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In this contribution, we review our recent progress on the all-

optical control of the state-of-polarization of light in optical fibers 

upon propagation in a system called Omnipolarizer. More 

precisely, in this device we exploit the unexpected capability of 

light to self-organize its own state-of-polarization, upon 

propagation in optical fibers, into universal and environmentally 

robust states. The underlying physical mechanism consists in a 

nonlinear cross-polarization feedback interaction between an 

arbitrary polarized incident signal and its own counter-

propagating replica generated at the fiber end by means of a 

reflective element. Depending on the power ratio between the two 

waves, e.g. the reflective coefficient, this nonlinear self-

repolarization phenomenon offers a rich variety of dynamics for 

which we have highlighted three main working regimes identified 

by first a bistable operating regime, a polarization alignment 

process as well as a genuine chaotic behavior. We have fully 

characterized these three operating regimes with an excellent 

agreement between numerical and experimental results. 

Moreover, beyond the fundamental aspect of these first studies, 

we have then exploited this self-induced repolarization 

phenomenon in order to implement several proof-of-principles 

for all-optical signal processing. In particular, we have 

successfully demonstrated the spontaneous repolarization of a 

10-Gbit/s Return-to-Zero optical signal without noticeable 

impairments. The bistability and associated hysteresis properties 

of the Omnipolarizer have been also exploited to implement an 

optical flip-flop memory as well as a 10-Gbit/s polarization-based 

data packet router. Finally, we have taken advantage of the 

chaotic dynamics of our device to demonstrate an all-optical 

scrambler enabling truly chaotic polarization diversity for 10-

Gbit/s On/Off Keying wavelength division multiplexing 

applications. 

I. INTRODUCTION 

Despite outstanding technological developments in many 

fields of photonics, especially in all-fiber based systems, the 

state-of-polarization (SOP) of light remains the most elusive 

of all parameters, which is still challenging to predict and 

master. In fact, it is noteworthy that in the past decade 

tremendous and impressive progresses in the manufacturing of 

modern optical fibers have been realized. In particular, by 

implementing well-optimized spinning process during the 

drawing stage, fiber providers now propose standard Telecom 

fibers with spectacular weak levels of polarization-mode 

dispersion [1-4]. Nonetheless, the amount of residual 

birefringence combined with surrounding stress and variations 

such as bending, squeezing, vibrations or temperature 

fluctuations still make the polarization of light genuinely 

unpredictable after only a few hundreds of meters of 

propagation in fibers [5-10]. 

To overcome the impairments induced by this random 

nature of polarization in fiber-based systems, from a general 

point of view, the mitigation solutions implemented nowadays 

mainly rest upon combative strategies rather than on a 

preventive strategy. For instance, in current high-capacity 

coherent transmissions, polarization impairments such as 

polarization randomness, polarization-mode dispersion [11-

15], polarization depending loss [16] or cross-polarization 

interaction [17-18] are efficiently managed by means of digital 

signal processing implemented at the coherent receiver [19-

21]. 

Regarding highly polarization dependent systems such as 

on-chip integrated optical circuits or fiber-based nonlinear 

processing devices, special design and more or less complex 

polarization-diverse schemes (polarization diversity, bi-

directional loop or polarization splitting/recombination) may 

ensure the mitigation of polarization dependent performances 

[22-25]. 

Another elegant strategy consists in mastering the SOP of 

light in order to prevent or mitigate some of these impairments. 

The most common and commercially available way is to 

implement an opto-electronic polarization tracking solution 

[26-30]. These devices generally consist in linear polarization 

transformations followed by partial diagnostic associated with 

an active feedback loop control driven by complex algorithms. 

Thanks to these techniques, records of polarization tracking or 

diversity speeds have been achieved, reaching several of 

Mrad/s. Nevertheless, these devices are essentially based on 

opto-electronic technologies, which could be seen as a 

limitation for future all-optical transparent networks. In this 

context and beyond its fundamental interest, the light-by-light 

polarization control represents a complementary and 

alternative approach. Indeed, the ability to all-optically master 

or trap the state-of-polarization of a light beam without 

polarization depending loss could encounter numerous 

applications in photonics. To this aim, several techniques have 

emerged in the literature in order to develop an “ideal 

polarizer” which could lead to a complete repolarization of an 

incident signal with 100% of efficiency, whilst preserving the 

quality of the temporal intensity profile. “Ideal” here meaning: 
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without polarization depending losses in contrast to classical 

polarizers. As opposed to traditional polarizers which are 

known to vanish 50% of an unpolarized incoming signal, 

Heebner et al. first proposed in 2000 a “universal polarizer” 

performing repolarization of unpolarized light with high 

efficiency [31]. Subsequently, this phenomenon of 

polarization attraction or polarization pulling has been the 

subject of a growing interest in optical fiber based systems, 

involving the Raman effect [32-36], the stimulated Brillouin 

backscattering [37-38], the parametric amplification [39-40] 

as well as a counter-propagating four-wave mixing process, 

also called nonlinear cross-polarization interaction [41-55]. In 

particular, considering the counter-propagating interaction of 

two distinct optical beams injected at both ends of an optical 

fiber, it has been shown that an arbitrary polarized incident 

signal can be attracted toward a specific SOP, which is fixed 

by the SOP of the counter-propagating pump beam injected at 

the fiber output [44]. Several exploitations of this phenomenon 

of polarization attraction have been reported in the literature 

in conjunction with various types of optical functionalities, 

e.g., pulse reshaping [51], noise cleaner [52], data packet 

processing [53], Raman amplification [54], spatial mode 

attraction [55]. According to these works, the generally 

accepted point of view is that the injection of a pump beam at 

the fiber output is a prerequisite for the existence of the 

phenomenon of polarization attraction. The idea is that the 

fully polarized pump beam serves as a SOP reference for the 

signal beam, and thus plays the role of natural attractor for an 

incident unpolarized signal.  

In opposition with this common belief, recent 

experimental results have unexpectedly demonstrated that a 

polarization attraction process can also occur in the absence of 

any SOP reference in a device called “Omnipolarizer” [56-57]. 

In this phenomenon of self-induced polarization attraction, the 

signal beam interacts with its own counter-propagating 

replica, which is generated at the fiber end by means of a 

reflected element, e.g., fiber Bragg-mirror, or amplified 

reflective fiber loop [56-58]. Furthermore, it has been shown 

that the Omnipolarizer may exhibit a chaotic polarization 

dynamics which could induce a fast and efficient polarization 

scrambling [64-70]. Both the attraction and the chaotic 

processes are two different aspects of the all-optical and self-

induced polarization control which takes place within the 

Omnipolarizer. 

Our aim in this article is to provide a general overview of 

the dynamics and applications of this phenomenon of self-

induced polarization control, and to highlight the excellent 

agreement between theoretical, numerical and experimental 

results. In particular, after introducing the principle of 

operation and experimental implementation of the 

Omnipolarizer, we will report the existence and exploitation 

of 3 different working regimes, i.e. the bistability regime and 

the polarization alignment regime which have already been 

identified in refs. [56, 58] as well as a new scrambling regime. 

All of these peculiar regimes have then been exploited to 

provide several proof-of-principles for telecom applications 

including the repolarization of a 10-Gbit/s Return-to-Zero 

signal, optical memory and 10-Gbit/s data packet routing as 

well as a 10-Gbit/s wavelength-division-multiplexing (WDM) 

polarization scrambler. Finally, in the last section we trace out 

the conclusions. 

II. PRINCIPLE OF OPERATION 

As illustrated in Fig. 1, the Omnipolarizer basically consists in 

a few-km span of telecommunication fiber where a forward 

signal interacts through a Kerr nonlinear cross-polarization 

process with its own backward replica, which is generated by 

means of a back-reflection at the fiber end. The back-reflection 

is characterized by a reflection coefficient ρ that defines the 

power-ratio between backward and forward waves. 

Practically, for standard telecom optical fibers of a few-km 

length, typical signal powers of 500 mW are then required to 

observe the present polarization dynamics. Two different 

setups have been implemented, which give rise to three 

different operational regimes depending on the reflection 

coefficient ρ. 

