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Observer-based Control of Position and Tension for
an Aerial Robot Tethered to a Moving Platform

Marco Tognon1,2, Sanket S. Dash1, and Antonio Franchi1,2

Abstract—In this paper we address a challenging version of
the problem of controlling tethered aerial vehicles (also known as
UAV, MAV, and UAS) by considering the aerial robot linked to a
generic and independently moving platform. We solve the exact
tracking control problem for both the 3D position of the robot
(either absolute or with respect to the platform) and the tension
along the link. To achieve this goal we prove some fundamental
system properties, useful to design a nonlinear controller, such
as differential flatness and dynamic feedback linearizability. To
close the control loop a set of minimal and standard sensors
is proposed. Then we show that it is possible to retrieve the
full system state from those sensors by means of nonlinear
measurements transformations and a bank of low-dimension
estimators based on the nonlinear high gain observer. The ability
of the proposed observer-controller method is tested by extensive
numerical simulations spanning many non-ideal conditions.

Index Terms—Aerial Robotics, Underactuated Robots

I. INTRODUCTION

IN the area of aerial physical interaction, a novel solution
gaining more and more interest consists in the use of a

cable to physically connect an aerial vehicle to a fixed base
station. Indeed, the use of a cable can overcome the main
limitations of aerial robots such as battery life, weak data
transfer, low payload, flyability with strong wind and so on.

In this field there are some works [1]–[3] proposing con-
trollers to track/stabilize the 2D position of the vehicle while
preserving the tautness of the cable. Moreover it has been
proved that an on-board inertial sensor is enough to estimate
the whole state and close the control loop both in the simpler
static- [2] and in the more challenging dynamic- [1] cases.
Furthermore, the tethered flight solution results really helpful
during dangerous tasks. In [4] the tether solution, together with
a winch, is used to perform the landing of a small unmanned
helicopter, without the use of GPS sensors. In [5] the authors
propose a control method to safely land an autonomous
helicopter tethered to a moving platform.

In this work we depart from [1]–[3] by considering the more
challenging and complete 3D extension of the tethered aerial
robot problem. Moreover, the aerial vehicle is linked to an
actuated winch, used to wind-up/out the cable, rigidly attached

Manuscript received: August 31, 2015; Revised November 9, 2015; Ac-
cepted January 14, 2016.

This paper was recommended for publication by Editor Roberts, Jonathan
upon evaluation of the Associate Editor and Reviewers’ comments. This work
has been partially funded by the European Union’s Horizon 2020 research and
innovation programme under grant agreement No 644271 AEROARMS.

1LAAS-CNRS, 7 Avenue du Colonel Roche, F-31400 Toulouse, France.
mtognon@laas.fr, s.dash@enevate.nl, afranchi@laas.fr

2Univ de Toulouse, LAAS, F-31400 Toulouse, France
Digital Object Identifier xxxxxxxxxxxxxxxxxxx

to a generic platform, instead of a constant-length link attached
to a fixed point as in [1]–[3]. The platform is not controlled,
i.e., it is generically supposed to translate and rotate in 3D,
independently from the aerial robot. Therefore it can represent,
e.g., a ground vehicle, a ship or another aerial vehicle.

Furthermore we depart from [4] and [5] by solving the
problem of exact tracking of a time-varying desired trajectory
of the relative position of the aerial vehicle in the platform
frame (or equivalently the absolute position when the platform
trajectory is known), instead of just regulating the position to
a constant value or to a slowly varying one during the landing
maneuver. At the same time we also let the link internal
force track any time-varying desired tension profile, while
the platform is performing any motion. As shown in previous
works the control of the tension is crucial for the aerial vehicle
position estimation [1], [6], and to avoid breakages of the link.
Finally we close the control loop using only a minimal set
of standard sensors thus improving the applicability in real
scenarios. A system employing our proposed method can be
used for several applications such as inspection, surveillance
and autonomous takeoff and landing from moving platforms.
To achieve our goals we propose a nonlinear controller based
on dynamic feedback linearization, a nonlinear measurement
transformation and a nonlinear observer, that are able to
track the desired trajectory with zero error in any dynamic
conditions. Our design is based on the intrinsic characteristics
of the system such as differential flatness, state observability
and trajectory feasibility.

