N

N

Semiclassical Sobolev constants for the electro-magnetic
Robin Laplacian

Soeren Fournais, Loic Le Treust, Nicolas Raymond, Jean van Schaftingen

» To cite this version:

Soeren Fournais, Loic Le Treust, Nicolas Raymond, Jean van Schaftingen. Semiclassical Sobolev
constants for the electro-magnetic Robin Laplacian. Journal of the Mathematical Society of Japan,
2017, 69 (4), pp.1667-1714. 10.2969/jmsj/06941667 . hal-01285311

HAL Id: hal-01285311
https://hal.science/hal-01285311
Submitted on 9 Mar 2016

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://hal.science/hal-01285311
https://hal.archives-ouvertes.fr

1

1.1.
1.2.
1.3.
1.4.

2

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.
2.7.

3

3.1.
3.2.

4

4.1.
4.2.

5

5.1.
0.2,

6

6.1.
6.2.
6.3.

7

7.1.
7.2.

SEMICLASSICAL SOBOLEV CONSTANTS FOR THE
ELECTRO-MAGNETIC ROBIN LAPLACIAN

S. FOURNAIS, L. LE TREUST, N. RAYMOND, AND J. VAN SCHAFTINGEN

ABSTRACT. This paper is devoted to the asymptotic analysis of the optimal Sobolev
constants in the semiclassical limit and in any dimension. We combine semiclassical
arguments and concentration-compactness estimates to tackle the case when an
electro-magnetic field is added as well as a smooth boundary carrying a Robin
condition. As a byproduct of the semiclassical strategy, we also get exponentially
weighted localization estimates of the minimizers.
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1. INTRODUCTION

1.1. Description of the problem. The aim of this work is to investigate optimal
Sobolev constants under an electro-magnetic field and in a domain with a smooth
boundary. We want especially to investigate the behavior of these constants in the
semiclassical limit.

1.1.1. Geometric context. Before describing our main results, we describe the geo-
metric context of this paper.

For d > 2, we consider an open, bounded and simply connected set  C R?
with smooth boundary. We also introduce the smooth electro-magnetic potential
(V,A) € C*(Q,R x RY) and the variable Robin coefficient v € C*°(9€, R). We let
G =(Q,1d,V, A v) where Id stands for the standard Euclidean metric.

Definition 1.1. For notational convenience, we will constantly consider quintuples
gathering the Robin electro-magnetic geometry G = (U,R,V, A, c) where

i. U is a smooth open set,

ii. R is a Riemannian metric on U,

iii. the electric potential V belongs to C*(U,R),

iv. the magnetic vector potential A belongs to C*(U,R?),

v. the Robin coefficient ¢ belongs to C*°(0U, R).
If ®:U" — U is a local chart near the boundary, then we introduce the pull-back
geometry

d*G = (U, (dD)TR(dD),V 0 @, (dD) 0 Ao D,y 0 P).

We recall that the “magnetic field” is the 2-form defined as the exterior derivative

d
B=dA=d (ZA]dSL’J) s
j=1
where A is identified with a 1-form thanks to the Euclidean duality. The 2-form B may
be identified with the skew-symmetric matrix, called “magnetic matrix”, (Bre)1<k e<d
where By, = 0pA; — 0/A. It is well known that the non-zero eigenvalues of the matrix
B are in the form (iiﬁk)lngngv Bk > 0 and that 0 is always an eigenvalue in odd

dimension. This allows to define
1]
TI’+ B = Z Bk .
k=1

In particular, if Tr* B = 0, then B = 0.

Definition 1.2. We will say that the geometry G is homogeneous when (V, B, c) is
constant and when U is the whole space or a half-space, equipped with the Euclidean
metric R = Id. We will also say that a geometry is Euclidean when R = Id. In this
case, we will also use the notation G = (R%1d,V,A,0), where A is a linear potential
associated with B.



1.1.2. Minimization problem. We now introduce the minimization problem under

consideration in this paper.

Let p € [2,2%), with 2* = 2—‘12. We are mainly interested in the following “optimal

d—
Sobolev constant”, in the case of a Euclidean geometry G,
(1.1) AG,h,p) = inf M
weHé(U), [011E o)
A0

where the magnetic Sobolev space is defined by
HLA(U) = {¢ € L*(U) : (—=ihV + A)u € L*(U)}
and for all 1 € H} (U), the quadratic form Qg , is defined by

(12) Qo) = [ |(=ihV + AP+ WVlpP dx+ht [ clufdotx).
Here, do is the surface measure on the boundary oU.

1.1.3. Homogeneity. Let us heuristically explain where the different powers of h come
from. Let us introduce the temporary semiclassical parameter h. We consider the
initial quadratic form:

(1.3) /Q (=il + BPA)Y| + KV []? dx + he /8Q ]2 do(x) .

After a semiclassical local zoom, we would like to get an homogeneous quadratic
form. It is sufficient to derive these appropriate powers “locally”, that is in the case
of a homogeneous geometry (and €2 being replaced for instance by the half-space U):

(1.4) /U (—ih®V + KPAYS[? + BV [? dx + h? /W c]? do(x) .

Let us determine the a,b, ¢, d that lead to non-trivial situations.

First, we may always reduce the investigation to a = 1 by multiplying the quadratic
form by an appropriate power of h. Then, we would like that, up to a semiclassical
zoom, all the different quantities play on the same scale (if not, this would mean
that an effect could be neglected). Thus, we let x = A"y with  # 0 and consider
the rescaled quadratic form

[Nt Bl meViRdy + 1 [ el da(y)
U oUu

In order to balance all the electro-magnetic effects, we choose c =2 —2n =2b+2n =
d—n. We get
b=c—1, d=1+<, p=1-2<.
’ 2’ 2
Note that 1 # 0 means that ¢ # 2 and that ¢ = 2 corresponds then to a homogeneous
problem (which is not semiclassical!).

Therefore, coming back to (1.3), this leads to
/Q (—ihV + B AY[? + BV )P dx + it /m ]2 do(x) .

Now, if ¢ — 1 > 1, this quadratic form is locally a perturbation of the one of —h%A
(with Neumann condition) and thus the Robin-electro-magnetic geometry can be



4 S. FOURNALIS, L. LE TREUST, N. RAYMOND, AND J. VAN SCHAFTINGEN

forgotten. Thus, if we are interested in geometric effects, we only have to consider
¢ < 2. In this case, we write

j2—2c {/Q ‘(—’ihQicv—FA)sz _i_thchw’? dx+h%(2—c) /89,7’17“2 do’(X)} )

and we can consider h = h>~¢ as new semiclassical parameter. We get the powers
appearing in (1.2).

1.1.4. Basic properties. We can already make some elementary observations that we
will constantly use.

We first recall the diamagnetic inequality (see for example [27, Theorem 7.21], [13,
Theorem 2.1.1}):

Vi) € Hy(U), IV < =3V + Az -

This inequality implies that |1)| € H'(U) and we get, thanks to the classical trace
theorem, that its trace is well-defined as an element of H%(aU ); thus Qg p, is well-
defined on H4 (U). Another important property of the magnetic Laplacian is the
gauge invariance (see for example [27, §7.21]):
(1.5)

Vo € C®(U),  Qen(e”™)) = Qeen(v), with G? = (U,RV,A+Vy,c).

Let us already notice that it is not clear whether the infimum (1.1) actually exists
when U is unbounded. Nevertheless, if V and c are non-negative, its existence is
obvious. In any case, when this infimum exists and is a minimum, the corresponding
minimizers satisfy, in the sense of distributions, the following nonlinear focusing
equation

(1.6) . .
(—thV 4+ A)y -n = —ih2cy), on OU

where we assumed that ||¢||Lr(vy = 1 and where n is the inward unit normal to the
boundary. By multiplying v by an appropriate constant, we therefore have a solution
(for p > 2) of the following stationary Schrédinger nonlinear equation

(—ihV + A)*U + AV = [T P2
(—ihV + A)¥ - n = —ih2cl, on OU .
As a byproduct of our investigation, we will get the existence of non-trivial solutions
of (1.7) (solitons) that are localized (in the semiclassical limit) near the minima

of a concentration function describing the local nonlinear electro-magnetic Robin
geometry.

{ (—ihV + A)*Y + WV = NG, h, p) [ [P~y

(1.7)

1.1.5. Mathematical context and motivations. The aim of this paper is to estimate
the optimal Sobolev constant A(G, h, p) under generic assumptions on the geometry.

In the linear case, i.e. when p = 2, this problem has now a long history, especially
in two and three dimensions in the case of Neumann boundary conditions and V' = 0.
The investigation of the lowest eigenvalue of the semiclassical magnetic Laplacian
can be motivated by the theory of superconductivity and the study of the third
critical field in the Ginzburg-Landau theory. The reader may consult the book
by Fournais and Helffer [13] or the one by Raymond [33] for an introduction to
these topics. In this linear and purely magnetic framework, it appears that the
microlocalization of the eigenfunctions is strongly related to the asymptotics of the



lowest eigenvalue. This fact was noticed, for instance, in the papers by Helffer and
Morame [18, 19] where numerous techniques have been developed to analyze the
magnetic Laplacian and its eigenfunctions. Even more recently in [16, 34, 17], in
cases without boundary, subtle localization properties of the magnetic eigenfunctions
have played a fundamental role in the semiclassical spectral theory (and we will
meet again this aspect in the nonlinear context). In cases with boundaries, the
Robin condition is physically motivated by inhomogeneous superconductors (see
for instance the linear and nonlinear contributions by Kachmar [21, 22, 23, 20]): in
this context, the Robin condition is sometimes called “de Gennes condition”. In the
linear framework many recent contributions have also been made to investigate the
semiclassical curvature effects with Robin condition (see for instance [11, 31, 24] and
also [15] in the case with symmetries).

In the nonlinear case p > 2, the theory does not seem as developed as in the linear
case, especially when a magnetic field and a boundary are added. In the seminal
paper [10] and in the concentration-compactness spirit, it is proved that A(G, 1, p)
is attained when G = (R%1d,0, A, 0), when B is constant and non-zero and when
p is subcritical. In [8], the authors have analyzed the semiclassical situation and
obtained, up to subsequence extraction of the semiclassical parameter, the one term
asymptotics of A\(G, h, p) with the geometry G = (2,1d, V, A, 4+00), when Q bounded
and Tr™ B + V does not vanish. The idea in [8] was to use a semiclassical blow up
argument near each point x € 2 and compare with nonlinear models with constant
electro-magnetic field (Vy, Bx). In particular the minimizers are essentially localized
near the minima of the concentration function Q > x — M(R%,1d, Vi, A4, 0), 1, p),
where A, is a linear potential associated with the constant field By (see also [2] where
some properties of the concentration function are discussed). As we mentioned above,
the localization properties of the magnetic eigenfunctions are strongly connected to
the eigenvalue asymptotics and this phenomenon is expected to be even stronger in
the nonlinear framework.