 
Fig. 1. Schematic setup of the Omnipolarizer and principle-of-operation of the 

self-induced polarization control. The left (right) Poincaré spheres illustrate 

the distribution of the input (output) SOP in the 3 identified regimes. In (a) the 

setup is passive: the backward beam J is produced by means of a reflective 

element (mirror). In (b,c) the setup is active: the backward beam is amplified 

in a reflective fiber loop. The eye diagrams illustrate the fact that the intensity 

profile is ideally preserved in all 3 the operating regimes, i.e. without 

polarization fluctuations transferred into the temporal domain. 

 

In the first setup (Fig. 1a), called passive, the back-reflection 

is produced by means of a partially reflecting mirror, for which 

typically 0.8 ≤ ρ ≤ 1. In this case, for any arbitrary polarized 

input signal, two fixed SOPs are produced that correspond to 

right or left circular states. The sign of the input signal 

ellipticity defines which of the two SOPs is obtained in output. 

Consequently, an initially depolarized signal, scrambled all 

over the Poincaré sphere (See Fig. 1a), is attracted towards 
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both the poles of the sphere at the fiber end. Moreover, as we 

will see in the next sections, small polarization fluctuations of 

the input signal could make the output polarization to “jump” 

abruptly from the right to the left circular state, or vice versa, 

which is the main signature of a bistable regime. In the second 

configuration (Fig. 1b-c), called active, the backward signal is 

amplified in a reflective fiber loop basically made of an optical 

circulator and an amplifier. When the amplification is weak, 

typically 1.2 ≤ ρ ≤ 2, for any arbitrary polarized input signal 

one single SOP is produced in output, whose position over the 

Poincaré sphere can be controlled by means of the polarization 

rotation imposed by the feedback loop. As a consequence, an 

initially depolarized signal is aligned towards one unique 

tunable SOP at the fiber end. We talk in this case of 

polarization alignment regime (Fig. 1b). On the other hand, a 

large amplification factor ρ >>1 leads to a chaotic polarization 

dynamics. Roughly speaking, this third regime is the opposite 

of the first two. Indeed in this case an initially fully polarized 

signal turns out to be completely depolarized in output, which 

corresponds to a scrambling regime (Fig. 1c). 

III. THEORETICAL DESCRIPTION 

In the following, we indicate with S=[S1,S2,S3] and J=[J1,J2,J3] 

the Stokes vectors for the forward and backward beams, 

respectively, whereas with s=S/|S| and j=J/|J| the normalized 

unitary Stokes vectors that represent the SOP. The evolution 

of S and J in the fiber is governed by the following coupled 

equations [56]: 
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where D=∙diag(-8/9,-8/9,8/9) is a diagonal matrix,  and α are 

the nonlinear Kerr coefficient and the propagation losses of the 

fiber, respectively, and c is the speed of light in the fiber. 

According to this notation, the component s3 indicates the 

forward signal ellipticity. The boundary condition at the fiber 

end reads as J(z=L,t) = ρRS(z=L,t), where R is a 3x3 rotation 

matrix modeling the polarization rotation in the reflective-

loop, whereas L indicates the fiber length and ρ= |J(z=L,t)| / 

|S(z=L,t)|. It is important to notice that chromatic dispersion is 

here neglected in our model since it does not impact 

significantly the efficiency of the cross-polarization 

interaction due to the counter-propagating nature of the 

phenomenon. Furthermore, considering the incident signals 

involved in our experiments, their corresponding dispersive 

lengths appear much longer than the segment of fiber 

implemented within the Omnipolarizer. Despite their 

simplicity, Eqs. (1) capture all the essential properties of the 

polarization dynamics in the Omnipolarizer, which is 

demonstrated by the excellent agreement with experimental 

results discussed in the  next sections. Moreover, Eqs. (1) are 

formulated in terms of Stokes vectors, which are preferable to 

the original amplitudes of the electric field as they represent 

the more natural and convenient way to analyze polarization 

phenomena in the fiber.  

An important property of the system under analysis, which 

immediately comes out from Eqs. (1) is that the intensity 

profiles |S| and |J| are preserved except for propagation losses 

and a temporal shift (as illustrated by the eye-diagrams in Fig. 

1), namely |S(z,t)|= |S(0,t-z/c)|exp(-αz) and |J(z,t)|= 

|J(0,t+z/c)|exp(αz-αL). This prevents input polarization 

fluctuations to be transferred into the temporal domain as large 

output intensity variations, which is typical of linear polarizers 

or repolarization methods based on a polarization depending 

gain process. 

The system dynamics in the 3 regimes previously outlined 

is closely related to the stability of the stationary states, which 

are the solutions of Eqs. (1) when dropping the time 

derivatives. When the powers of the forward and backward 

beams are similar, which is the case for the first two regimes, 

only the stable stationary SOPs, here indicated with sstat and 

jstat, can play the role of polarization attractors for the output 

forward and backward signals. As a rule of thumb, it was 

found that stable stationary states are characterized by a non-

oscillatory behavior, while non-stable states are oscillating 

along the fiber length [49] (see Fig. 2). 

 

Fig. 2. Spatial evolution along the fiber length of the normalized Stokes 

component s3 (solid lines) in the 3 operational regimes under analysis. Three 

consecutive instants are represented, which are tA<L/c (left panels a,d,g); 
tB>L/c (central panels b,e,h); tC>>L/c (rigth panels c,f,i).Corresponding 

stationary solutions s3,stat are represented in circles. Panels a-c: bistable regime. 

Two cases are represented that correspond to two different input polarizations 
s3(z=0)=+0.1 (blue lines and circles) and s3(z=0)= -0.1 (red lines and circles). 

In both cases, despite the slight difference in input, s3 is asymptotically 

attracted in time towards the corresponding stable stationary solution s3,stat. 
Panels d-f: alignment regime. Two cases are represented that correspond to 

two different input polarizations s3(z=0)=0.9 (blue lines and circles) and 

s3(z=0)= -0.9 (red lines and circles). In both cases s3 is asymptotically attracted 
in time towards a unique stable stationary solution s3,stat. Panels g-i: scrambling 

regime. The stationary solution is unstable and consequently s3 does not 

converge towards s3,stat but fluctuates in time without reaching a fixed state. 
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Figures 2a-c display a schematic illustration of the bistable 

process discussed above (0.8 ≤ ρ ≤ 1). The component s3 of s 

is depicted along the fiber (solid line) at 3 consecutive times 

tA<L/c, tB>L/c and tC>>L/c, where L/c defines the end-to-end 

propagation time in the fiber. For the sake of simplicity, we 

initially assume that the input signal is constant in time, i.e. 

s(z=0,t)≡s(z=0). 

At tA<L/c (panel a) the backward replica has not been 

generated, yet, therefore S is unaffected by nonlinear coupling 

with J and propagates unchanged in the fiber. On the other 

hand, at tB>L/c (panel b), J has been generated and nonlinearly 

interacts with S, so that s gradually converges towards the 

stable state sstat (depicted with circles). The attraction is 

stronger and stronger with time, so that at tC>>L/c s(z, t=tC) 

and sstat(z) practically coincide (s3(z,t=tC)  ≃ s3,stat(z) in panel 

c). 

As we will see in next section, there is a unique stable 

stationary state associated with a given value sstat(z=0), 

therefore s(z,t) converges towards the stable stationary state 

such that sstat(z=0) = s(z=0). Furthermore, the stable stationary 

state basically depends on the reflection coefficient ρ and on 

the total number N=L/LNL of nonlinear lengths, being 

LNL=(γ|S|)-1 the characteristic nonlinear length [71]. One 

peculiar property of the system under analysis (see Section V) 

is that if ρ≃1 and N>>1 (typically N≥4), which is the case in 

highly nonlinear regime, then s3,stat(z=L) ≃ sign[s3,stat(z=0)]. 