The paper is organized as follows. At first we model the
system and we formalize the control problem (Sec. II). Then
we design a non linear controller (Sec. III) and a nonlinear
observer based on a standard sensorial configuration (Sec. IV).
Finally the method is validated through numerical simulations
(Sec. V) and discussed in some conclusive remarks (Sec. VI).

II. MODELING, PROBLEM AND METODOLOGY

We consider an aerial vehicle that is tethered by a link (e.g.,
a cable, a rope, or a chain) to an actuated winch that is, in turn,
fixed on a moving platform. The platform moves generically
in the 3D space and can be, e.g., a ground vehicle moving
on any kind of terrain, a marine vessel, or even another aerial
vehicle. Fig. 1 depicts the systems and its main definitions.

Consider a fixed world frame, FW with axes {xW ,yW ,zW}
and origin OW . Two body frames, FC and FR with axes
{xC,yC,zC} and {xR,yR,zR}, and origins OC and OR, are
rigidly attached to the platform and to the aerial vehicle,
respectively. The position of OC in FW is described by the
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Fig. 1: Left: representation of the system and its main variables. Top right
corner: parametrization of the unit vector dC . The red line shows the
singularities of the parametrization, avoidable in the planning phase.

vector pW
C = [xC yC zC]

T ∈ R3. Similarly, OR is set on the
center of mass (CoM) of the aerial vehicle, whose position in
FW is described by the vector pW

R = [xR yR zR]
T ∈ R3.

The aerial vehicle is a VTOL (Vertical Take-Off and Land-
ing) modeled as a rigid body with mass mR ∈R+ and positive
definite diagonal inertia matrix JR ∈ R3×3 (expressed in FR
and relative to OR). The angular velocity of FR with respect
to FW , expressed in FR, is denoted by ωωωR ∈ R3. The aerial
vehicle configuration is fully described by pW

R and by the
matrix RR ∈ SO(3) representing the rotation from FR to FW .
The aerial vehicle motion can be controlled acting on four
inputs: fR ∈ R and τττR = [τRx τRy τRz]

T ∈ R3, where fR is the
magnitude of the thrust force fR = − fRzR applied at OR and
parallel to zR, and τττR are the coordinates of the 3D control
moment expressed in FR.

The moving platform configuration is described by pW
C and

RC ∈ SO(3), representing the rotation from FC to FW . The
angular velocity of FC with respect to FW , expressed in FC,
is denoted by ωωωC ∈ R3. The platform is an independent sub-
system whose motion i) is not influenced by the aerial vehicle
dynamics and ii) can only be measured online. In this way, the
results can be applied to a broader class of moving platforms
including, e.g., human controlled vehicles.

The link connects the aerial vehicle to the moving platform.
One end of the link is attached to the aerial vehicle at OR
through a passive 3D spherical joint and the other end is
attached to the platform at OC, through the actuated winch. As
in [5], we assume negligible link mass and inertia with respect
to the ones of the aerial vehicle and negligible deformations
and elasticity. The direction of the link is described by the unit
vector dC ∈ S2 expressed in FC thus allowing to express the
aerial vehicle position relative to the moving platform. Never-
theless, known pW

C and RC, one can still control pW
R by inverse

kinematics. The link length and the intensity of the internal
force are denoted by l ∈R≥0 and fL ∈R≥0, respectively. The
tension of the link is equal to fL when fL > 0, while it is equal
to zero otherwise (slack link). Thus, controlling fL for fL > 0
is equivalent to control the tension, ensuring the tautness of the
link. The unit vector dC can be parametrized with the elevation
angle, ϕ ∈ [0,2π], and the azimuth angle, δ ∈ [−π

2 ,
π
2 ], as

dC =
[
cosδ cosϕ − sinδ cosδ sinϕ

]T
, where δ is the angle

between dC and the vertical plane {xC,zC}, whereas ϕ is
the angle between the projection of dC on {xC,zC} and xC,
see Fig. 1. This particular choice lets the singularity of the
parametrization correspond to the points along yC, whereas the
classical spherical parametrization has the singularity along zC,
which corresponds to the common vertical link orientation.