The present paper aims at extending the theory developed in [14] (in two dimensions
without boundary) by investigating the effect of a smooth boundary carrying a Robin
condition, in any dimension. For that purpose, we will decouple the semiclassical linear
methods (described in [13, Part I]) and the concentration-compactness arguments.
By doing so we will derive a quantitative remainder in the semiclassical asymptotics
of M(G, h,p) as well as quantitative localization estimates of the minimizers.

1.2. Assumptions and main results. We can now state our main assumptions
and results. Let us first explain in which framework our problem is well-posed.

Lemma 1.3. The quadratic form Qg is bounded from below and defines a self-
adjoint operator £g 5, with compact resolvent whose domain s

Dom (£¢,,) = {¥ € H'(Q) : ((—ihV + A)? + AV )y € L*(Q)
and (—ihV + A) - n(x) = —ih2y(x)i(x), x € 0Q}.
In particular, N\(G, h,2) coincides with its lowest eigenvalue.

Remark 1.4. We recall that € is bounded and that V and A are smooth on €.
Therefore, if ¢ € H'(Q) and ((—ihV + A)? + hV )¢ € L*(Q), then ¢ € H*(Q) so that
the Robin boundary condition is well-defined by a classical trace theorem.
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We will provide a sufficient condition, for the geometry G, that ensures that the
L2 norm is controlled by Qg in the semiclassical limit ~ — 0. This condition will
be related to models with homogeneous geometry. Let us recall that, for all x, € Q,
the vector potential, defined in a convex neighborhood of xq,

1
(1.8) (AL (%), )pe = /0 1By o) (X — Xo, -) i
satisfies, in this neighborhood,

(1.9) A% (x0) =0 and dAL =B.

We introduce its linear approximation
1
(1.10) Ay (x) = 5B(XQ)(X — Xp) -

We will meet the following homogeneous Euclidean geometries:
i. if xo € 2, we consider G, = (xo + R%,1d, V(xg), A% ,0),

X0?

ii. if xg € 9, we consider Gy, = (X0 + Tx, (9Q) + Ryn(xo), Id, V(xq), A%, , 7(x0)),
where Ty, (0€2) is the linear tangent space of 02 at x,.

Let us now state our main assumption which is of spectral nature: we assume that
the 2-eigenvalue is not degenerate.

Assumption 1.5. We assume that

i. 23 x+ A(Gx,1,2) = Tr" B(x) + V(x) does not vanish,
ii. 0Q 3 x +— A(Gy, 1,2) is bounded from below by a positive constant.

We will provide sufficient conditions under which Assumption 1.5 is satisfied in
Section 6.2. Before presenting our main result, let us state a proposition that ensures
that the infimum (1.1) is actually well-defined and a minimum.

Proposition 1.6. There ezist hg, C > 0 such that, for all h € (0, hy), we have
NG, h,2) > hinf A(Gy, 1,2) — Chi >0,

xe

and, under Assumption 1.5, the infimum (1.1) for G = G is a minimum.

We can transform Assumption 1.5 (related to the positivity of the spectrum) into
a semi-continuity property of the p-eigenvalue which will play a crucial role in our
investigation. This semi-continuity will be derived from a concentration-compactness
analysis and used when estimating the Sobolev constants from above.

Proposition 1.7. Under Assumption 1.5, the function x + MGx, 1,p) is lower
semi-continuous on ) for p € (2,2%).

Our main theorem is the following accurate estimate of the optimal Sobolev
constant with electro-magnetic field and Robin condition on the boundary, in the
semiclassical limit.

Theorem 1.8. Let p € (2,2*). Under Assumption 1.5, there exist hy > 0,C > 0
such that, for all h € (0, hy),

d_d 1 d
h2"vh(1—Ch?) inf A\(Gx, 1,p) < A (G,h,p) < h2™

x€eQ

d 1
»h(1+Ch2|logh|) inf A\(Gx,1,p).
xe



In the case when there exists xo € 0S) such that

jni)\(QX717p) = A(gxm 7 ) < )\(gx ? 7p)’

xeN

the logarithm appearing in the upper bound can be removed.

By Proposition 1.7, we may consider the set M C Q of the minimizers of the
concentration function x — A(Gx, 1, p). In relation with the estimate of Theorem 1.8,
we can deduce the following (exponential) decay estimate of the minimizers away

from M.
Theorem 1.9. Let p € (2,2%). Under Assumption 1.5, for all € > 0 we define
(1.11) M. =M+ D(0,¢).

Then, for all e > 0 and p € (0,1), there exist hg > 0,C > 0 such that, for all
h € (0, ho) and all LP-normalized minimizers 1y,

[¢nlleean) < Ce”

1.3. Further results. Let us now describe two applications or extensions of our
results and methods.

1.3.1. Large smooth domains. Let us consider a smooth domain 2 C R and, for
R > 1, the dilated domain 2z = R{). In this section, we consider V =1, A = 0,
and v = 0. For p € [2,2*), we introduce the classical Sobolev constant

Jog VP + [0 dx

AN (Op p) = A(Qg, Id, 1,0,0), 1,
(Qr,p) = M(Qr ). Lp) = weHl(QR) 112 )

We have the semiclassical reformulation

4 2 2 2
veHi(@), [¥11Er @)

= RS\, h,p), h=R2.

Note that, by a symmetrization argument,
Neu (Tpd 1N'"% | New/
wNer(re p) < (5) T ANRE p).

Thus we may directly apply our result.
Corollary 1.10. Let p € (2,2%). There exist C, Ry > 0 such that, for all R > Ry,

2—d 2d
R +

7 (1=CR™3)ANY(RY p) < AN (Qp p) < RS (14CRANY(RY p) .

Moreover, for all e >0 and p € (O, %), there exist Ry > 0,C' > 0 such that, for all
R > Ry and all associated LP-normalized minimizers 1,

1Y)l ey < Ce*™,

where M. is an e-neighborhood of 0Q2g.
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1.3.2. Shrinking waveguides. It turns out that the strategies and methods of this
paper can be applied to partially semiclassical situations. Such limits appear for
example in nanophysics when a strong anisotropic confinement is imposed or in the
context of quantum waveguides with small cross section. The reader may consult
[12, 9, 6] in relation with the spectral analysis of waveguides (or [25] in presence of
magnetic fields). The partially semiclassical limits are also of crucial importance in
the spectral analysis of problems with magnetic fields (see [4] and the book [33]).
Nevertheless, we do not aim here at being the most general as possible on this topics
and we will focus on the elementary example of bidimensional tubes shrinking in
their normal direction. We can notice here that such a situation was also considered
by del Pino and Felmer to investigate the Sobolev constants (see [7]). The result
below may be considered as a more quantitative version (in two dimensions) of their
result.

Let us consider a smooth and simple curve I' in R? and a variable height a : R —
lag, a1], with ag > 0. We assume that a admits a maximum (not attained at infinity)
and that o’ € L*(R). We let

V(s,t) e Rx (=1,1) =%, Dy (s,t) =T'(s) + hta(s)n(s).

We define the tube ¥, = ®,(X) and we assume that ¥, does not overlap itself, i.e.
that @, is injective. Assuming in addition that the curvature is bounded, ®, is a
smooth diffeomorphism as soon as h is small enough. For p € [2,4+00), we introduce

; . Js, IVY|? dx
AP (S, p) = AM(Zh,1d,0,0, +00),1,p) = inf =T
¢6|;|Z)(1)#(02h)7 H¢|’Ep(gh)

Proposition 1.11. Let p € (2,2*). There exist hy,C > 0 such that, for all h €
(07 hO);

. i . A
(1 — Ch3)h ™7 ambx AP (S, p) < APE(S,,, p) < (14 Ch)h™ pamb AP (2, p)
where
AP (S, p) = A((Z,1d,0,0, +00), 1, p) .
Moreover, for all e > 0 and p € (0,1), there exist hg > 0,C' > 0 such that, for all
h € (0, hy) and all LP-normalized minimizers 1,

Hw”LP(EMg) § Ce_«fh*p ’

where M. denotes here a c-neighborhood of the set of the maxima of a.

1.4. Organization of the paper. The paper is organized as follows. Section 2
is devoted to the investigation of the Sobolev constants when the geometry is
homogeneous (see Theorem 2.1). Under the condition that the boundary Sobolev
constant is strictly less than the interior constant, we prove that the boundary
constant is attained. Note that, in Section 2.7, we investigate the special one-
dimensional case of the half-axis with Robin condition and that we derive a condition
for the existence of the minimizers. In Section 3, we prove the first estimates towards
the upper bound of Theorem 1.8. In Section 4 we introduce sliding partitions of
the unity compatible with a quantum localization formula and establish the lower
bound of Theorem 1.8. In Section 5, by combining the results of Sections 3 and 4,
we derive accurate LP-localization estimates of the minimizers (Proposition 5.1) and
convert it into the exponential estimate of Theorem 1.9. In Section 6, we prove



Proposition 1.7 (and, with Propositions 3.1 and 3.3, this ends the proof of the upper
bound of Theorem 1.8). In Section 6, we also provide sufficient conditions under which
Assumption 1.5 is satisfied. Finally, Section 7 is devoted to the waveguide framework
and we establish Proposition 1.11. To conclude, we provide some perspectives in
Section 8.

2. BOUNDARY SOBOLEV CONSTANTS WITH HOMOGENEOUS GEOMETRY

2.1. A first result. The main goal of this section is to prove the following theorem by
using a variant of the concentration-compactness method (see the classical references
[28, 29, 36, 38], or the notes by Lewin [26]).

Theorem 2.1. Let us consider p € (2,2*). We have the following two ezistence
results.

i. If G is a homogeneous geometry with U = R? and such that \(G, 1,2) is positive,
then the infimum A(G, 1,p) is attained.

it. If G is a homogeneous geometry with U being an half-space and such that (G, 1,2)
18 positive and

(2.1) MG, L,p) <AG 1,p),
then the infimum A(G, 1,p) is attained.

Moreover, the condition (2.1) is always satisfied (for a given electro-magnetic field)
as soon as y € (—00,¢y) with ¢y > 0 small enough.

Remark 2.2. We will only prove Theorem 2.1 (ii). The proof of point (i) in Theorem 2.1
(which is related to the case when Q = R?) is simpler and can be adapted from the
proofs in [10] (see also [8]). The proof of Theorem 2.1 (ii) will take up the following
subsections. The proof of the last statement of the Theorem is given in Subsection 2.6
below.

Remark 2.3. The main difficulty in the proof of these results comes from the lack of
compactness due to the action of the non-compact group of translations. Indeed, for
any ¢ € Hy (U) and any xy € R? if U = R? or xo € R x {0} if U = R? we can
define the magnetic translation

T (x) = e A0 X(x — xq)
which satisfies

DG,l(w> = QG,l(Txow) and HwHLp = HTXOwHLp'

Since the minimization problem A(G, h, p) is translation invariant, we always have:

AG, h,p) = inf M = inf M > \G, 1,p).

weci#ngy ||¢|||_p(Rd) wGC;.i(gR{i)v ||¢||LP(R1)

Up to a rotation, we may assume that U = Ri. Let us consider a minimizing
sequence (1););>1 such that ||[¢;]|Lr) = 1. By definition, we have

(2.2) Qe (V) (G,1,p).

