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WELL-POSEDNESS RESULTS FOR THE NAVIER-STOKES EQUATIONS IN

THE ROTATIONAL FRAMEWORK

MATTHIAS HIEBER AND SYLVIE MONNIAUX

Dedicated to our good friend Jerry Goldstein on the occasion of his 70th-Birthday

Abstract. Consider the Navier-Stokes equations in the rotational framework either on R3 or
on open sets Ω ⊂ R3 subject to Dirichlet boundary conditions. This paper discusses recent
well-posedness and ill-posedness results for both situations.

1. Introduction

Well-posedness results for linear and non-linear differential equations are important aspects in
many scientific articles by Jerry Goldstein. He contributed in many ways to this concept, either
by investigating abstract Cauchy problems or by considering concrete partial differential equations
in his many papers and in particular in his fundamental book on Semigroups of Linear Operators

and Applications, see [Gol85], which was published in 1985 by the Oxford University Press. Of
fundamental importance in this approach are generators of semigroups and the variation of con-
stant formula for inhomogeneous Cauchy problems in Banach spaces. Mapping properties of the
semigroup combined with fixed point arguments are often the central tools for proving local or
global existence results for non-linear evolution equations.

In this paper, we follow this approach and consider the Navier-Stokes equations with Coriolis
force on Ω = R3 or on domains Ω ⊂ R3 subject to Dirichlet boundary conditions, i.e. we study
the equation

(1.1)





∂tu−∆u+∇π + ω e × u+ (u · ∇)u = 0 in (0,∞)× Ω,

div u = 0 in (0,∞)× Ω,

u = 0 on (0,∞)× ∂Ω,

u(0) = u0 in Ω,

Here ω denotes the speed of rotation and e3 is the unit vector in x3-direction. If ω = 0, the system
(1.1) reduces to the classical Navier-Stokes system.

This equation recently gained quite some attention due to its importance in applications to geo-
physical flows; in particular, large-scale atmospheric and oceanic flows are dominated by rotational
effects, see e.g. [Maj03] and [CDGG06].

Our main technique to study this equation follows the approach sketched above. In fact, con-
sidering first the linearization of equation (1.1), we show first that the so called Stokes-Coriolis
operator generates a C0-semigroup T on certain function spaces. Then, by the method which is
nowadays called the Fujita-Kato method, well-posedness results for equation (1.1) in the L2-seting
will be obtained by considering the integral equation

u(t) = T (t)u0 +

∫ t

0

T (t− s)Pdiv (u⊗ u)(s)ds.
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Here P denotes the Helmholtz projection onto the solinoidal vector fields of L2(R3). For the
classical Navier-Stokes equations, this approach was generalized and pushed further to various
scaling invariant function spaces. For details, we refer e.g. to the work of Kato [Kat84], Koch and
Tataru [KT01] and Cannone [Can03].

The first ill-posedness result for the classical Navier-Stokes equations is due to Bourgain and
Pavlović [BP08] for initial data in the Besov space Ḃ−1

∞,∞(R3). It means that the solution map
sending an initial data to the solution given by the above formula, where T now denotes the
classical Stokes semigroup, is now longer continuous with respect to this Besov-norm.

The above equation (1.1) was mainly studied so far in the case of Ω = R3. It is a very remarkable
fact that in this case the equation (1.1) allows a global, mild solution for arbitrary large data in the
L2-setting provided the speed Ω of rotation is fast enough, see [BMN97], [BMN01], [CDGG06] and
[CT07]. More precisely, it was proved by Chemin, Desjardins, Gallagher and Grenier in [CDGG06]
that for initial data u0 ∈ L2(R2)3+H1/2(R3)3 satisfying div u0 = 0, there exists a constant ω0 > 0
such that for every ω ≥ ω0 the equation (1.1) admits a unique, global mild solution. The case
of periodic intial data was considered before by Babin, Mahalov and Nicolaenko in the papers
[BMN97] and [BMN01].

