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SEMICLASSICAL SOBOLEV CONSTANTS FOR THE
ELECTRO-MAGNETIC ROBIN LAPLACIAN

S. FOURNAIS, L. LE TREUST, N. RAYMOND, AND J. VAN SCHAFTINGEN

Abstract. This paper is devoted to the asymptotic analysis of the optimal Sobolev
constants in the semiclassical limit and in any dimension. We combine semiclassical
arguments and concentration-compactness estimates to tackle the case when an
electro-magnetic field is added as well as a smooth boundary carrying a Robin
condition. As a byproduct of the semiclassical strategy, we also get exponentially
weighted localization estimates of the minimizers.
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1. Introduction

1.1. Description of the problem. The aim of this work is to investigate optimal
Sobolev constants under an electro-magnetic field and in a domain with a smooth
boundary. We want especially to investigate the behavior of these constants in the
semiclassical limit.

1.1.1. Geometric context. Before describing our main results, we describe the geo-
metric context of this paper.

For d ≥ 2, we consider an open, bounded and simply connected set Ω ⊂ Rd

with smooth boundary. We also introduce the smooth electro-magnetic potential
(V,A) ∈ C∞(Ω,R × Rd) and the variable Robin coefficient γ ∈ C∞(∂Ω,R). We let
G = (Ω, Id, V,A, γ) where Id stands for the standard Euclidean metric.

Definition 1.1. For notational convenience, we will constantly consider quintuples
gathering the Robin electro-magnetic geometry G = (U,R,V,A, c) where
i. U is a smooth open set,
ii. R is a Riemannian metric on U ,
iii. the electric potential V belongs to C∞(U,R),
iv. the magnetic vector potential A belongs to C∞(U,Rd),
v. the Robin coefficient c belongs to C∞(∂U,R).

If Φ : U ′ → U is a local chart near the boundary, then we introduce the pull-back
geometry

Φ∗G = (U ′, (dΦ)TR(dΦ),V ◦ Φ, (dΦ)T ◦ A ◦ Φ, γ ◦ Φ) .

We recall that the “magnetic field” is the 2-form defined as the exterior derivative

B = dA = d
 d∑
j=1

Aj dxj

 ,

where A is identified with a 1-form thanks to the Euclidean duality. The 2-form B may
be identified with the skew-symmetric matrix, called “magnetic matrix”, (Bk`)1≤k,`≤d
where Bk` = ∂kA`−∂`Ak. It is well known that the non-zero eigenvalues of the matrix
B are in the form (±iβk)1≤k≤b d2 c

, βk > 0 and that 0 is always an eigenvalue in odd
dimension. This allows to define

Tr+ B =
b d2 c∑
k=1

βk .

In particular, if Tr+ B = 0, then B = 0.

Definition 1.2. We will say that the geometry G is homogeneous when (V,B, c) is
constant and when U is the whole space or a half-space, equipped with the Euclidean
metric R = Id. We will also say that a geometry is Euclidean when R = Id. In this
case, we will also use the notation G = (Rd, Id,V,A, 0), where A is a linear potential
associated with B.
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1.1.2. Minimization problem. We now introduce the minimization problem under
consideration in this paper.

Let p ∈ [2, 2∗), with 2∗ = 2d
d−2 . We are mainly interested in the following “optimal

Sobolev constant”, in the case of a Euclidean geometry G,

(1.1) λ(G, h, p) = inf
ψ∈H1

A(U),
ψ 6=0

QG,h(ψ)
‖ψ‖2

Lp(U)
,

where the magnetic Sobolev space is defined by

H1
A(U) = {ψ ∈ L2(U) : (−ih∇+ A)u ∈ L2(U)}

and for all ψ ∈ H1
A(U), the quadratic form QG,h is defined by

(1.2) QG,h(ψ) =
∫
U
|(−ih∇+ A)ψ|2 + hV|ψ|2 dx + h

3
2

∫
∂U

c|ψ|2 dσ(x) .

Here, dσ is the surface measure on the boundary ∂U .

1.1.3. Homogeneity. Let us heuristically explain where the different powers of h come
from. Let us introduce the temporary semiclassical parameter ~. We consider the
initial quadratic form:

(1.3)
∫

Ω
|(−i~a∇+ ~bA)ψ|2 + ~cV |ψ|2 dx + ~d

∫
∂Ω
γ|ψ|2 dσ(x) .

After a semiclassical local zoom, we would like to get an homogeneous quadratic
form. It is sufficient to derive these appropriate powers “locally”, that is in the case
of a homogeneous geometry (and Ω being replaced for instance by the half-space U):

(1.4)
∫
U
|(−i~a∇+ ~bA)ψ|2 + ~cV|ψ|2 dx + ~d

∫
∂U

c|ψ|2 dσ(x) .

Let us determine the a, b, c, d that lead to non-trivial situations.
First, we may always reduce the investigation to a = 1 by multiplying the quadratic

form by an appropriate power of ~. Then, we would like that, up to a semiclassical
zoom, all the different quantities play on the same scale (if not, this would mean
that an effect could be neglected). Thus, we let x = ~ηy with η 6= 0 and consider
the rescaled quadratic form∫

U
|(−i~1−η∇+ ~b+ηA)ψ|2 + ~cV|ψ|2 dy + ~d−η

∫
∂U

c|ψ|2 dσ(y) .

In order to balance all the electro-magnetic effects, we choose c = 2− 2η = 2b+ 2η =
d− η. We get

b = c− 1 , d = 1 + c

2 , η = 1− c

2 .

Note that η 6= 0 means that c 6= 2 and that c = 2 corresponds then to a homogeneous
problem (which is not semiclassical!).

Therefore, coming back to (1.3), this leads to∫
Ω
|(−i~∇+ ~c−1A)ψ|2 + ~cV |ψ|2 dx + ~1+ c

2

∫
∂Ω
γ|ψ|2 dσ(x) .

Now, if c− 1 > 1, this quadratic form is locally a perturbation of the one of −~2∆
(with Neumann condition) and thus the Robin-electro-magnetic geometry can be
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forgotten. Thus, if we are interested in geometric effects, we only have to consider
c < 2. In this case, we write

~2−2c
{∫

Ω
|(−i~2−c∇+ A)ψ|2 + ~2−cV |ψ|2 dx + ~

3
2 (2−c)

∫
∂Ω
γ|ψ|2 dσ(x)

}
,

and we can consider h = ~2−c as new semiclassical parameter. We get the powers
appearing in (1.2).

1.1.4. Basic properties. We can already make some elementary observations that we
will constantly use.

We first recall the diamagnetic inequality (see for example [27, Theorem 7.21], [13,
Theorem 2.1.1]):

∀ψ ∈ H1
A(U) , ‖∇|ψ|‖2

L2(U) ≤ ‖(−i∇+ A)ψ‖2
L2(U) .

This inequality implies that |ψ| ∈ H1(U) and we get, thanks to the classical trace
theorem, that its trace is well-defined as an element of H 1

2 (∂U); thus QG,h is well-
defined on H1

A(U). Another important property of the magnetic Laplacian is the
gauge invariance (see for example [27, §7.21]):
(1.5)
∀ϕ ∈ C∞(U), QG,h(eiϕ/hψ) = QGϕ,h(ψ), with Gϕ = (U,R,V,A +∇ϕ, c) .

Let us already notice that it is not clear whether the infimum (1.1) actually exists
when U is unbounded. Nevertheless, if V and c are non-negative, its existence is
obvious. In any case, when this infimum exists and is a minimum, the corresponding
minimizers satisfy, in the sense of distributions, the following nonlinear focusing
equation

(1.6)

 (−ih∇+ A)2ψ + hVψ = λ(G, h, p)|ψ|p−2ψ ,

(−ih∇+ A)ψ · n = −ih 1
2 cψ, on ∂U ,

where we assumed that ‖ψ‖Lp(U) = 1 and where n is the inward unit normal to the
boundary. By multiplying ψ by an appropriate constant, we therefore have a solution
(for p > 2) of the following stationary Schrödinger nonlinear equation

(1.7)

 (−ih∇+ A)2Ψ + hVΨ = |Ψ|p−2Ψ ,

(−ih∇+ A)Ψ · n = −ih 1
2 cΨ, on ∂U .

As a byproduct of our investigation, we will get the existence of non-trivial solutions
of (1.7) (solitons) that are localized (in the semiclassical limit) near the minima
of a concentration function describing the local nonlinear electro-magnetic Robin
geometry.

1.1.5. Mathematical context and motivations. The aim of this paper is to estimate
the optimal Sobolev constant λ(G, h, p) under generic assumptions on the geometry.

In the linear case, i.e. when p = 2, this problem has now a long history, especially
in two and three dimensions in the case of Neumann boundary conditions and V = 0.
The investigation of the lowest eigenvalue of the semiclassical magnetic Laplacian
can be motivated by the theory of superconductivity and the study of the third
critical field in the Ginzburg-Landau theory. The reader may consult the book
by Fournais and Helffer [13] or the one by Raymond [33] for an introduction to
these topics. In this linear and purely magnetic framework, it appears that the
microlocalization of the eigenfunctions is strongly related to the asymptotics of the
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lowest eigenvalue. This fact was noticed, for instance, in the papers by Helffer and
Morame [18, 19] where numerous techniques have been developed to analyze the
magnetic Laplacian and its eigenfunctions. Even more recently in [16, 34, 17], in
cases without boundary, subtle localization properties of the magnetic eigenfunctions
have played a fundamental role in the semiclassical spectral theory (and we will
meet again this aspect in the nonlinear context). In cases with boundaries, the
Robin condition is physically motivated by inhomogeneous superconductors (see
for instance the linear and nonlinear contributions by Kachmar [21, 22, 23, 20]): in
this context, the Robin condition is sometimes called “de Gennes condition”. In the
linear framework many recent contributions have also been made to investigate the
semiclassical curvature effects with Robin condition (see for instance [11, 31, 24] and
also [15] in the case with symmetries).

In the nonlinear case p > 2, the theory does not seem as developed as in the linear
case, especially when a magnetic field and a boundary are added. In the seminal
paper [10] and in the concentration-compactness spirit, it is proved that λ(G, 1, p)
is attained when G = (Rd, Id, 0,A, 0), when B is constant and non-zero and when
p is subcritical. In [8], the authors have analyzed the semiclassical situation and
obtained, up to subsequence extraction of the semiclassical parameter, the one term
asymptotics of λ(G, h, p) with the geometry G = (Ω, Id, V,A,+∞), when Ω bounded
and Tr+ B + V does not vanish. The idea in [8] was to use a semiclassical blow up
argument near each point x ∈ Ω and compare with nonlinear models with constant
electro-magnetic field (Vx,Bx). In particular the minimizers are essentially localized
near the minima of the concentration function Ω 3 x 7→ λ((Rd, Id, Vx,Ax, 0), 1, p),
where Ax is a linear potential associated with the constant field Bx (see also [2] where
some properties of the concentration function are discussed). As we mentioned above,
the localization properties of the magnetic eigenfunctions are strongly connected to
the eigenvalue asymptotics and this phenomenon is expected to be even stronger in
the nonlinear framework.

The present paper aims at extending the theory developed in [14] (in two dimensions
without boundary) by investigating the effect of a smooth boundary carrying a Robin
condition, in any dimension. For that purpose, we will decouple the semiclassical linear
methods (described in [13, Part I]) and the concentration-compactness arguments.
By doing so we will derive a quantitative remainder in the semiclassical asymptotics
of λ(G, h, p) as well as quantitative localization estimates of the minimizers.

1.2. Assumptions and main results. We can now state our main assumptions
and results. Let us first explain in which framework our problem is well-posed.

Lemma 1.3. The quadratic form QG,h is bounded from below and defines a self-
adjoint operator LG,h with compact resolvent whose domain is

Dom (LG,h) =
{
ψ ∈ H1(Ω) : ((−ih∇+ A)2 + hV )ψ ∈ L2(Ω)

and (−ih∇+ A)ψ · n(x) = −ih 1
2γ(x)ψ(x), x ∈ ∂Ω

}
.

In particular, λ(G, h, 2) coincides with its lowest eigenvalue.

Remark 1.4. We recall that Ω is bounded and that V and A are smooth on Ω.
Therefore, if ψ ∈ H1(Ω) and ((−ih∇+ A)2 + hV )ψ ∈ L2(Ω), then ψ ∈ H2(Ω) so that
the Robin boundary condition is well-defined by a classical trace theorem.
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We will provide a sufficient condition, for the geometry G, that ensures that the
L2 norm is controlled by QG,h in the semiclassical limit h→ 0. This condition will
be related to models with homogeneous geometry. Let us recall that, for all x0 ∈ Ω,
the vector potential, defined in a convex neighborhood of x0,

(1.8) 〈AL
x0(x), ·〉Rd =

∫ 1

0
tBx0+t(x−x0)(x− x0, ·) dt

satisfies, in this neighborhood,

(1.9) AL
x0(x0) = 0 and dAL

x0 = B .

We introduce its linear approximation

(1.10) AL
x0(x) = 1

2B(x0)(x− x0) .

We will meet the following homogeneous Euclidean geometries:
i. if x0 ∈ Ω, we consider Gx0 = (x0 + Rd, Id, V (x0),AL

x0 , 0),
ii. if x0 ∈ ∂Ω, we consider Gx0 = (x0 + Tx0(∂Ω) + R+n(x0), Id, V (x0),AL

x0 , γ(x0)),
where Tx0(∂Ω) is the linear tangent space of ∂Ω at x0.

Let us now state our main assumption which is of spectral nature: we assume that
the 2-eigenvalue is not degenerate.

Assumption 1.5. We assume that
i. Ω 3 x 7→ λ(Gx, 1, 2) = Tr+ B(x) + V (x) does not vanish,
ii. ∂Ω 3 x 7→ λ(Gx, 1, 2) is bounded from below by a positive constant.

We will provide sufficient conditions under which Assumption 1.5 is satisfied in
Section 6.2. Before presenting our main result, let us state a proposition that ensures
that the infimum (1.1) is actually well-defined and a minimum.