A
J—+o0
By Remark 2.3, (7,%;);>0 is also a minimizing sequence, (X;);>o being any sequence
in R4~ x {0} so that we have a loss of compactness by magnetic translations.
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We overcome this difficulty thanks to the concentration-compactness principle.
Our proof is divided in three steps. We show that :

(1) (¥);50 is uniformly bounded in H} (R%),

(2) up to magnetic translation and up to extraction ¢; — 1 # 0 weakly in
HA(RY),

(3) ¢; — 1 strongly in H}A(Ri) and v is a minimizer of A(G, 1, p).

2.2. Boundedness in H} (R%). This section is devoted to the proof of the following
proposition.

Proposition 2.4. Under the assumptions of Theorem 2.1 (ii) there exists C' > 0
such that for all ¢ € Hy (R%)

||¢||E2(Ri) + ||V|@/)|||E2(1R1) < ||77Z)||EQ(R1) + [[(=V + A)@/JHE%M) < CQca(¥).

Therefore,

AG,1,p) >0
and any minimizing sequence (V;);>1 (normalized in LP) is bounded in Hjy(R%)
whereas (|¢;);>1 is bounded in H'(RL). Moreover, we can assume that for all j > 1,

2M\(G, 1,p)
(2.3) I[Pz gay < NG.12)

In order to estimate the boundary term, we will need the following two lemmas.
Lemma 2.5. There exists C > 0 such that, for alle >0 and ¢ € H'(R), we have
||¢HL2 Ri-1x{0}) < 5||V¢HL2 (R%) + 05_1||¢HE2(R1) :

Proof. The proof is based on the elementary trace estimate:

30 >0, W eHRY), W@y < CllYligs

that may be proved by density and partial integration. Then, for all ¢ € H(RT™)
and p > 0, we let 1,(x) = ¢(px). This easily leads to

Ilgasion < € (PIVeRar) + 07 Nl )
and we choose p = C~l¢. O
Lemma 2.6. There exists C > 0 such that for all ¢ > 0 and all ¢ € H'(R%),

6.1 () = (1= CeDI(—IV + A) [Zagag, + (V = Clrle Dl -
Proof. 1t is a consequence of the diamagnetic inequality:
VY € HARY),  [IVIUllEeey < 1=V + A Eagey
and of Lemma 2.5. 0J
We can now deduce Proposition 2.4.

Proof. By point (i) of assumption 1.5, we have that \(G, 1,2) > 0 so that

19112y < MG, 1,2) " Q61(¢), for all ¢ € Hy (RY).
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Then, Lemma 2.6 and the diamagnetic inequality give that there is C' > 0 such that
for all ¢ € H} (R%)

0y + IV 1Rty < 9Py + 10V + A)lRaggsy < O ().
Finally, we deduce thanks to Sobolev’s injections that
A(G,1,p) > 0 for any p € [2,2"]
and the conclusion follows. OJ

2.3. Excluding the boundary vanishing. We now focus on the following propo-
sition (see [29, Lemma I.1], [38, Lemma 1.21], [30, Lemma 2.3|, [37]).

Proposition 2.7. Let us consider R > 0 and consider the paving near the boundary

Yp=R"'x (0,R)= || g, r=[0,R""+Rk.
kezd—1x{0}
For q € (2,2%) and ¢ € L*(XR), we introduce
Mp() = sup [[9llLap) -
keZd~1x {0}

Ford>2 and R > 0, let S > 0 be the optimal Sobolev constant for the embedding
[¥]lLo(0,2) < SlYlIr(90,5) -

Then, we have
2 2 -2
[Vlleaer) < SNl s, Mr() e
Proof. We have

Wty = 3 [ Jlrdx.

kezZd-1x{0}
By Sobolev embedding, we get

[ 1ot < 52 (10 + 1900
We deduce that

1—2
|w|de) |

k,R

[l < SN ) ME () - 0

Let us now come back to our minimization sequence (1););>1 (that satisfies (2.2),
by definition).

Proposition 2.8. We take g = p. There exists R > 0, a subsequence extraction and
mp > 0 such that
Vi > 1, Mg(1;) > mp > 0.

Moreover, we get
(2.4) Iz €27 x {0}, Vi21 Wl = me-
If we let
pj(x) 1= e A%y (x — Rk;),
then (¢;)j>1 15 a minimizing sequence that, up to a subsequence extraction, weakly

converges to some @ # 0 in Hk(Ri) equipped either with the sesquilinear form B¢,
associated with Qg1 or the standard scalar product.
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Proof. Let us analyze the first part of the statement. Let us assume by contradiction
that, for all R, Aligl Mg(v;) = 0.
Jj—+oo

By applying Proposition 2.7 to ¢ = |¢;| and using Proposition 2.4, we infer that
(2.5) Hm |[hjllir(zq) = 0-

Jj—+o0

This means that we are in the “boundary vanishing” situation.

Let us now introduce a partition of unity to distinguish between a neighborhood
of the boundary and the interior. There exists C' > 0 such that for all R > 1 and
two smooth functions on Ry (depending only on the transversal variable z,), x1.r,
X2,r such that

X%,R + X%,R =1, |X,1,R|2 + \X/17R|2 < CR™Z,

and where x; g is a smooth and compactly supported function being 1 for |z, < %
and 0 for |z4| > R. A well-known localization formula gives

Qe1(Y;) = Z Q6.1 (XkRYj) — HXkR%Hp(Rd :

k=1,2
It follows that, using (2.3),

MG, 1,p)

Qc1(¥;) > Y. Qcilxwrt)) —2CR™ 2A(G,1,2) :

k=12

By a support consideration, we get

Qea(x2.r¥s) = MG, 1, p)lIx2ri [Enpe -
so that there exists C' > 0 such that, for all j > 1 and R > 1,

A6, Lp)
2 2 )
Qe () = MG, 1, p)Ix2.r¥5l o ga) — 20R NG.12)
Thanks to (2.5), we deduce that
m b, Eae) =0,
so that, with the LP-normalization of ¢;,
MG, 1,p)
MG, 1,p) > MG, 1,p) —2 Pt he tu LAY
(G, Lp) 2 MG 1,p) —2CR NG 1.9)

Finally, we reach a contradiction to (2.1) by choosing R large enough. Therefore,
the first part of the statement is now proved.

Then, (2.4) follows by definition of Mp. The fact that (¢;);>1 is still a minimizing
sequence comes from the gauge invariance presented in Remark 2.3.

By a simple translation, we have that, for all 7 > 1,

HSOJ'HLP(QO,R) > MR .

Since (p;) ;>0 may be assumed (by the Banach-Alaoglu Theorem) to converge weakly
(and pointwise) in Hj (R%) to ¢ and by compact embedding:

llLr(0en) = mr > 0. 0
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2.4. Excluding the dichotomy.

Proposition 2.9. The function ¢ of Proposition 2.8 satisfies ||<p||Lp(Ri) =1.

Proof. By the Fatou lemma, we have o := ||g0||fp(Rd+) € (0,1].

We introduce §; = ¢; — ¢ for j > 1. The sequence (0,);>1 weakly converges to
0 in H} (R%) equipped with the sesquilinear form B¢, associated with Qg ;. Thus
B 1(;,9) = 0. We have

Qa,1(p)) = Qc,1(d;) + Qe1(p) + 2ReBg 1 (55, ¢) -
In other words, we can write

(2.6) Q6,1(p;) = Qe1(d)) + Qealp) +¢5,

with €5 — 0.
We must prove that the L” norm also splits into two parts:

(2'7) ||(20] 90|||_p RY) + HSD”Lp RY) ||90J|||_p R%) = éj — 0.

Let us temporarily assume that (2.7) holds. Thanks to (2.6), and using (2.7),

26.1(65) 2 A6, 1,5) (10 e, + Il ) +2
=MG1Lp) (L—a+&)r +ar) +e.
Since (¢;);>1 is a minimizing sequence, we get
MG, 1,p) > A\(G,1,p) ((1 — a)% + a%) )
But we have A(G, 1,p) > 0 so that
(1—a)r +ar <1, with o € (0,1].

Since p > 2 and by strict convexity, we must have a = 1. Therefore we conclude that
Hg0||Lp(Ri y = 1. This finishes the proof of the proposition, modulo the proof of (2.7).

For that purpose we write
3i= [ les— ol = lisl + ol ax.
+

Let us prove that the sequence (|o; — p|P — |¢;[P);>1 is equi-integrable on R%. There
exists C'(p) > 0 such that,

s — @lP — [P < C)(e;[P~" + leP el -

For R > 0, by the Holder inequality, we get

[ e elaxs ([ telax) ([ terax) < ([ lerax)
x> R 2 >R (e>R (a[>R

Thus, for all € > 0, there exists R > 0, such that for all j > 1, we have

/;>RM%—-¢V—¢wﬂp+ﬂdex <

l\')\(‘f)
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This proves the equi-integrability. Now the embedding H*(B(0, R)) C L?(B(0, R))
is compact so that the sequence (;);>1 strongly converges to ¢ in LP(B(0, R)) and
thus, for j > j(R,¢),

g .

DO ™

L ales = ol = el + o x| <

This implies that |§;] <e.
0J

Proof of Theorem 2.1 (ii). To finish the proof of Theorem 2.1 (ii), it remains to
notice that

MG, 1,p) = liminf Q6,1 (¢;) > Qea(p) = MG, 1 p)lIellir@e) = MG, 1,p),
and thus ¢ is a minimizer. O

2.5. Exponential estimates. When the minimizers exist, they satisty decay esti-
mates of Agmon type.

Proposition 2.10. If G is a homogeneous geometry with A\(G,1,2) > 0 and if the
infimum (1.1) is attained, then, for all minimizer 1, there exists o > 0 such that

€alx‘77/1 S LQ(U) , Qcﬁ(ea'xlw) < +o00.

Proof. We only consider the case U = ]Ri. Let us consider a minimizer v, and

the nonlinear potential V. = —\(G, 1,p)|¢o|P~2. We have V. € LP%(U). The
corresponding quadratic form is defined on the space HX(U) by

(2'8) QG,l,NL(¢) = QGJ(@D) + /U VNL|LZJ|2C1X.