It is a natural question to ask whether, for given and fixed ω > 0, there exists a unique, global
mild solution to (1.1) provided the norm of the initial data is sufficiently small with respect to
certain norms. In this context it is natural to extend the classical Fujita-Kato approach for the
Navier-Stokes equations to the rotational setting. This was carried out first by Hieber and Shibata
in [HS10] for the case of initial data belonging to H1/2(R3). Generalizations of this result to the
case of Fourier-Besov spaces are due to Konieczny and Yoneda [KY11] and Iwabuchi and Takada
[IT11a]. These results will be discussed in some detail for the case Ω = R3 in the following Section
2. We will further address the question of ill-posedness of (1.1). Starting point here is the pioniering
paper by Bourgain and Pavlović, [BP08], who showed ill-posedness for the classical Navier-Stokes

equation, i.e. for the case ω = 0, in the Besov space Ḃ−1
∞,∞(R3). It was recently shown by Iwabuchi

and Takada [IT11a] that equation (1.1) is also ill posed in certain Fourier-Besov spaces. All of
these results rely on a good description of the Stokes-Coriolis semigroup.

In Section 4 we consider equation (1.1) on arbitrary domains Ω ⊂ R3. It was shown in [HM12]
that the Stokes-Coriolis operator, defined via form methods, generates a contraction semigroup on
a certain subspace H of L2(Ω). Note that H coincides with L2

σ(Ω) in the case of domains with
smooth boundaries.

The above equation was also studied in the setting of nondecaying initial data in a series of papers
by Giga et al, see [GIMM06], [GIMMS07]. More precisely, these authors prove local existence of
mild solutions to the problem (1.1) for initial data u0 belonging to L∞

σ,a(R
3), a suitable subspace

of L∞
σ (R3). Global existence results for initial data which may not decay at infinity were obtained

by Giga, Inui, Mahalov and Saal in [GIMS08]. For more details, see Section 4. For extensions of
this result we refer to [Yon11].

2. Linear Theory for Ω = R3

We start this section by considering the linear equation on R3, i.e.

ut +∆u+ ωe3 × u+∇p = 0, x ∈ R
3, t > 0

div u = 0, x ∈ R
3, t > 0,(2.1)

u(0, x) = u0(x), x ∈ R
3,

and the corresponding resolvent equation in classical Lp spaces. To this end, let λ ∈ Σφ for some
φ ∈ [0, π/2), where Σφ = {z ∈ C\{0}, | arg z| < φ} and let f ∈ Lp

σ(R
3)3. Taking Fourier transforms
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with respect to x in the resolvent equation

λu − ν∆u+ ωe3 × u+∇p = f, x ∈ R
3,(2.2)

div u = 0, x ∈ R
3,

yields

(λ + |ξ|2)û1 − ωû2 + iξ1p̂ = f̂1

(λ + |ξ|2)û2 + ωû1 + iξ2p̂ = f̂2(2.3)

(λ+ |ξ|2)û3 + iξ3p̂ = f̂3.

It follows that

(2.4) p̂(ξ) =
ω

|ξ|2
[iξ2û1(ξ)− iξ1û2(ξ)].

Inserting this expression for the pressure p in the above resolvent equation (2.3) yields
that its solution is given by p̂ defined as in (2.4) and by û defined by

û =
ω2

det
If̂ +

ω

det

ξ3
|ξ|

Rf̂,

where I is the identity matrix and

R = R(ξ) =




0 ξ3
|ξ| − ξ2

|ξ|

− ξ3
|ξ| 0 ξ1

|ξ|
ξ2
|ξ| − ξ1

|ξ| 0




and

det = det(ξ) = ω4 + ω2 ξ23
|ξ|2

.

It follows that the solution û of the time dependent linear problem (2.1) in Fourier variables, i.e.
of the problem

ût(ξ) + ν|ξ|2Iû(ξ) + ωê3 × u(ξ) + iξp̂ξ = 0, ξ ∈ R
3, t > 0

iξ · û(ξ) = 0, ξ ∈ R
3, t > 0,(2.5)

û(0, ξ) = û0(ξ), ξ ∈ R
3.

is given by

û(t, ξ) = cos(ω
ξ3
|ξ|

t)e−|ξ|2tIû0(ξ) + sin(ω
ξ3
|ξ|

t)e−|ξ|2tR(ξ)û0(ξ), t ≥ 0, ξ ∈ R
3.