Proposition 1.6. There exist h0, C > 0 such that, for all h ∈ (0, h0), we have

λ(G, h, 2) ≥ h inf
x∈Ω

λ(Gx, 1, 2)− Ch 5
4 > 0 ,

and, under Assumption 1.5, the infimum (1.1) for G = G is a minimum.

We can transform Assumption 1.5 (related to the positivity of the spectrum) into
a semi-continuity property of the p-eigenvalue which will play a crucial role in our
investigation. This semi-continuity will be derived from a concentration-compactness
analysis and used when estimating the Sobolev constants from above.

Proposition 1.7. Under Assumption 1.5, the function x 7→ λ(Gx, 1, p) is lower
semi-continuous on Ω for p ∈ (2, 2∗).

Our main theorem is the following accurate estimate of the optimal Sobolev
constant with electro-magnetic field and Robin condition on the boundary, in the
semiclassical limit.

Theorem 1.8. Let p ∈ (2, 2∗). Under Assumption 1.5, there exist h0 > 0, C > 0
such that, for all h ∈ (0, h0),

h
d
2−

d
ph(1−Ch 1

6 ) inf
x∈Ω

λ(Gx, 1, p) ≤ λ(G, h, p) ≤ h
d
2−

d
ph(1+Ch

1
2 | log h|) inf

x∈Ω
λ(Gx, 1, p) .
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In the case when there exists x0 ∈ ∂Ω such that

inf
x∈Ω

λ(Gx, 1, p) = λ(Gx0 , 1, p) < λ(Gx0
, 1, p),

the logarithm appearing in the upper bound can be removed.

By Proposition 1.7, we may consider the set M ⊂ Ω of the minimizers of the
concentration function x 7→ λ(Gx, 1, p). In relation with the estimate of Theorem 1.8,
we can deduce the following (exponential) decay estimate of the minimizers away
fromM.

Theorem 1.9. Let p ∈ (2, 2∗). Under Assumption 1.5, for all ε > 0 we define

(1.11) Mε =M+D(0, ε) .

Then, for all ε > 0 and ρ ∈ (0, 1
2), there exist h0 > 0, C > 0 such that, for all

h ∈ (0, h0) and all Lp-normalized minimizers ψh,

‖ψh‖Lp({Mε) ≤ Ce−εh
−ρ
.

1.3. Further results. Let us now describe two applications or extensions of our
results and methods.

1.3.1. Large smooth domains. Let us consider a smooth domain Ω ⊂ Rd and, for
R ≥ 1, the dilated domain ΩR = RΩ. In this section, we consider V = 1, A = 0,
and γ = 0. For p ∈ [2, 2∗), we introduce the classical Sobolev constant

λNeu(ΩR, p) = λ((ΩR, Id, 1, 0, 0), 1, p) = inf
ψ∈H1(ΩR),

ψ 6=0

∫
ΩR |∇ψ|

2 + |ψ|2 dx
‖ψ‖2

Lp(ΩR)
.

We have the semiclassical reformulation

λNeu(ΩR, p) = R4− 4
p inf
ψ∈H1(Ω),

ψ 6=0

∫
Ω h

2|∇ψ|2 + h|ψ|2 dx
‖ψ‖2

Lp(Ω)
= R4− 4

pλ(Ω, h, p) , h = R−2 .

Note that, by a symmetrization argument,

λNeu(Rd
+, p) ≤

(1
2

)1− 2
p

λNeu(Rd, p) .

Thus we may directly apply our result.

Corollary 1.10. Let p ∈ (2, 2∗). There exist C,R0 > 0 such that, for all R ≥ R0,

R2−d+ 2d−4
p (1−CR− 1

3 )λNeu(Rd
+, p) ≤ λNeu(ΩR, p) ≤ R2−d+ 2d−4

p (1+CR−1)λNeu(Rd
+, p) .

Moreover, for all ε > 0 and ρ ∈
(
0, 1

2

)
, there exist R0 > 0, C > 0 such that, for all

R ≥ R0 and all associated Lp-normalized minimizers ψ,

‖ψ‖Lp({Mε) ≤ Ce−εR
ρ

,

whereMε is an ε-neighborhood of ∂ΩR.



8 S. FOURNAIS, L. LE TREUST, N. RAYMOND, AND J. VAN SCHAFTINGEN

1.3.2. Shrinking waveguides. It turns out that the strategies and methods of this
paper can be applied to partially semiclassical situations. Such limits appear for
example in nanophysics when a strong anisotropic confinement is imposed or in the
context of quantum waveguides with small cross section. The reader may consult
[12, 9, 6] in relation with the spectral analysis of waveguides (or [25] in presence of
magnetic fields). The partially semiclassical limits are also of crucial importance in
the spectral analysis of problems with magnetic fields (see [4] and the book [33]).
Nevertheless, we do not aim here at being the most general as possible on this topics
and we will focus on the elementary example of bidimensional tubes shrinking in
their normal direction. We can notice here that such a situation was also considered
by del Pino and Felmer to investigate the Sobolev constants (see [7]). The result
below may be considered as a more quantitative version (in two dimensions) of their
result.

Let us consider a smooth and simple curve Γ in R2 and a variable height a : R→
[a0, a1], with a0 > 0. We assume that a admits a maximum (not attained at infinity)
and that a′ ∈ L∞(R). We let

∀(s, t) ∈ R× (−1, 1) = Σ, Φh(s, t) = Γ(s) + hta(s)n(s) .
We define the tube Σh = Φh(Σ) and we assume that Σh does not overlap itself, i.e.
that Φh is injective. Assuming in addition that the curvature is bounded, Φh is a
smooth diffeomorphism as soon as h is small enough. For p ∈ [2,+∞), we introduce

λDir(Σh, p) = λ((Σh, Id, 0, 0,+∞), 1, p) = inf
ψ∈H1

0(Σh),
ψ 6=0

∫
Σh |∇ψ|

2 dx
‖ψ‖2

Lp(Σh)
.

Proposition 1.11. Let p ∈ (2, 2∗). There exist h0, C > 0 such that, for all h ∈
(0, h0),

(1− Ch 1
2 )h−

4
pa
− 4
p

maxλDir(Σ, p) ≤ λDir(Σh, p) ≤ (1 + Ch)h−
4
pa
− 4
p

maxλDir(Σ, p) ,
where

λDir(Σ, p) = λ((Σ, Id, 0, 0,+∞), 1, p) .
Moreover, for all ε > 0 and ρ ∈ (0, 1), there exist h0 > 0, C > 0 such that, for all
h ∈ (0, h0) and all Lp-normalized minimizers ψ,

‖ψ‖Lp({Mε) ≤ Ce−εh
−ρ
,

whereMε denotes here a ε-neighborhood of the set of the maxima of a.

1.4. Organization of the paper. The paper is organized as follows. Section 2
is devoted to the investigation of the Sobolev constants when the geometry is
homogeneous (see Theorem 2.1). Under the condition that the boundary Sobolev
constant is strictly less than the interior constant, we prove that the boundary
constant is attained. Note that, in Section 2.7, we investigate the special one-
dimensional case of the half-axis with Robin condition and that we derive a condition
for the existence of the minimizers. In Section 3, we prove the first estimates towards
the upper bound of Theorem 1.8. In Section 4 we introduce sliding partitions of
the unity compatible with a quantum localization formula and establish the lower
bound of Theorem 1.8. In Section 5, by combining the results of Sections 3 and 4,
we derive accurate Lp-localization estimates of the minimizers (Proposition 5.1) and
convert it into the exponential estimate of Theorem 1.9. In Section 6, we prove
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Proposition 1.7 (and, with Propositions 3.1 and 3.3, this ends the proof of the upper
bound of Theorem 1.8). In Section 6, we also provide sufficient conditions under which
Assumption 1.5 is satisfied. Finally, Section 7 is devoted to the waveguide framework
and we establish Proposition 1.11. To conclude, we provide some perspectives in
Section 8.

2. Boundary Sobolev constants with homogeneous geometry

2.1. A first result. The main goal of this section is to prove the following theorem by
using a variant of the concentration-compactness method (see the classical references
[28, 29, 36, 38], or the notes by Lewin [26]).

Theorem 2.1. Let us consider p ∈ (2, 2∗). We have the following two existence
results.
i. If G is a homogeneous geometry with U = Rd and such that λ(G, 1, 2) is positive,
then the infimum λ(G, 1, p) is attained.

ii. If G is a homogeneous geometry with U being an half-space and such that λ(G, 1, 2)
is positive and

(2.1) λ(G, 1, p) < λ(G, 1, p) ,
then the infimum λ(G, 1, p) is attained.

Moreover, the condition (2.1) is always satisfied (for a given electro-magnetic field)
as soon as γ ∈ (−∞, c0) with c0 > 0 small enough.

Remark 2.2. We will only prove Theorem 2.1 (ii). The proof of point (i) in Theorem 2.1
(which is related to the case when Ω = Rd) is simpler and can be adapted from the
proofs in [10] (see also [8]). The proof of Theorem 2.1 (ii) will take up the following
subsections. The proof of the last statement of the Theorem is given in Subsection 2.6
below.

Remark 2.3. The main difficulty in the proof of these results comes from the lack of
compactness due to the action of the non-compact group of translations. Indeed, for
any ψ ∈ H1

A(U) and any x0 ∈ Rd if U = Rd or x0 ∈ Rd−1 × {0} if U = Rd
+ we can

define the magnetic translation
τx0ψ(x) = e−iA(x0)·xψ(x− x0)

which satisfies
QG,1(ψ) = QG,1(τx0ψ) and ‖ψ‖Lp = ‖τx0ψ‖Lp .

Since the minimization problem λ(G, h, p) is translation invariant, we always have:

λ(G, h, p) = inf
ψ∈C∞c (Rd),

ψ 6=0

QG,h(ψ)
‖ψ‖2

Lp(Rd)
= inf

ψ∈C∞c (Rd+),
ψ 6=0

QG,h(ψ)
‖ψ‖2

Lp(Rd+)
≥ λ(G, 1, p).

Up to a rotation, we may assume that U = Rd
+. Let us consider a minimizing

sequence (ψj)j≥1 such that ‖ψj‖Lp(Ω) = 1. By definition, we have
(2.2) QG,1(ψj) −→

j→+∞
λ(G, 1, p) .

By Remark 2.3, (τxjψj)j≥0 is also a minimizing sequence, (xj)j≥0 being any sequence
in Rd−1 × {0} so that we have a loss of compactness by magnetic translations.
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We overcome this difficulty thanks to the concentration-compactness principle.
Our proof is divided in three steps. We show that :

(1) (ψj)j≥0 is uniformly bounded in H1
A(Rd

+),
(2) up to magnetic translation and up to extraction ψj ⇀ ψ 6= 0 weakly in

H1
A(Rd

+),
(3) ψj → ψ strongly in H1

A(Rd
+) and ψ is a minimizer of λ(G, 1, p).

2.2. Boundedness in H1
A(Rd

+). This section is devoted to the proof of the following
proposition.

Proposition 2.4. Under the assumptions of Theorem 2.1 (ii) there exists C > 0
such that for all ψ ∈ H1

A(Rd
+)

‖ψ‖2
L2(Rd+) + ‖∇|ψ|‖2

L2(Rd+) ≤ ‖ψ‖
2
L2(Rd+) + ‖(−i∇+ A)ψ‖2

L2(Rd+) ≤ CQG,1(ψ).

Therefore,
λ(G, 1, p) > 0

and any minimizing sequence (ψj)j≥1 (normalized in Lp) is bounded in H1
A(Rd

+)
whereas (|ψj|)j≥1 is bounded in H1(Rd

+). Moreover, we can assume that for all j ≥ 1,

(2.3) ‖ψj‖2
L2(Rd+) ≤

2λ(G, 1, p)
λ(G, 1, 2) .

In order to estimate the boundary term, we will need the following two lemmas.

Lemma 2.5. There exists C > 0 such that, for all ε > 0 and ψ ∈ H1(Rd
+), we have

‖ψ‖2
L2(Rd−1×{0}) ≤ ε‖∇ψ‖2

L2(Rd+) + Cε−1‖ψ‖2
L2(Rd+) .

Proof. The proof is based on the elementary trace estimate:
∃C > 0, ∀ψ ∈ H1(Rd

+), ‖ψ‖2
L2(Rd×{0}) ≤ C‖ψ‖2

H1(Rd+) ,

that may be proved by density and partial integration. Then, for all ϕ ∈ H1(Rd−1
+ )

and ρ > 0, we let ψρ(x) = ϕ(ρx). This easily leads to

‖ϕ‖2
L2(Rd−1×{0}) ≤ C

(
ρ‖∇ϕ‖2

L2(Rd+) + ρ−1‖ϕ‖2
L2(Rd+)

)
,

and we choose ρ = C−1ε. �

Lemma 2.6. There exists C > 0 such that for all ε > 0 and all ψ ∈ H1(Rd
+),

QG,1(ψ) ≥ (1− Cε|γ|)‖(−i∇+ A)ψj‖2
L2(Rd+) + (V − C|γ|ε−1)‖ψ‖2

L2(Rd+) .

Proof. It is a consequence of the diamagnetic inequality:
∀ψ ∈ H1

A(Rd
+) , ‖∇|ψ|‖2

L2(Rd+) ≤ ‖(−i∇+ A)ψ‖2
L2(Rd+) ,

and of Lemma 2.5. �

We can now deduce Proposition 2.4.

Proof. By point (i) of assumption 1.5, we have that λ(G, 1, 2) > 0 so that

‖ψ‖2
L2(Rd+) ≤ λ(G, 1, 2)−1QG,1(ψ), for all ψ ∈ H1

A(Rd
+).
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Then, Lemma 2.6 and the diamagnetic inequality give that there is C > 0 such that
for all ψ ∈ H1

A(Rd
+)

‖ψ‖2
L2(Rd+) + ‖∇|ψ|‖2

L2(Rd+) ≤ ‖ψ‖
2
L2(Rd+) + ‖(−i∇+ A)ψ‖2

L2(Rd+) ≤ CQG,1(ψ).