By the Holder inequality, we see that

/U |VN|_||¢|2dX S ||VNL||LIU%2(U)H¢HEP(U)

and thus, by Sobolev embedding (and homogeneity) and the diamagnetic inequality,
for all € > 0, there exists C. > 0 such that, for all v € HA(U),

/U Vil dx < ClIVALl e, o EIVIGIF + Cell$llE )

(2.9) < ClVill 52 ) (el (=0 + A)Yl[Eaw) + CellelEaw)) -

We infer that there exists C' > 0 such that for all £ > 0 there exists C. > 0 such that
for all ¢ € HA(D),

Qeanc(¥) 2 (1= Co)[[(=iV + Aty + VIR 2wy + clvlliy — Cllvlfaw) -
and, by using Lemma 2.5 and again the diamagnetic inequality, it follows that
Qein(®) > (1= Ce) {Il(=iV + ARy + VI IR0y} — CellvlEzq) -

This proves that Qg1 N is bounded from below on HA(U) and thus defines a self-
adjoint operator £g1 nL. The function vy belongs to the domain of this operator and



15

satisfies £61nL%0 = 0. Now, the exponential decay will be established if we prove
that

(2.10) 3C >0,Ve >0,3R >0,V € HA(U),
supp (v) C EB(O» R) = QG,l,NL(@/’) > (11— Og)QG,l(W - O5||¢HE2(U)
Indeed, this implies that, for all 1» € H(U) with supp (v») € CB(0, R),
Qe (¥) > (1= C'e)A(G, 1»2)||¢||E2(U)

From this we can deduce, by using Persson’s theorem (see [32]), that we have
inf spee (Le1nL) > A(G,1,2) > 0 and the conclusion follows by using the Agmon-
Persson estimates (see [1] or for instance [33, Proof of Proposition 10.10]). From the
proof of these estimates, we may even find an @ > 0 common to all the minimizers ).

Therefore, let us explain where (2.10) comes from. For that purpose, we come
back to (5.3) with ¢ = 1 and we notice that, for all R > 0 and ¢ € H5(U) such that
supp (1) C CB(0, R),

/U Vi[9 dx < C[Va | (I(=iV + A)p[IE2 ) + Crlle Iz -

L7-2 (CB(0,R))

Since Vi, € Lpfg( U), HVNLHLp 22 CB(0.7)) goes to zero when R goes to infinity. Then,

from (2.8) (and again Lemma 2.5 with the diamagnetic inequality to control the
boundary term), we deduce (2.10). O

2.6. A sufficient condition for boundary attraction. This section is devoted
to the proof of the last part of Theorem 2.1.

Proposition 2.11. If G is a homogeneous geometry with U being a half-space and
with fixed (V, A), then there exists ¢y > 0, such that for c € (—oo,cy), we have

MG, 1,p) < AG,1,p).

Proof. Let us first prove the inequality in the case G = (R%,1d,V, A,0). Let ug €
HL (R?) be a minimizer of A\(G,1,p) given by point (i) Theorem 2.1 such that
|tuol|Lr(rey = 1. Up to a translation in the eg = (0,...,0, 1) direction and up to the
symmetry x — —x, we can assume that

1
HUOHLP RY) Hu0”|_p ®) T 5
and
/Rd [(=iV + A)ug|* + V]uo|* dx < /Rd [(—iV + A)ug|? + Vl]uo|* dx .
+ —
Then, we get

G, 1,p) :/ (=i + Auo|? + V]uo|? dx
> 2/ —iV + A)ug|* + V]uo|* dx

> 2 uollfspa) MG, 1,p) = 277G, 1,p)
Thus, we are left with the case ¢ # 0. Let us remark that
c— MG, 1,p)
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is a non-negative, concave and non-decreasing function of ¢ since it is a infimum of
non-negative, affine and non-decreasing functions. Hence, we get the result provided
that A(G,1,p) < A(G,1,p) for any ¢ > 0. To do so, we build a sequence made of
magnetic translated of ug in the e, direction that are multiplied by a cut-off function
so as to vanish on R4 x {0}. O

2.7. Study of a one-dimensional model. In the last section, we have seen that
the existence of the minimizers in presence of a Robin boundary is ensured if the
Robin parameter is not too large. Actually, in dimension one (without electric or
magnetic field), we can prove that, above a certain intensity, the minimizers do not
exist (as we will see in the following lines).

We are interested in the map ¢ — A\((R4,1d,1,0,¢),1,p). The goal is to get a good
understanding of the phenomena occurring, studying the simplest case when the
concentration-compactness principle is not needed. Indeed, we look for a real-valued
solution of the following ordinary differential equation problem:

—u" +u=Nulf?u inR,,
(2.11) u'(0) = cu(0),
||U||Lp(R+) = 1a

where A = A\((Ry,1d,1,0,¢),1,p), u € H(R,,R), p > 2 and ¢ € R. We get the
following result.

Proposition 2.12. The system (2.11) has a unique solution for ¢ € (—1,1) and no
solution for |c| > 1. Moreover, we have

(i) A((Ry,1d,1,0,¢),1,2) > 0 if and only if ¢ > —1,
(11) )‘(GR-H |d7 1,0, C)a 17p) < A((Ra ld? ]-7 0, 0)7 1ap) fOT all c € (_17 1)7
(iii) A(Ry,1d,1,0,¢),1,p) = A((R,1d, 1,0,0),1,p) for all ¢ > 1.

We split our study into two steps:

i. Study of the Cauchy problem (2.11) with A =1 and ¢ € R fixed but without the
restriction ||u|r®,) = 1.

ii. Study of the dependence of the solutions of (2.11) to describe the behavior of
the function ¢ — A((R4,1d, 1,0,¢), 1, p).

2.7.1. First step. Let us remark that up to the change of unknown u ~~ u)\P%Q, the
system (2.11) without the constraint on the integral is equivalent to

(2.12) v = — |ulPu
v(0) = cu(0)

Obviously, we are only interested in nontrivial solutions of (2.12) so that without
loss of generality, we can assume that «(0) > 0. This is a Hamiltonian system

, OH
u = %(u,v)
(2.13) - %

v = —%OJ/, 'U)
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where the Hamiltonian H is defined by

[0 = Jul*  Jul”
H =
As a consequence, we immediately get that 0, H (u(r),v(r)) = 0. Let us notice that
H is coercive:

lim  H(u,v) =400,
Il (w,0)[| =00

so that all solutions of (2.12) are global. Moreover, since we are looking for a solution
u € HY(R,,R) i.e. such that

|+ o) dr < +oo,
Ry
the initial condition has to satisfy H(u(0),v(0)) = 0. This follows from the continuity
of H since for any E # 0, there exists R > 0 such that
H'{E})NB(0,R) =0

where B(0, R) is the open euclidian ball of radius R centered in (0, 0).
Thus, we obtain the following lemma.

Lemma 2.13. We have:

(i) for |c| > 1, there is no nontrivial solution of (2.12),
(ii) for |¢| < 1, there is a unique ul > 0 such that H(u?,cu®) = 0, the associated
solution (u.,v.) tends to (0,0) at infinity and satisfies u.(r) > 0 for all r > 0.

Proof. The equation

C2 — 1|u0|2 + |u0|p

0=H’, cu’) =

has no nontrivial solution for |¢| > 1 and has a unique solution u? > 0 for |c| < 1.
Moreover, (0,0) is the unique critical point of H~*({0}) and the conclusion follows
from the Cauchy-Lipschitz theorem. OJ
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Let us study now the decay at infinity of u. and v, for |c| < 1.

Lemma 2.14. Let ¢ € (—1,1). Then, (u.,v.) decays exponentially at infinity and
u, belongs to H' (R, R).

Proof. By Lemma 2.13, arctan(v./u.) is well-defined on R, and satisfies

d vlue —ulve  —(1—2/p)ub
— arctan(v./u.) = = £ <0
dr (ve/ ue) u2 + v? u2 + v?

so that arctan(v./u.) decays from arctan(c) to —m/4. Hence, there exists T' > 0 such
that —u.(r) < v.(r) < 7”0(’" for all » > T and

_ _ P
%’ucyp = p‘“C‘p 2ucuc, = plucl|” 2UCUC < _§|u6‘p'

Thus, we obtain that |u.(r)[? < Cexp(—5r) for all » > 0 and the conclusion
follows -

2.7.2. Second step. In the following lemma, we study the dependence of LP-norm of
U, from c.

Lemma 2.15. We have that
c€ (=1,1) = [uclire,) € R+
is strictly increasing.
Proof. Let —1 < ¢ < ¢ < 1. Let us write
T, = inf{r > 0,arctan(v.(r)/u.(r)) < arctan(c’)} .

The quantity T, > 0 is well-defined from the proof of Lemma 2.14. By the
uniqueness of the solution in the Cauchy-Lipschitz theorem, we get that

(um UC)(' + Tc,c’) = (UC/, Uc’)(')
since H(ue,v.)(Tee) =0 and v.(T. ) = due(Te. ). This ensures that

el ) = / ]uclf"dr—l—/ ]uc]”dr>/ Jug P dr .00

Let us introduce for ¢ € (—1,1)

el )2 + cluc(0)?

HUCHLP (Ry)

Ao i=

= HUC”LP(R > )‘((R-H Idv 1’0 C) 1 )
Lemma 2.15 ensures that ¢ — . is strictly increasing. It remains to study the
limiting behavior of A\, at +1.
Lemma 2.16. We have
lin% Ae = AM(R,1d,1,0,0),1,p) and lim A\, =0,
c—

c——1

so that, for all c € (—1,1),
o = A((Ry,1d,1,0,¢),1, p)
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Proof. Let us denote by
T, :=T.o = inf{r > 0 : arctan(v.(r)/u.(r)) < 0}.
By the Cauchy-Lipschitz theorem, we get that
(te, ve)(r +T,) = (u,u)(r) for all r € [-T,, +00)
where (u,v) is the solution of
—u” +u = |Jul’"?u on R

such that u(0) = u) and u/(0) = 0 with uJ given by Lemma 2.13. Let us remark that
Theorem 2.1 ensures that

A((R,1d,1,0,0),1,p) = [[ulll7%, -

We also have that limc_>+1 T. = 400 and

HmAZ? =Tim [ [uP dr —/ uf? dr = M(R, 1d, 1,0,0), 1, p) 72
c—1 —T. —0

c—1

since (0,0) is an equilibrium of (2.12). The same ideas give that

lim A. =0.
c——1
Finally, Theorem 2.1 and Lemma 2.15 allow us to conclude. 0

Let us end this section with the proof of Proposition 2.12.

Proof of Proposition 2.12. The first point follows from a standard spectral analysis
(for negative ¢ there exists only one eigenvalue below the essential spectrum that is
1 — ¢?). The second point follows from Lemmas 2.15 and 2.16. The third point is an
immediate consequence of the first point, Lemma 2.13 and Theorem 2.1. U

3. UPPER BOUNDS OF A(G,h,p)

The upper bound in Theorem 1.8 will be proved by inserting appropriate test
functions in the Sobolev quotient: either functions localized inside the domain, or
functions localized near the boundary. Of course, the case related to the boundary is
slightly more delicate and involves a local straightening of the boundary. Anyway,
after an appropriate rescaling, we will locally see the appearence of the concentration
function x — A\(Gx, 1, p). Thus, we will have to select a minimal point of this function.
The existence of such a point xy € € is ensured by Proposition 1.7 which we will
prove in Section 5.