The actuated winch is fixed to the moving platform in
the proximity of OC and is used to control l and fL in a
coordinated action with the aerial vehicle thrust force. The
winch is modeled as a cylinder around which the link is
winded up or out and a motor that exerts an input torque
τW ∈ R about the longitudinal axis of the cylinder. The
constant rotational inertia and constant radius of the winch
are denoted by JW ∈ R+ and rW ∈ R+, respectively.

Since the link is attached to the aerial vehicle center of mass,
the aerial vehicle rotational dynamics is independent from the
translational dynamics and it is described by:

ṘR = RRΩΩΩR (1)
JRω̇ωωR = JRωωωR×ωωωR + τττR, (2)

where ΩΩΩ? is the skew symmetric matrix associated to ωωω?. The
linear velocity of the aerial vehicle is obtained differentiating
pW

R = pW
C + lRCdC:

ṗW
R = RC

(
ṗC

C + lΩΩΩCdC + l̇dC + lḋC) . (3)

To derive the dynamic equations of the generalized coordinates
q = [l ϕ δ ]T we use the Newton-Euler approach, solving the
balance of the forces acting on OR in FW , and the balance of
momenta about the axis of the winch:

mRp̈W
R =− fLRCdC− fRzW

R −mRgzW
W (4)

J̄W l̈ = τ̄W + fL, (5)

where J̄W = JW/r2
W , τ̄W = τW/rW . The acceleration p̈W

R is
obtained by further differentiating (3), i.e.,

p̈W
R = RC[āx +Jqq̈], (6)

where āx = ΩΩΩC(ṗC
C + lΩΩΩCdC +2Jqq̇)+ p̈C

C + lΩ̇ΩΩCdC + J̇qq̇ and

Jq =

[
cosδ cosϕ −l cosδ sinϕ −l cosϕ sinδ
−sinδ 0 −l cosδ

cosδ sinϕ l cosδ cosϕ −l sinδ sinϕ

]
.

Replacing (6) into (4) and after some algebra we get

mRJqq̈+ fLdC =−mRāx︸ ︷︷ ︸
ax

−mRgRT
Ce3︸ ︷︷ ︸

ag

− fRRT
CRRe3︸ ︷︷ ︸
a fR

, (7)

Finally, gathering (7) and (5) we obtain a square system[
mRJq dC

JWq −1

]
︸ ︷︷ ︸

W

[
q̈
fL

]
=

[
−ax−ag

0

]
︸ ︷︷ ︸

a

+

[
−a fR
τ̄W

]
︸ ︷︷ ︸

au

(8)

where JWq = [J̄W 0 0] ∈ R1×3 and W ∈ R4×4 is invertible
if and only if l 6= 0 and δ 6= ±π/2, that correspond to
the singularities of the pseudo-spherical coordinates of OR.
Inverting equation (8) out of these singularities, we obtain

q̈ =
[
I3 03×1

]
W−1(a+au) = σ(x,X2

C,u) (9)

fL =
[
01×3 1

]
W−1(a+au)

Preprint version, final version at http://ieeexplore.ieee.org 2 accepted for IEEE Robotics and Automation Letters (RA-L) 2016



where x = (q, q̇,RR,ωωωR) is the system state,
u = [ fR τττT

R τ̄W ]T = [u1 u2 u3 u4 u5]
T is the vector of inputs

and X j
C = (x0

C,x
1
C, . . . ,x

j
C) for j ∈N+, with xi

C = (pC(i)
C ,ωωω(i−1)

C )
for i = 1,2, . . . and x0

C = (pW
C ,RC), gathers the terms related

to the motion of the platform. Equations (1), (2) and (9)
provide a complete description of the system dynamics.

Problem, Objectives, and Results

In this work we address a three-objective problem. The first
objective is to provide a control strategy to let pC

R and fL (or,
equivalently, q and fL) exactly track any sufficiently smooth
desired trajectory pCd

R and f d
L (or, equivalently, qd and f d

L ). The
second objective is to provide a method to know in advance
i) how the full state of the system behaves when tracking
a desired output trajectory and ii) which are the nominal
inputs required to track it. The last objective is to provide the
mathematical tools to implement the control strategy in reality
using a minimal set of typically available onboard sensors.