Finally, we deduce thanks to Sobolev’s injections that
λ(G, 1, p) > 0 for any p ∈ [2, 2∗]

and the conclusion follows. �

2.3. Excluding the boundary vanishing. We now focus on the following propo-
sition (see [29, Lemma I.1], [38, Lemma 1.21], [30, Lemma 2.3], [37]).

Proposition 2.7. Let us consider R > 0 and consider the paving near the boundary
ΣR := Rd−1 × (0, R) =

⊔
k∈Zd−1×{0}

Ωk,R , Ωk,R = [0, R]d−1 +Rk .

For q ∈ (2, 2∗) and ψ ∈ L2(ΣR), we introduce
MR(ψ) = sup

k∈Zd−1×{0}
‖ψ‖Lq(Ωk,R) .

For d ≥ 2 and R > 0, let S > 0 be the optimal Sobolev constant for the embedding
‖ψ‖Lq(Ω0,R) ≤ S‖ψ‖H1(Ω0,R) .

Then, we have
‖ψ‖Lq(ΣR) ≤ S

2
q ‖ψ‖

2
q

H1(ΣR)MR(ψ)1− 2
q .

Proof. We have
‖ψ‖qLq(ΣR) =

∑
k∈Zd−1×{0}

∫
Ωk,R
|ψ|q dx .

By Sobolev embedding, we get∫
Ωk,R
|ψ|q dx ≤ S2

(
‖ψ‖2

L2(Ωk,R) + ‖∇ψ‖2
L2(Ωk,R)

)(∫
Ωk,R
|ψ|q dx

)1− 2
q

.

We deduce that
‖ψ‖qLq(ΣR) ≤ S2‖ψ‖2

H1(ΣR)M
q−2
R (ψ) . �

Let us now come back to our minimization sequence (ψj)j≥1 (that satisfies (2.2),
by definition).

Proposition 2.8. We take q = p. There exists R > 0, a subsequence extraction and
mR > 0 such that

∀j ≥ 1, MR(ψj) ≥ mR > 0 .
Moreover, we get
(2.4) ∃(kj)j≥1 ∈ Zd−1 × {0}, ∀j ≥ 1, ‖ψj‖Lp(Ωkj ,R) ≥ mR .

If we let
ϕj(x) := e−iA(Rkj)·xψj(x−Rkj) ,

then (ϕj)j≥1 is a minimizing sequence that, up to a subsequence extraction, weakly
converges to some ϕ 6= 0 in H1

A(Rd
+) equipped either with the sesquilinear form BG,1

associated with QG,1 or the standard scalar product.
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Proof. Let us analyze the first part of the statement. Let us assume by contradiction
that, for all R, lim

j→+∞
MR(ψj) = 0.

By applying Proposition 2.7 to ψ = |ψj| and using Proposition 2.4, we infer that

(2.5) lim
j→+∞

‖ψj‖Lp(ΣR) = 0 .

This means that we are in the “boundary vanishing” situation.
Let us now introduce a partition of unity to distinguish between a neighborhood

of the boundary and the interior. There exists C > 0 such that for all R ≥ 1 and
two smooth functions on R+ (depending only on the transversal variable xd), χ1,R,
χ2,R such that

χ2
1,R + χ2

2,R = 1 , |χ′1,R|2 + |χ′1,R|2 ≤ CR−2 ,

and where χ1,R is a smooth and compactly supported function being 1 for |xd| ≤ R
2

and 0 for |xd| ≥ R. A well-known localization formula gives

QG,1(ψj) =
∑
k=1,2

QG,1(χk,Rψj)− ‖χ′k,Rψj‖2
L2(Rd+) .

It follows that, using (2.3),

QG,1(ψj) ≥
∑
k=1,2

QG,1(χk,Rψj)− 2CR−2λ(G, 1, p)
λ(G, 1, 2) .

By a support consideration, we get

QG,1(χ2,Rψj) ≥ λ(G, 1, p)‖χ2,Rψj‖2
Lp(Rd+) ,

so that there exists C > 0 such that, for all j ≥ 1 and R ≥ 1,

QG,1(ψj) ≥ λ(G, 1, p)‖χ2,Rψj‖2
Lp(Rd+) − 2CR−2λ(G, 1, p)

λ(G, 1, 2) .

Thanks to (2.5), we deduce that

lim
j→+∞

‖χ1,Rψj‖2
Lp(Rd+) = 0 ,

so that, with the Lp-normalization of ψj,

λ(G, 1, p) ≥ λ(G, 1, p)− 2CR−2λ(G, 1, p)
λ(G, 1, 2) .

Finally, we reach a contradiction to (2.1) by choosing R large enough. Therefore,
the first part of the statement is now proved.

Then, (2.4) follows by definition of MR. The fact that (ϕj)j≥1 is still a minimizing
sequence comes from the gauge invariance presented in Remark 2.3.

By a simple translation, we have that, for all j ≥ 1,

‖ϕj‖Lp(Ω0,R) ≥ mR .

Since (ϕj)j≥0 may be assumed (by the Banach-Alaoglu Theorem) to converge weakly
(and pointwise) in H1

A(Rd
+) to ϕ and by compact embedding:

‖ϕ‖Lp(Ω0,R) ≥ mR > 0 . �
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2.4. Excluding the dichotomy.

Proposition 2.9. The function ϕ of Proposition 2.8 satisfies ‖ϕ‖Lp(Rd+) = 1.

Proof. By the Fatou lemma, we have α := ‖ϕ‖pLp(Rd+) ∈ (0, 1].
We introduce δj = ϕj − ϕ for j ≥ 1. The sequence (δj)j≥1 weakly converges to

0 in H1
A(Rd

+) equipped with the sesquilinear form BG,1 associated with QG,1. Thus
BG,1(δj, ϕ)→ 0. We have

QG,1(ϕj) = QG,1(δj) + QG,1(ϕ) + 2ReBG,1(δj, ϕ) .

In other words, we can write

(2.6) QG,1(ϕj) = QG,1(δj) + QG,1(ϕ) + εj ,

with εj → 0.
We must prove that the Lp norm also splits into two parts:

(2.7) ‖ϕj − ϕ‖pLp(Rd+) + ‖ϕ‖pLp(Rd+) − ‖ϕj‖
p

Lp(Rd+) = ε̃j → 0 .

Let us temporarily assume that (2.7) holds. Thanks to (2.6), and using (2.7),

QG,1(ϕj) ≥ λ(G, 1, p)
(
‖δj‖2

Lp(Rd+) + ‖ϕ‖2
Lp(Rd+)

)
+ εj ,

= λ(G, 1, p)
(
(1− α + ε̃j)

2
p + α

2
p

)
+ εj .

Since (ϕj)j≥1 is a minimizing sequence, we get

λ(G, 1, p) ≥ λ(G, 1, p)
(
(1− α)

2
p + α

2
p

)
.

But we have λ(G, 1, p) > 0 so that

(1− α)
2
p + α

2
p ≤ 1 , with α ∈ (0, 1] .

Since p > 2 and by strict convexity, we must have α = 1. Therefore we conclude that
‖ϕ‖Lp(Rd+) = 1. This finishes the proof of the proposition, modulo the proof of (2.7).
For that purpose we write

ε̃j :=
∫
Rd+
|ϕj − ϕ|p − |ϕj|p + |ϕ|p dx .

Let us prove that the sequence (|ϕj −ϕ|p− |ϕj|p)j≥1 is equi-integrable on Rd
+. There

exists C(p) > 0 such that,

||ϕj − ϕ|p − |ϕj|p| ≤ C(p)(|ϕj|p−1 + |ϕ|p−1)|ϕ| .

For R > 0, by the Hölder inequality, we get
∫
|x|≥R

|ϕj|p−1|ϕ| dx ≤
(∫
|x|≥R

|ϕj|p dx
) p−1

p
(∫
|x|≥R

|ϕ|p dx
) 1
p

≤
(∫
|x|≥R

|ϕ|p dx
) 1
p

.

Thus, for all ε > 0, there exists R > 0, such that for all j ≥ 1, we have∣∣∣∣∣
∫
|x|≥R

|ϕj − ϕ|p − |ϕj|p + |ϕ|p dx
∣∣∣∣∣ ≤ ε

2 .
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This proves the equi-integrability. Now the embedding H1(B(0, R)) ⊂ Lp(B(0, R))
is compact so that the sequence (ϕj)j≥1 strongly converges to ϕ in Lp(B(0, R)) and
thus, for j ≥ j(R, ε), ∣∣∣∣∣

∫
|x|≤R

|ϕj − ϕ|p − |ϕj|p + |ϕ|p dx
∣∣∣∣∣ ≤ ε

2 , .

This implies that |ε̃j| ≤ ε.
�

Proof of Theorem 2.1 (ii). To finish the proof of Theorem 2.1 (ii), it remains to
notice that

λ(G, 1, p) = lim inf
j→+∞

QG,1(ϕj) ≥ QG,1(ϕ) ≥ λ(G, 1, p)‖ϕ‖2
Lp(Rd+) = λ(G, 1, p) ,

and thus ϕ is a minimizer. �

2.5. Exponential estimates. When the minimizers exist, they satisfy decay esti-
mates of Agmon type.

Proposition 2.10. If G is a homogeneous geometry with λ(G, 1, 2) > 0 and if the
infimum (1.1) is attained, then, for all minimizer ψ, there exists α > 0 such that

eα|x|ψ ∈ L2(U) , QG,h(eα|x|ψ) < +∞ .

Proof. We only consider the case U = Rd
+. Let us consider a minimizer ψ0 and

the nonlinear potential VNL = −λ(G, 1, p)|ψ0|p−2. We have VNL ∈ L
p
p−2 (U). The

corresponding quadratic form is defined on the space H1
A(U) by

(2.8) QG,1,NL(ψ) = QG,1(ψ) +
∫
U
VNL|ψ|2 dx .

By the Hölder inequality, we see that∫
U
|VNL||ψ|2 dx ≤ ‖VNL‖L

p
p−2 (U)

‖ψ‖2
Lp(U)

and thus, by Sobolev embedding (and homogeneity) and the diamagnetic inequality,
for all ε > 0, there exists Cε > 0 such that, for all ψ ∈ H1

A(U),∫
U
|VNL||ψ|2 dx ≤ C‖VNL‖L

p
p−2 (U)

(ε‖∇|ψ|‖2 + Cε‖ψ‖2
L2(U)) .

≤ C‖VNL‖L
p
p−2 (U)

(ε‖(−i∇+ A)ψ‖2
L2(U) + Cε‖ψ‖2

L2(U)) .(2.9)

We infer that there exists C̃ > 0 such that for all ε > 0 there exists C̃ε > 0 such that
for all ψ ∈ H1

A(U),

QG,1,NL(ψ) ≥ (1− C̃ε)‖(−i∇+ A)ψ‖2
L2(U) + V‖ψ‖2

L2(U) + c‖ψ‖2
∂U − C̃ε‖ψ‖2

L2(U) ,

and, by using Lemma 2.5 and again the diamagnetic inequality, it follows that

QG,1,NL(ψ) ≥ (1− Ĉε)
{
‖(−i∇+ A)ψ‖2

L2(U) + V‖ψ‖2
L2(U)

}
− Ĉε‖ψ‖2

L2(U) .

This proves that QG,1,NL is bounded from below on H1
A(U) and thus defines a self-

adjoint operator LG,1,NL. The function ψ0 belongs to the domain of this operator and
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satisfies LG,1,NLψ0 = 0. Now, the exponential decay will be established if we prove
that

(2.10) ∃C > 0 ,∀ε > 0 ,∃R > 0 ,∀ψ ∈ H1
A(U) ,

supp (ψ) ⊂ {B(0, R) =⇒ QG,1,NL(ψ) ≥ (1− Cε)QG,1(ψ)− Cε‖ψ‖2
L2(U) .

Indeed, this implies that, for all ψ ∈ H1
A(U) with supp (ψ) ⊂ {B(0, R),

QG,1,NL(ψ) ≥ (1− C ′ε)λ(G, 1, 2)‖ψ‖2
L2(U) .

From this we can deduce, by using Persson’s theorem (see [32]), that we have
inf spess(LG,1,NL) ≥ λ(G, 1, 2) > 0 and the conclusion follows by using the Agmon-
Persson estimates (see [1] or for instance [33, Proof of Proposition 10.10]). From the
proof of these estimates, we may even find an α > 0 common to all the minimizers ψ.

Therefore, let us explain where (2.10) comes from. For that purpose, we come
back to (5.3) with ε = 1 and we notice that, for all R ≥ 0 and ψ ∈ H1

A(U) such that
supp (ψ) ⊂ {B(0, R),∫

U
|VNL||ψ|2 dx ≤ C‖VNL‖L

p
p−2 ({B(0,R))

(‖(−i∇+ A)ψ‖2
L2(U) + C1‖ψ‖2

L2(U)) .

Since VNL ∈ L
p
p−2 (U), ‖VNL‖L

p
p−2 ({B(0,R)))

goes to zero when R goes to infinity. Then,
from (2.8) (and again Lemma 2.5 with the diamagnetic inequality to control the
boundary term), we deduce (2.10). �

2.6. A sufficient condition for boundary attraction. This section is devoted
to the proof of the last part of Theorem 2.1.

Proposition 2.11. If G is a homogeneous geometry with U being a half-space and
with fixed (V,A), then there exists c0 > 0, such that for c ∈ (−∞, c0), we have

λ(G, 1, p) < λ(G, 1, p) .

Proof. Let us first prove the inequality in the case G = (Rd
+, Id, V,A, 0). Let u0 ∈

H1
A(Rd) be a minimizer of λ(G, 1, p) given by point (i) Theorem 2.1 such that
‖u0‖Lp(Rd) = 1. Up to a translation in the ed = (0, . . . , 0, 1) direction and up to the
symmetry x 7→ −x, we can assume that

‖u0‖pLp(Rd+) = ‖u0‖pLp(Rd−) = 1
2

and ∫
Rd+
|(−i∇+ A)u0|2 + V|u0|2 dx ≤

∫
Rd−
|(−i∇+ A)u0|2 + V|u0|2 dx .