Depending on whether xq € €2 or xy € 012, this section is divided into two parts
and devoted to the proof of Propositions 3.1 and 3.3.

3.1. Interior estimate. Here is the estimate related to the interior contribution.

Proposition 3.1. Let xqg € Q. There exists hy > 0,C > 0 such that, for all
h € (0, ho),

d
2

MG hp) < he 71 (MG 1,p) + Ch3)
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Proof. Let us consider a smooth cutoff function 0 < yo < 1 being 1 in B(x, €g) and
being zero away from B (xg, 2g¢). It follows from (1.8), (1.9) and (1.10) that there
exists a smooth real function ¢y such that, on the support of xo,

(3.1) IA(x) — Vigo(x) — AL (x)] < CJx — xo[2.
Let us consider an LP-normalized minimizer Wy, associated with A(Gx,, 1, p) and let
Uyo (1) = Uy, (x0 + -). We let

Un(x) = BB xo(x)e

—3 Po(x) ~ 1

W, (h72(x — %)) -
We notice that

||¢h”ﬁp( = h (/ Ixo(x)]” ‘\I/xo (x — XO))‘p dx>

(1 fog, 0 b 15t )

and thus, thanks to Propositlon 2.10,
(32) sy = 1+ O().

Then, we estimate Qg (¢). Thanks to the localization formula, we have

AN

hSAIN

(3.3) /Q (—ihV + Ay |? dx

£ \i’xO (h_%(x — xo))

+hh ./]Rd |V xo0(x)[? ‘@XO (h_%(x - X())) ‘2 dx.

By support considerations, and by using again Proposition 2.10, we get

—ns 2|(—ihV + A)e d
— 17 oGOl [(inV + A)e x

(3.4) /R IV x0)I [y (B2 (x — x0))[* dx = O(1).
We have
(3.5) / vo(x)[? ‘ —ihV 4+ A)e b, (h3 (x - xo)) i

2

(=ihV + A = Vi) Wy, (72 (x = x) )| dx.

<)
B(x0,2¢0)

With (3.1), we get, for all n > 0,

(3.6) /B
(x0,2¢0)
<(1+mn) / ‘ —ihV + AL (%)) Ty (h_%(x —xo)))2 dx

(—ihV + A — Vo) Uy, (h*%(x - XO)) ‘2 dx

+C?*(1+n7h) /Rd |x — xol* ‘@xO (h_%(x — Xo)) ‘2 dx.
With the definitions of Wy, and ¥y, and Proposition 2.10, we deduce
(3.7) / x — xo* ‘\IJXO ( (x — x0)>‘2 dx < Dh2h% .
Similarly, we get

(33) [ 1VEx) = Vo) llun(x)? dx < Ch¥nnd
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We choose 1 = h. By combining (3.3), (3.4), (3.5), (3.6), (3.7) and (3.8), we infer
from the definition of ¥, and U, that

d_d 1

(3.9) Qqnp(tn) < h277h (A(Gx,, 1,p) + Ch7) .

The conclusion follows by combining (3.2) and (3.9). O
3.2. Boundary estimate.

3.2.1. The electro-magnetic Robin Laplacian near the boundary. Let us describe the

geometry near the boundary of €. Since 0f2 is smooth, we may consider a covering
(B(Xe,7)) << of OS2 such that the following holds. For each £ € {1,---, N'}, there

exists a smooth parametrization @, : U, x (0,t,) — QN B(Xy, ), where U, C R is
an open set with 0 € U, and $,(0,0) = X,.
For x4 € 0€), we have

T (09) = (d®;),, (RT! x {0}), xo = P4(yo), ¥o=(50,0).
We also recall that the metric induced by ®; is in the form
Gy = (d®,)T ddy,

and we let

|Go| = det Gy, gu(s) = Gu(s,0), [ge| = detge.
Then, we shall discuss the expression of our Laplacian in these coordinates. If v is
supported in QN B(X,, ), we may use the change of variables x = ®,(s,t) and we get

2 = Il dsdt )
60 = ([, 19P1CHIE 0

and
(3.10)
Qqn(v) = /U o (((=ihV + A)g, Gy (—=ihV + A)d)ea + AV [[?) |Gl 2 ds dt
2.3\ 174
wnd [ ARl ds,
UgX{tg:()}
where

A=(d®) oAo®, V=Vod, F=7y0&, §=1od.
Note that in terms one 1-forms, the first equality means
d d
k=1 k=1

so that, with a slight abuse of notation, we may write (é, U) = ®3(G, ). Since the
pull-back commutes with the exterior derivative, the magnetic matrix of B is

Mg = (d®,)" Mg (d®;)
and we may easily deduce the following lemma.

Lemma 3.2. We let Gy, = (R*! x Ry, Gg(yo),V(xo),j;O,v(xo)). There exists a
smooth function ¢ on R? such that:

(XO + (dq)f)m)* gxo = g~;§0 :
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3.2.2. Upper bound. Here is now the estimate related to the boundary case.
Proposition 3.3. Let xy € 02. There exists hg > 0,C > 0 such that, for all
h € (O, ho),
d_d 1
MG, h,p) < h2 v (A(Gx,, 1,p) + Ch2|loghl ) .

Proof. Let us recall that we always have
)‘(gxov 1,]3) < )‘(ona 1,]?)-

Let us consider first the case of the strict inequality as in Theorem 2.1. Using the
notations of Section 3.2.1, we choose

Unls, 1) = h™ B xo(s, 1) ® B (h (s — s0,1))

where ¥, belongs to S(R*! x Ry) and Y, is a smooth cutoff function such that
0 < xo0 <1, being 1 in B(yo, €9) and being zero away from B (yo, 2¢¢). The parameter
g0 is such that supp ¥y, C Uy x (0,t,) and ¢y satisfies (3.1). With the same kind of
computations as previously (see Proposition 3.1), we get

Qg (¥n)
<hhdE [ (VA ) o, Gelyo) (=i + A5 ) Boea + T (30)| Bol?) dy
XN
+hhtE [ 3(y0) ol ge(s0) | ds + Ch3RE
Rd-1x{t=0}
and

1
[4nllYp ) = 1+ O(h?).
Then, it remains to use the change of variable of Lemma 3.2 and take
Vo = (%o + (dPr)y,)" Vo,

where Uy is a minimizer associated with A(Gx,, 1, p).
Let us now consider the case when

/\(on, 17p) = /\<on7 17p)
for which Theorem 2.1 does not apply. Let us define R;, = h'/?|1logh|. We choose

Un(s,t) = B3 xo( Ry (s — s, t — 2Ry))e T Wo(h2(s — so,t — 2Ry,))

where ¥, = (x0 + (dDy)y,)" ¥o for Uy a minimizer associated with )\(QXO, ,D), Xo is
a smooth cutoff function such that 0 < xo < 1, being 1 in B(0,&q) and being zero
away from B (0, 2g).

We get

o) = DP|Gy|Z ds dt
el = ), 101G s
2/ ol |Ge(so + 5h'/2, 2Ry, + th'/?)|2 ds di
B(0,e0Rph—1/2)
> Jol?|Ge(s0,0)|2 dsdi — CR
2 g ol G50, 0)F ds i~ CR,
>1-CR, —/ G50, 0)| [do|? d5 di

B(0,e0Rp,h—1/2)c

>1-C(R, — exp(—Oé]%oRh/h%)%
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where the last inequality follows from Proposition 2.10. Hence, by choosing ¢y such
that apey = %, we have

[nlfs @ =1 —Ch2|loghl.

We also obtain

Qg1 (Un)
d_d : s . S . -
< hh? p/RHXR (((—N+A;O)%,Gg(y0) 1(—N+A;O)\1:0>Cd+V(y0)|n1/0\2) dy
+
d_d - SN 1 3,d_d
s | 5(y0) ol ge(s0)|? ds + C| log hlh3 A%
Rd-1x{t=0}

and the result follows. O

4. LOWER BOUND OF \(G, h,p)
This section is devoted to the proof of the lower bound in Theorem 1.8.
4.1. The two-scale localization formula with sliding centers. We will need

the following type of partition of the unity (see [14] for the proof) in the case when
p > 2.

Lemma 4.1. Let us consider E = {(a, p,h,k) € (R.)®> x Z% : a > p}. There exists
a family of smooth cutoff functions (Xg{,]p,h)(a,p,h,k)EE on R?, with

(4.1) Xoohn(X) = X0 (x — (207 + h*)k),

such that 0 < X([)lz(,]p,h <1,
ng]p’h(x) =1, on |x — (2R + h%)k|o < B7,
ng]p,h(x) =0, on |x — (2h* + h*)k|se > b + h*,

and such that

(42) > () =1

keczZd

There exists also D > 0 such that, for all h > 0,

(4.3) > IV, al? < DR,
kezd
and
(4.4) /Rd VAR () dy < Dh#dh=or

The following lemma states that, up to a translation of our quadratic two-scale
partition, we may always estimate the global LP-norm (resp. the global energy) by
the local LP-norms (resp. the local energies). It is a generalization and strengthening
of [14, Lemma 4.3].
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Lemma 4.2. Let p > 2. Let us consider the partition of unity (Xa ) defined in
Lemma 4.1, with « > p > 0. There exist C > 0 and hg > 0 such that for all
Y € LP(Q) and h € (0, hg), there exists To pny = T € RY such that

> R e dx < [ e dx < (L+ 0 ) 3[R 6o dx,

keZd kezd
> Qon(R) 40) — DRy q) < Qo) < 3 Qgn(Xe 1),
kezd kezd

with )Zg:}p,h( )= XLLh(X 7). Moreover, the translated partition ()Z[k] ) still satisfies

a,p,h
(4.3).

Proof. Since Z Xa » n)° =1 forall 7, and p > 2, we have immediately
kezd

> [ RE e ax < [ il

kezd
Notice that, by paving R? and by using that X[ ) ,n = 1 on a box of sidelength 217,
(4.5)
p @ o _ o p dypdp
/[O2hﬂ+h<¥)d Z ‘Xaph (2h” + h*)k 7')‘ dr = / ‘Xaph X )’ dy > 2¢h%.