To achieve the previous objectives we first show the ex-
act linearizability and the differential flatness of the system
designing a nonlinear controller. We then design a nonlinear
observer for the full state that uses a minimal set of standard
sensors. Finally we check through realistic simulations the
practicability of the proposed method in non-ideal scenarios.

III. DYNAMIC DECOUPLING CONTROL

In this work we want to control the four outputs correspond-
ing to l, ϕ , δ and fL, using the control input u. Notice that the
outputs of interest are independent from τRz. Intuitively, only
τ̄W and fR play a role in the control of the outputs, see (8),
and they are not affected by τRz. Indeed fR is not influenced
by rotations along zR and therefore not even by the torque τRz
acting about it. Then it is necessary to complete the set of
outputs with a quantity dynamically dependent on τRz to have
a well-posed tracking problem. It is sufficient to consider any
generic parametrization ηηη = [η1 η3 η3]

T ∈R3 of RR, such that
RR = RR(ηηη) and η̇ηη = Tηηη ωωωR where Tηηη(ηηη)∈R3×3 is given by
the particular parametrization. From (2) the dynamics of ηηη is

η̈ηη = Ṫηηη ωωωR +Tηηη J−1
R (JRωωωR×ωωωR)+ [03×1 Tηηη J−1

R 03×1 ]u
= bηηη(ηηη , η̇ηη)+Eηηη(ηηη)u. (10)

Then we consider as output of the system the variables y =
[y1 y2 y3 y4 y5]

T = [l ϕ δ fL ηi]
T ∈ R5 where ηi is any entry

of ηηη such that, in the domain of interest, it holds

eηi =
∂ η̈i

∂τRz
= eT

i Tηηη J−1
R e3 6= 0. (11)

For example, taking ηηη = [φ θ ψ]T as the classical Roll-Pitch-
Yaw parametrization of RR and ηi = ψ , we have that

Tηηη(ηηη) =

[
1 sinφ tanθ cosφ tanθ
0 cosφ −sinφ
0 sinφ secθ cosφ secθ

]
and eηi =

1
JR33

cosφ secθ ,

where JRkm with k,m ∈ {1,2,3} corresponds to the element of
the matrix JR in position k,m. Notice that for this choice (11)
holds always except for φ = π/2 and θ = π/2.

Applying the feedback linearization technique, recalling
equations (8) and (10), we immediately see that (y1,y2,y3)

have to be differentiated twice until fR and τ̄W appear, y4
directly depends on the same two inputs and y5 has to be dif-
ferentiated twice until τττR appears. Defining ȳ1 = [ÿ1 ÿ2 ÿ3 y4]

T

and rearranging (8) and (10), we can write[
ȳ1
ÿ5

]
=

[
W̄a
bηi

]
+

[
W̄U
eηi

]
u = b(x,X2

C)+E(x,X0
C)u, (12)

where W̄ = W−1, bηi = eT
i bηηη , eηi = eT

i Eηηη and

U =
[
−RT

C RRe3 03×3 0
0 01×3 1

]
4×5

, E =

[
−RT

C RRe3 03×3 03×1
0 01×3 1
0 eT

i Tηηη J−1
R 0

]
5×5

,

where the vector b(x,X2
C) gathers all the terms that do not

depend on the inputs. The decoupling matrix E, rearranging
the rows, is clearly singular. To obtain a full rank matrix we
insert a dynamic compensator considering as new inputs ū =
[ü1 u2 u3 u4 ü5]

T , where ü1 and ü5 are the second derivative of
fR and τ̄W , respectively. Under this definition ȳ1 and y5 have
to be differentiated twice to see the new inputs appear:[

¨̄y1
ÿ5

]
=

[ ¨̄W(a+au)+2 ˙̄W(ȧ+ ȧu)+W̄(ä+ äu)
bi + eηi ū

]
, (13)

where äu, after replacing the system dynamics, results:

äu = ¯̈au +

[
−u1RT

CRR
[
J−1

R τττR
]
× e3− ü1RT

CRRe3

ü5

]
. (14)

Since JR is diagonal, i.e., JRkm = 0 for k 6= m and k,m ∈
{1,2,3}, writing the skew symmetric matrix relative to J−1