For typical involved fibers which are few-km long and whose 

Kerr coefficient is γ ≈ 2W-1km-1, a signal power in the order of 

500 mW is required to accomplish the aforementioned highly-

nonlinear regime. The Omnipolarizer is then bistable and 

characterized by 2 pools of attraction. That is to say: the output 

value s3,stat(z=L) gets close to +1 or -1 simply depending on 

the sign of s3,stat(z=0). Furthermore, a slight different input 

condition of s3(z=0) may give rise to a completely opposite 

output polarization, which is the case displayed in Fig. 2c, 

where if s3(z=0)=+0.1 then s3(z=L,t=tC)≃ s3,stat(z=L) ≃+1, 

otherwise if s3(z=0)= -0.1 then s3(z=L,t=tC)≃ s3,stat(z=L) ≃ -1. 

Similarly to the bistable regime, also in the alignment 

regime (1.2 ≤ ρ ≤ 2) there is an asymptotic convergence of s 

towards the stable stationary state sstat such that sstat(z=0) = 

s(z=0). However, as we will clarify in Section VI, in this case 

the output sstat(z=L) is almost independent of the input 

sstat(z=0) and thus of s(z=0). For this reason we observe a 

unique attraction SOP at the fiber output, which is the case 

displayed in Fig. 2d-f, where s3(z=L,t=tC)≃ s3,stat(z=L) =+0.5 

whatever the input value s3(z=0) is. Note that the value 

s3,stat(z=L) =+0.5 in this example is purely indicative: actually, 

as we will see in Section VI, sstat(z=L) is tunable all over the 

Poincaré sphere by means of the rotation R. 

Contrary to the bistable and the alignment regime, the 

scrambling regime (ρ>>1) is characterized by a large power 

imbalance between the forward and the backward beam. This 

makes the stationary states oscillating with a spatial period 

inferior to the fiber length, so that they become unstable and 

cannot play the role of attractors anymore. As a consequence, 

s does not converge towards sstat in time, but varies without 

reaching a fixed state. Whatever the input polarization is, the 

output polarization s(z=L,t) varies endlessly in time and 

becomes therefore temporally scrambled (Fig. 2g-i). As we 

will see in Section VII the time scale of the output polarization 

fluctuations can be controlled by means of the coefficient ρ, 

which leads to the implementation of an efficient all-optical 

polarization scrambler. 

IV. EXPERIMENTAL SETUP 

Figure 3 depicts the general experimental implementation 

especially designed to characterize the 3 different operating 

regimes of the Omnipolarizer. Depending on the working 

regime and in fine optical functionality, the setup can combine 

several kinds of input signals and characterization tools. First 

of all, the Omnipolarizer basically consists in a single span of 

non-zero dispersion shifted fiber (NZ-DSF) of a few 

kilometers encapsulated between a reflected element at the 

output side and an optical circulator at the input to evacuate 

the residual backward signal. The fiber is selected with a 

normal dispersion at the signal wavelength so as to avoid any 

modulational instability or soliton compression effects. The 

polarization mode dispersion (PMD) coefficient of the fiber is 

also ideally chosen to be below 0.05 ps/km1/2 so as to keep a 

low level of residual birefringence which could decrease the 

efficiency of the polarization control. The input signal is 

amplified by means of an Erbium doped fiber amplifier 

(EDFA) before injection into the fiber under-test. Moreover, 

considering the power levels involved in our experiments, 

typically half a Watt in average, a few kilometers of fiber is 

enough to propagate the signal upon several normalized 

nonlinear lengths and thus to ensure an efficient repolarization 

process. 

In the passive configuration of the Omnipolarizer (see (a) 

in the setup scheme), the reflected element which produces the 

feedback signal is typically a fiber Bragg grating (FBG) but 

could be also a metallic coating or a mirror. The present 

integrated FBG is characterized by a bandwidth of 1 THz 

centered on 1550 nm and a reflective coefficient of 97%. 

Therefore, 3% of the transmitted signal actually corresponds 

to the output processed signal. In its active configuration (path 

(b) in the setup), the reflective element consists in a fiber loop 

setup made of an optical circulator, an additional EDFA, a 

polarization controller adjusting the rotation matrix R, as well 

as a 90:10 tap coupler to evacuate the resulting output signal 

for analysis. In this configuration, the reflective coefficient ρ 

can be obviously larger than 1 and is thus directly related to 

the gain of this second EDFA. 

For fundamental characterizations of the Omnipolarizer, 

the initial signal consists in a polarized 100-GHz bandwidth, 

partially incoherent wave centered on 1550 nm obtained by 

spectral filtering of an Erbium-based spontaneous noise 

emission source (ASE). This spectral bandwidth, rather than a 

pure continuous wave, is used here to avoid any impairment 

due to the stimulated Brillouin backscattering in the optical 

fiber of the Omnipolarizer. Indeed, since the Omnipolarizer is 
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based on a strong nonlinear interaction between counter-

propagating waves, the device is first clearly limited by 

Brillouin back-scattering when using pure CWs. 

Consequently, Brillouin suppression methods have to be 

implemented to use CW signals such as phase modulation, 

strain or temperature distribution along the fiber length as well 

as aluminum doped core fibers [59-63]. For Telecom 

processing demonstrations, the signal under-test consists in a 

10-Gbit/s On/Off Keying (OOK) Return-to-Zero (RZ) signal 

centered on 1555 nm. The 10-Gbit/s RZ signal is generated 

from a 10-GHz mode-locked fiber laser delivering 2.5-ps 

pulses at 1555 nm. A programmable optical filter is used to 

temporally stretch the initial pulses to 25 ps which are then 

intensity modulated by means of a 27-1 pseudo-random bit 

sequence (PRBS). Note that this short length of the PRBS 

sequence undertest is here only used to provide a first proof-

of-principle of the polarization switching concept. 

Nevertheless, we expect that similar performances would have 

been obtained with much longer sequences. Moreover, since 

the polarization attraction process has already been 

demonstrated for RZ or Return-to-Zero modulation formats 

[43], we expect that neither the pulse width nor the OOK 

format would impact the performance of our device. 

Nevertheless, we expect that a limitation of the device could 

be observed when short data-packets would be injected into 

the Omnipolarizer instead of continuous data flows. Indeed, 

for packets duration below the time-response, the 

repolarization effect would be affected. However, it has been 

shown in ref. [53] that packets of 205 ns time-duration have 

been efficiently repolarized by means of a counter-

propagating configuration of the polarization attractor so we 

expect that same duration could be efficiently routed in the 

present device. Before injecting the incident signal into the 

device, an opto-electronic polarization controller/scrambler 

(PS) enables us to alternatively scramble (at a rate of 0.5 kHz) 

or create a specific polarization trajectory on the Poincaré 

sphere. At the output of the Omnipolarizer, the resulting signal 

is filtered (F-3) to suppress the spontaneous noise outside the 

signal bandwidth and is finally characterized both in the 

polarization and in the temporal domains by means of a 

polarimeter and a 50-GHz bandwidth sampling oscilloscope 

for Telecom purpose, respectively. 

 

Fig. 3. Experimental setup. (a) Passive configuration of the Omnipolarizer (b) Active implementation. ASE: amplified spontaneous noise emission, Pol: inline 

polarizer, PS: polarization scrambler, EDFA: Erbium doped fiber amplifier, NZ-DSF: non-zero dispersion fiber, FBG: fiber Bragg grating, PC: polarization 

controller, F: optical filter. 

 

V. BISTABILITY: FROM HYSTERESIS TO FLIP-FLOP MEMORIES 

AND SWITCHING OPERATIONS 

In this section we gain a deeper physical understanding of the 

bistable process outlined in Section III and we discuss the 

experimental proof-of-principle of some useful applications 

based on polarization bistability [58]. 

The stationary system associated to Eqs. (1) when losses are 

neglected admits as a constant of motion  the vector K = S-DJ.  

By insertion of DJ= S-K in the stationary system we obtain the 

equality ∂zS=K×S, whose solution for S are rotations around K 

corresponding to circles of spatial period 2π/|K| [56].  

