the term 2Φ(~w, S~u0). To this end, for an arbitrary ε > 0, to

be specified later, pick ~u0,ε ∈ D(Bλ) such that ‖~u0 − ~u0,ε‖
D(B

1
4
λ
)
< ε and then write

‖Φ(~w, S~u0)‖
Lp(0,τ ;D(B

1
4
λ
))

≤ Cp‖~w‖
Lp(0,τ ;D(B

1
4
λ
))

(
‖S(~u0 − ~u0,ε)‖

L∞(0,τ ;D(B
1
4
λ
))
+ ‖S~u0,ε‖

L∞(0,τ ;D(B
1
4
λ
))

)
.(11.55)

Next,

‖S(~u0 − ~u0,ε)‖
L∞(0,τ ;D(B

1
4
λ
))
≤ ‖~u0 − ~u0,ε‖

D(B
1
4
λ
)
< ε(11.56)

Finally, much as with (11.31),

(11.57) ‖S~u0,ε‖
L∞(0,τ ;D(B

1
4
λ
))
≤ C τ

3

4‖Bλ~u0,ε‖H −−−→
τ→0+

0.

In summary, by first choosing ε > 0 small enough (relative to the constant Cp in (11.55))
it is then possible to ensure that (11.52) holds provided τ > 0 is sufficiently small. This
justifies (11.52) and concludes the proof of the theorem. �
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E-mail address : sylvie.monniaux@univ-cezanne.fr

Department of Mathematics - Missouri State University - 901 South National Avenue

- Springfield, MO 65897, USA

E-mail address : MWright@MissouriState.edu