R τττR
and doing some algebra we obtain[

J−1
R τττR

]
× e3 =

[− e2
JR11

e1
JR22

03×1
]

τττR. (15)

Replacing equations (15) and (14) into (13) we obtain[
¨̄y1
ÿ2

]
=

[ ¨̄W(a+au)+2 ˙̄W(ȧ+ ȧu)+W̄(ä+ ¯̈au)
bi

]
︸ ︷︷ ︸

b̄(x̄,X4
C)

+

[
W̄Ū
eηi

]
︸ ︷︷ ︸

Ē(x̄,X0
C)

ū,

where Ū =
[
−RT

C RRT 03×1
01×4 1

]
, x̄ = (q, q̇,RR,ωωωR, fR, ḟR, τ̄W , ˙̄τW ) is

the extended state, and T = [e3 − u1
JR11

e2
u1

JR22
e1 03×1] ∈ R3×4.

Changing the order of the inputs as in ũ = [u1 u2 u3 u5 u4]
T ,

the decoupling matrix becomes Ẽ =

[
Ẽ1 01×3
ẽ3 eηi

]
, where Ẽ1 =

W̄
[

Ũ1 03×1
01×3 1

]
, ẽ3 =

[
0 eT

i Tηηη J−1
R e1 eT

i Tηηη J−1
R e2 0

]
,

Ũ1 =−RT
CRR

[
e3 − u1

JR11
e2

u1

JR22
e1

]
=−RT

CRRT̃.

The original decoupling matrix Ē is invertible if Ẽ is
invertible, or equivalently, due to its triangular form, if Ẽ1
is invertible and eηi is nonzero. Since the matrices RC, RR
and W̄ are always full rank (except in the model singularities,
i.e., l = 0 and δ = ±π/2), then Ũ1 is invertible whenever T̃
is full rank, i.e., if u1 6= 0, indeed det

(
T̃
)
= u2

1/(JR11JR22).
In the cases in which the thrust u1 is not zero and with the

opportune parametrization of RR, using the control law

ū = Ē(x̄,X0
C)
−1 [−b̄(x̄,X4

C)+v
]
, (16)

where v = [v1 v2 v3 v4 v5]
T ∈R5 are virtual inputs, we obtain

y(4)1 = v1, y(4)2 = v2, y(4)3 = v3, y(2)4 = v4, y(2)5 = v5. (17)
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Output
and

Deriv.

y1, . . . ,
...y 1

Feedback

Lineariz.
τ̈W 1

s

τ̇W 1
s

τW

τR

X(4)
C

τW , τ̇W

y2, . . . ,
...y 2

y3, . . . ,
...y 3

y4, ẏ4
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Fig. 2: Graphic representation of the control strategy.

Furthermore, the total relative degree with respect to y is
r = 16 that corresponds to the dimension of the extended state
x̄ that is n̄ = 16. Indeed it is composed by x (of dimension
12) plus the four states of the dynamic compensator. Therefore
the system is exactly dynamic feedback linearizable and the
linearized system (17) does not have an internal dynamics [7].

The tracking of any given desired trajectories, yd
i (t) ∈ C3

for i = 1,2,3 and yd
j (t) ∈ C1 for j = 4,5 can be achieved

applying any linear control technique to the equivalent linear
system (17), as depicted in Fig. 2. E.g., it is sufficient to use
as outer loop a simple controller based on the pole placing
technique. Setting the virtual control inputs as

vi = yd(4)
i +kT

i ξξξ i, v j = yd(2)
j +kT

j ξξξ j, (18)

where ξξξ i = [ξ (3)
i ξ̈i ξ̇i ξi]

T ∈ R4, ξξξ j = [ξ̇ j ξ j]
T ∈ R2, ξi =

yd
i −yi and ξ j = yd

j −y j are the tracking errors, one can set the
poles of the error dynamics through the gains ki ∈ R4

>0 and
k j ∈ R2

>0, for i = 1,2,3 and j = 4,5, to obtain a sufficiently
fast exponentially tracking of the desired trajectories.