Therefore, by changing the order of the integrations,

1 K] 9d},dp
(2hp+ha)d/02hp+ha (Z/| Xapn¥ ]pdx) dTZ(ZhP—l—hC“/W x)|P dx,

kezZd
and thus

1
(2hp+ha)d /OQhP—i-ha (/ |¢ |de_ Z / |onph |de) dr

kezd
2dhdp
<(1- / )P d
—( (2he + he) ) ) dx.
This last inequality is in the form
1

— dr < A
] IGLLEE
with a non-negative and integrable function f, so that we get
Ld
{r€0,L]": f(r) <34} >

In our particular situation, we deduce that the set of 7 € [0, 2h? + h®)? such that
16 X [ eerd ) [
1.6 / P ) Pdx > 1 — 3(1 . ) / X,
et p (2h? + he)
has measure at least 2(2h” + h*)?. We may notice here that
2dhdp

Ghr eyt~ O
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With the localization formula associated with the partition of unity (X&L,h) that
is adapted to v, we infer

Kk
Qgh Z Qgh Xaph — h? Z ||VX<[x]ph¢||E2(Q)7
kezd kezd

So that in particular

Qon(®) < Y Qon( 0).

kezZd
With Fubini’s theorem and (4.4), we also observe that, for all x € R¢,

1
— v — 2r +hMk —71)]* d
(2h? 4 he)d /[0 2ho+he)d é | Xa pn(X— (207 + )k —7)[7 d7

! 0 ) C
= G Lo VX =Y dy < o

Therefore,

5 D04(3),10) — Qoav)

5 Jy

(22 + h)® Jjo.2he+heya \ |,
h2

N (Qflp-f—ha)d</02hﬂ+ha 2 |’VXaph¢HL2(Q)> ar,

kezd
< Ch* P [Y]E2 g

And thus the set of 7 € [0, 2h* + h*)? such that

1
CYwr— < 3CR* Wt
(2he + ho)d /[0 oho -t hayd kZZ:d Qqn Xaphw) Qgn(¥) < [¥1E2 ()

has measure at least 2(2h” 4 h*)?.
We conclude that the desired estimates are satisfied for a set of 7 of measure at
least 3(2h* 4 h)". O

Remark 4.3. Note that if p = 2, we choose a = p and we do not need Lemma 4.2.

4.2. Approximation by the homogeneous geometry. In this section, we prove
Proposition 1.6 and the lower bound in Theorem 1.8. Since the lower bound in the
nonlinear case (p > 2) is more subtle we will mainly focus on this case. Note that in
many places the estimates when p = 2 are better and easier to obtain.

Keeping in mind the estimate of the quadratic form of Lemma 4.2, we must

now approximate the local energies Qg,h(f(gi,hgb). To lighten the notation, we let

wk _Xaphz/)

4.2.1. Interior estimates. Let us consider the k € Z¢ such that supp (;zEj]ph) NoQY = 0.
We have

I(=ihV + A)ticliEoo) = [(=1hV + Ag + Ri) WillPz(q)
where Wy = e'?x/Mfy for a suitable choice of gauge ¢y and the Taylor remainder Ry

satisfies, on the support of )ng}p?h, |Ri| < Ch*. An elementary inequality implies,
for all € € (0,1),

[(=ihV + A)ihicl[P2i) = (1 = )[[(—ihV + AL ) VillP2) — CPhe ™ il [P2(0
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Moreover, we have

h [ Vel x> h | Vil dx = Ch g

Since we investigate the case p > 2, one need to control the remainder involving
[¥cllt2(q) and not [[¢x||fsq)- Note that we do not have to care about this when
p=2.

We have, by homogeneity and the min-max principle,
MG, L2120y < Qo 1 (Vi) -

By using Assumption 1.5, we deduce that

.14 = (1= &) [(=ihY + A5 ) Wloy +h [ Vx|l dx

— (Ce'n* ' + Ch)g,, n( Vi) -
Then, we get
b VG0l dx > (1= e)h [ Vx| dx — eh (max V] ) Wl

Therefore we deduce
(4.7) Qon(th) > (1 — Ce — Cetpt~t — C’hP)Dgxwh(\Ilk) :

We choose £ = h%~2 and we notice that, since p € (0,1), then we can forget the
term in A”. By definition of the infimum and homogeneity, it follows that

1 d_d
(4.8) Qo () = (1= Ch* 2)A(Gey, L )R 27 |4y -
We deduce in particular
d_d |
(4.9) Qo) > (L= CH* 2R3 inf A(Ge, 1, p) [ Foge -

4.2.2. Boundary estimates. Let us consider the k such that supp ()N(([)l:]p,h) N o # (.

Let us consider cx € supp ()ch}ph) NI # 0. On supp (;sz]ph) we may consider the
local coordinates (near some point X;) introduced in Section 3.2.1 and x¢ = cx. The
coordinates of ¢y are (sy, fyx) in the parametrization ®,. We use the expression (3.10)

and the Taylor formula to get

Qo) > (1=Ch?) [ ((=ihV+A)i, Golew) " (=ihV+A)di)nal Ge(en)|F dy

UZX(Ortf)
+h Ve [ IGalen)|F dy — (et [ [iiPlgi(sil* ds
Urx(0,t¢) Uyx{0}
—condre [ pfds—ontte [ iy
Ugx{0} Uex(0,te)

By using Lemma 2.5 with ¢ = h%, we deduce that
~ 1 ~ 1 ~
[l ds < CRAIVIIE + Ch3 |1l
UZX{O}
so that, with the diamagnetic inequality,

[l ds < Ch R I(=inV + A)d2 + Ch- 3 [,
UgX{O}
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and thus
Qon(ih) > (1-Ch?) /U o )((—z’hv+A)zﬁk,Gg(ck)*l(—zhv+A)sz>RdyGZ(ck)\% dy
27
+h Vel IGe(en)]* dy = yeh? [ [dilge(sil ds
Urx(0,tg) U, x{0}

—cnt [y
UZX(Ovtf)

Now, we approximate the vector potential as in Section 4.2.1 and we get

(4.10) Qqa(ta) > (1— Ch*2)Qg, n(th) |
and thus
1 d_d
(4.11) Qg () > (1= Ch*72)N(Ge,, 1, p) B 27 [[Uc|[Fo e -
We get
1 d_d |
(412) Qg > (1 CHP DR inf A(Ga 19|kl

From (4.9) and (4.12), we infer that there exist hy > 0, C' > 0 such that, for all
k € 74,

1 d_d |
(413)  Dea(t) = (1= OWF DR nf A(Ge, 1,p) el

We want to add the different local contributions. We use the following estimate

W0 Iy = B2 3 Itz ) < CRT770 37 Qg

kezd kezd
where we used (4.8), (4.10) and the positivity in Assumption 1.5. Using Lemma 4.2,
we get
R0l ) < CRY* Qg (W)
Summing over k in (4.13) and using Lemma 4.2 to reconstruct the total LP-norm
from the local ones, we get

1 d_d |
Q6a(¥) 2 (1= CRI7)(1 = O 4)(1 = Ch™)A 377 inf A(Ge 1) [l

We choose
1 ) 1 1
1—a—p:2p—§:a—p,orequlvalently p:§, azi.

This gives the lower bound in Theorem 1.8.

Remark 4.4. In the case p = 2, we are led to the choice 1 —2p = 2p — % and thus
p= %. Note that, in this case, the term 1 — Ch®~* is replaced by 1. From this we

find the remainder of order O(h1) given in Proposition 1.6.

5. SEMICLASSICAL LOCALIZATION

In relation with the estimates of Section 4 and using the upper bound in Theo-
rem 1.8, we may deduce that the minimizers concentrate near the minima of the
concentration function Q 3 x +— A(Gy, 1, p).
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5.1. A rough localization estimate. Before obtaining the exponential localization,
we start by proving a weaker result.

Proposition 5.1. For all € > 0, there exist hyg,C > 0 such that for all h € (0, hg)
and all LP-normalized minimizer 1y, of (1.1), we have

1
| nlle ety < Chow
where M. is defined in (1.11).

Proof. We use again Lemma 4.2 with ¢ = v}, and p = % = 1 to get
>~ Qgn(Xapat) = D[ty < NG b p) [n B
kezd

We deduce that
1 ~
(1—Chs) 3 Qon(RE 1n) < MG, by p)[UnlEne

kezd
Therefore, we find

> Qon(Wni) < MG, b, p)[¥nllisa +Chéh1+5_5||¢h||fp(m

keZzd

We again have by Lemma 4.2,

”wh”ﬁp(ﬂ) = (/Q ’wh’p dX) 1 + Ch6 (Z ”XaphwhHLP(Q ) )

kezd

and thus

2
P
k 1
1nl10 0y < ( > ||xLLhwthp(m) + Chi [l B

kezd
By using that p > 2, we deduce that

(5.1) 3" Qn(Wnk) MG, hp) > Wnklte) + ChER 275 |4 Eoq)

kezd kezd

Then, we consider the local energies. For k such that supp (X[a ]p L) NOQ =0, we have

Dgh(whk) (1_Ch6) (gxk717p) 57;“¢hk”|_p s

and, for k such that supp ()Zg(]p L) MO,

Qo n(Wn) = (1 = ChENGor, 1, PR 275 [l 2o

For €, h > 0, let us introduce
K. = {k VAR supp(xwh) NM: 7&@}

For all € > 0, there exists ¢. > 0 such that for all k ¢ K. ;,, we have

xeN

(5.2) Qo n(Unx) > (1 — Ch6) (mf AMGx, 1,p) + Ca) h +5-5 Hzph kHLp
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From (5.1), we get
> (Qon(®ns) = MG b p)[nacltoey )+ X2 (Qan(Wni) = MG, 1y p)[nsclltoey)

T KEE. ),
< Ch%hHg_%H%HEP(Q)

On one hand, from (5.2) and the upper bound on A(G, h, p), we find the existence of
¢ > 0 such that, for all h € (0, hg),

> (Qg,h(%,k) - G, haP)H%,kHEp(m) > &h'" Y nkllteg) -

k¢K. p k¢K.

On the other hand, we get, by using the definition of A(G, h, p),
> (Q0Wni) = MG, b D) [nillErey) > 0

kEKsyh

(NN

Tl

It follows that
1
Y nlio) < Chellvnllir

kgK&,h
Since p > 2, we deduce that
Kk 2
> / Ko 1l [on [P dx < ChEz [y ][F,
k¢Ks h
Thus we have

Z /’Xaph’ [Yn|P dx — Z / |Xaph aph‘p> | |P dx

k¢Ke k¢K,
Ch2z [ ¢n [T
With (4.6), we infer

S fnlr = ST [Pl ax < 3 RSP dx

K¢ K. » K¢ K. p
< C(htz + R )[vnlltsq) -
O]

5.2. Application to the exponential estimates. Now, Proposition 5.1 gives an
a priori control of the nonlinear potential —\(G, h, p)[1s|P~2 away from the minimal
set M. Therefore, in this region, we are essentially reduced to a perturbation of a
linear equation and we may establish decay estimates d la Agmon.

Proposition 5.2. For alle >0, p € (O, 2), there exists hg, C' > 0 such that for all
h € (0, hy) and all LP-normalized minimizer 1y, of (1.1), we have

[nllr@atsy < Ce™™ " enlle)

Proof. Let us first consider a function v in the form domain of Qg ), and supported
away from M.. We have, with the Holder inequality,

p—2

NG o) [ a2l dx < NG b pllvlocay ([, linl? ax) 7
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Thus, by using Proposition 5.1, we get
p=2 p=2
(5:3)  AG,h,p) /Q [l 2 |u]? dx < Ch'o NG,y p)|vllEnio) < Ch' Qga(v).