Then, we get

λ(G, 1, p) =
∫
Rd
|(−i∇+ A)u0|2 + V|u0|2 dx

≥ 2
∫
Rd+
|(−i∇+ A)u0|2 + V|u0|2 dx

≥ 2‖u0‖2
Lp(Rd+)λ(G, 1, p) = 21−2/pλ(G, 1, p) .

Thus, we are left with the case c 6= 0. Let us remark that
c 7→ λ(G, 1, p)
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is a non-negative, concave and non-decreasing function of c since it is a infimum of
non-negative, affine and non-decreasing functions. Hence, we get the result provided
that λ(G, 1, p) ≤ λ(G, 1, p) for any c > 0. To do so, we build a sequence made of
magnetic translated of u0 in the ed direction that are multiplied by a cut-off function
so as to vanish on Rd−1 × {0}. �

2.7. Study of a one-dimensional model. In the last section, we have seen that
the existence of the minimizers in presence of a Robin boundary is ensured if the
Robin parameter is not too large. Actually, in dimension one (without electric or
magnetic field), we can prove that, above a certain intensity, the minimizers do not
exist (as we will see in the following lines).

We are interested in the map c 7→ λ((R+, Id, 1, 0, c), 1, p). The goal is to get a good
understanding of the phenomena occurring, studying the simplest case when the
concentration-compactness principle is not needed. Indeed, we look for a real-valued
solution of the following ordinary differential equation problem:

(2.11)


−u′′ + u = λ|u|p−2u in R+,

u′(0) = cu(0),
‖u‖Lp(R+) = 1,

where λ = λ((R+, Id, 1, 0, c), 1, p), u ∈ H1(R+,R), p > 2 and c ∈ R. We get the
following result.

Proposition 2.12. The system (2.11) has a unique solution for c ∈ (−1, 1) and no
solution for |c| ≥ 1. Moreover, we have
(i) λ((R+, Id, 1, 0, c), 1, 2) > 0 if and only if c > −1,
(ii) λ((R+, Id, 1, 0, c), 1, p) < λ((R, Id, 1, 0, 0), 1, p) for all c ∈ (−1, 1),
(iii) λ((R+, Id, 1, 0, c), 1, p) = λ((R, Id, 1, 0, 0), 1, p) for all c ≥ 1.

We split our study into two steps:
i. Study of the Cauchy problem (2.11) with λ = 1 and c ∈ R fixed but without the
restriction ‖u‖Lp(R+) = 1.

ii. Study of the dependence of the solutions of (2.11) to describe the behavior of
the function c 7→ λ((R+, Id, 1, 0, c), 1, p).

2.7.1. First step. Let us remark that up to the change of unknown u uλ
1
p−2 , the

system (2.11) without the constraint on the integral is equivalent to

(2.12)


u′ = v

v′ = u− |u|p−2u

v(0) = cu(0) .

Obviously, we are only interested in nontrivial solutions of (2.12) so that without
loss of generality, we can assume that u(0) > 0. This is a Hamiltonian system

(2.13)


u′ = ∂H

∂v
(u, v)

v′ = −∂H
∂u

(u, v)
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Figure 1. Zero set of H

where the Hamiltonian H is defined by

H(u, v) := |v|
2 − |u|2

2 + |u|
p

p
.

As a consequence, we immediately get that ∂rH(u(r), v(r)) = 0. Let us notice that
H is coercive:

lim
‖(u,v)‖→+∞

H(u, v) = +∞ ,

so that all solutions of (2.12) are global. Moreover, since we are looking for a solution
u ∈ H1(R+,R) i.e. such that ∫

R+
(|u|2 + |v|2) dr < +∞ ,

the initial condition has to satisfy H(u(0), v(0)) = 0. This follows from the continuity
of H since for any E 6= 0, there exists R > 0 such that

H−1({E}) ∩B(0, R) = ∅
where B(0, R) is the open euclidian ball of radius R centered in (0, 0).

Thus, we obtain the following lemma.

Lemma 2.13. We have:
(i) for |c| ≥ 1, there is no nontrivial solution of (2.12),
(ii) for |c| < 1, there is a unique u0

c > 0 such that H(u0
c , cu

0
c) = 0, the associated

solution (uc, vc) tends to (0, 0) at infinity and satisfies uc(r) > 0 for all r ≥ 0.

Proof. The equation

0 = H(u0, cu0) = c2 − 1
2 |u0|2 + |u

0|p

p

has no nontrivial solution for |c| ≥ 1 and has a unique solution u0
c > 0 for |c| < 1.

Moreover, (0, 0) is the unique critical point of H−1({0}) and the conclusion follows
from the Cauchy-Lipschitz theorem. �
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Let us study now the decay at infinity of uc and vc for |c| < 1.

Lemma 2.14. Let c ∈ (−1, 1). Then, (uc, vc) decays exponentially at infinity and
uc belongs to H1(R+,R).

Proof. By Lemma 2.13, arctan(vc/uc) is well-defined on R+ and satisfies
d

dr
arctan(vc/uc) = vc

′uc − uc′vc
u2
c + v2

c

= −(1− 2/p)upc
u2
c + v2

c

< 0

so that arctan(vc/uc) decays from arctan(c) to −π/4. Hence, there exists T ≥ 0 such
that −uc(r) ≤ vc(r) ≤ −uc(r)

2 for all r ≥ T and

d

dr
|uc|p = p|uc|p−2ucuc

′ = p|uc|p−2ucvc ≤ −
p

2 |uc|
p.

Thus, we obtain that |uc(r)|p ≤ C exp(−p
2r) for all r ≥ 0 and the conclusion

follows �

2.7.2. Second step. In the following lemma, we study the dependence of Lp-norm of
uc from c.

Lemma 2.15. We have that

c ∈ (−1, 1) 7→ ‖uc‖pLp(R+) ∈ R+

is strictly increasing.

Proof. Let −1 < c′ < c < 1. Let us write

Tc,c′ := inf{r > 0, arctan(vc(r)/uc(r)) < arctan(c′)} .

The quantity Tc,c′ > 0 is well-defined from the proof of Lemma 2.14. By the
uniqueness of the solution in the Cauchy-Lipschitz theorem, we get that

(uc, vc)(·+ Tc,c′) = (uc′ , vc′)(·)

since H(uc, vc)(Tc,c′) = 0 and vc(Tc,c′) = c′uc(Tc,c′). This ensures that

‖uc‖pLp(R+) =
∫ Tc,c′

0
|uc|p dr +

∫ +∞

Tc,c′
|uc|p dr >

∫ +∞

0
|uc′|p dr .�

Let us introduce for c ∈ (−1, 1)

λc :=
‖uc‖H1(R+)2 + c|uc(0)|2

‖uc‖2
Lp(R+)

= ‖uc‖p−2
Lp(R+) ≥ λ((R+, Id, 1, 0, c), 1, p).

Lemma 2.15 ensures that c 7→ λc is strictly increasing. It remains to study the
limiting behavior of λc at ±1.

Lemma 2.16. We have

lim
c→1

λc = λ((R, Id, 1, 0, 0), 1, p) and lim
c→−1

λc = 0 ,

so that, for all c ∈ (−1, 1),

λc = λ((R+, Id, 1, 0, c), 1, p) .
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Proof. Let us denote by

Tc := Tc,0 = inf{r > 0 : arctan(vc(r)/uc(r)) < 0} .

By the Cauchy-Lipschitz theorem, we get that

(uc, vc)(r + Tc) = (u, u′)(r) for all r ∈ [−Tc,+∞)

where (u, v) is the solution of

−u′′ + u = |u|p−2u on R

such that u(0) = u0
0 and u′(0) = 0 with u0

0 given by Lemma 2.13. Let us remark that
Theorem 2.1 ensures that

λ((R, Id, 1, 0, 0), 1, p) = ‖u‖p−2
Lp(R) .

We also have that limc→+1 Tc = +∞ and

lim
c→1

λ
p
p−2
c = lim

c→1

∫ ∞
−Tc
|u|p dr =

∫ ∞
−∞
|u|p dr = λ((R, Id, 1, 0, 0), 1, p)

p
p−2

since (0, 0) is an equilibrium of (2.12). The same ideas give that

lim
c→−1

λc = 0 .

Finally, Theorem 2.1 and Lemma 2.15 allow us to conclude. �

Let us end this section with the proof of Proposition 2.12.

Proof of Proposition 2.12. The first point follows from a standard spectral analysis
(for negative c there exists only one eigenvalue below the essential spectrum that is
1− c2). The second point follows from Lemmas 2.15 and 2.16. The third point is an
immediate consequence of the first point, Lemma 2.13 and Theorem 2.1. �

3. Upper bounds of λ(G, h, p)

The upper bound in Theorem 1.8 will be proved by inserting appropriate test
functions in the Sobolev quotient: either functions localized inside the domain, or
functions localized near the boundary. Of course, the case related to the boundary is
slightly more delicate and involves a local straightening of the boundary. Anyway,
after an appropriate rescaling, we will locally see the appearence of the concentration
function x 7→ λ(Gx, 1, p). Thus, we will have to select a minimal point of this function.
The existence of such a point x0 ∈ Ω is ensured by Proposition 1.7 which we will
prove in Section 5.

Depending on whether x0 ∈ Ω or x0 ∈ ∂Ω, this section is divided into two parts
and devoted to the proof of Propositions 3.1 and 3.3.

3.1. Interior estimate. Here is the estimate related to the interior contribution.

Proposition 3.1. Let x0 ∈ Ω. There exists h0 > 0, C > 0 such that, for all
h ∈ (0, h0),

λ(G, h, p) ≤ h
d
2−

d
ph
(
λ(Gx0 , 1, p) + Ch

1
2
)
.
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Proof. Let us consider a smooth cutoff function 0 ≤ χ0 ≤ 1 being 1 in B(x0, ε0) and
being zero away from B (x0, 2ε0). It follows from (1.8), (1.9) and (1.10) that there
exists a smooth real function ϕ0 such that, on the support of χ0,
(3.1) |A(x)−∇ϕ0(x)−AL

x0(x)| ≤ C|x− x0|2 .
Let us consider an Lp-normalized minimizer Ψx0 associated with λ(Gx0 , 1, p) and let
Ψ̃x0(·) = Ψx0(x0 + ·). We let

ψh(x) = h−
d

2pχ0(x)e−i
ϕ0(x)
h Ψ̃x0(h− 1

2 (x− x0)) .
We notice that

‖ψh‖2
Lp(Ω) = h−

d
p

(∫
Rd
|χ0(x)|p

∣∣∣Ψ̃x0(h− 1
2 (x− x0))

∣∣∣p dx
) 2
p

=
(

1−
∫
{B(0,ε0h

− 1
2 )

(
1−

∣∣∣χ0(x0 + h
1
2 y)

∣∣∣p) ∣∣∣Ψ̃x0(y)
∣∣∣p dy

) 2
p

and thus, thanks to Proposition 2.10,
(3.2) ‖ψh‖2

Lp(Ω) = 1 +O(h∞) .
Then, we estimate QG,h(ψh). Thanks to the localization formula, we have

(3.3)
∫

Ω
|(−ih∇+ A)ψh|2 dx

= h−
d
p

∫
Ω
|χ0(x)|2

∣∣∣∣(−ih∇+ A)e−i
ϕ0(x)
h Ψ̃x0

(
h−

1
2 (x− x0)

)∣∣∣∣2dx

+ h2− d
p

∫
Rd
|∇χ0(x)|2

∣∣∣Ψ̃x0

(
h−

1
2 (x− x0)

)∣∣∣2 dx .

By support considerations, and by using again Proposition 2.10, we get

(3.4)
∫
Rd
|∇χ0(x)|2

∣∣∣Ψ̃x0

(
h−

1
2 (x− x0)

)∣∣∣2 dx = O(h∞) .

We have

(3.5)
∫

Ω
|χ0(x)|2

∣∣∣∣(−ih∇+ A)e−i
ϕ0(x)
h Ψ̃x0

(
h−

1
2 (x− x0)

)∣∣∣∣2 dx

≤
∫
B(x0,2ε0)

∣∣∣(−ih∇+ A−∇ϕ0)Ψ̃x0

(
h−

1
2 (x− x0)

)∣∣∣2 dx .

With (3.1), we get, for all η > 0,

(3.6)
∫
B(x0,2ε0)

∣∣∣(−ih∇+ A−∇ϕ0)Ψ̃x0

(
h−

1
2 (x− x0)

)∣∣∣2 dx

≤ (1 + η)
∫
Rd

∣∣∣(−ih∇+AL
x0(x))Ψ̃x0

(
h−

1
2 (x− x0)

)∣∣∣2 dx

+ C2(1 + η−1)
∫
Rd
|x− x0|4

∣∣∣Ψ̃x0

(
h−

1
2 (x− x0)

)∣∣∣2 dx .

With the definitions of Ψ̃x0 and Ψx0 and Proposition 2.10, we deduce

(3.7)
∫
Rd
|x− x0|4

∣∣∣Ψ̃x0

(
h−

1
2 (x− x0)

)∣∣∣2 dx ≤ Dh2h
d
2 .

Similarly, we get

(3.8)
∫

Ω
|V (x)− V (x0)||ψh(x)|2 dx ≤ Ch−

d
ph

1
2h

d
2 .
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We choose η = h
1
2 . By combining (3.3), (3.4), (3.5), (3.6), (3.7) and (3.8), we infer

from the definition of Ψ̃x0 and Ψx0 that

(3.9) QG,h,p(ψh) ≤ h
d
2−

d
ph
(
λ(Gx0 , 1, p) + Ch

1
2
)
.

The conclusion follows by combining (3.2) and (3.9). �

3.2. Boundary estimate.

3.2.1. The electro-magnetic Robin Laplacian near the boundary. Let us describe the
geometry near the boundary of Ω. Since ∂Ω is smooth, we may consider a covering
(B(X`, r))1≤`≤N of ∂Ω such that the following holds. For each ` ∈ {1, · · · , N}, there
exists a smooth parametrization Φ` : U` × (0, t`)→ Ω ∩ B(X`, r), where U` ⊂ Rd−1 is
an open set with 0 ∈ U` and Φ`(0, 0) = X`.