All the previous results are summarized in the following

Proposition 1. For the analyzed system it exists at least one
parametrization ηηη of RR and one of its elements ηi such that
y = [l ϕ δ fL ηi]

T is an exact feedback linearizing output for
each state, except for the zero thrust case. Furthermore, con-
sidering as input ū = [ü1 u2 u3 u4 ü5]

T , the control laws (16)
and (18) exponentially steer y along the desired trajectories
yd

i (t) ∈C3 for i = 1,2,3, and yd
j (t) ∈C1 for j = 4,5.

Remark 1. In order to implement the exact tracking control
law (16)–(18) the only needed quantities are

• the desired output trajectory and its derivatives
yd

i , ẏ
d
i , ÿ

d
i ,

...y d
i ,

....y d
i for i = 1,2,3, and yd

j , ẏ
d
j , ÿ

d
j for j = 4,5

• a measurement of system state, i.e., x = (q, q̇,RR,ωωωR)
• the internal state of the compensators fR, ḟR, τ̄W , ˙̄τW
• the position and orientation of the moving platform and

their derivatives X4
C.

From the theory we know that an exactly dynamical feed-
back linearizing output is also a flat output on an open and
dense set of the state space [8]. Therefore the following
proposition holds.

Proposition 2. A system made by an underactuated aerial ve-
hicle tethered by a link to an actuated winch fixed on a moving
platform is differentially flat with respect to y = (l,ϕ,δ , fL,ηi)
where ηi is, e.g., the yaw angle of RR.

The flatness lets us to compute the expected state and the
nominal inputs required by the desired trajectories [9].

# Type Position Reference Measurement

w1 - OC FW X4
C

w2 absolute encoder OC FC ϑW ≈ l
w3 absolute encoder OC FC ϕ
w4 absolute encoder OC FC δ
w5 accelerometer OR FR RT

R(p̈W
R +ge3)

w6 gyroscope OR FR ωωωR
w7 magnetometer OR FR RT

R hW

TABLE I: List of sensors.

IV. STATE OBSERVER

Assuming that w1 = X4
C is a priori known or it is esti-

mated/measured on-line by a set of sensors, then only the
knowledge of x is needed to close the control loop. In this
section we shall demonstrate that the tautness of the cable
(i.e., fL > 0) allows to retrieve x from the standard set of
sensors summarized in Tab. I, avoiding the use of sensors as
cameras or GPS. First, we assume to have an encoder that
gives the absolute rotation of the winch, i.e., the length of the
link, w2 = rW ϑW = l. Using a gimbal like mechanism based on
encoders (like the one in [4]), we measure the direction of the
link, i.e., w3 = ϕ and w4 = δ . Then, we assume that the aerial
vehicle is equipped with standard i) 3-axis accelerometer that
measures the specific acceleration of OR in FR, i.e.:

w5 = RT
R(p̈

W
R +ge3), (19)

ii) gyroscope that measures the angular velocity of FR with
respect to FW , expressed in FR, i.e., w6 = ωωωR, iii) and
magnetometer mounted in OR and aligned along the axes of
FR that measures the known unit vector hW ∈ S2 describing
the magnetic field direction expressed in FR: w7 = RT

RhW .
Using this sensorial configuration, part of the state is already

measured, nevertheless it remains to estimate RR and q̇.
First we show that, using the accelerometer and the mag-

netometer, we know how dW and hW expressed in FW are
mapped into FR by RR. Then, creating an orthonormal basis
from dW and hW , and another one from dR and hR, we can
retrieve RR. Substituting (4) into (19), we obtain

fLRT
RRC(w1)dC(w3,w4) =−mRw5− fRe3.

Define w8 = ‖−mRw5− fRe3‖ and notice that, since the
controller guarantees a taut link then fL > 0 and, in par-
ticular, fL = w8. Defining sR

1 = (−mRw5 − fRe3)/w8 and
sW

1 = RC(w1)dC(w3,w4) we have that RRsR
1 = sW

1 . Under the
assumption that sR

1 and w7 are not parallel, let us define
sR

2 = (sR
1 ×w7)/

∥∥sR
1 ×w7

∥∥ and sR
3 = sR

1 × sR
2 . We then obtain

RRsR
2 = RR(sR

1 ×w7)/
∥∥∥sR

1 ×w7

∥∥∥= (sW
1 ×hW )/

∥∥∥sW
1 ×hW

∥∥∥= sW
2

RRsR
3 = RR(sR

1 × sR
2 ) = sW

1 × sW
2 = sW

3 ,

where {sR
1 ,s

R
2 ,s

R
3} is an orthonormal basis and SR =

[sR
1 sR

2 sR
3 ] ∈ SO(3). Defining SW = [sW

1 sW
2 sW

3 ], we obtain

RR = SW SRT
= WR(w1,w3,w4,w5,w7).