Taking into account that in the passive setup ρ≃1 and there 

is no rotation imposed on J at the fiber end, i.e. R=diag(1,1,1), 

then the boundary condition associated to the stationary system 

in z=L simply reads as J(z=L) = S(z=L).  

Consequently, the component K3 of K is null and therefore 

the system ∂zS=K×S is symmetric with respect to rotations 

around the S3 direction. This practically allows restricting the 

study to find the relation between the input ellipticity s3(z=0) 

and the output ellipticity s3(z=L) of the stationary states. This 

curve is displayed in Fig. 4a-b for different values of the number 

N of nonlinear lengths. If N≃0 (Fig. 4a) we clearly get a quasi-

straight line that corresponds to the limit L≃0, i.e. s3(z=L) ≃ 

s3(z=0). On the other hand, the more N increases, the more the 

curve is deformed until it exhibits a vertical tangent when 

N=π/2. The curve becomes multivalued for N> π/2 (Fig. 4b), so 

that for a given input s3(z=0) we may find several outputs 

s3(z=L), corresponding to a variety of stationary solutions s3(z) 

associated with s3(z=0). 

However, only one among these stationary solutions is 

stable. Indeed, if -1≤ s3(z=0) ≤ 0 then only the lower-valued 

solution s3(z=L), represented by the blue solid line in Fig. 4b, is 

the only one related to a  stationary state which is not oscillating 

along the fiber length, and is thus stable [49]. Conversely, if 

0≤s3(z=0)≤ 1 then only the higher-valued solution s3(z=L), 

represented by the red solid line in Fig. 4b, is the one related to 

a stable stationary state and plays the role of polarization 

attractor. 
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Fig. 4. (a): s3(z=0) versus s3(z=L) for the stationary solutions of Eq.(1) in the 

passive setup  ρ=1, R=diag([1,1,1]) , null losses and N=0.4. All points of the 

curve correspond to stable stationary solutions. (b): same as in (a) but when 

N=4. Solid blue and red lines correspond to the stable states such that s3(z=L)≃-

1 and s3(z=L)≃+1, respectively. Dashed blue and red lines correspond to the 

metastable states. The black dashed line corresponds to the set of unstable 

states. The blue and red spots in s3(z=0)=±0.85 identify the extremities of the 

line of unstable states. The empty circles A and B represent respectively the 

metastable and the stable states corresponding to s3(z=0)=0.5. (c): Hysteresis 

cycle recorded experimentally at the output of the Omnipolarizer (solid black 

line). The input signal consists in a 100-GHz polarized incoherent signal with 

an average power of 570 mW (ρ=0.9). The component s3(z=0) varies in time 

from -1 to +1 and vice-versa with a ramping time of 200 ms. Numerical solution 

of Eqs.(1) are also represented (dashed red line) 

Furthermore, it is clear from Fig. 4b that when N>>1 then the 

blue and red segments correspond respectively to s3(z=L)≃-1 

and s3(z=L)≃+1. Therefore, as previously anticipated in 

Section III, in a highly nonlinear regime the stable stationary 

states are such that s3(z=L) ≃ sign[s3(z=0)] [56]. Consequently, 

if a constant-in-time input SOP s(z=0,t)≡s(z=0) that is in the 

north (south) hemisphere of the Poincaré sphere is injected into 

the fiber, namely s3(z=0)>0 (s3(z=0)<0), then the corresponding 

output s(z=L,t) will relax towards the north  (south) pole of the 

sphere, that is s3(z=L,t)≃+1 ( s3(z=L,t) ≃-1). 

One may wonder what happens if the input s(z=0,t) is not 

constant but varies in time. On the basis of what explained 

above, we may be wrongly induced to think that if s3(z=0,t)  

moves from negative values to positive values (i.e. it changes 

sign) then the corresponding output s3(z=L,t) suddenly jumps 

from -1 to +1. This is not true because another class of 

stationary solutions exists that are metastable, and are indicated 

by the blue and red dashed lines in Fig. 4b. Roughly speaking, 

these metastable states are stable under small perturbations and 

can be adiabatically reached from the stable states. This means 

that if we slowly vary s3(z=0,t)  from -1 towards +1, after having 

covered the blue solid line of stable states in Fig. 4b we enter in 

the blue dashed line of metastable states which starts in 

correspondence of s3(z=0)=0. Moving further, we find the first 

vertical tangent, which is indicated by the blue spot in Fig. 4b 

and that corresponds to the first unstable state at s3(z=0)=0.85. 

It is for an input 0≤s3(z=0)≤0.85 that the output s3(z=L,t) 

abruptly jumps towards the opposite  branch of stable states, 

that is the red solid line in Fig. 4b. The switching value s3(z=0) 

strictly depends on how quickly the input s3(z=0,t) varies: the 

more its transition from -1 to +1 is slow, the larger is the 

switching value, but in any case the upper limit is represented 

by the value corresponding to the first unstable state, which is 

s3(z=0)=0.85 in the case under analysis. As an example, in Fig. 

3b the switching value s3(z=0)=0.5 gives rise to the jump of 

s3(z=L,t) from the point A, which is close to -1 and is related to 

a metastable state, to the point B, which is close to +1 and 

corresponds to a stable stationary state. 

 Clearly, the same could be said when s3(z=0,t) moves from 

+1 towards -1. In this case, after having covered the red solid 

line of stable states, we enter in the red dashed line of 

metastable state and we find the vertical tangent indicated by 

the red spot in correspondence of s3(z=0,t)=-0.85. For a 

switching value -0.85≤s3(z=0)≤0 the output s3(z=L,t) suddenly 

jumps towards the opposite  branch of stable states, that is the 

blue solid line in Fig. 4b. 

These abrupt transitions between the upper and the lower 

branches of the curve in Fig. 4b are a clear signature of a 

hysteresis phenomenon. This behavior, here described in the 

ideal case of zero losses and unitary reflection coefficient, is 

however still observed for typical weak propagation losses of 

0.2 dB/km and for 0.8≤ρ≤1. Figure 3c illustrates a complete 

hysteresis cycle obtained in experiments when employing a 4-

km long non-zero dispersion shifted fiber (NZ-DSF) 

characterized by a chromatic dispersion of -1.16 ps/nm/km, a 

Kerr coefficient γ=1.7 W-1km-1 and a PMD coefficient of 0.05 

ps/km1/2. The reflection coefficient ρ≃0.9 and propagation 

losses are 0.2 dB/km. We have carefully generated on the 

polarized 100-GHz incoherent wave an adiabatic transition 

making the input s3(z=0,t) to vary from -1 to +1 and vice-versa 

with a ramping time of 200 ms thanks to the opto-electronic 

input polarization controller. The input average power is 570 

mW (27.5 dBm) and the corresponding nonlinear length is 

LNL=1.03 km, so that N≃4. The switching of the output 

s3(z=L,t) between the two branches of the hysteresis when the 

input s3(z=0,t)≃±0.4 is clearly visible. Note that the output s3 

component maintains its value close to -1 (OFF state in Fig. 4c) 

or +1 (ON state in Fig. 4c) and that transitions are remarkably 

sharp, so that the hysteresis cycle is well opened. As previously 

underlined, this is due to the presence of a strong nonlinearity 

(N≃4). Note also the excellent agreement with numerical 

results, obtained by solution of Eqs. (1) including exact 

experimental parameters. This confirms the full validity of Eqs. 

(1) for the description of the polarization dynamics in the 

Omnipolarizer. 

An interesting application of the hysteresis loop is the 

possibility to imprint or reset an ON or OFF state on the system 

and to maintain this state even if the flipping cause has 

disappeared, in such a way to implement a polarization-based 

flip-flop memory [58]. The principle of operation can be 

inferred by Fig. 4c. When a set pulse on the s3 component is 

injected into the fiber, its peak value switches the output s3 

component to the ON state close to +1. Afterward, the input set 

pulse vanishes to 0 but the system has stored the ON state 

because of the hysteresis properties. It is only by means of a 

reset pulse that the output s3 component drops back to the OFF 

state close to -1 so as to clear the memory and maintains this 

condition until a next set pulse is applied. 