For x0 ∈ ∂Ω, we have
Tx0(∂Ω) = (dΦ`)y0

(Rd−1 × {0}) , x0 = Φ`(y0) , y0 = (s0, 0) .
We also recall that the metric induced by Φ` is in the form

G` = (dΦ`)T dΦ` ,

and we let
|G`| = detG`, g`(s) = G`(s, 0) , |g`| = det g` .

Then, we shall discuss the expression of our Laplacian in these coordinates. If ψ is
supported in Ω∩B(X`, r), we may use the change of variables x = Φ`(s, t) and we get

‖ψ‖2
Lp(Ω) =

(∫
U`×(0,t`)

|ψ̃|p|G`|
1
2 ds dt

) 2
p

and
(3.10)
QG,h(ψ) =

∫
U`×(0,t`)

(
〈(−ih∇+ Ã)ψ̃, G−1

` (−ih∇+ Ã)ψ̃〉Cd + hṼ |ψ̃|2
)
|G`|

1
2 ds dt

+ h
3
2

∫
U`×{t`=0}

γ̃|ψ̃|2|g`|
1
2 ds ,

where
Ã = (dΦ`)T ◦A ◦ Φ` , Ṽ = V ◦ Φ` , γ̃ = γ ◦ Φ` , ψ̃ = ψ ◦ Φ` .

Note that in terms one 1-forms, the first equality means

Φ∗`
(

d∑
k=1

Ak dxk
)

=
d∑

k=1
Ãk dsk ,

so that, with a slight abuse of notation, we may write (G̃, ψ̃) = Φ∗`(G, ψ). Since the
pull-back commutes with the exterior derivative, the magnetic matrix of B̃ is

MB̃ = (dΦ`)T MB (dΦ`) ,
and we may easily deduce the following lemma.

Lemma 3.2. We let G̃y0 = (Rd−1 × R+,G`(y0), V (x0), ÃL
y0 , γ(x0)). There exists a

smooth function φ on Rd such that:
(x0 + (dΦ`)y0)∗ Gx0 = G̃φy0 .
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3.2.2. Upper bound. Here is now the estimate related to the boundary case.

Proposition 3.3. Let x0 ∈ ∂Ω. There exists h0 > 0, C > 0 such that, for all
h ∈ (0, h0),

λ(G, h, p) ≤ h
d
2−

d
ph
(
λ(Gx0 , 1, p) + Ch

1
2 | log h|

)
.

Proof. Let us recall that we always have
λ(Gx0 , 1, p) ≤ λ(Gx0

, 1, p).
Let us consider first the case of the strict inequality as in Theorem 2.1. Using the
notations of Section 3.2.1, we choose

ψ̃h(s, t) = h−
d

2pχ0(s, t)ei
ϕ0
h Ψ̃0(h−1/2(s− s0, t)) ,

where Ψ̃0 belongs to S(Rd−1 × R+) and χ0 is a smooth cutoff function such that
0 ≤ χ0 ≤ 1, being 1 in B(y0, ε0) and being zero away from B (y0, 2ε0). The parameter
ε0 is such that supp ψ̃h ⊂ U` × (0, t`) and ϕ0 satisfies (3.1). With the same kind of
computations as previously (see Proposition 3.1), we get

QG,h(ψ̃h)

≤ hh
d
2−

d
p

∫
Rd−1×R+

(
〈(−i∇+ ÃL

y0)Ψ̃0, G`(y0)−1(−i∇+ ÃL
y0)Ψ̃0〉Cd + Ṽ (y0)|Ψ̃0|2

)
dy

+ hh
d
2−

d
p

∫
Rd−1×{t=0}

γ̃(y0)|Ψ̃0|2|g`(s0)| 12 ds+ Ch
3
2h

d
2−

d
p

and
‖ψh‖pLp(Ω) = 1 +O(h 1

2 ) .
Then, it remains to use the change of variable of Lemma 3.2 and take

Ψ̃0 = (x0 + (dΦ`)y0)∗Ψ0 ,

where Ψ0 is a minimizer associated with λ(Gx0 , 1, p).
Let us now consider the case when

λ(Gx0 , 1, p) = λ(Gx0
, 1, p)

for which Theorem 2.1 does not apply. Let us define Rh = h1/2| log h|. We choose

ψ̃h(s, t) = h−
d

2pχ0(R−1
h (s− s0, t− 2Rh))ei

ϕ0
h Ψ̃0(h−1/2(s− s0, t− 2Rh)) ,

where Ψ̃0 = (x0 + (dΦ`)y0)∗Ψ0 for Ψ0 a minimizer associated with λ(Gx0
, 1, p), χ0 is

a smooth cutoff function such that 0 ≤ χ0 ≤ 1, being 1 in B(0, ε0) and being zero
away from B (0, 2ε0).

We get

‖ψh‖pLp(Ω) =
∫
U`×(0,t`)

|ψ̃|p|G`|
1
2 ds dt

≥
∫
B(0,ε0Rhh−1/2)

|ψ̃0|p|G`(s0 + s̃h1/2, 2Rh + t̃h1/2)| 12 ds̃ dt̃

≥
∫
B(0,ε0Rhh−1/2)

|ψ̃0|p|G`(s0, 0)| 12 ds̃ dt̃− CRh

≥ 1− CRh −
∫
B(0,ε0Rhh−1/2)c

|G`(s0, 0)| 12 |ψ̃0|p ds̃ dt̃

≥ 1− C(Rh − exp(−αpε0Rh/h
1
2 )),
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where the last inequality follows from Proposition 2.10. Hence, by choosing ε0 such
that αpε0 = 1

2 , we have

‖ψh‖pLp(Ω) ≥ 1− Ch 1
2 | log h|.

We also obtain

QG,h(ψ̃h)

≤ hh
d
2−

d
p

∫
Rd−1×R+

(
〈(−i∇+ ÃL

y0)Ψ̃0, G`(y0)−1(−i∇+ ÃL
y0)Ψ̃0〉Cd + Ṽ (y0)|Ψ̃0|2

)
dy

+ hh
d
2−

d
p

∫
Rd−1×{t=0}

γ̃(y0)|Ψ̃0|2|g`(s0)| 12 ds+ C| log h|h 3
2h

d
2−

d
p

and the result follows. �

4. Lower bound of λ(G, h, p)

This section is devoted to the proof of the lower bound in Theorem 1.8.

4.1. The two-scale localization formula with sliding centers. We will need
the following type of partition of the unity (see [14] for the proof) in the case when
p > 2.

Lemma 4.1. Let us consider E = {(α, ρ, h,k) ∈ (R+)3 × Zd : α ≥ ρ}. There exists
a family of smooth cutoff functions (χ[k]

α,ρ,h)(α,ρ,h,k)∈E on Rd, with

χ
[k]
α,ρ,h(x) = χ

[0]
α,ρ,h(x− (2hρ + hα)k),(4.1)

such that 0 ≤ χ
[k]
α,ρ,h ≤ 1,

χ
[k]
α,ρ,h(x) = 1, on |x− (2hρ + hα)k|∞ ≤ hρ ,

χ
[k]
α,ρ,h(x) = 0, on |x− (2hρ + hα)k|∞ ≥ hρ + hα ,

and such that

(4.2)
∑

k∈Zd

(
χ

[k]
α,ρ,h

)2
= 1 .

There exists also D > 0 such that, for all h > 0,

(4.3)
∑

k∈Zd
|∇χ[k]

α,ρ,h|2 ≤ Dh−2α ,

and

(4.4)
∫
Rd
|∇χ[k]

α,ρ,h(y)|2 dy ≤ Dhρdh−α−ρ .

The following lemma states that, up to a translation of our quadratic two-scale
partition, we may always estimate the global Lp-norm (resp. the global energy) by
the local Lp-norms (resp. the local energies). It is a generalization and strengthening
of [14, Lemma 4.3].
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Lemma 4.2. Let p ≥ 2. Let us consider the partition of unity (χ[k]
α,ρ,h) defined in

Lemma 4.1, with α ≥ ρ > 0. There exist C > 0 and h0 > 0 such that for all
ψ ∈ Lp(Ω) and h ∈ (0, h0), there exists τα,ρ,h,ψ = τ ∈ Rd such that∑

k∈Zd

∫
Ω
|χ̃[k]
α,ρ,hψ(x)|p dx ≤

∫
Ω
|ψ(x)|p dx ≤ (1 + Chα−ρ)

∑
k∈Zd

∫
Ω
|χ̃[k]
α,ρ,hψ(x)|p dx,

∑
k∈Zd

QG,h(χ̃[k]
α,ρ,hψ)− D̃h2−ρ−α‖ψ‖2

L2(Ω) ≤ QG,h(ψ) ≤
∑

k∈Zd
QG,h(χ̃[k]

α,ρ,hψ) ,

with χ̃[k]
α,ρ,h(x) = χ

[k]
α,ρ,h(x− τ). Moreover, the translated partition (χ̃[k]

α,ρ,h) still satisfies
(4.3).

Proof. Since
∑

k∈Zd
(χ̃[k]

α,ρ,h)2 = 1 for all τ , and p ≥ 2, we have immediately

∑
k∈Zd

∫
Ω
|χ̃[k]
α,ρ,hψ(x)|p dx ≤

∫
Ω
|ψ(x)|p dx ,

Notice that, by paving Rd and by using that χ[0]
α,ρ,h = 1 on a box of sidelength 2hρ,

∫
[0,2hρ+hα)d

∑
k∈Zd

∣∣∣χ[0]
α,ρ,h(x− (2hρ + hα)k− τ)

∣∣∣p dτ =
∫
Rd

∣∣∣χ[0]
α,ρ,h(x− y)

∣∣∣p dy ≥ 2dhdρ.
(4.5)

Therefore, by changing the order of the integrations,

1
(2hρ + hα)d

∫
[0,2hρ+hα)d

∑
k∈Zd

∫
Ω
|χ̃[k]
α,ρ,hψ(x)|p dx

 dτ ≥ 2dhdρ
(2hρ + hα)d

∫
Ω
|ψ(x)|p dx,

and thus

1
(2hρ + hα)d

∫
[0,2hρ+hα)d

∫
Ω
|ψ(x)|p dx−

∑
k∈Zd

∫
Ω
|χ̃[k]
α,ρ,hψ(x)|p dx

 dτ

≤
(

1− 2dhdρ
(2hρ + hα)d

) ∫
Ω
|ψ(x)|p dx .

This last inequality is in the form
1
Ld

∫
[0,L]d

f(τ) dτ ≤ A ,

with a non-negative and integrable function f , so that we get∣∣∣{τ ∈ [0, L]d : f(τ) ≤ 3A}
∣∣∣ ≥ 2Ld

3 .

In our particular situation, we deduce that the set of τ ∈ [0, 2hρ + hα)d such that

(4.6)
∑

k∈Zd

∫
Ω
|χ̃[k]
α,ρ,hψ(x)|p dx ≥ 1− 3

(
1− 2dhdρ

(2hρ + hα)d
) ∫

Ω
|ψ(x)|p dx,

has measure at least 2
3(2hρ + hα)d. We may notice here that

2dhdρ
(2hρ + hα)d = 1 +O(hα−ρ) .
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With the localization formula associated with the partition of unity (χ̃[k]
α,ρ,h) that

is adapted to ψ, we infer

QG,h(ψ) =
∑

k∈Zd
QG,h(χ̃[k]

α,ρ,hψ)− h2 ∑
k∈Zd
‖∇χ̃[k]

α,ρ,hψ‖2
L2(Ω) ,

So that in particular
QG,h(ψ) ≤

∑
k∈Zd

QG,h(χ̃[k]
α,ρ,hψ).

With Fubini’s theorem and (4.4), we also observe that, for all x ∈ Rd,
1

(2hρ + hα)d
∫

[0,2hρ+hα)d

∑
k∈Z
|∇χ[0]

α,ρ,h(x− (2hρ + hα)k− τ)|2 dτ

= 1
(2hρ + hα)d

∫
Rd
|∇χ[0]

α,ρ,h(x− y)|2 dy ≤ C

hρ+α .

Therefore,
1

(2hρ + hα)d
∫

[0,2hρ+hα)d

(∑
k∈Zd

QG,h(χ̃[k]
α,ρ,hψ)−QG,h(ψ)

)

= h2

(2hρ + hα)d
(∫

[0,2hρ+hα)d

∑
k∈Zd
‖∇χ̃[k]

α,ρ,hψ‖2
L2(Ω)

)
dτ ,

≤ Ch2−ρ−α‖ψ‖2
L2(Ω)

And thus the set of τ ∈ [0, 2hρ + hα)d such that
1

(2hρ + hα)d
∫

[0,2hρ+hα)d

∑
k∈Zd

QG,h(χ̃[k]
α,ρ,hψ)−QG,h(ψ) ≤ 3Ch2−ρ−α‖ψ‖2

L2(Ω)

has measure at least 2
3(2hρ + hα)d.

We conclude that the desired estimates are satisfied for a set of τ of measure at
least 1

3(2hρ + hα)d. �

Remark 4.3. Note that if p = 2, we choose α = ρ and we do not need Lemma 4.2.

4.2. Approximation by the homogeneous geometry. In this section, we prove
Proposition 1.6 and the lower bound in Theorem 1.8. Since the lower bound in the
nonlinear case (p > 2) is more subtle we will mainly focus on this case. Note that in
many places the estimates when p = 2 are better and easier to obtain.

Keeping in mind the estimate of the quadratic form of Lemma 4.2, we must
now approximate the local energies QG,h(χ̃[k]

α,ρ,hψ). To lighten the notation, we let
ψk = χ̃

[k]
α,ρ,hψ.