Notice that we can find RR only if dW and hW are not
parallel (otherwise sW

1 × hW = 03) and if fL 6= 0. Indeed, if
fL = 0 (slack link) the aerial vehicle and the rest of the system
are decoupled, which makes it impossible to estimate the
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attitude of the vehicle in a direct way. Nevertheless, this is
not a practical issue since the proposed controller guarantees
any positive tension1. In the presence of noisy measurements
one can exploit WR and w6 by designing a filter to obtain a
better estimation of RR and ωωωR in a way similar, e.g., to [11].

After having shown how to estimate RR, it remains to
estimate q̇. Defining z = [l l̇ ϕ ϕ̇ δ δ̇ ] ∈ R6 we can write
its dynamics (see (9)) and the respective measurements as

ż = Az+Bσσσ(z,u,RR,X2
C), wz = [w2 w3 w4]

T = Cz, (20)

where A = diag(A′,A′,A′), B = diag(B′,B′,B′), C =
diag(C′,C′,C′), A′=

[
0 1
0 0

]
, B′=

[
0
1

]
, C′= [1 0 ]. Thanks to the

particular triangular form of (20), in order to get an estimation
of z, it is possible to apply the following nonlinear high gain
observer (HGO) [7]

˙̂z = Aẑ+Bσσσ(ẑ,u,WR,w1)+H(wz−Cẑ), (21)

where H = diag(H′,H′,H′) and H′ = [α1
ε

α2
ε2 ]

T , with ε ∈R>0,
and the gains (α1,α2) ∈ R>0 are set such that the roots of
s2 +α1s+α2 have negative real part. Notice that the observer
is made by a bank of three independent high gain observers of
order two, the minimum order possible. This low order implies
lower gains that in turn imply less peaking phenomenas and
noise effects, which are instead typical in higher order HGO.

Summarizing, using the standard sensorial configuration of
Tab. I, we obtained an estimation of the whole state:

[l̂ ˆ̇l ϕ̂ ˆ̇ϕ δ̂ ˆ̇δ ]T = ẑ, R̂R = WR, ω̂ωωR = w6.

A. Closed Loop Stability

In Sec. III we showed that the control law (16)–(18) needs
only the knowledge of the state and of the trajectory of the
platform in order to close the loop. Thus we can use the esti-
mated state as feedback for the controller. Because the system
is non-linear, one cannot apply the separation principle like in
the linear case. Nevertheless, thanks to the particular triangular
block dynamics with a direct measurement of the first state
of each block, the conditions of [7, Theorem 14.6] holds.
Therefore, since the closed loop system by state feedback is
exponentially stable for every state except the zero thrust case,
there exist a ε̄ such that, for every 0< ε ≤ ε̄ in (21), the closed
loop system with the observer is exponentially stable, except
for the zero thrust and zero tension case [7].

B. Discussion on Measurement w1

To obtain a perfect tracking (with any controller) one has
to know the derivative of pC

C(t) up to the fourth order and
of ωωωC(t) up to the third order. Although in practice it is
difficult to measure the higher-order derivatives, some practical
techniques could be applied to overcome such issue. If the
model and control input of the system are known (e.g., in the
case of an autonomous vehicle), an observer can be designed
to retrieve the needed derivatives of pC

C and ωωωC. Or if only
a set of measurements of some derivatives is available, and

1For the startup one can, e.g., first tauten the cable using a near hovering
control [10] and then switch to our controller to maintain the desired tension.

if the frequency content of the trajectory of the platform
is sufficiently low, the unknown higher derivatives could be
assumed negligible. For this last case, in Sec. V we show that
in practice the tracking error remains small and bounded.