In other words, the nonlinear potential is a perturbation of the linear part in the
sense of quadratic forms. Note that the equation satisfied by v, reads

£85.0n = ((—ihV + A)? + BV = X(G, b, p)[nl"™?) b = 0,
with the Robin condition
(—ihV + A) - n(x) = —ihTy(x)(x), x € OQ.

Let us now introduce our exponential weight. We consider a smooth cutoff function
0 < x < 1 supported away from M, and being 1 away from M,.. With the
localization formula, we get

QY (XM ) — OB X My 17y o) < 0;

all the norms are finite in view of the boundedness of the domain . Now we want
to distinguish between the region close to M and far from M. Thus we introduce
a smooth quadratic partition of the unity x? + x2 = 1 such that supp (x2) € CM..
Using again the localization formula, we deduce that

(5'4) ng(XleXh_pdiSt(x”A/l)’l/}h) + Dgl’l;l(XZeXh_pdiSt(x’M)wh)

o C«h2—2p||Xlexh*9dist(x,/\/l)¢h||EQ(Q) o C«h2—2p||X2exh7pdist(x,/\/l)wh||EQ(Q) S 0.
On one hand, by (5.3), we have
(55) QEI&L(XQexh*Pdist(x,M)wh) _ é«h2—2p||X26xh*/)dist(x,/\/t)wh||E2(Q)

> (1= OB'& )Qg (a4t My, ) — CR>% || xaeX "I My 122

—2 ~ —p.q:
> (1= CHFING, h,2) = 2 ) [ ot sy 2 g
> chl|xaeX" "My 17 g -

where the constant ¢ > 0 comes from Proposition 1.6.
On the other hand, by support considerations, we have

ng(xleXh*Pdist(x,M)wh) — Qg,lh(Xl?ﬂh) )

But we notice that
Qg;5,0avn) = Qgnbatn) = A(G, b, p) /Q X190 ? 1o P2 dx .

Since 1y, is LP-normalized and thanks to the Holder inequality, we have

L P Plnl =2 dx < vl
Thus we have
(5.6) QY (XM, ) > 0.
Combining (5.4), (5.5), (5.6) and again that y = 0 on the support of xi, we get

chl|xoeX" "My (15 o) < CR* [P -
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From this last estimate (and using again that p € (O, %)), it follows that

XMy 12 ) < CllvonllPaey -
Now, we come back with this information to (5.4) to deduce that
QY (x2eX "It My ) < Ol [Py
and then, from (5.3), we get
Qg (2" "My ) < CRP ||y F2 i) < CR 7 [|¥nllEny » -

From the rough estimate Qg ,(¢n) = A(G, h,p) < C and the localization formula, we
get

Qg5 (1" "My ) = Qg (avn) < Cllnlltngg -
By using again the localization formula, we have

Qg (X" "My ) < Cllgnllinoy

and thus
lex! =My Loy < CR [y

for some v > 0. The conclusion easily follows. 0

6. CONTINUITY ESTIMATES

In this section, we discuss different kinds of continuity results.

6.1. Continuity. The following proposition (jointly with Propositions 3.1 and 3.3)
implies the upper bound announced in Theorem 1.8.

Proposition 6.1. Here we consider a constant geometry Gy with x € Q and let
p € (2,2%). We have the following continuity properties.

(i) The function x — A(Gx, 1,p) is continuous on Q.
(ii) The function x — X(Gx, 1,p) is continuous on OS). B
(iii) The function x — X(Gx, 1,p) is lower semi-continuous on ).

Proof. Let us consider (i). This is a consequence of the results in [2, 8]. Actually the
reader may also adapt the forthcoming proof of (ii) to get the continuity.

Let us now prove (ii). Without loss of generality, we may assume that 2 = Ri.
Indeed we can simply use a rotation (smooth with respect to x) and a change of
gauge to rotate the problem from the affine tangent space to the tangent vector
space.

Let us consider a point x, € 99 and a sequence (X, )neny C 02 such that x,, — x.,
when n goes to infinity. The proof is divided into two steps. First, it is rather easy
to get

limsup A\(Gx,,, 1,p) < AN (Gx.,1,Dp), for x,, — x, € 090,

n—-+o0o
by using a minimizer associated with A\(Gx,, 1,p) as test function. Then, we shall
establish

liminf A(Gy,, 1,p) > A(Gx,, 1,p), for x,, — x, € Q).

n—-+o00

This last inequality is slightly more subtle and uses the concentration-compactness
strategy.
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To simplify the notation, we denote Qg 1 = Q, and

MGy, 1,p) = X\t liminf Af = A\,

n—-+4o0o

MGx,; 1,p) =t Ap, liminf A, =: A,

n—-4o0o

Let v, be an LP-normalized function such that.

with lim,, , o £, = 0. We notice that by the positivity property (ii) in Assumption 1.5,
() is bounded in L*(R%) and Hj, (R%). By diamagnetism and Sobolev embedding,

loc

we infer that (|¢,]) is also bounded in H'(R%). We are left with concentration-
compactness type arguments.

(a)

Let us deal with the boundary vanishing.
Assume first that for all R > 0

n—-+oo

By Proposition 2.7, we have that for all R > 0
Hm |[¢hnl[Lr(se) =0

n—-+o00

Let us consider a quadratic partition of the unity

X%m + X?{,Q =1,

with supp xg,1 supported in a neighborhood of the boundary of size R and such

that

C
VxR~ < i

For n > 1, we have, by the usual localization formula (and the fact that (v,,) is
bounded in L?),
C

Z Qn()ZRQl/}n) - ﬁ .

C
Qn(l/Jn) > Qn()%R,lz/}n) + QH(S(R,an) - ﬁ

Therefore, it follows that

C
R?
We take the limit n — +o00 and then R — 400,

lim inf )\:{ > lm A\, =\ > A\

n—-+o0o n—-+o0o

Ay 2 Nallxra¥alllo@ay = 55 = €n-

This is the result that we want to prove.

Let us now exclude the dichotomy. We consider the case when there exists Ry > 0
such that Mg, (¢,) does not go to 0. Up to extraction and magnetic translations
parallel to R, we may assume that (¢,,),>1 weakly converges in Hj (R%) and
in LY(R%) to some 1, # 0 for all ¢ € [2,2*].

Assume by contradiction that a = ||4.]| < 1. Let us again consider a

p
LP(RY)
quadratic partition of the unity

)223,1 +Xr2 =1,
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with supp Yg,1 C D(0, R) such that |[VxgillLe < %. Forall R > Ry and n > 1,
as previously, we have,

- - C
Qn(¢n) = Qn(XR,lwn) + Qn(XRQ@Dn) TR En -
In particular, we get
3 2 T (Imatiulleg) + 1Xnatl o) ) — o —
n = ‘n XR1Vn||Lp Rd XR2¥n LP(Ri) e n

2 C
> A (I0lRnaanat ) + (1= 1l pom0)? ) = 77 = &

Taking the limit n — +o00 and then R — 400, we obtain

liminf At > liminf A} (ozp + (1 —a)r >

n—-4o0o n—-+4o0o

This contradicts the concavity of a — ar so that R [ ®Y) = 1

(c) Finally we consider the pre-compact case. We obtain then that (1,,) converges
strongly to 1, in L? (Ri). We also start with the localization formula

5 C
QN(¢n) = Qn(XR,1¢n) - ﬁ :
By the weak convergence in Hi, (R%), we obtain for each R > 0
o - - C
h?ﬂlorolf Ay 2 Qu(Xrat) > Aj”XR,ﬂ/’*Hﬁp(Ri) TR

Taking then the limit R — +o0, we get:
liminf A\t > AT
n—oo
This is the result that we want to prove.
Finally, concerning (iii), it is sufficient to combine (i) and (ii) with the fact that

VX < 39, A(gx; 1;]9) S )‘(%7 17p) . [

6.2. Sufficient conditions. In this section, we discuss some sufficient conditions
which ensure that Assumption 1.5 can be satisfied. These conditions are based on
the following non-degeneracy result.

Proposition 6.2. The bottom of the spectrum A\(B) of the Neumann Laplacian with
constant magnetic field on L*(RL) satisfies

max (6| Bl [lo, T"B*) < A(B),

- (22,

and Bl is a vector belonging to R¥" and B is an skew-symmetric matriz of size
d — 1. The constant ©y € (0,1) (sometimes called de Gennes constant, see for
instance [13, Chapter 4]) is the bottom of the spectrum of the Neumann magnetic
Laplacian on R: when the magnetic field is constant equal to 1.

where
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Proof. Let us consider the rotations that preserve the x4-axis. They are in the form

o (44).

with @ € SO(d — 1). Letting x = Qy, £4 is unitarily equivalent to the following
operator acting on L*(R%):

(—ivy + A(y))2 , where A(y) = ;By, B =Q'BQ.

It is clear that we may find a rotation that sends Bl onto ||Bl||,e4_1 and we may
assume that Big = 0 for 1 < k£ < d — 2. We notice that

(61) Aly!) = ApL0) = JQTB QY.

The magnetic Laplacian is now in the form

_ - 2 1~ - d-2 -
(<iVy + A(y)) = (Dy, - 5 Bia-1ya1)’ + (Dy,, + Aaa)’ + 3_(Dy, + A0),

=1
with .
Ay = §de—1yd + Ad—l ;

where /Ald_l and (Ag)lgggd_g are independent from y,. After a change of gauge, we
may consider the equivalent operator

d—2 2 g2
L= Dzd + (Dydl + de,lyd + Z Bgdlyg> + Z(Dyé —+ Ag(yl, ey Ya—2, 0, 0))2 .
/=1

Therefore, there is no more dependence on y4_;. We may notice that, by definition,
the lower dimension magnetic Laplacian

2 g9

’QL ( Yd—1 ZBéd 1y€> +Z(Dyz +A€(y17"')yd—27070))2
/=1

admits Bt as magnetic matrix.
Then, we notice that, for all ¢) in the domain of £, we have

(&, V)i2ray =

d—2
Dy, W) +|(Dy,  +Bag—1ya+> Bua_1ye)|> dya_y dyq.
Jorseesis Jun e Dot 41D Bataesat 3 BuacsyUF dcs dya

Thus, by using a partial change of gauge (for fixed (y1,...,ya—2)) to eliminate the
sum term, we infer that

(&, V) 2pay 2 @0|de—1|||¢||ﬁz(Ri) = ®0||B”||2||¢||32(Ri)‘

In the same way, dropping the term in D,, and canceling the term Bia_1ya by a
partial change of gauge, we find

(Lah, ¢>L2 R%) 2 Tr+BL]WHL2 R%)
The conclusion follows by the min-max principle. O]

We can now prove the following proposition.
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Proposition 6.3. We have the following sufficient conditions.

i. Point (i) in Assumption 1.5 is satisfied when V > 0 and B does not vanish on
Q.
it. Point (ii) in Assumption 1.5 is satisfied when

inf M((x + Tx(99) + Ryn(x), Id, V(x), AL 0),1,2) >0

and if max .- (x) is small enough where y_(x) = max(0, —y(x)).
iti. Point (ii) in Assumption 1.5 is satisfied when V' >0, B does not vanish on the
boundary and when max .- (x) is small enough.