4.2.1. Interior estimates. Let us consider the k ∈ Zd such that supp (χ̃[k]
α,ρ,h)∩∂Ω = ∅.

We have
‖(−ih∇+ A)ψk‖2

L2(Ω) = ‖(−ih∇+AL
xk

+Rk)Ψk‖2
L2(Ω) ,

where Ψk = eiϕk/hψk for a suitable choice of gauge ϕk and the Taylor remainder Rk

satisfies, on the support of χ̃[k]
α,ρ,h, |Rk| ≤ Ch2ρ. An elementary inequality implies,

for all ε ∈ (0, 1),
‖(−ih∇+ A)ψk‖2

L2(Ω) ≥ (1− ε)‖(−ih∇+AL
xk

)Ψk‖2
L2(Ω) − C2h4ρε−1‖ψk‖2

L2(Ω) .
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Moreover, we have

h
∫

Ω
V (x)|ψk|2 dx ≥ h

∫
Ω
V (xk)|ψk|2 dx− Ĉh1+ρ‖ψk‖2

L2(Ω) .

Since we investigate the case p > 2, one need to control the remainder involving
‖ψk‖2

L2(Ω) and not ‖ψk‖2
Lp(Ω). Note that we do not have to care about this when

p = 2.
We have, by homogeneity and the min-max principle,

λ(Gxk , 1, 2)h‖Ψk‖2
L2(Ω) ≤ QGxk ,h

(Ψk) .
By using Assumption 1.5, we deduce that

QG,h(ψk) ≥ (1− ε)‖(−ih∇+AL
xk

)Ψk‖2
L2(Ω) + h

∫
Ω
V (xk)|Ψk|2 dx

− (C̃ε−1h4ρ−1 + C̃hρ)QGxk ,h
(Ψk) .

Then, we get

h
∫

Ω
V (xk)|Ψk|2 dx ≥ (1− ε)h

∫
Ω
V (xk)|Ψk|2 dx− εh

(
max

Ω
|V |

)
‖Ψk‖2

L2(Ω)

Therefore we deduce
(4.7) QG,h(ψk) ≥ (1− C̃ε− C̃ε−1h4ρ−1 − C̃hρ)QGxk ,h

(Ψk) .

We choose ε = h2ρ− 1
2 and we notice that, since ρ ∈ (0, 1

2), then we can forget the
term in hρ. By definition of the infimum and homogeneity, it follows that

(4.8) QG,h(ψk) ≥ (1− Ch2ρ− 1
2 )λ(Gck , 1, p)h

1+ d
2−

d
p‖ψk‖2

Lp(Ω) .

We deduce in particular

(4.9) QG,h(ψk) ≥ (1− Ch2ρ− 1
2 )h1+ d

2−
d
p inf

x∈Ω
λ(Gx, 1, p)‖ψk‖2

Lp(Ω) .

4.2.2. Boundary estimates. Let us consider the k such that supp (χ̃[k]
α,ρ,h) ∩ ∂Ω 6= ∅.

Let us consider ck ∈ supp (χ̃[k]
α,ρ,h) ∩ ∂Ω 6= ∅. On supp (χ̃[k]

α,ρ,h) we may consider the
local coordinates (near some point X`) introduced in Section 3.2.1 and x0 = ck. The
coordinates of ck are (sk, tk) in the parametrization Φ`. We use the expression (3.10)
and the Taylor formula to get

QG,h(ψk) ≥ (1−Chρ)
∫
U`×(0,t`)

〈(−ih∇+Ã)ψ̃k, G`(ck)−1(−ih∇+Ã)ψ̃k〉Rd |G`(ck)|
1
2 dy

+ h
∫
U`×(0,t`)

V (ck)|ψ̃k|2|G`(ck)|
1
2 dy− γ(ck)h 3

2

∫
U`×{0}

|ψ̃k|2|g`(sk)| 12 ds

− Ch
3
2 +ρ

∫
U`×{0}

|ψ̃k|2 ds− Ch1+ρ
∫
U`×(0,t`)

|ψ̃k|2 dy .

By using Lemma 2.5 with ε = h
1
2 , we deduce that∫

U`×{0}
|ψ̃k|2 ds ≤ Ch

1
2‖∇|ψ̃k|‖2 + Ch−

1
2‖ψ̃k‖2 ,

so that, with the diamagnetic inequality,∫
U`×{0}

|ψ̃k|2 ds ≤ Ch−
3
2‖(−ih∇+ Ã)ψ̃k‖2 + Ch−

1
2‖ψ̃k‖2 ,
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and thus

QG,h(ψk) ≥ (1−Chρ)
∫
U`×(0,t`)

〈(−ih∇+Ã)ψ̃k, G`(ck)−1(−ih∇+Ã)ψ̃k〉Rd |G`(ck)| 12 dy

+ h
∫
U`×(0,t`)

V (ck)|ψ̃k|2|G`(ck)|
1
2 dy− γ(ck)h 3

2

∫
U`×{0}

|ψ̃k|2|g`(sk)| 12 ds

− Ch1+ρ
∫
U`×(0,t`)

|ψ̃k|2 dy .

Now, we approximate the vector potential as in Section 4.2.1 and we get

(4.10) QG,h(ψk) ≥ (1− Ch2ρ− 1
2 )QG∗ck

,h(ψ̃k) ,

and thus

(4.11) QG,h(ψk) ≥ (1− Ch2ρ− 1
2 )λ(Gck , 1, p)h

1+ d
2−

d
p‖ψk‖2

Lp(Ω) .

We get

(4.12) QG,h(ψk) ≥ (1− Ch2ρ− 1
2 )h1+ d

2−
d
p inf

x∈∂Ω
λ(Gx, 1, p)‖ψk‖2

Lp(Ω) .

From (4.9) and (4.12), we infer that there exist h0 > 0, C > 0 such that, for all
k ∈ Zd,

(4.13) QG,h(ψk) ≥ (1− Ch2ρ− 1
2 )h1+ d

2−
d
p inf

x∈Ω
λ(Gx, 1, p)‖ψk‖2

Lp(Ω) .

We want to add the different local contributions. We use the following estimate

h2−ρ−α‖ψ‖2
L2(Ω) = h2−ρ−α ∑

k∈Zd
‖ψk‖2

L2(Ω) ≤ Ch1−α−ρ ∑
k∈Zd

QG,h(ψk) ,

where we used (4.8), (4.10) and the positivity in Assumption 1.5. Using Lemma 4.2,
we get

h2−ρ−α‖ψ‖2
L2(Ω) ≤ Ch1−α−ρQG,h(ψ) .

Summing over k in (4.13) and using Lemma 4.2 to reconstruct the total Lp-norm
from the local ones, we get

QG,h(ψ) ≥ (1− Ch1−α−ρ)(1− Ch2ρ− 1
2 )(1− Chα−ρ)h1+ d

2−
d
p inf

x∈Ω
λ(Gx, 1, p)‖ψ‖2

Lp(Ω) .

We choose

1− α− ρ = 2ρ− 1
2 = α− ρ , or equivalently ρ = 1

3 , α = 1
2 .

This gives the lower bound in Theorem 1.8.

Remark 4.4. In the case p = 2, we are led to the choice 1− 2ρ = 2ρ− 1
2 and thus

ρ = 3
8 . Note that, in this case, the term 1− Chα−ρ is replaced by 1. From this we

find the remainder of order O(h 5
4 ) given in Proposition 1.6.

5. Semiclassical localization

In relation with the estimates of Section 4 and using the upper bound in Theo-
rem 1.8, we may deduce that the minimizers concentrate near the minima of the
concentration function Ω 3 x 7→ λ(Gx, 1, p).
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5.1. A rough localization estimate. Before obtaining the exponential localization,
we start by proving a weaker result.

Proposition 5.1. For all ε > 0, there exist h0, C > 0 such that for all h ∈ (0, h0)
and all Lp-normalized minimizer ψh of (1.1), we have

‖ψh‖Lp({Mε) ≤ Ch
1

6p ,

whereMε is defined in (1.11).

Proof. We use again Lemma 4.2 with ψ = ψh and ρ = 1
3 , α = 1

2 to get∑
k∈Zd

QG,h(χ̃[k]
α,ρ,hψ)− D̃h2−ρ−α‖ψ‖2

L2(Ω) ≤ λ(G, h, p)‖ψh‖2
Lp(Ω) .

We deduce that

(1− Ch 1
6 )
∑

k∈Zd
QG,h(χ̃[k]

α,ρ,hψh) ≤ λ(G, h, p)‖ψh‖2
Lp(Ω) .

Therefore, we find∑
k∈Zd

QG,h(ψh,k) ≤ λ(G, h, p)‖ψh‖2
Lp(Ω) + Ch

1
6h1+ d

2−
d
p‖ψh‖2

Lp(Ω) .

We again have by Lemma 4.2,

‖ψh‖2
Lp(Ω) =

(∫
Ω
|ψh|p dx

) 2
p

≤ (1 + Ch
1
6 )
∑

k∈Zd
‖χ̃[k]

α,ρ,hψh‖
p
Lp(Ω)

 2
p

,

and thus

‖ψh‖2
Lp(Ω) ≤

∑
k∈Zd
‖χ̃[k]

α,ρ,hψh‖
p
Lp(Ω)

 2
p

+ Ch
1
6‖ψh‖2

Lp(Ω) .

By using that p ≥ 2, we deduce that

(5.1)
∑

k∈Zd
QG,h(ψh,k) ≤ λ(G, h, p)

∑
k∈Zd
‖ψh,k‖2

Lp(Ω) + Ch
1
6h1+ d

2−
d
p‖ψh‖2

Lp(Ω) .

Then, we consider the local energies. For k such that supp (χ̃[k]
α,ρ,h)∩ ∂Ω = ∅, we have

QG,h(ψh,k) ≥ (1− Ch 1
6 )λ(Gxk , 1, p)h

1+ d
2−

d
p‖ψh,k‖2

Lp(Ω) ,

and, for k such that supp (χ̃[k]
α,ρ,h) ∩ ∂Ω 6= ∅,

QG,h(ψh,k) ≥ (1− Ch 1
6 )λ(Gck , 1, p)h

1+ d
2−

d
p‖ψh,k‖2

Lp(Ω) .

For ε, h > 0, let us introduce

Kε,h =
{
k ∈ Zd : supp (χ̃[k]

α,ρ,h) ∩M ε
2
6= ∅

}
.

For all ε > 0, there exists cε > 0 such that for all k /∈ Kε,h, we have

(5.2) QG,h(ψh,k) ≥ (1− Ch 1
6 )
(

inf
x∈Ω

λ(Gx, 1, p) + cε

)
h1+ d

2−
d
p‖ψh,k‖2

Lp(Ω) .
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From (5.1), we get∑
k/∈Kε,h

(
QG,h(ψh,k)− λ(G, h, p)‖ψh,k‖2

Lp(Ω)

)
+

∑
k∈Kε,h

(
QG,h(ψh,k)− λ(G, h, p)‖ψh,k‖2

Lp(Ω)

)
≤ Ch

1
6h1+ d

2−
d
p‖ψh‖2

Lp(Ω) .

On one hand, from (5.2) and the upper bound on λ(G, h, p), we find the existence of
c̃ε > 0 such that, for all h ∈ (0, h0),∑

k/∈Kε,h

(
QG,h(ψh,k)− λ(G, h, p)‖ψh,k‖2

Lp(Ω)

)
≥ c̃εh

1+ d
2−

d
p

∑
k/∈Kε,h

‖ψh,k‖2
Lp(Ω) .

On the other hand, we get, by using the definition of λ(G, h, p),∑
k∈Kε,h

(
QG,h(ψh,k)− λ(G, h, p)‖ψh,k‖2

Lp(Ω)

)
≥ 0 .

It follows that
c̃ε

∑
k/∈Kε,h

‖ψh,k‖2
Lp(Ω) ≤ Ch

1
6‖ψh‖2

Lp(Ω) .

Since p ≥ 2, we deduce that∑
k/∈Kε,h

∫
Ω
|χ̃[k]
α,ρ,h|p|ψh|p dx ≤ Ch

p
12‖ψh‖pLp(Ω) .

Thus we have∑
k/∈Kε,h

∫
Ω
|χ̃[k]
α,ρ,h|2|ψh|p dx−

∑
k/∈Kε,h

∫
Ω

(
|χ̃[k]
α,ρ,h|2 − |χ̃

[k]
α,ρ,h|p

)
|ψh|p dx

≤ Ch
p

12‖ψh‖pLp(Ω) .

With (4.6), we infer∫
{Mε

|ψh|p dx =
∑

k/∈Kε,h

∫
{Mε

|χ̃[k]
α,ρ,h|2|ψh|p dx ≤

∑
k/∈Kε,h

∫
Ω
|χ̃[k]
α,ρ,h|2|ψh|p dx

≤ C(h
p

12 + h
1
6 )‖ψh‖pLp(Ω) .

�

5.2. Application to the exponential estimates. Now, Proposition 5.1 gives an
a priori control of the nonlinear potential −λ(G, h, p)|ψh|p−2 away from the minimal
setM. Therefore, in this region, we are essentially reduced to a perturbation of a
linear equation and we may establish decay estimates à la Agmon.

Proposition 5.2. For all ε > 0, ρ ∈
(
0, 1

2

)
, there exists h0, C > 0 such that for all

h ∈ (0, h0) and all Lp-normalized minimizer ψh of (1.1), we have

‖ψh‖Lp({M2ε) ≤ Ce−εh
−ρ‖ψh‖Lp(Ω) .

Proof. Let us first consider a function v in the form domain of QG,h and supported
away fromMε. We have, with the Hölder inequality,

λ(G, h, p)
∫

Ω
|ψh|p−2|v|2 dx ≤ λ(G, h, p)‖v‖2

Lp(Ω)

(∫
{Mε

|ψh|p dx
) p−2

p

.
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Thus, by using Proposition 5.1, we get

(5.3) λ(G, h, p)
∫

Ω
|ψh|p−2|v|2 dx ≤ Ch

p−2
6p λ(G, h, p)‖v‖2

Lp(Ω) ≤ Ch
p−2
6p QG,h(v) .