This representation combined with Plancherel’s theorem implies the following result.

Proposition 2.1 ([HS10], Prop. 2.1). The unique solution of equation (2.1) in L2
σ(R

3) is given
by the bounded C0-semigroup T2, which is explicitly given by

T2(t)f := F−1[cos(ω
ξ3
|ξ|

t)e−|ξ|2tIf̂(ξ) + sin(ω
ξ3
|ξ|

t)e−|ξ|2tR(ξ)f̂(ξ)], t ≥ 0, f ∈ L2
σ(R

3)3.

The above semigroup is called the Stokes-Coriolis semigroup.
Writing

(2.6) Tp(t)f := F−1[cos(ω
ξ3
|ξ|

t)e−|ξ|2tIf̂(ξ) + sin(ω
ξ3
|ξ|

t)e−|ξ|2tR(ξ)f̂(ξ)], t ≥ 0, f ∈ Lp
σ(R

3)3,
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for 1 < p < ∞, we may extend the semigroup T by Mikhlin’s theorem to a C0-semigroup on
Lp(R3)3.

Indeed, set R̂3f(ξ) :=
ξ3
|ξ| f̂ ξ for ξ 6= 0. Then Mikhlin’s theorem implies the following result.

Proposition 2.2. Let 1 < p < ∞ and let Tp be defined as in (2.6). Then Tp is a C0-semigroup
on Lp

σ(R
3)3 satisfying

‖Tp(t)f‖p ≤ Mpω
2t2‖f‖p, t ≥ 1, f ∈ Lp

σ(R
3)3

for some constant Mp. Moreover, Tp may be represented as

Tp(t) = [cos(ωR3t)I + sin(ωR3t)R]et∆f, t ≥ 0, f ∈ Lp
σ(R

3)3].

Aiming for global existence results for equation (1.1), it is interesting to look for function spaces
on which the Stokes-Coriolis semigroup defines a bounded semigroup. To this end, let Φ ∈ S(R3)

such that 0 ≤ Φ̂(ξ) ≤ 1, suppΦ̂ ⊂ {ξ ∈ R3 : 2−1 ≤ |ξ| ≤ 2} and
∑

j∈Z

Φ̂j(ξ) = 1, ξ ∈ R
3\{0},

where Φj(x) := 2jnΦ(2jx). Then the Fourier-Besov space FḂs
p,q(R

3) is defined as follows: let

s ∈ R and 1 ≤ p, q ≤ ∞. Then the space FḂs
p,q(R

3) is defined by

FḂs
p,q(R

3) := {f ∈ S(R3) : f̂ ∈ L1
loc(R

3) and ‖f‖FḂs
p,q(R

3) < ∞},

where

‖f‖FḂs
p,q(R

3) := ‖{2sj‖Φ̂j f̂‖p}j∈Z‖lq .

Given the representation of Proposition 2.1 it in now not difficult to verify the following assertion.

Proposition 2.3 ([IT11a],Lemma 2.1). There exists a constant C > 0 such that

‖T (t)f‖FḂ−1

1,2(R
3) ≤ C‖f‖FḂ−1

1,2(R
3), ω ≥ 0.

The following Lp −Lq as well as H
1
2 −Lq smoothing properties for the semigroup T are estab-

lished by [HS10] and are essential in their approach for the nonlinear problem (1.1).