Figure 5a-b illustrates the experimental proof-of-principle 
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observation of a polarization-based flip-flop memory that is 

loaded (cleared) by a train of set (reset) pulses, respectively. 

The fiber and the average input power are those employed when 

reproducing the hysteresis cycle of Fig. 4c. Therefore, the peaks 

of the set and reset input pulses should be respectively larger 

than +0.4 and lower than -0.4 in order to cause the transition of 

the output s3 from the OFF to the ON state and vice-versa. 

A random sequence of set/reset input spikes s3(z=0,t) with 

width of 2 ms, a rise time of 20 μs and peaks of ± 0.7 was 

imprinted on the 100-GHz polarized incoherent wave by means 

of the input opto-electronic polarization controller. This signal 

was then amplified to an average power of 570 mW. The s3 

input sequence as a function of time can be monitored in Fig. 

5a. When injected into the Omnipolarizer, this set/reset 

polarization spike sequence gives rise to the output s3(z=L,t) 

displayed in Fig. 5b. We can clearly observe that the system is 

able to perpetually store the OFF/ON state until a new input 

set/reset control pulse appears, thus demonstrating the storage 

capacity of this polarization-based flip-flop memory. We stress 

that the sharp edges of the output wave s3(z=L,t) represent the 

temporal counterpart of the sharp transitions in the hysteresis 

cycle of Fig. 4c, and are thus linked to the strong system 

nonlinearity: as a rule of thumb the larger is N, the sharper are 

the edges. 

 
Fig. 5. Experimental proof-of-principle of a flip-flop memory based on the 

hysteresis process outlined in Fig.3c. The Omnipolarizer consists in a 4-km 

long NZ-DSF fiber with a 100-GHz polarized incoherent input signal with an 

average power of 570 mW and ρ=0.9 (a): Triggering set/reset s3(z=0,t) sequence 

injected in the fiber (width 2 ms, rise time 20μs). (b): Corresponding output 

s3(z=L,t). 

 

Another interesting exploitation of the hysteresis properties of 

the system may consist in the implementation of all-optical 

polarization switching operation [58]. The key-principle is the 

same as the flip-flop memory previously shown, that is the 

sharp transitions in presence of set/reset input events. To this 

aim, the initial partially incoherent signal is now replaced by a 

10-Gbit/s RZ signal. As in the flip-flop memory experiment 

reported above, an arbitrary sequence of 2-ms set/reset s3 spikes 

is finally imprinted on the incident 10-Gbit/s signal thanks to 

the opto-electronic polarization controller. In order to 

characterize the switching efficiency, a polarization beam 

splitter (PBS) is inserted at the output of the Omnipolarizer to 

monitor the intensity profile on both orthogonal axes. The 

switching packet envelopes are first detected with a low-

bandwidth oscilloscope while the 10-Gbit/s eye-diagrams are 

monitored by means of a 50-GHz bandwidth sampling 

oscilloscope. Basically, the first axis of the PBS detects the 

magnitude |s3(z=L,t)|, whereas the second axis detects the 

conjugate wave 1-|s3(z=L,t)|. 

Figure 6a1 displays the input s3 set/reset control spikes 

imprinted on the 10-Gbit/s signal and detected on the low 

bandwidth oscilloscope beyond the PBS. No polarization 

segregation occurs and thus the eye-diagram (a2) presents a 

combination of both polarization PBS channels. At the 

opposite, when the average power is increased to 570 mW (27.5 

dBm), the combined effects of polarization digitalization and 

associated hysteresis cycle make switch the whole energy of the 

optical data from one axis of the PBS to the other with an 

excellent discrimination. Remarkably, the output polarization 

does not depend on its current input value but also on its past 

value. Indeed, the switch remains in its last state until an erasing 

polarization trigger is sent to the system, thus demonstrating the 

all-optical remote processing capability of that system. As a 

result, we can observe on both axis of the PBS in Figs. 6b1 and 

6c1 the appearance of conjugate data packets corresponding to 

the set/reset initial sequence. Finally, the 10-Gbit/s eye-

diagrams displayed in Fig. 6b2 and 6c2 show a wide opening as 

well as a high polarization digitalization efficiency with an 

extinction ratio between each orthogonal axis above 20 dB. 

 

Fig. 6. Experimental proof-of-principle of data-packet switching operation 

based on the hysteresis properties of the Omnipolarizer. Parameters of the 

system are the same as in Fig. 4. The 10-Gbit/s RZ input signal has an average 

power of 27.5 dBm. The left column displays the temporal evolution of the 

intensity profile recorded beyond a PBS and monitored on a low-bandwidth 

oscilloscope (a) Input set/reset s3(z=0,t) spike sequence (b, c) Output intensity 

profile on port#1 and port#2 of the PBS (a2, b2 and c2) Corresponding 10-

Gbit/s eye-diagrams. 

 

Finally, as noticed in Sec .III, for the typical fibers undertest 

which are few-km long, let us say L=4 km, and whose Kerr 

coefficient is γ ≈ 2W-1km-1, signal power values > 500 mW 

allow reaching a strong nonlinear regime which corresponds to 

(a1) 100ms/div                  Input

(b1)                         PBS port #1

(c1)                         PBS port #2

(a2) 32ps/div            

(b2)        
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truly effective flip-flop and switching operations. Larger input 

powers can improve the device performance, but on the other 

hand this performance grows asymptotically with power: 

consequently, using powers much larger than 500 mW do not 

bring real and evident benefits with respect to the use of more 

moderate powers. 

VI. ALL-OPTICAL POLARIZATION ALIGNMENT 

The capability of all-optically aligning the polarization of an 

incoming signal towards a unique fixed SOP, in such a way to 

implement an ideal polarizer, is of fundamental and practical 

interests which could find numerous applications in photonics. 

For instance, an all-optical repolarization functionality could be 

a powerful processing for the implementation of polarization 

sensitive devices such as silicon based high-contrast integrated 

optics or photonic-crystal waveguides for future transparent 

networks. For that ultimate purpose, we then discuss in this 

section how the Omnipolarizer may work as a polarization 

funnel and we illustrate the experimental proof-of-principle of 

a 10 Gbit/s polarization alignment for telecom applications. To 

this aim, the Omnipolarizer is implemented in its active 

configuration, involving the amplified fiber loop setup 

described in Fig. 3. 

As in the case of the bistable regime discussed in the previous 

section, the starting point is represented by the stable stationary 

solutions of Eqs. (1). On the other hand, in this case the active 

setup makes the reflection coefficient ρ to be larger than unity 

and R to be in general a not-identity matrix. This makes the 

analysis of the system to be considerably more complex than in 

the case ρ=1 and R = diag(1,1,1). 

However extensive numerical computations of the 

spatiotemporal solutions of Eqs.(1) provide a global overview 

on the full dynamics of the system. The main notion that should 

be retained is that, differently from the bistable regime, once 

that R, N and ρ are fixed the output value s(z=L) of the stable 

stationary states is nearly the same whatever the input value 

s(z=0) is. Indeed a polarization rotation in the reflective loop, 

which corresponds to R ≠ diag(1,1,1), breaks the symmetry of 

the two pole attractors and leads to a concentration of the output 

SOP in a unique area of attraction. The choice of the surviving 

output SOP is here mainly determined by the symmetry 

breaking introduced by the rotation matrix R. Consequently, in 

this regime, any input SOP injected in the fiber is attracted in 

output towards a unique and fixed SOP which depends on R, N 

and ρ. Furthermore, systematic numerical simulations show that 

the more ρ increases in the range 1.2 ≤ ρ ≤ 2, the stronger this 

attraction is.  