In other words, the nonlinear potential is a perturbation of the linear part in the
sense of quadratic forms. Note that the equation satisfied by ψh reads

LNL
G,hψh =

(
(−ih∇+ A)2 + hV − λ(G, h, p)|ψh|p−2

)
ψh = 0 ,

with the Robin condition
(−ih∇+ A)ψ · n(x) = −ih 1

2γ(x)ψ(x), x ∈ ∂Ω .

Let us now introduce our exponential weight. We consider a smooth cutoff function
0 ≤ χ ≤ 1 supported away from Mε and being 1 away from M2ε. With the
localization formula, we get

QNL
G,h(eχh

−ρdist(x,M)ψh)− Ch2−2ρ‖eχh−ρdist(x,M)ψh‖2
L2(Ω) ≤ 0 ;

all the norms are finite in view of the boundedness of the domain Ω. Now we want
to distinguish between the region close toM and far fromM. Thus we introduce
a smooth quadratic partition of the unity χ2

1 + χ2
2 = 1 such that supp (χ2) ⊂ {Mε.

Using again the localization formula, we deduce that

(5.4) QNL
G,h(χ1e

χh−ρdist(x,M)ψh) + QNL
G,h(χ2e

χh−ρdist(x,M)ψh)
− C̃h2−2ρ‖χ1e

χh−ρdist(x,M)ψh‖2
L2(Ω) − C̃h2−2ρ‖χ2e

χh−ρdist(x,M)ψh‖2
L2(Ω) ≤ 0 .

On one hand, by (5.3), we have

QNL
G,h(χ2e

χh−ρdist(x,M)ψh)− C̃h2−2ρ‖χ2e
χh−ρdist(x,M)ψh‖2

L2(Ω)(5.5)

≥ (1− Ch
p−2
6p )QG,h(χ2e

χh−ρdist(x,M)ψh)− C̃h2−2ρ‖χ2e
χh−ρdist(x,M)ψh‖2

L2(Ω)

≥
(

(1− Ch
p−2
6p )λ(G, h, 2)− C̃h2−2ρ

)
‖χ2e

χh−ρdist(x,M)ψh‖2
L2(Ω)

≥ ch‖χ2e
χh−ρdist(x,M)ψh‖2

L2(Ω) .

where the constant c > 0 comes from Proposition 1.6.
On the other hand, by support considerations, we have

QNL
G,h(χ1e

χh−ρdist(x,M)ψh) = QNL
G,h(χ1ψh) .

But we notice that

QNL
G,h(χ1ψh) ≥ QG,h(χ1ψh)− λ(G, h, p)

∫
Ω
|χ1ψh|2|ψh|p−2 dx .

Since ψh is Lp-normalized and thanks to the Hölder inequality, we have∫
Ω
|χ1ψh|2|ψh|p−2 dx ≤ ‖χ1ψh‖2

Lp(Ω) .

Thus we have
(5.6) QNL

G,h(χ1e
χh−ρdist(x,M)ψh) ≥ 0 .

Combining (5.4), (5.5), (5.6) and again that χ = 0 on the support of χ1, we get

ch‖χ2e
χh−ρdist(x,M)ψh‖2

L2(Ω) ≤ C̃h2−2ρ‖ψh‖2
L2(Ω) .
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From this last estimate (and using again that ρ ∈
(
0, 1

2

)
), it follows that

‖eχh−ρdist(x,M)ψh‖2
L2(Ω) ≤ C‖ψh‖2

L2(Ω) .

Now, we come back with this information to (5.4) to deduce that

QNL
G,h(χ2e

χh−ρdist(x,M)ψh) ≤ C‖ψh‖2
L2(Ω) ,

and then, from (5.3), we get

QG,h(χ2e
χh−ρdist(x,M)ψh) ≤ Ch2−2ρ‖ψh‖2

L2(Ω) ≤ C̃h2−2ρ‖ψh‖2
Lp(Ω) , .

From the rough estimate QG,h(ψh) = λ(G, h, p) ≤ C and the localization formula, we
get

QG,h(χ1e
χh−ρdist(x,M)ψh) = QG,h(χ1ψh) ≤ C‖ψh‖2

Lp(Ω) .

By using again the localization formula, we have
QG,h(eχh

−ρdist(x,M)ψh) ≤ C‖ψh‖2
Lp(Ω) ,

and thus
‖eχh−ρdist(x,M)ψh‖Lp(Ω) ≤ Ch−γ‖ψ‖Lp(Ω) ,

for some γ > 0. The conclusion easily follows. �

6. Continuity estimates

In this section, we discuss different kinds of continuity results.

6.1. Continuity. The following proposition (jointly with Propositions 3.1 and 3.3)
implies the upper bound announced in Theorem 1.8.

Proposition 6.1. Here we consider a constant geometry Gx with x ∈ Ω and let
p ∈ (2, 2∗). We have the following continuity properties.
(i) The function x 7→ λ(Gx, 1, p) is continuous on Ω.
(ii) The function x 7→ λ(Gx, 1, p) is continuous on ∂Ω.
(iii) The function x 7→ λ(Gx, 1, p) is lower semi-continuous on Ω.

Proof. Let us consider (i). This is a consequence of the results in [2, 8]. Actually the
reader may also adapt the forthcoming proof of (ii) to get the continuity.

Let us now prove (ii). Without loss of generality, we may assume that Ω = Rd
+.

Indeed we can simply use a rotation (smooth with respect to x) and a change of
gauge to rotate the problem from the affine tangent space to the tangent vector
space.

Let us consider a point x∗ ∈ ∂Ω and a sequence (xn)n∈N ⊂ ∂Ω such that xn → x∗
when n goes to infinity. The proof is divided into two steps. First, it is rather easy
to get

lim sup
n→+∞

λ(Gxn , 1, p) ≤ λ(Gx∗ , 1, p) , for xn → x∗ ∈ ∂Ω ,

by using a minimizer associated with λ(Gx∗ , 1, p) as test function. Then, we shall
establish

lim inf
n→+∞

λ(Gxn , 1, p) ≥ λ(Gx∗ , 1, p) , for xn → x∗ ∈ ∂Ω .

This last inequality is slightly more subtle and uses the concentration-compactness
strategy.
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To simplify the notation, we denote QGxn ,1 = Qn and

λ(Gxn , 1, p) =: λ+
n , lim inf

n→+∞
λ+
n =: λ+

∗ ,

λ(Gxn , 1, p) =: λn , lim inf
n→+∞

λn =: λ∗ .

Let ψn be an Lp-normalized function such that.

Qn(ψn) = εn + λ+
n

with limn→+∞ εn = 0. We notice that by the positivity property (ii) in Assumption 1.5,
(ψn) is bounded in L2(Rd

+) and H1
loc(Rd

+). By diamagnetism and Sobolev embedding,
we infer that (|ψn|) is also bounded in H1(Rd

+). We are left with concentration-
compactness type arguments.
(a) Let us deal with the boundary vanishing.

Assume first that for all R > 0

lim
n→+∞

MR(ψn) = 0.

By Proposition 2.7, we have that for all R > 0

lim
n→+∞

‖ψn‖Lp(ΣR) = 0

Let us consider a quadratic partition of the unity

χ2
R,1 + χ2

R,2 = 1 ,

with suppχR,1 supported in a neighborhood of the boundary of size R and such
that

‖∇χR,1‖L∞ ≤
C

R
.

For n ≥ 1, we have, by the usual localization formula (and the fact that (ψn) is
bounded in L2),

Qn(ψn) ≥ Qn(χ̃R,1ψn) + Qn(χ̃R,2ψn)− C

R2 ≥ Qn(χ̃R,2ψn)− C

R2 .

Therefore, it follows that

λ+
n ≥ λn‖χR,2ψn‖2

Lp(Rd) −
C

R2 − εn .

We take the limit n→ +∞ and then R→ +∞,

lim inf
n→+∞

λ+
n ≥ lim

n→+∞
λn = λ∗ ≥ λ+

∗ .

This is the result that we want to prove.
(b) Let us now exclude the dichotomy. We consider the case when there exists R0 > 0

such that MR0(ψn) does not go to 0. Up to extraction and magnetic translations
parallel to ∂Rd

+, we may assume that (ψn)n≥1 weakly converges in H1
loc(Rd

+) and
in Lq(Rd

+) to some ψ∗ 6= 0 for all q ∈ [2, 2∗].
Assume by contradiction that α := ‖ψ∗‖pLp(Rd+) < 1. Let us again consider a

quadratic partition of the unity

χ̃2
R,1 + χ̃2

R,2 = 1 ,
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with supp χ̃R,1 ⊂ D(0, R) such that ‖∇χR,1‖L∞ ≤ C
R
. For all R ≥ R0 and n ≥ 1,

as previously, we have,

Qn(ψn) ≥ Qn(χ̃R,1ψn) + Qn(χ̃R,2ψn)− C

R2 − εn .

In particular, we get

λ+
n ≥ λ+

n

(
‖χ̃R,1ψn‖2

Lp(Rd+) + ‖χ̃R,2ψn‖2
Lp(Rd+)

)
− C

R2 − εn

≥ λ+
n

(
‖ψn‖2

Lp(BR∩Rd+)) + (1− ‖ψn‖pLp(B2R∩Rd+))
2
p

)
− C

R2 − εn .

Taking the limit n→ +∞ and then R→ +∞, we obtain

lim inf
n→+∞

λ+
n ≥ lim inf

n→+∞
λ+
n

(
α

2
p + (1− α)

2
p

)
.

This contradicts the concavity of α 7→ α
2
p so that ‖ψ∗‖pLp(Rd+) = 1

(c) Finally we consider the pre-compact case. We obtain then that (ψn) converges
strongly to ψ∗ in Lp(Rd

+). We also start with the localization formula

Qn(ψn) ≥ Qn(χ̃R,1ψn)− C

R2 .

By the weak convergence in H1
loc(Rd

+), we obtain for each R > 0

lim inf
n→∞

λ+
n ≥ Q∗(χ̃R,1ψ∗) ≥ λ+

∗ ‖χ̃R,1ψ∗‖2
Lp(Rd+) −

C

R2 .

Taking then the limit R→ +∞, we get:

lim inf
n→∞

λ+
n ≥ λ+

∗ .

This is the result that we want to prove.
Finally, concerning (iii), it is sufficient to combine (i) and (ii) with the fact that

∀x ∈ ∂Ω , λ(Gx, 1, p) ≤ λ(Gx, 1, p) . �

6.2. Sufficient conditions. In this section, we discuss some sufficient conditions
which ensure that Assumption 1.5 can be satisfied. These conditions are based on
the following non-degeneracy result.

Proposition 6.2. The bottom of the spectrum λ(B) of the Neumann Laplacian with
constant magnetic field on L2(Rd

+) satisfies

max
(
Θ0‖B‖‖2,Tr+B⊥

)
≤ λ(B) ,

where

B =
(

B⊥ B‖
−(B‖)T 0

)
,

and B‖ is a vector belonging to Rd−1 and B⊥ is an skew-symmetric matrix of size
d − 1. The constant Θ0 ∈ (0, 1) (sometimes called de Gennes constant, see for
instance [13, Chapter 4]) is the bottom of the spectrum of the Neumann magnetic
Laplacian on R2

+ when the magnetic field is constant equal to 1.
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Proof. Let us consider the rotations that preserve the xd-axis. They are in the form

Q =
(
Q 0
0 1

)
,

with Q ∈ SO(d − 1). Letting x = Qy, LA is unitarily equivalent to the following
operator acting on L2(Rd

+):(
−i∇y + Ã(y)

)2
, where Ã(y) = 1

2B̃y , B̃ = QTBQ .

It is clear that we may find a rotation that sends B‖ onto ‖B‖‖2ed−1 and we may
assume that Bkd = 0 for 1 ≤ k ≤ d− 2. We notice that

(6.1) Ã0(y‖) = Ã(y‖, 0) = 1
2Q

TB⊥Qy‖ .

The magnetic Laplacian is now in the form(
−i∇y + Ã(y)

)2
= (Dyd −

1
2B̃d d−1yd−1)2 + (Dyd−1 + Ãd−1)2 +

d−2∑
`=1

(Dy` + Ã`)2 ,

with
Ãd−1 = 1

2B̃d d−1yd + Âd−1 ,

where Âd−1 and (Ã`)1≤`≤d−2 are independent from yd. After a change of gauge, we
may consider the equivalent operator

L = D2
yd

+
(
Dyd−1 + B̃d d−1yd +

d−2∑
`=1

B̃`d−1y`

)2

+
d−2∑
`=1

(Dy` + Ã`(y1, . . . , yd−2, 0, 0))2 .

Therefore, there is no more dependence on yd−1. We may notice that, by definition,
the lower dimension magnetic Laplacian

L⊥ =
(
Dyd−1 +

d−2∑
`=1

B̃`d−1y`

)2

+
d−2∑
`=1

(Dy` + Ã`(y1, . . . , yd−2, 0, 0))2

admits B⊥ as magnetic matrix.
Then, we notice that, for all ψ in the domain of L, we have

〈Lψ, ψ〉L2(Rd+) ≥∫
(y1,...,yd−2)∈Rd−2

∫
(yd−1,yd)∈R2

+

|Dydψ|2+|(Dyd−1 +B̃d d−1yd+
d−2∑
`=1

B̃`d−1y`)ψ|2 dyd−1 dyd .

Thus, by using a partial change of gauge (for fixed (y1, . . . , yd−2)) to eliminate the
sum term, we infer that

〈Lψ, ψ〉L2(Rd+) ≥ Θ0|B̃d d−1|‖ψ‖2
L2(Rd+) = Θ0‖B‖‖2‖ψ‖2

L2(Rd+) .

In the same way, dropping the term in Dyd and canceling the term B̃d d−1yd by a
partial change of gauge, we find

〈Lψ, ψ〉L2(Rd+) ≥ Tr+B⊥‖ψ‖2
L2(Rd+) .