Proposition 2.4. Let 1 ≤ p ≤ 2 ≤ q ≤ ∞. Then for m ∈ N0 there exists a constant C > 0 such
that

‖∇mT (t)f‖q ≤ Ct−
m
2
− 3

2
(1/p−1/q)‖f‖p, t > 0, f ∈ Lp(R3),(2.7)

‖∆
1
4 T (t)f‖2 ≤ Ct−

1
4
− 3

2
(1/p−1/2)‖f‖p, t > 0, f ∈ Lp(R3).(2.8)

Moreover, there exists a constant C > 0 such that

‖T (t)f‖ 1
2

≤ C‖f‖ 1
2
, t > 0, f ∈ H

1
2 (R3),(2.9)

‖∇T (t)f‖2 ≤ Ct−
1
4 ‖f‖ 1

2
, t > 0, f ∈ H

1
2 (R3),(2.10)

and for q > 3 there exists C > 0 such that

(2.11) ‖T (t)f‖q ≤ Ct−
1
2
+ 3

2q ‖f‖ 1
2
, t > 0, f ∈ H

1
2 (R3).
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3. Linear Theory for Domains

In this section we define the Stokes and the Stokes-Coriolis operator by the theory of forms. To
this end, let Ω ⊂ R3 be an open set and let H = L2(Ω;R3) by defined by

H =
{
u = (u1, u2, u3);ui ∈ L2(Ω;R3), for all i = 1, 2, 3

}
,

endowed with the usual scalar product 〈·, ·〉. Observe that the set G defined by

G :=
{
∇p; p ∈ L2

loc(Ω;R) with ∇p ∈ L2(Ω;R3)
}
;

is a closed subspace of H . Set

H := G⊥ =
{
u ∈ L2(Ω;R3); 〈u, g〉 = 0 for all g ∈ G

}
.

Denote by J : H →֒ H the canonical injection from H onto H and define a scalar product on H by

(u, v) 7→ 〈Ju, Jv〉.

Endowed with this scalar product, H is a Hilbert space and we have

H = H
⊥
⊕ G.

Finally, denote by P the orthogonal projection from H onto H. Then P is equal to the adjoint J ′

of J and PJ = IdH.
We are now in the position to apply the theory of forms as follows. Define V by V := H ∩ V ,

where V = H1
0 (Ω;R

3). Then V is a closed subspace of V a hence a Hilbert space. It follows from
De Rham’s theorem that V is dense in H.

Next, denote by V ′ the dual space of V , i.e. V ′ = H−1(Ω;R3) and let V ′ be the dual space of V .

Let J̃ be the canonical injection V →֒ V . It is a restriction of the canonical injection J : H →֒ H ,
so that its adjoint P̃ = J̃ ′ : V ′ → V ′ is an extension of the Helmholtz projection P : H → H.

Given ω ≥ 0, we define sesquilinear forms a and b on V × V by

a(u, v) :=

n∑

j=1

〈∂j J̃u, ∂jJ̃v〉 u, v ∈ V , and

b(u, v) := ω〈e× Ju, Jv〉.

The Stokes operator A in H is then defined to be the operator associated with the form a, i.e. A
is given by

D(A) :=
{
u ∈ V ; P̃(−∆Ω

D)J̃u ∈ H
}

Au := P̃(−∆Ω
D)J̃u.

Here, ∆Ω
D denotes the Dirichlet-Laplacian on V .

Remark 3.1. The Stokes operator A has the following properties:

a) A is a self-adjoint operator in H.

b) D(A
1
2 ) = V .

c) −A generates an analytic semigroup of contractions on H of angle π
2 .

d) D(A) =
{
u ∈ V ; ∃ p ∈ L2

loc(Ω;R) : −∆J̃u+∇p ∈ H
}
.

Define the Stokes-Coriolis operator AC in H to be the operator which is associated to the form
a+ b. We then have the following result.

Proposition 3.2 ([HM12]). The operator −AC generates a semigroup of contractions (TC(t))t≥0

on H satisfying the properties
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a)
(
t 7→ TC(t)

)
∈ L∞(0,∞;L (H)) and

(
t 7→ A

1
2 TC(t)

)
∈ L2(0,∞;L (H)) with norms

less than or equal to 1;
b)

(
t 7→ A

1
4TC(t)A

1
4

)
∈ L2(0,∞;L (H)) and

(
t 7→ A

1
2TC(t)A

1
4

)
∈ L

4
3 (0,∞;L (H)) with

norms less than or equal to 1.