In order to test the performances of our device in a telecom 

environment, we experimentally detected the distribution of the 

output SOP over the Poincaré sphere for different values of ρ 

and for an input 10-Gbit/s RZ signal. The input signal is the 

same as in the experiments reported above and is injected into 

the Omnipolarizer with a fixed average power of 27 dBm (500 

mW). The fiber implemented into the device is a 6.2 km-long 

NZDSF fiber characterized by a chromatic dispersion of -1.5 

ps/nm/km at 1550 nm, a Kerr coefficient of γ=1.7 W-1km-1, a 

PMD coefficient of 0.05 ps/km1/2 and linear losses of 0.2 

dB/km. Before injection into the device, the polarization state 

of the 10-Gbit/s input signal is first genuinely scrambled by 

means of an opto-electronic polarization scrambler (PS) at a 

rate of 0.5 kHz so that its SOP distribution covers the entire 

Poincaré sphere (Fig. 7a). Figure 7 depicts the evolution of the 

state-of-polarization of the 10-Gbit/s signal recorded at the 

output of the Omnipolarizer as a function of the reflective 

coefficient ρ, i.e. the backward power. When ρ≤1 (Fig. 7b-c), 

similarly to the previous bistability experiments, we notice a 

polarization attraction towards both the poles of the sphere. 

However, in the active configuration, when ρ>1 an outstanding 

attraction towards the north pole of the sphere takes place: when 

ρ=1.5 (Fig. 7f), corresponding to a backward power of 27.5 

dBm. In this case, all the output SOPs are close to the north 

pole, which proves the efficient polarization alignment of the 

initially depolarized signal. 

 

Fig. 7. Experimental evolution of the 10-Gbit/s signal SOP distribution 

recorded at the output of the Omnipolarizer for different values of the reflection 

coefficient ρ. The input signal is initially fully scrambled over the Poincaré 

sphere, panel (a), and has a fixed input average power of 27dBm. 

Note that in this example the pool of attraction is centered on 

the north pole because the polarization rotation, described by 

the matrix R and imposed by the amplified reflective loop setup 

is equivalent to a positive rotation around the direction of s3. A 

negative rotation around the same direction would generate an 

attraction towards the south pole, instead. But, more generally, 

if the rotation is around a different direction then the attraction 

SOP will be a particular point over the sphere which is neither 

the north pole nor the south pole (see for example Fig. 1b). As 

a result, we can simply tune the tracking SOP by controlling the 

rotation by means of the polarization controller inserted within 

the loop. 

Besides the visual representation of the output SOP 

distribution over the Poincaré sphere, an important quantitative 

parameter which measures the strength of the alignment process 

is represented by the degree of polarization (DOP), defined as: 
2/1

222
)tz,(s)tz,(s)tz,(sDOP(z) 321 





         (2) 

where the brackets ⟨⟩ denote a temporal averaging. A 

depolarized signal which is uniformly scrambled all over the 

Poincaré sphere, as the input in Fig. 7a, has a DOP close to 0. 

Note however that according to the definition given in Eq.(2), 

also the bistable output displayed in Fig. 7c has a DOP close to 

Input ρ = 1

ρ = 1.5

ρ = 0.5
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0, because its SOP samples are localized around 2 opposite 

attraction poles. On the other hand, when the attraction SOP is 

unique, as it is the case of Fig. 7f, then the DOP is nearly 

unitary. Therefore, the DOP of the output signal as function of 

ρ typically exhibits the evolution illustrated in Fig. 8a: it is close 

to 0 when 0.8≤ρ≤1, namely in the bistable regime, but after that 

it rapidly grows towards 1 and it remains nearly unitary for 

1.2≤ρ≤2, namely in the alignment regime. For values of ρ 

beyond 2, not displayed in Fig. 8a, the system gradually loses 

its attraction capability as it begins to exhibit a complex chaotic 

dynamics, which compromises the polarization alignment 

towards a unique SOP. This issue will be discussed in the next 

section. 

In order to quantify the performances of the polarization 

alignment process upon a Telecom signal in the time domain, 

we monitored the eye-diagram of the 10-Gbits/ RZ signal 

undertest behind a polarizer at the input and output of the 

Omnipolarizer. The results are displayed in Fig. 8b. The input 

signal, which is completely depolarized (see the sphere in Fig. 

7a), exhibits a completely closed eye-diagram (Fig. 8b, upper 

panel). Indeed, due to the initial scrambling process, all the 

polarization fluctuations are thus transformed into intensity 

fluctuations through the polarizer. On the other hand, at the 

output of the Omnipolarizer, when the backward power is set to 

27.5 dBm, corresponding to the case ρ=1.5 of Fig. 7f, the 

attraction process acts in full strength leading to an efficient 

polarization alignment and thus a wide opened output eye-

diagram (Fig. 8b, lower panel). 

These results remarkably confirm the high efficiency of the 

repolarization process performed by the Omnipolarizer. We 

stress that this outcome represents a truly key breakthrough 

advance for practical usage of nonlinear polarizers in telecom 

applications. Indeed, despite the first proof-of-principle of 

polarization alignment was proposed more than a decade ago 

exploiting the nonlinear interaction between a signal and a 

counter-propagative independent pump in an isotropic fiber 

[41], in the present case, the independent pump beam is not 

required: the signal self-organizes its own SOP and the fiber is 

a standard km-long telecom fiber. This proves the unexpected 

robustness of the nonlinear polarization alignment even in 

presence of local anisotropy and randomly varying 

birefringence. Note that similar results have been obtained at 40 

Gbit/s and show that very weak penalties in the bit-error-rate 

measurements are induced by the repolarization process [56]. 

 

Fig. 8. (a) Experimental output DOP versus ρ for a 10 Gbit/s RZ signal 

transmitted into the Omnipolarizer, the input average power is 27 dBm (b) Eye-

diagram of the 10-Gbit/s RZ signal recorded beyond a polarizer at the input of 

the system (upper panel) and at the output of the Omnipolarizer when ρ=1.5 

(lower panel). 

 

We highlight that, similarly to the case of the bistability regime, 

for the typical employed fibers which are few-km long, let us 

say L=6 km, and whose Kerr coefficient is γ ≈ 2W-1km-1, signal 

power values > 500 mW allow reaching a strong nonlinear 

regime where SOP alignment is very efficient. 

VII. ALL-OPTICAL CHAOTIC POLARIZATION SCRAMBLER 

In this section we discuss the third regime of operation of the 

Omnipolarizer, which allows implementing an all-optical fully 

chaotic polarization scrambler. Indeed, as underlined in 

Sections II and III, for a large power imbalance between the 

forward beam and its backward replica, the system exhibits a 

genuine chaotic dynamics so that even a well-polarized incident 

signal becomes scrambled all over the Poincaré sphere at the 

fiber output [64-69]. 

Two threshold values of the reflection coefficient ρ are found 

that characterize this chaotic dynamics, which are ρA=9π / 

(16∙L∙Ps,out∙)  and ρC≃5ρA, being Ps,out the power of the forward 

signal at the fiber exit. If ρ is below the threshold ρA then the 

system exhibits stationary states that are stable, therefore a 

signal which is fully polarized in input (DOP=1) turns out to be 

still polarized in output with an SOP that strictly depend on the 

system parameters and on the input SOP [69]. On the other hand 

when ρ>ρC the stationary states don’t exhibit anymore a 

monotonic evolution along the fiber length and thus, start to 

oscillate and become unstable. As a result, the signal cannot be 

attracted towards any stable state: the output SOP varies 

endlessly in time and becomes temporally scrambled and 

therefore depolarized at the fiber output (see Fig. 1c). More 

precisely, the output polarization turns out to be not only 

randomly varying in time but also chaotic, which is attested by 

a positive Lyapunov coefficient, calculated as in ref. [72]. For 

intermediate values ρA≤ρ≤ρC the output signal undergoes a 

complex dynamics: depending on its input polarization and on 

the rotation R, it may be fully polarized or scrambled or even 

exhibit a periodic temporal trajectory [69].  

