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ON THE ESSENTIAL SPECTRUM OF N-BODY HAMILTONIANS WITH
ASYMPTOTICALLY HOMOGENEOUS INTERACTIONS

June 11, 2015

VLADIMIR GEORGESCU AND VICTOR NISTOR

ABSTRACT. We determine the essential spectrum ofN -body Hamiltonians with2-body
(or, more generally,k-body) potentials that have radial limits at infinity. The classical
N -body Hamiltonians appearing in the well known HVZ-theoremare a particular case of
this type of potentials corresponding to zero limits at infinity. Our result thus extends the
HVZ-theorem that describes the essential spectrum of the usual N -body Hamiltonians.
More precisely, if the configuration space of the system is a finite dimensional real vector
spaceX, then letE(X) be theC∗-algebra of functions onX generated by the algebras
C(X/Y ), whereY runs over the set ofall linear subspacesof X andC(X/Y ) is the space
of continuous functions onX/Y that have radial limits at infinity. This is the algebra used
to define the potentials in our case, while in the classical case theC(X/Y ) are replaced
by C0(X/Y ). The proof of our main results is based on the study of the structure of the
algebraE(X), in particular, we determine its character space and the structure of its cross-
productE (X) := E(X) ⋊ X by the natural actionτ of X on E(X). Our techniques
apply also to more general classes of Hamiltonians that havea many-body type structure.
We allow, in particular, potentials with local singularities and more general behaviours at
infinity. We also develop general techniques that may be useful for other operators and
other types of questions, such as the approximation of eigenvalues.
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1. INTRODUCTION

Let X be a finite dimensional, real vector space. In this paper, we study Hamiltonians of
the form

H := h(p) +
∑

Y

vY ◦ πY , (1.1)

whereh : X∗ → R is a continuous proper function,p is the momentum observable,πY is
the canonical projection ofX onto the quotient spaceX/Y , andvY is a suitable function
on X/Y . The precise assumptions are given below. Our results lead,in particular, to a
determination of the essential spectrum ofH and of some more general operators. We also
develop general techniques that may be useful for the study of other operators and of other
types of questions, such as the approximation of eigenvalues.

To give a flavor of the nature of our results, let us state now one of our main results in
its most elementary form. LetX∗ denote the space dual toX , let F denote the Fourier
transformL2(X) → L2(X∗), and letMh denote the operator of multiplication byh. Then
h(p) is the operator onL2(X) defined by

h(p) := F−1MhF . (1.2)

Recall that a functionh : X∗ → R is said to beproper if h(k) → ∞ for k → ∞.
Throughout this paper,h : X∗ → R will be an arbitrary proper, continuous function.

Assume that, for each subspaceY ⊂ X , a bounded Borel functionvY : X/Y → R is
given such thatvY = 0 for all but a finite number of subspacesY . We also assume that
limr→+∞ vY (ra) exists uniformly fora in a compact subset ofX/Y r {0}. Let us denote
â := {ra, r > 0}, with a ∈ X . ThenSX is defined to be the set of half-lines inX , that is

SX := { â, a ∈ X, a 6= 0 } . (1.3)

Forx ∈ X , we denote byTx the unitary translation operator onL2(X) defined by

(Txf)(y) := f(y − x) . (1.4)

We also denote by∪Sα theclosure of the unionof a family of sets{Sα} andVY := vY ◦πY .
In the following result, we assume that the potentials are bounded only for the sake of
simplicity.

Theorem 1.1. LetH := h(p) +
∑

Y VY , with h andVY as above. Then the strong limit
â.H := s-lim

r→+∞
T ∗
raHTra exists for anya ∈ X and the essential spectrum ofH is given by

σess(H) = ∪α∈SXσ(α.H) . (1.5)

For eachα, we haveσ(α.H) = [Eα,∞), for some realEα, andσess(H) = [infα Eα,∞).

The strong limit in the above theorem is defined in the usual sense of pointwise conver-
gence on the domain ofH (which is left invariant by theTra under the present assump-
tions). Operators the form (1.1) (and hence also Theorem1.1 and its generalizations)
cover many of the most interesting (from a physical point of view) Hamiltonians ofN -
body systems. Here are two typical examples. First, in the non-relativistic case,X is
equipped with a Euclidean structure and a popular choice forh is h(ξ) = |ξ|2, which gives
h(p) = −∆, the positive Laplacian. Second, in the simplest relativistic case, we have
againX = (R3)N and, writing the momentump asp = (p1, . . . , pN), a popular choice
for h ish(p) =

∑N
j=1(p

2
j+m2

j)
1/2 for some realmj. We refer to [10] for a thorough study

of the classical spectral and scattering theory of the non-relativisticN -body Hamiltonians
with potentialsvY that tend to zero at infinity.

In the main body of the paper, by using crossed-products ofC∗-algebras, we shall obtain
results more general than Theorem1.1 in several ways. For example, we shall consider
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also the case when an infinite number of non zero functionsvY is allowed. Also, we shall
allow for some unbounded functionsvY .