4. Global Existence Results for the non-linear equation in Ω = R3

We start this section with a global existence result for data being small in the H1/2-norm. More
precisely, we have the following result.

Theorem 4.1 ([HS10], Theorem 3.1). There exists ε > 0, independent of ω, such that for

any u0 ∈ H
1
2
σ (R3) with ‖u0‖ 1

2
≤ ε, the equation (1.1) admits a unique, mild solution u ∈

C0([0,∞), H
1
2
σ (R3))3 satisfying limt→0+ ‖u(·, t)− u0‖1/2 = 0.

The proof of the above theorem is based on the Fujita-Kato argument applied to the integral
equation

(4.1) u(t) = T (t)u0 −

∫ t

0

T (t− s)P [(u(s) · ∇)u(s)] ds,

where P denotes the Helmholtz projection. In order to do so, one has to estimate the bilinear
form associated with the second term on the right hand side above in certain function spaces. For
details, see [HS10].

The above result was recently generalized to the setting to Fourier-Besov spaces by Konieczny
and Yoneda [KY11] and Iwabuchi and Takada [IT11a]. In fact, their results read as follows.

Theorem 4.2 ([KY11], Thorem 2.2). Let 3 < p ≤ ∞. Then there exists a constant δ > 0,

independent of ω, such that for all u0 ∈ FḂ
2−3/p
p,∞ (R3) with div u0 = 0 and ‖u0‖FḂ

2−3/p
p,∞ (R3)

≤ δ,

the equation (1.1) admits a unique, global mild solution

u ∈ Cw([0,∞);FḂ2−3/p
p,∞ ) ∩ L∞(0,∞;FḂ2−3/p

p,∞ ).

Moreover, if u0 is small in X0 = FḂB−1
1,1(R

3)∩FḂ0
1,1(R

3), then there exists a unique global solution

u to (1.1) such that

u ∈ C([0,∞);FḂ−1
1,1) ∩ L2(0,∞;X0).

Theorem 4.3 ([IT11a], Thorem 1.2). For all α ∈ (0, 1), there exist constants C, δ > 0, independent

of ω, such that for all u0 ∈ FḂ−1
1,2(R

3) with div u0 = 0 and ‖u0‖FḂ−1

1,2(R
3) ≤ δ, the equation (1.1)

admits a unique, global mild solution u ∈ Xα, where

Xα = {u ∈ C([0,∞);FḂ−1
1,2(R

3)) : ‖u‖Xα ≤ 2Cδ, div u = 0}

and ‖u‖Xα is defined as

‖u‖Xα := sup
t>0

‖u(t)‖FḂ−1

1,2
+ ‖u‖Zα + ‖u‖Z−α ,

where ‖u‖Z±α = {
∑

j∈Z
(2αj‖Φ̂jû‖

L
2

1+α (0,∞;L1(R3))
)2}1/2.

Remark 4.4. Note that due to the embedding

Ḣ1/2(R3) →֒ FḂ−1
1,2(R

3)

the above Theorem 4.3 generalizes in particular the corresponding Theorem 4.1.

Given Theorem 4.3, it is natural to ask whether equation (1.1) is well posed in larger function

spaces as FḂ−1
1,2(R

3). The following result is hence very interesting.
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Theorem 4.5 ([IT11a], Theorem 1.5). For q ∈ (2,∞], the equation (1.1) is ill posed in FḂ−1
1,q (R

3)
in the sense that the solution map from the initial data to the solution is not continuous.

The proof of Theorem 4.5 is based on an ill-posedness approach for nonlinear Schrödinger
equations, due to Bejenaru and Tao; see [BT06].

Observe that the above result is true even also in the case ω = 0. It is interesting to compare
Theorem 4.5 with the ill posedness result for the Navier-Stokes equations in the Besov space
Ḃ−1

∞,∞(R3), due to Bourgain and Pavlović [BP08]. In fact, since FḂ−1
1,q(R

3) →֒ Ḃ−1
∞,q(R

3) for all

q ∈ [1,∞], the above Theorem 4.5 generalizes the Bourgain-Pavlović result to the case Ḃ−1
∞,q(R

3)
for q ∈ (2,∞].