Proof. The first point is obvious since Tr" B(x) = 0 implies that B(x) = 0.

Let us now consider the second point. For x € 9€), we have, by the min-max
principle (and splitting the electro-magnetic energy into two equal parts), for all
Y € Dom(Qg, 1),

c 1 )
Qg 1(Y) > §H¢||EQ(TX) + B /Tx [(=iV + ALY + V(x)|o* dy — m/an []*do

where Tx = x + Tx(0€2) + Ryn(x) and

. L _
c= xle%fﬂ)\(Tx, ld,V(x),A;,0),1,2), m= iré%)éfy,(x) )

Then, by using the diamagnetic inequality and Lemma 2.5, we have

P do <e [ (=i + AQuP dy + O [,

x

Let us introduce M = max |V (x)|. It follows that
xeN

[ WePde <e [ =iV + ADUR + VeI dy + (M + Ce [l
OTx T (Tx)

X

and thus, for € € (0 1 ),

’ 2m
Cc _
96,1(6) 2 (5 = Mme —mC=) [9lfcr,

c 1
AmM ’ 2m

We choose € = min ( ) and then m small enough to get

Q6.1(0) > Sl1¢ e,

The conclusion follows.
To get the third assertion, we notice that, for all x € 09,

M(Ty, 1d, V (%), A%, 0),1,2) > A(By) > max (O] BL|l2, Tr' By )

where we have used Proposition 6.2. Then, the lower bound is a continuous and
positive function of x on the compact set 92 and we may apply the result of the
second point. O
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6.3. The Dirichlet case. In this section we discuss the existence of the minimizers
when ) = Ri, V =0, B is uniform, non-zero and when the boundary carries the
Dirichlet condition.

Proposition 6.4. Here d > 3. Let us consider A = A((R%,1d, 0, A, +00),p, 1) with
A € L(RY) such that dA is not zero. Then ) is not attained. Moreover, if we let
A= A(R%1d,0,A,0),p,1), then A = \.

Proof. We recall that we always have A < A. Indeed ) is a minimum and any
associated minimizer has an exponential decay: it is sufficient to translate any
minimizer to infinity and use a cutoff function.

We next claim that A > \. Indeed, if ¢ is a test function for the problem in Ri, we
extend ¢ by zero and denote by ¢ € H'(R?) its extension. We use ¢ as test function
for the quadratic form on R? and get A < .

Let us assume that A is attained for a function ¢ € Hj(Q) with [|¢]|rq) = 1. Let
1 € H'(R?) be the extension of ¢ by 0. Therefore 1 is a minimizer associated with
A and it vanishes on a non-empty open set. It also satisfies the elliptic equation (the
associated Euler-Lagrange equation):

(—iV + AP = A
By Sobolev embedding, we have ¢ € L?"(R%), with 2* = 22 Let us consider any
bounded open set U C R?. If 0 < g(p — 2) < 2*, we have, by the Holder inequality,
[Yp|P~2 e L2(U). But ¢(p—2) < 2 is equivalent to p < 24 2% = 2*. Thus we
Q *
have [¢|P~2 € L2 (R?). From this and the fact that ¢ € L?" (R?) we get, with the
Hoélder inequality, ¢ € LE (R?). We infer that i) € HE (R?). The assumptions of [35,

loc loc
Theorem 1.1] are satisfied (since dQTdQ < 2) so that the unique continuation property

holds for 1. We deduce that 1 = 0 and this is a contradiction. O

7. BIDIMENSIONAL WAVEGUIDES
This section is devoted to the proof of Proposition 1.11.

7.1. Reduction to the straight waveguide. Let us first pull back the variable
geometry onto the homogeneous geometry.

Lemma 7.1. There exist hy,C > 0 such that for all h € (0,ho) and for all ¢ €
H(Zh), we have the comparison

QZ,a,h(@) < fZ;L V¢|2 dx
el = N,

where go(s,t) = a(S)%w(CIJh(s,t)) and
Quan(e) = [ 12" | +a7F Ol ds .
p)

QZ,aﬁ((p)
[l s

(1-Ch)h™"% < (1+Ch)h™"%

)

Proof. We notice that
d®), = [(1 — tkha)I" + tha'n, han] .
so that
th%aa’ h2a?

— 2 2242 2
G = (d®;)"dd;, = <(1 tkha)? + h*a®t*> th aa)
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We get that |G| = det G, = a®h*(1 + O(h)). In the sense of quadratic forms, we
have

_ 1 0
Gt = (1 0m) (3 5]
Thanks to the change of variables x = ®(s,t), we deduce the following comparison:
(1= CWA Qs0n(®) < [ VU dx < (1+ CR)R ' Dran(d).
h
where
Qs an(Y) = /Eah?]asqﬂz +a M o)* dsdt.

In the same way, we get

(1— Ch)h? (/E |;E|padsdt)i < (/E |¢|de)‘2’ < (14 Ch)h} (/E|1;|Padsdt>

We introduce the change of function ¢) = a_%gp so that [y |1h[Padsdt = [; |o|? dsdt.
By a computation and an integration by parts, it follows that

Bran@) = [ Wa 3100l + BV (s)ll +a el s,

2
p

with ) .
Vi(s) = —a%a " »" + —0, aar) .
()= S0 (da™)
Note that there exists ¢ > 0 such that, for all A > 0,

Qs 0n (V) > cllolifasy
and that V' € L*(R). We get

(1= Ch)Qs.an(p) < Qsn(@) < (1+ Ch)Qsu(p) . O

Therefore we are reduced to consider the minimization problem

minimize M , for p € Hy(2).
e lIEs (s

7.2. Estimate of the normalized Sobolev quotient. We are now in position to
use the strategy developed in this paper on Qy , 5. Note here that we have a partially
semiclassical problem. First, we have to establish an upper bound for the Sobolev
quotient. For that purpose, we must freeze the height a to the maximal height @y,
attained at some point s,... We will need the following lemma.

Lemma 7.2. The Sobolev constant \P™ (X, p) is attained. Any corresponding mini-
mizer has an exponential decay.

Proof. Once the Sobolev is attained, it is rather clear that the minimizers have an
exponential decay (see the proof of Proposition 2.10). The fact that the infimum
is attained is a consequence of a concentration-compactness investigation along the
s-axis: we are in the compactness case modulo translations parallel to the s-axis. [

Lemma 7.3. There exist hyg, C > 0 such that, for all h € (0, hy),
QE,a,h(()&)

2
peHI(E) lello (s

2 4 .
< (14 Ch)R' " 2 amb AP (2, p) .
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Proof. Let us consider an LP-normalized minimizer ¢, associated with the p-eigenvalue
A(%,1d, 0,0, +00, 1, p) and introduce

Sph(sv t) = ¢0 (am;xs_ljmaxv t) .

We compute

Dsanlion) = hames [ {ondan "10.60 (0,0)F + 0,060 (0,0} doral,

with ap(0,t) = a(Smax + hamaxo,t). Thanks to a Taylor expansion and to the
exponential decay of ¢g, we get

Qs anlon) < (1 4+ ChH)hamiA(2,1d, 0,0, +00, 1,p) .
We also get

2 , 2
(/ lonl? dodt)p — RS b
b
The conclusion follows. O

Let us now deal with the lower bound.

Lemma 7.4. There exist hg,C' > 0 such that, for all h € (0, hg) and all p € H{(X),

1 2 =3 ir
Quan(®) = (1= Ch2)h' "2 awd T (Z, p)l|¢lIEocs)

Proof. Let us use a “sliding” partition of the unity as in Section 4.1 but only with
respect to s (i.e. d =1). We recall (4.2) and (4.3). By using the partition adapted
to ¢, we have

-k oo o
Qs.anlp) > kzz Qs 0 (Vo n2) — DR 0 2oy
S
so that
Quanlp) = (1= CRP) Y Qun(Xh),410) -

keZ
Then, by a support consideration and a Taylor expansion, we get

Quanlp) = (1= CH2O7)(1 = Ch") 3 Qs aiug (Ko #)
keZ
so that, by rescaling and a straightforward comparison,
Dran(0) 2 AW (Z, )R (1= CR)(1 = Ch*) 3 alsi) 7 [Rapa s
keZ

4

Since a(sk)fg > amix and by using that the partition is adapted to ¢, we get
4 3 . o
Qs an(9) > amdAP™(S,p)h! 77 (1 = Ch*~*7P) (1 = ChP) (1 — Ch*)||o||Znrs -
Optimizing the remainders, we find p = % and o = 1. [

We leave the proof of the corresponding localization estimates to the reader since
they follow from straightforward adaptations of the methods developed in this paper.
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8. SOME PERSPECTIVES

In this last section, we discuss some perspectives and open problems. There are
many possible directions to extend our investigation and we only select a few of them
in the next lines.

Firstly, it would be quite interesting to analyze the case of domains with cor-
ners. In the semiclassical regime, the strategy developed in [3] (for the case p = 2
and Neumann condition; see also [5] where the same strategy is used in the non-
magnetic Robin case) could likely apply to get semiclassical upper bounds (as in
Theorem 1.8). Nevertheless several modifications should be made (in particular
about the considerations involving a separation of variables or the Fourier transform).
The semi-continuity (see Proposition 1.7) in the Robin case and/or in dimension
higher than three does not seem to be obvious. For p = 2, it is only known for
the Neumann case with pure magnetic field in two and three dimensions (see [3]).
For p > 2, one should perform a concentration-compactness investigation along the
singular chains. For the lower bound, the adaptations should be easier (with a change
of the localization scale near the conical singularities). Even in the case without
magnetic field, it would be quite interesting to analyze the p-eigenvalue A(G, 1, p)
when G = (U,1d,1,0,c) and where U is a dihedral. It seems that the question to
know if A(G, 1, p) is attained is open (and the answer should strongly depend on c as
we guess from Proposition 2.12).

Secondly, the waveguide situation could be extended to general partially semi-
classical problems. For instance, one could first consider a partially semiclassical
and pure electric interaction in R?. Many inhomogeneous situations lead to this
kind of limit (especially in the case with magnetic field as we see in [4]). In the
waveguides framework, the description of curvature effects on the asymptotics of
p-eigenvalues seems to be an open area (for p = 2, it is known to play a role in the
lower order terms). In the case of waveguides of uniform width, we do not even know
if the energy of the nonlinear groundstate is strictly less than the nonlinear energy at
infinity. These curvature effects on the p-eigenvalues in magnetic/Robin situations
would be interesting as well, especially if we imagine that the non-linearity (p > 2)
amplifies the localization properties of the linear groundstates.
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