Theorem1.1may be reformulated in a way that stresses the similarity with the HVZ the-
orem for usualN -body type Hamiltonians. To this end, we shall use the fact that, if
α = â 6⊂ Y , thenπY (α) ∈ SX/Y is well defined as the half-line determined by the non
zero vectorπY (a) and we may naturally define

VY (α) = lim
r→+∞

vY (πY (ra)) .

Proposition 1.2. For eachα ∈ SX , let

Hα := h(P ) +
∑

Y ⊃α

VY +
∑

Y 6⊃α

VY (α) . (1.6)

Thenα.H = Hα, and henceσess(H) = ∪α∈SXσ(Hα).

In our approach, the usualN -body type Hamiltonians are characterized by the condition
thatlimr→+∞ vY (ra) = 0 for all a ∈ X/Y, a 6= 0. Assuming that this condition holds for
our potentialsvY , we obtain thatα.H = h(P ) +

∑
Y ⊃α VY , and hence Proposition1.2

becomes the usual version of the HVZ theorem.

Descriptions of the essential spectrum of various classes of self-adjoint operators in terms
of limits at infinity of translates of the operators have already been obtained before, see for
example [23, 33, 17, 25] (in historical order). Our approach is based on the “localization
at infinity” technique developed in [17, 18] in the context of crossed-productC∗-algebras.
See [7, 8, 34] for a general introduction to the basics of the problems studied here.

1.1. Statement of main results.We introduce now a framework which allows us to define
and classifyN -body Hamiltonians in terms of the complexity of the2-body interactions.

If X is a finite dimensional vector space, we denote byCb(X) the algebra of bounded
continuous functions onX , byC0(X) its ideal consisting of functions vanishing at infinity,
and byCu

b(X) the subalgebra of boundeduniformly continuousfunctions. LetB(X) :=
B(L2(X)) be the algebra of bounded operators onL2(X) andK (X) := K(L2(X)) the
ideal of compact operators.

If Y is a subspace ofX , we identify a functionf on X/Y with the functionf ◦ πY

on X . In other terms, we can think of a function onX/Y as being a function onX
that is invariant under translations by elements ofY . This clearly gives an embedding
Cu
b(X/Y ) ⊂ Cu

b(X). The subalgebras ofCu
b(X/Y ) can then be thought of as subalgebras

of Cu
b(X). ThusC0(X/Y ) and the algebraC(X/Y ) that we shall introduce below are both

embedded inCu
b(X).

Assume that, for each finite dimensional real vector spaceE, a norm closed, translation and
conjugation invariant subalgebraP(E) of Cu

b(E) has been specified (the letterP should
suggest “potentials”). Our assumptions onP(E) simply mean that it is aC∗-subalgebra
of Cu

b(E). Then, for each subspaceY ⊂ X , we get a translation invariant subalgebra
P(X/Y ) ⊂ Cu

b(X). Let us denote by〈Aα, α ∈ I 〉 the norm closed subalgebra generated
by a family{Aα}α∈I of setsAα ⊂ Cu

b(X). Then we let

RP (X) := 〈 P(X/Y ), Y ⊂ X〉 and RP(X) := RP (X)⋊X . (1.7)

ThusRP(X) is the norm-closed subalgebra ofCu
b(X) generated by theP(X/Y ), where

Y runs over the set ofall linear subspacesof X . It is also a translation invariantC∗-
subalgebra ofCu

b(X). We shall regard the crossed productRP(X) := RP(X) ⋊X , as a
C∗-subalgebra ofB(X). Its structure will play a crucial role in what follows. For instance,
for our approach, it will be convenient to assume thatC0(E) ⊂ P(E) andP(0) = C.
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ThenRP(X) containsC∗(X) (groupC∗-algebra) andK (X), sinceC0(X) ⊂ P(X) and
C0(X)⋊X = K (X).

For reasons that will become apparent below, it will be natural to callRP (X) thealgebra
of elementary interactions of typeP andRP(X) := RP(X) ⋊ X the algebra ofN -
body type Hamiltonians with interactions of typeP . Indeed,RP(X) is theC∗-algebra of
operators onL2(X) generated by the resolvents of the self-adjoint operators of the form
h(p) + V , with h : X∗ → R+ continuous and proper, andV ∈ RP(X) [18, Proposition
3.3]. More generally, theN -body Hamiltonians with interactions of typeP that are of
interest in this context are the self-adjoint operators affiliated toRP(X).

The “standard”N -body situation, as described for example in [9, Sec. 4] and [18, Sec.
6.5], corresponds to the choiceP(E) = C0(E), the subalgebra of continuous functions on
E that vanish at infinity. The algebra of elementary interactionsRP(X) = RC0

(X) in this
case has a remarkable feature: it is graded by the ordered setof all linear subspaces ofX ,
more preciselyRC0

(X) is the norm closure of
∑

Y⊂X C0(X/Y ). This sum is direct and
we haveC0(X/Y )C0(X/Z) ⊂ C0(X/(Y ∩ Z). Let RC0

(X) the corresponding algebra
of N -body Hamiltonians with interactions of typeC0, which inherits a gradedC∗-algebra
structure [27, 28]. The standardN -body Hamiltonians are self-adjoint operators affiliated
to RC0

(X), and their analysis is greatly simplified by the existence ofthe grading.