The conclusion follows by the min-max principle. �

We can now prove the following proposition.
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Proposition 6.3. We have the following sufficient conditions.
i. Point (i) in Assumption 1.5 is satisfied when V ≥ 0 and B does not vanish on

Ω.
ii. Point (ii) in Assumption 1.5 is satisfied when

inf
x∈∂Ω

λ((x + Tx(∂Ω) + R+n(x), Id, V (x),AL
x, 0), 1, 2) > 0

and if max
∂Ω

γ−(x) is small enough where γ−(x) = max(0,−γ(x)).
iii. Point (ii) in Assumption 1.5 is satisfied when V ≥ 0, B does not vanish on the

boundary and when max
∂Ω

γ−(x) is small enough.

Proof. The first point is obvious since Tr+ B(x) = 0 implies that B(x) = 0.
Let us now consider the second point. For x ∈ ∂Ω, we have, by the min-max

principle (and splitting the electro-magnetic energy into two equal parts), for all
ψ ∈ Dom(QGx,1),

QGx,1(ψ) ≥ c

2‖ψ‖
2
L2(Tx) + 1

2

∫
Tx
|(−i∇+AL

x)ψ|2 + V (x)|ψ|2 dy−m
∫
∂Tx
|ψ|2 dσ ,

where Tx = x + Tx(∂Ω) + R+n(x) and

c = inf
x∈∂Ω

λ(Tx, Id, V (x),AL
x, 0), 1, 2) , m = max

x∈∂Ω
γ−(x) .

Then, by using the diamagnetic inequality and Lemma 2.5, we have∫
∂Tx
|ψ|2 dσ ≤ ε

∫
Tx
|(−i∇+AL

x)ψ|2 dy + Cε−1‖ψ‖2
L2(Tx) .

Let us introduce M = max
x∈Ω
|V (x)|. It follows that

∫
∂Tx
|ψ|2 dσ ≤ ε

∫
Tx
|(−i∇+AL

x)ψ|2 + V (x)|ψ|2 dy + (εM + Cε−1)‖ψ‖2
L2(Tx) ,

and thus, for ε ∈
(
0, 1

2m

)
,

QGx,1(ψ) ≥
(
c

2 −Mmε−mCε−1
)
‖ψ‖2

L2(Tx) .

We choose ε = min
(

c
4mM ,

1
2m

)
and then m small enough to get

QGx,1(ψ) ≥ c

8‖ψ‖
2
L2(Tx) .

The conclusion follows.
To get the third assertion, we notice that, for all x ∈ ∂Ω,

λ((Tx, Id, V (x),AL
x, 0), 1, 2) ≥ λ(Bx) ≥ max

(
Θ0‖B‖x‖2,Tr+B⊥x

)
,

where we have used Proposition 6.2. Then, the lower bound is a continuous and
positive function of x on the compact set ∂Ω and we may apply the result of the
second point. �
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6.3. The Dirichlet case. In this section we discuss the existence of the minimizers
when Ω = Rd

+, V = 0, B is uniform, non-zero and when the boundary carries the
Dirichlet condition.

Proposition 6.4. Here d ≥ 3. Let us consider λ = λ((Rd
+, Id, 0,A,+∞), p, 1) with

A ∈ L(Rd) such that dA is not zero. Then λ is not attained. Moreover, if we let
λ = λ((Rd, Id, 0,A, 0), p, 1), then λ = λ.

Proof. We recall that we always have λ ≤ λ. Indeed λ is a minimum and any
associated minimizer has an exponential decay: it is sufficient to translate any
minimizer to infinity and use a cutoff function.

We next claim that λ ≥ λ. Indeed, if ϕ is a test function for the problem in Rd
+, we

extend ϕ by zero and denote by ϕ ∈ H1(Rd) its extension. We use ϕ as test function
for the quadratic form on Rd and get λ ≤ λ.

Let us assume that λ is attained for a function ψ ∈ H1
0(Ω) with ‖ψ‖Lp(Ω) = 1. Let

ψ ∈ H1(Rd) be the extension of ψ by 0. Therefore ψ is a minimizer associated with
λ and it vanishes on a non-empty open set. It also satisfies the elliptic equation (the
associated Euler-Lagrange equation):

(−i∇+ A)2ψ = λ|ψ|p−2ψ .

By Sobolev embedding, we have ψ ∈ L2∗(Rd), with 2∗ = 2d
d−2 . Let us consider any

bounded open set U ⊂ Rd. If 0 < d
2(p− 2) ≤ 2∗, we have, by the Hölder inequality,

|ψ|p−2 ∈ L d
2 (U). But d

2(p − 2) ≤ 2∗ is equivalent to p ≤ 2 + 4
d−2 = 2∗. Thus we

have |ψ|p−2 ∈ L
d
2
loc(Rd). From this and the fact that ψ ∈ L2∗(Rd) we get, with the

Hölder inequality, ψ ∈ L2
loc(Rd). We infer that ψ ∈ H2

loc(Rd). The assumptions of [35,
Theorem 1.1] are satisfied (since 2d

d+2 ≤ 2) so that the unique continuation property
holds for ψ. We deduce that ψ = 0 and this is a contradiction. �

7. Bidimensional waveguides

This section is devoted to the proof of Proposition 1.11.

7.1. Reduction to the straight waveguide. Let us first pull back the variable
geometry onto the homogeneous geometry.

Lemma 7.1. There exist h0, C > 0 such that for all h ∈ (0, h0) and for all ψ ∈
H1

0(Σh), we have the comparison

(1− Ch)h−1− 2
p
QΣ,a,h(ϕ)
‖ϕ‖2

Lp(Σ)
≤
∫
Σh |∇ψ|

2 dx
‖ψ‖2

Lp(Σh)
≤ (1 + Ch)h−1− 2

p
QΣ,a,h(ϕ)
‖ϕ‖2

Lp(Σ)
,

where ϕ(s, t) = a(s)
1
pψ(Φh(s, t)) and

QΣ,a,h(ϕ) =
∫

Σ
h2a1− 2

p |∂sϕ|2 + a−1− 2
p |∂tϕ|2 ds dt .

Proof. We notice that
dΦh = [(1− tkha)Γ′ + tha′n, han] .

so that
Gh = (dΦh)TdΦh =

(
(1− tkha)2 + h2a2t2 th2aa′

th2aa′ h2a2

)
.
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We get that |Gh| = detGh = a2h2(1 +O(h)). In the sense of quadratic forms, we
have

G−1
h = (1 +O(h))

(
1 0
0 h−2a−2

)
.

Thanks to the change of variables x = Φh(s, t), we deduce the following comparison:

(1− Ch)h−1Q̃Σ,a,h(ψ̃) ≤
∫

Σh
|∇ψ|2 dx ≤ (1 + Ch)h−1Q̃Σ,a,h(ψ̃) ,

where
Q̃Σ,a,h(ψ̃) =

∫
Σ
ah2|∂sψ̃|2 + a−1|∂tψ̃|2 ds dt .

In the same way, we get

(1− Ch)h
2
p

(∫
Σ
|ψ̃|pa ds dt

) 2
p

≤
(∫

Σ
|ψ|p dx

) 2
p

≤ (1 + Ch)h
2
p

(∫
Σ
|ψ̃|pa ds dt

) 2
p

.

We introduce the change of function ψ̃ = a−
1
pϕ so that

∫
Σ |ψ̃|pa ds dt =

∫
Σ |ϕ|p ds dt.

By a computation and an integration by parts, it follows that

Q̃Σ,a,h(ψ̃) =
∫

Σ
h2a1− 2

p |∂sϕ|2 + h2V (s)|ϕ|2 + a−1− 2
p |∂tϕ|2 ds dt ,

with
V (s) = 1

p2a
′2a−

2
p
−1 + 1

p
∂s
(
a′a−

2
p

)
.

Note that there exists c > 0 such that, for all h > 0,
Q̃Σ,a,h(ψ̃) ≥ c‖ϕ‖2

L2(Σ) ,

and that V ∈ L∞(R). We get
(1− Ch)QΣ,a,h(ϕ) ≤ Q̃Σ,h(ψ̃) ≤ (1 + Ch)QΣ,h(ϕ) . �

Therefore we are reduced to consider the minimization problem

minimize QΣ,a,h(ϕ)
‖ϕ‖2

Lp(Σ)
, for ϕ ∈ H1

0(Σ) .

7.2. Estimate of the normalized Sobolev quotient. We are now in position to
use the strategy developed in this paper on QΣ,a,h. Note here that we have a partially
semiclassical problem. First, we have to establish an upper bound for the Sobolev
quotient. For that purpose, we must freeze the height a to the maximal height amax,
attained at some point smax. We will need the following lemma.

Lemma 7.2. The Sobolev constant λDir(Σ, p) is attained. Any corresponding mini-
mizer has an exponential decay.

Proof. Once the Sobolev is attained, it is rather clear that the minimizers have an
exponential decay (see the proof of Proposition 2.10). The fact that the infimum
is attained is a consequence of a concentration-compactness investigation along the
s-axis: we are in the compactness case modulo translations parallel to the s-axis. �

Lemma 7.3. There exist h0, C > 0 such that, for all h ∈ (0, h0),

inf
ϕ∈H1(Σ),

ψ 6=0

QΣ,a,h(ϕ)
‖ϕ‖2

Lp(Σ)
≤ (1 + Ch2)h1− 2

pa
− 4
p

maxλDir(Σ, p) .
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Proof. Let us consider an Lp-normalized minimizer φ0 associated with the p-eigenvalue
λ(Σ, Id, 0, 0,+∞, 1, p) and introduce

ϕh(s, t) = φ0

(
a−1

max
s− smax

h
, t
)
.

We compute

QΣ,a,h(ϕh) = hamax

∫
Σ

{
a−2

maxa
1− 2

p

h |∂sφ0 (σ, t) |2 + a
−1− 2

p

h |∂tφ0 (σ, t) |2
}

dσ dt ,

with ah(σ, t) = a (smax + hamaxσ, t). Thanks to a Taylor expansion and to the
exponential decay of φ0, we get

QΣ,a,h(ϕh) ≤ (1 + Ch2)ha
− 2
p

maxλ(Σ, Id, 0, 0,+∞, 1, p) .

We also get (∫
Σ
|ϕh|p dσ dt

) 2
p

= h
2
pa

2
p
max .

The conclusion follows. �

Let us now deal with the lower bound.

Lemma 7.4. There exist h0, C > 0 such that, for all h ∈ (0, h0) and all ϕ ∈ H1
0(Σ),

QΣ,a,h(ϕ) ≥ (1− Ch 1
2 )h1− 2

pa
− 4
p

maxλDir(Σ, p)‖ϕ‖2
Lp(Σ) .

Proof. Let us use a “sliding” partition of the unity as in Section 4.1 but only with
respect to s (i.e. d = 1). We recall (4.2) and (4.3). By using the partition adapted
to ϕ, we have

QΣ,a,h(ϕ) ≥
∑
k∈Z

QΣ,a,h(χ̃[k]
α,ρ,hϕ)− D̃h2−α−ρ‖ϕ‖2

L2(Σ) ,

so that
QΣ,a,h(ϕ) ≥ (1− Ch2−α−ρ)

∑
k∈Z

QΣ,a,h(χ̃[k]
α,ρ,hϕ) .

Then, by a support consideration and a Taylor expansion, we get

QΣ,a,h(ϕ) ≥ (1− Ch2−α−ρ)(1− Chρ)
∑
k∈Z

QΣ,a(sk),h(χ̃[k]
α,ρ,hϕ) ,

so that, by rescaling and a straightforward comparison,

QΣ,a,h(ϕ) ≥ λDir(Σ, p)h1− 2
p (1− Ch2−α−ρ)(1− Chρ)

∑
k∈Z

a(sk)−
4
p‖χ̃[k]

α,ρ,hϕ‖2
Lp(Σ) .

Since a(sk)−
4
p ≥ a

− 4
p

max and by using that the partition is adapted to ϕ, we get

QΣ,a,h(ϕ) ≥ a
− 4
p

maxλDir(Σ, p)h1− 2
p (1− Ch2−α−ρ)(1− Chρ)(1− Chα−ρ)‖ϕ‖2

Lp(Σ) .

Optimizing the remainders, we find ρ = 1
2 and α = 1. �

We leave the proof of the corresponding localization estimates to the reader since
they follow from straightforward adaptations of the methods developed in this paper.
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8. Some perspectives

In this last section, we discuss some perspectives and open problems. There are
many possible directions to extend our investigation and we only select a few of them
in the next lines.

Firstly, it would be quite interesting to analyze the case of domains with cor-
ners. In the semiclassical regime, the strategy developed in [3] (for the case p = 2
and Neumann condition; see also [5] where the same strategy is used in the non-
magnetic Robin case) could likely apply to get semiclassical upper bounds (as in
Theorem 1.8). Nevertheless several modifications should be made (in particular
about the considerations involving a separation of variables or the Fourier transform).
The semi-continuity (see Proposition 1.7) in the Robin case and/or in dimension
higher than three does not seem to be obvious. For p = 2, it is only known for
the Neumann case with pure magnetic field in two and three dimensions (see [3]).
For p > 2, one should perform a concentration-compactness investigation along the
singular chains. For the lower bound, the adaptations should be easier (with a change
of the localization scale near the conical singularities). Even in the case without
magnetic field, it would be quite interesting to analyze the p-eigenvalue λ(G, 1, p)
when G = (U, Id, 1, 0, c) and where U is a dihedral. It seems that the question to
know if λ(G, 1, p) is attained is open (and the answer should strongly depend on c as
we guess from Proposition 2.12).

Secondly, the waveguide situation could be extended to general partially semi-
classical problems. For instance, one could first consider a partially semiclassical
and pure electric interaction in Rd. Many inhomogeneous situations lead to this
kind of limit (especially in the case with magnetic field as we see in [4]). In the
waveguides framework, the description of curvature effects on the asymptotics of
p-eigenvalues seems to be an open area (for p = 2, it is known to play a role in the
lower order terms). In the case of waveguides of uniform width, we do not even know
if the energy of the nonlinear groundstate is strictly less than the nonlinear energy at
infinity. These curvature effects on the p-eigenvalues in magnetic/Robin situations
would be interesting as well, especially if we imagine that the non-linearity (p > 2)
amplifies the localization properties of the linear groundstates.
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