Therefore, a genuine scrambling regime is reached whenever 

ρ>ρC. In this regime our device behaves as an efficient 

polarization scrambler. The condition ρ>ρC can be read as Ps,out∙ 

ρ > 45π / (16 L) : considering as usual a reference fiber with γ 

= 2W-1Km-1 and L=4 km, we find ρPs,out>1.1 W, where ρPs,out is 

the total backward power PJ,out.A backward power in the order 

of 1 W is thus required to reach the chaotic regime in  the 

standard fibers employed in experiments. 

An important parameter for the evaluation of the scrambling 

efficiency is represented by the scrambling speed v = 〈|∂t s|〉, 
which defines the average angle covered by the Stokes vector s 

in 1 second over the Poincaré sphere [57]. In order to estimate 

v, we have collected a series of samples of s at the output of the 

fiber at a rate of nearly 1 microsecond. Finally, from the 

sequence of samples we have estimated the speed according to 

the aforementioned formula. Being that typical speeds are in the 

order of hundreds of KHz, to whom it corresponds a coherence 

time of several microseconds, a sampling rate of 1 microsecond 

turned out to be appropriate for a correct measurement. 

Interestingly enough, the scrambling speed v is directly 
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proportional to the reflection coefficient ρ, which is thus the 

tunable parameter in order to control the scrambling 

performances. Furthermore, the time scale of the output 

polarization fluctuations is well estimated by 1/v. 

In order to explore the scrambling regime, we have carried 

out a first series of experiments by considering the initial 

polarized 100-GHz incoherent wave with a fixed arbitrary 

polarization state (DOP=1) injected into the Omnipolarizer 

with a constant power of 15 dBm. The fiber implemented into 

the device is a 5.3 km-long NZ-DSF and is characterized by 

linear losses of 0.24 dB/km and a nonlinear coefficient =1.7 

W-1km-1. According to these parameters, the thresholds are 

respectively ρA≃8 and ρC=≃40. 

In Fig. 9a we show the experimental DOP as function of ρ. 

In good agreement with the estimations of ρA and ρC, we 

observe that below a reflection coefficient close to ρ=8, 

corresponding to a backward power of 23 dBm, the output DOP 

remains nearly unitary because the output signal is still fully 

polarized. Conversely, for values of ρ>40, corresponding to a 

backward power larger than 30 dBm, the system enters into the 

genuine scrambling regime. The experimental DOP then drops 

to much lower values, typically below 0.3, corresponding to an 

efficient scrambling of the output SOP covering the whole 

Poincaré sphere (see Fig. 9d). It is also noteworthy that in this 

regime the Lyapunov coefficient of the output SOP, evaluated 

upon the procedure described in ref. [72] and shown in Fig. 9b, 

is found to be strictly positive, which provides a key signature 

of the chaotic nature of this scrambling dynamics. Furthermore, 

as previously underlined and shown in Fig. 9c, the scrambling 

speed is almost directly proportional to ρ. Indeed, based on 

intensive numerical simulations, we have found that this speed 

is almost directly proportional to the input signal power as well 

to ρ. 

We stress that the experimental results show that our device is 

mainly limited by propagation losses and by the detrimental 

Rayleigh back-scattering when large amplification factors are 

used. These deleterious effects practically limit the scrambling 

speed of our system around 400 krad/s. Note however that this 

value matches the scale of fast polarization changes 

encountered in high-speed fiber optic systems due to 

surroundings variations (temperature fluctuations, mechanical 

stress) [6]: the output scrambled signal from the Omnipolarizer 

may thus be employed to emulate polarization fluctuations 

undergone by a signal which is transmitted in a real fiber 

system, which makes the proposed chaotic regime of practical 

interest.  

Note also in Fig. 9 the excellent agreement between 

experimental results and numerical results obtained from 

solution of Eqs. (1) using the experimental parameters, which 

is a further confirmation of the validity of Eqs. (1). 

 
 

Fig. 9. Scrambling performances when using a NZ-DSF 5.3 km-long fiber 

characterized by linear losses of 0.24 dB/km and a nonlinear coefficient =1.7 

W-1km-1. The input power is set to 15 dBm. Experimental results (red solid 

lines) are compared to numerical results (black dotted lines). (a)  DOP of the 

output signal as a function of the reflective coefficient ρ. (b) Corresponding 

Lyapunov coefficient. (c) Corresponding scrambling speed. (d) Distribution of 

the output SOP when ρ=60. 

In order to evaluate the potential of this all-optical 

polarization scrambler for Telecom signal processing, we 

experimentally implemented our device into a wavelength 

division multiplexing transmission. To this aim, the initial 

incoherent signal was then replaced by the following WDM 

experimental source depicted in Fig. 10. A 10-GHz mode-

locked fiber laser delivering 2-ps pulses at 1551 nm is first 

encoded at 10 Gbit/s under an OOK RZ modulation format and 

next amplified up to 30 dBm. A supercontinuum is then 

generated within a 500-m long dispersion-flattened highly non-

linear fiber (DF-HNLF) characterized at the pump wavelength 

by a chromatic dispersion of –1 ps/nm/km, a dispersion slope 

of 0.006 ps²/nm/km, fiber losses of 0.6 dB/km and a Kerr 

coefficient of 10.5 W-1.km-1. Five 10-Gbit/s, 12-GHz 

bandwidth, WDM channels centered at 1540.2 (C1), 1542 (C2), 

1543.45 (C3), 1545 (C4) and 1546.2 nm (C5), and an additional 

pump channel, centered at 1550 nm, are finally sliced into this 

resulting continuum thanks to a programmable optical filter 

(Waveshaper WS). All the channels are then decorrelated both 

in the time and polarization domains by means of a couple of 

demultiplexer/multiplexer with different paths and polarization 

rotations for each channel.  

 
Fig. 10. Experimental setup of the 10-Gbit/s WDM source for testing the 

chaotic polarization scrambler in WDM configuration. 

 

The resulting 10-Gbit/s WDM grid is injected into the 

Omnipolarizer with a fixed average power of 15 dBm. The key 

ingredient here is that a 100-GHz optical bandpass filter is 

inserted into the reflective-loop in order to only counter-
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propagate the 1550-nm pump channel as a backward signal. 

Meanwhile, the five WDM channels are picked out of the 

device for analysis. The purpose of this spectral filtering is 

twofold: on the one hand, a single signal counter-propagates 

and thus imposes a unique and efficient scrambling process for 

all the transmitted channels. On the other hand, because of the 

strong level of power used for the backward signal, this 

frequency offset pump channel limits the deleterious impact of 

back Rayleigh scattering on the 5 other transmitted channels. 

At the output of the Omnipolarizer, each of the five WDM 

channels is characterized in polarization and in the time domain 

by means of an eye-diagram monitoring and bit-error-rate 

measurements. 

Figures 11a-c display the output Poincaré spheres for 3 

different WDM channels, corresponding to C1, C3 and C5, 

respectively. Note that the 2 other channels localized at C2 and 

C4 exhibit similar behaviors. For these measurements, the total 

input power is kept constant to 15 dBm and only the 1550-nm 

pump channel is back-reflected with an average power of 29 

dBm. 

Quite remarkably, in spite of the fact that all the channels are 

initially decorrelated and enter into the system with different 

fixed SOPs, the device is still able to randomize the polarization 

of the whole WDM grid. Indeed, it is noteworthy in Fig. 11 that 

the SOP of each channel well covers the entire Poincaré sphere 

and is characterized by a low value of DOP below 0.2. 

Moreover, we have found that the polarization trajectories 

undergone by all the individual channels are correlated in time 

and characterized by roughly the same scrambling speed close 

to 140 krad/s, thus confirming that the chaotic dynamics is here 

clearly imposed by the counter-propagating pump wave onto 

the other channels [69]. It is also important to notice that the 

scrambling speed reached by all the WDM channels are close 

to the one measured in the previous single channel 

configuration for similar involved average powers. Indeed, this 

all-optical scrambler is mainly sensitive to the average power 

of the counter-propagative beam. 