V. NUMERICAL VALIDATION

In this section we provide some of the results obtained by
simulation to test the validity of the proposed method2. We
consider an aerial vehicle with mass mR = 1[Kg] and inertia
JR = diag(0.25,0.25,0.25)[Kg m2]. We assume constant winch
radius and inertia equal to rW = 0.2[m] and JW = 0.15[Kg m2],
respectively. We set ki and k j such that the error dynamics ξξξ i
and ξξξ j have poles in (−1,−2,−3,−4) and (−1,−2) respec-
tively. For the observer we choose ε = 0.1 and (α1,α2) such
that s2 +α1s+α2 has roots (−3,−4). Those values guarantee
the stability and ensure a sufficiently fast exponential tracking.

Like in a real patrolling task, the platform follows a certain
trajectory on the 3D space mimicking, e.g., a ground robot
following a road. We require the aerial vehicle at time t0 to
takeoff from the moving platform, at time tcirc to circle above
the platform at a certain altitude, and at time tland to land
on the moving platform (see Fig. 3c). The yaw angle of the
aerial vehicle has to follow the one of the platform. During
the takeoff the desired tension must go from a small initial
tension of 0.5[N] to a steady-state value of 3[N], that is kept
for the whole of the circling phase, and then has to go back
to the initial value during the landing.

To fully validate our method for real applications we test the
convergence and the robustness for different non-ideal cases
commented in the following. Fig. 3 gathers the main results.

a) With an initial position and estimation error, after the
convergence of the observer (less than one second) the outputs
follow the desired trajectories with high fidelity.

b) With a parametric variation of 5% we notice a small
constant error in the estimation of the state, but we obtain a
monotonically decreasing tracking error thanks to the addition
of an integral term in the outer loop (18), e.g., v1 = yd(4)

1 +
kT

1 ξξξ 1 + kI1
∫ t

0 ξ (τ)dτ .
c) For a moving platform a standard sensorial set (e.g.,

optical flow, IMU and magnetometer) usually is sufficient to
measure its trajectory variables up to p̈C

C and ωC. Considering
as zero the higher derivatives we observe that the estimation
and tracking error is very small and remains always bounded
under a reasonable threshold.

d) In the presence of Gaussian noise in the measurements
with typical variance values, we notice that the state estimate
becomes slightly noisy but the error remains bounded within
small values. The non zero estimation error implies a non zero
but bounded tracking error as well.

e) since in practice one cannot assume the link attached
exactly to OR, we tested the method for a vertical offset of
5[cm] with respect FR. In this case the tracking error does not
go to zero but remains bounded below a small threshold.

f) Finally we implemented a controller based on a standard
hierarchical method to compare it with our method. We noticed

2For the complete set of plots and several additional simulations in non-
ideal conditions we refer the interested reader to [12]. The reader is also
encouraged to watch the accompanying video.
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that to obtain good tracking performances it requires very high
gains that cause instability in the presence of the same noisy
measurements of case d). Therefore we lowered the gains
until we obtained a stable behavior. However these gains are
not enough to obtain good tracking performances anymore.
Moreover notice that the cable becomes even slack ( fL f < 0).

VI. CONCLUSIONS

For the problem of an aerial vehicle tethered to an actuated
winch, in turn attached to a generic moving platform, we
proposed an accurate analysis of the intrinsic characteristics of
the system and a novel nonlinear controller/observer scheme.
The controller is able to steer the position of the aerial vehicle
and the tension on the link along any smooth trajectories.
This extends the previous works beyond the 2D plane and the
simpler regulation control problem. To complete the control
method we propose a nonlinear observer based on a set of
standard sensors that is able to retrieve the state from any dy-
namic condition. Through exhaustive simulations (see [12]) we
show the potentiality of the method for automated takeoff and
landing from a moving platform, as well as for inspection and
surveillance tasks, testing it under many non-ideal conditions.

In the future we plan to validate the method with real
experiments in a plausible environment. Additional extensions
could be, e.g., on planning for obstacle avoidance, or, in the
case of an autonomous platform, on cooperative control.
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(a) Controller performances: the tracking of the output of interest for
each case is plotted. The subscript of the variables indicates the relative
case. The blue dots highlight the desired trajectory.
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Fig. 3: Simulation results of a plausible task trajectory. The performances for
each non-ideal case are compared. Full plots and long explanations can be
found in [12].
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