In order to describe the situation for nondecaying initial data u0 denote first by M the space
of finite C3-valued Radon measures on R3 and by FM its Fourier transform. Equipped with
the norm ‖f‖FM := ‖F−1f‖M , the space FM becomes a Banach space, where F−1 denotes the
inverse Fourier transform. Furthermore, denote by F3 the class of all sum-closed frequency sets in
R3; for details see [GIMS08]. Moreover, sum-closed frequency set with distance δ > 0 from zero
are denoted by Fδ. For Fδ ∈ F3 define the space

FMσ,δ := {f ∈ FM : div f = 0, supp f̂ ⊂ Fδ}.

The following result is due to Giga, Inui, Maholov and Saal.

Theorem 4.6 ([GIMS08],Thm.1.2). Let δ > 0, ω ∈ R, Fδ ∈ F3 and u0 ∈ FMσ,δ. If

‖u0‖FM <
δ

K

for a certain K > 0, then there exists a global, mild solution u ∈ BC([0,∞), FMσ,δ to equation

(1.1) satisfying ‖u(t)− u0‖FM → 0 for t → 0 and ‖u(t)|FM ≤ 2e−δ2t‖u0‖FM for t ≥ 0.

5. Global Existence Results for the non-linear equation in domains

We define the space E by

(5.1) E =
{
u ∈ L4(0,∞; Ḣ1

0 (Ω;R
3)); div u = 0 in (0,∞)× Ω

}
,

endowed with the norm

‖u‖E = ‖∇u‖L4(0,∞;L2(Ω;R3)).

We reduce the problem of finding mild solutions for (1.1) by solving the equation

(5.2)
u′(t) +Au(t) +Bu(t) = −P̃

(
(J̃u · ∇)J̃u

)

u(0) = u0, u ∈ E ,

for which a mild solution u is given by u = α+ φ(u, u), where, for t > 0,

α(t) = TC(t)u0, and

φ(u, v)(t) =

∫ t

0

TC(t− s)
(
− 1

2 P̃
(
(J̃u(s) · ∇)J̃v(s) + (J̃v(s) · ∇)J̃u(s)

))
ds.(5.3)

The strategy for finding u ∈ E satisfying u = α + φ(u, u) is to apply the contration principle in a
suitable ”good” space E , for which α ∈ E and φ(u, u) ∈ E .

Proposition 5.1. The application φ : E × E → E is bilinear, continuous and symmetric.
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Denote by M the norm of the above mapping φ, i.e.

M = sup
{
‖φ(u, v)‖E ;u, v ∈ E , ‖u‖E , ‖v‖E ≤ 1

}
.

Observe that M is independent on ω.
We define now the space X where we will consider the initial values u0 for (1.1) by

(5.4) X :=
{
f ∈ H; t 7→ ∇TC(t)f ∈ L4(0,∞;L2(Ω;R3)

}
,

endowed with its norm

‖f‖X =
(∫ ∞

0

‖∇TC(t)f‖
4
2 dt

) 1
4

.

Then the following result holds.

Theorem 5.2 ([HM12]). Let Ω ⊂ R3 be an open set. Then, for all u0 ∈ X with ‖u0‖X < 1
4M , there

exists a unique u ∈ E satisfying ‖u‖E < 1
2M and such that u is the solution of u = α + φ(u, u),

where α and φ are defined as in (5.3). Moreover, in this case, t 7→ A
1
4 (u(t) − α(t)) belongs to

L∞(0,∞;H).

Remark 5.3. We remark that Theorem 5.2 generalizes in particular Theorem 4.1, since in the
case Ω = R3, it is not difficult to verify that

‖A
1
4α‖C ([0,∞);H) ≤ ‖A

1
4u0‖H = ‖u0‖ 1

2
and,

X =
˙

D(A
1
4 ) = Ḣ

1
2
σ and ‖f‖X = ‖A

1
4 f‖H = ‖f‖ 1

2
, f ∈ X.
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