 

Fig. 11. WDM performances of the Omnipolarizer in the scrambling regime (a-

c) Output Poincaré spheres of the all-optical scrambler for channels C1, C3 and 

C5, respectively. The input power is fixed to 15 dBm and the reflected 1550-

nm pump channel is amplified to 29 dBm (d-i) Corresponding eye-diagrams in 

absence of backward signal (pump off) and when the backward 1550-nm pump 

is ON (j)  

 

Note that in these experiments, and in accordance with what 

previously exposed in Section III, despite the chaotic dynamics 

imposed on the output SOP the output temporal intensity profile 

is by the way greatly preserved, enabling high bit rate signal 

processing. This feature is well illustrated in Fig. 11(d-i) by 

monitoring the output 10-Gbit/s eye-diagrams. In particular, the 

upper row of insets (d-f) shows the initial high quality of the 

output eye-diagrams when the backward pump channel is 

switched off. At the opposite, the bottom row reports the 

corresponding eye-diagrams when the backward pump channel 

is now switched on at an average power of 29 dBm, so that the 

scrambling process can then operate efficiently. One can 

observe that the eye-diagram is outstandingly preserved with a 

wide opening and minor intensity degradations. A slight 

degradation of the temporal profiles, especially an increase of 

the amount of amplitude jitter can yet be observed. We attribute 

these impairments to the Rayleigh back-scattering provided by 

the spectrally broadened backward pump channel as well as to 

a weak Raman depletion effect caused by the pump onto the 

signal. 

Finally, the impairments induced by the scrambling 

process on the whole 10-Gbit/s WDM grid have been quantified 

thanks to bit-error-rate measurements in passive mode (pump 

off) and pump on configurations. These measurements are 

summarized in Fig. 12 and show that low penalties are 

introduced by the scrambling process. Indeed, roughly 0.2 dB 

of power penalty have been estimated for the whole WDM 

channels at a BER of 10-9 when comparing the pump on/off 

configuration. Note that the power penalty of channel 1 in the 

back-to-back configuration is attributed to the degradation of its 

OSNR due to its carving into the initial continuum and to excess 

of spontaneous noise emission of our amplifier at this 

wavelength. 

 
Fig. 12. Bit-error-rate measurements for the five 10-Gbit/s WDM channels 

propagating in the all-optical scrambler when the backward pump channel if 

turned off (solid lines) and in scrambling regime (pump on, dashed-line). 

VIII. CONCLUSIONS 

In conclusion, we have reported a theoretical, numerical and 

experimental description of a self-organization phenomenon of 

light state-of-polarization within a device called Omnipolarizer. 

The principle of operation of that system is based on a nonlinear 

cross-polarization interaction occurring in a km-long telecom 

optical fiber between an incident signal and its own counter-
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propagating replica generated at the fiber output by means of a 

reflective element. Depending on the power ratio between the 

forward and backward waves, three distinct operating regimes 

have been identified. 

First of all, for a balance of powers just below unity 

(typically a reflective coefficient ρ~0.9, forward and backward 

power of 27 dBm and 25 dBm, respectively), the Omnipolarizer 

is characterized by a bistable behavior associated with a 

hysteresis cycle of the output state-of-polarization (bistable 

regime). Our theoretical predictions of the hysteresis are well 

confirmed by the experimental observations and show a high 

robustness, wide opening and sharp transitions in the cycle. 

This bistable regime has then been exploited in order to provide 

two proof-of-principles for optical signal processing. A 

polarization-based flip-flop optical memory, triggered by 

means of a remote sequence of set/reset polarization spikes 

imprinted onto an input continuous signal, has been 

successfully demonstrated. These results show that binary 

information can be perpetually stored or erased thanks to this 

all-optical digitalization of the output polarization. Therefore, 

the hysteresis property has also been exploited to demonstrate 

a 10-Gbit/s switching operation for data packets. Experimental 

monitoring of the eye-diagrams confirms the switching 

capability of our device along two orthogonal polarization 

channels with an extinction ratio larger than 20 dB. 

When the reflective coefficient is increased further above 

1, (typically ρ~1.5, forward and backward power of 27 dBm 

and 28 dBm, respectively) the present device turns out to act as 

a polarization funnel (alignment regime). Any input arbitrary 

polarization state is therefore aligned to a single output state 

without polarization depending loss. We have fully exploited 

this unique property in order to self-repolarize a 10-Gbit/s 

return-to-zero OOK signal with very weak degradation of the 

eye-diagram quality. 

The third operating regime is basically based on a strong 

power unbalance between the two counter-propagating waves 

(scrambling regime: typically ρ~40, forward and backward 

power of 15 dBm and 30 dBm, respectively). Indeed, when the 

reflective coefficient of the Omnipolarizer exceeds a certain 

threshold the system exhibits a genuine chaotic dynamics for 

which the evolution of the output state-of-polarization of an 

initially well-polarized input signal becomes fully random. This 

nonlinear polarization scrambler has been successfully 

implemented on a 10-Gbit/s OOK WDM signal. In particular, 

we have experimentally shown that this device is able to 

simultaneously scramble the polarization of 5 WDM channels 

with a scrambling speed around 140 krad/s, whilst providing 

very low impairments on the signal quality. Moreover, the 

scrambling speed was found to be proportional to the reflective 

coefficient, which permits to tune the speed up to nearly 400 

krad/s. 

From a practical point of view, it is important to note that 

the nonlinear cross-polarization process involved in the 

Omnipolarizer is independent of wavelength and spectral 

bandwidth as already experimentally demonstrated in ref. [43] 

for the counter-propagating external pump wave polarization 

attraction configuration. The only requirement is the 

implementation of high power amplifiers centered at the signal 

wavelength. We could thus imagine to extend this device to the 

Ytterbium or Thulium bands around 1 µm or 2 µm, 

respectively. Nevertheless, the counter-propagative 

configuration combined with the cross-polarization interaction 

of the Omnipolarizer imposes a strong nonlinear regime of 

propagation involving high levels of power, typically around 

500 mW, which is high above the standard telecommunication 

levels. Consequently, the Omnipolarizer could not be 

applicable to weak input signals and peculiar attentions have to 

be taken in order to avoid signal degradations. For instance, 

nonlinear pulse reshaping, such as Mamyshev regenerator, is 

required for high bit-rates return-to-zero signals so as to 

preserve the signal quality [74-78], while high level of 

nonlinear phase shift could be seen as a limitation for phase 

shift keying modulation formats and coherent detection. 

Moreover, it is important to note that dual polarization 

multiplexing formats are not compatible with the 

Omnipolarizer. Indeed, the self-polarization control is 

inherently based on a strong cross-talk among orthogonal 

polarizations, therefore two independent and orthogonal input 

channels would be unavoidably impaired at the fiber output. We 

could also note that a strong unpolarized input noise could 

degrade the polarization control performed by the 

Omnipolarizer; on the other hand the counter-propagative 

geometry guarantees that, for typical values of 

15dB < OSNR < 30dB, the Omnipolarizer efficiency is not 

impaired by the input noise [52]. 

Furthermore, despite the quasi-instantaneity of the Kerr 

nonlinear effect underlying within the Omnipolarizer, the 

response time of our device has been found to be much slower 

than the response time of the Kerr effect in silica. This is 

directly related to the counter-propagating nature and thus to 

the distributed interaction along the whole fiber length [46]. 

Hence a finite response time is necessary in order to establish a 

polarization equilibrium within the fiber under use. Practically, 

the time scale of the input polarization fluctuations which 

allows for an efficient bistable attraction or polarization 

alignment has been experimentally evaluated to a few 

microseconds. A similar time scale characterizes the output 

polarization fluctuations produced in the scrambling regime. In 

fact, the response time of the Omnipolarizer can be estimated 

of the order of the nonlinear time defined as LNL/c, which 

typically corresponds to a few microseconds with the 

parameters involved in our experiments. This analysis suggests 

that the response time of the Omnipolarizer could be reduced to 

sub-microsecond by implementing fibers with much higher 

Kerr coefficients, such as Chalcogenide, Tellurite, Bismuth or 

lead Silicate fibers [73-80]. In the same way the power 

employed could be reduced of one order of magnitude. 
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