For any real vector spaceE, let us denote byE the spherical compactification ofE and by
C(E) = C(E). Our main goals in this paper is to consider the larger class of interactions
P(E) = C(E) and to analyze theN -body Hamiltonians associated to them. We thus
consider potentials that have radial limits at infinity. To make the notation clearer, when
P(E) = C(E), we shall denote

E(X) := RC(X) := 〈 C(X/Y ), Y ⊂ X〉 ⊂ Cu
b(X) , Y ⊂ X . (1.8)

One of the main difficulties whenP(E) = C(E) = C(E) comes from the absence of a
grading of the resulting algebraE(X) of elementary interactions, which requires more care
in understanding its spectrum. We denoteE (X) = E(X) ⋊X = RC(X) the associated
C∗-algebra ofN -body type Hamiltonians with interactions of typeC. Another natural
choice, which would give an even larger class of elementary interactions and ofN -body
type Hamiltonians, is to take asP(E) the algebra of slowly oscillating functions onE,
a class of functions whose importance has been pointed out byH.O. Cordes [18, Sec.
6.2]. The general algebrasR(X) andR(X) will not be used in this paper, but rather their
particular versionsE(X) andE (X) obtained by specializingP(X) = C(X) = C(X).

A crucial observation is then thatE (X) contains the idealC0(X) ⋊X ≃ K (X), where
we recall thatK (X) denotes the ideal of compact operators onL2(X). The algebraE (X)
also contains theC∗-algebraS (X) := C(X)⋊X consisting of two-body type operators;
we call it thespherical algebra. For eachα ∈ SX we shall denote by[α] the linear
subspace (a line in this case) that it generates. An algebra that will play a role in the theory
is the algebraE(X/[α]) defined for eachα ∈ SX by

E(X/[α]) = C∗-subalgebra ofCu
b(X) generated byC(X/Y ) with α ⊂ Y . (1.9)

We recall that a self-adjoint operatorH on a Hilbert spaceH is affiliated to aC∗-algebra
C ⊂ B(H) if (H − z)−1 ∈ C for some numberz outside the spectrum ofH . This notion
and the meaning of the strong limit which definesτα(H) below are further discussed at the
end of Section2, see Remark2.9. The next theorem is the main result of this paper.

Theorem 1.3. Let A ∈ E (X) see1.8. Then, for eachα ∈ SX and a ∈ α, the limit
α.A := s-limr→+∞ T ∗

raATra exists and is independent of the choice ofa. The resulting
mapτα(A) := α.A is a morphism of algebras and a linear projection ofE (X) onto its
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subalgebraE (X/[α]). An operatorA ∈ E (X) is compact if, and only if,τα(A) = 0 for
all α ∈ SX . Consequently,τ(A) :=

(
τα(A)

)
α∈SX

induces an injective morphism

E (X)/K (X) →֒ ∏
α∈SX

E(X/[α])⋊X . (1.10)

If H is a self-adjoint operator affiliated toE (X) then for eachα ∈ SX anda ∈ α the limit
α.H = s-limr→+∞ T ∗

raHTra exists andσess(H) = ∪α∈SXσ(α.H).

Remark 1.4. The union above may contain an infinite number of distinct termsσ(α.H)
even in simple cases ofN -body type. For example, this is the case ifH = ∆+ V with ∆
the Laplacian associated to an Euclidean structure onX andV ∈ E(X) and also ifV is a
generic element of the closed subalgebra generated by theC0(X/Y ). We give a simple but
nontrivial explicit example: letX = R2,Y a countable set of lines whose union is dense in
X , for eachY ∈ Y let vY ∈ C(X/Y ) such that

∑
Y sup |vY | < ∞, andV =

∑
Y vY ◦πY .

We give now examples of self-adjoint operators affiliated toE (X). If k ∈ X∗ we denote
Mk the unitary operator onL2(X) given by (Mkf)(x) = ei〈x|k〉f(x). We denote| · |
a quadratic norm onX∗. Theorem1.1 is an immediate consequence of the following
proposition and of Theorem1.3.

Proposition 1.5. Let H = h(p) + V , whereh : X∗ → [0,∞) is a continuous, proper
function andV =

∑
Y VY is a finite sum withVY bounded symmetric linear operators on

L2(X) satisfying:

(i) limk→0 ‖[Mk, VY ]‖ = 0,
(ii) [Ty, VY ] = 0 for all y ∈ Y ,
(iii) s-lima∈X/Y,a→α T ∗

aVY Ta exists for eachα ∈ SX/Y .

ThenH is affiliated toE (X).

We have to explain the meaning of the limit in (3) above. We have α ∈ SX/Y , which

is the boundary ofX/Y in its compactificationX/Y . Note also thatT ∗
xVY Tx depends a

priori on the pointx in X , and henceT ∗
aVY Ta makes no sense in general fora ∈ X/Y .

However, if the condition (2) is satisfied, thenT ∗
xVY Tx depends, in fact, only on the class

πY (x) of x in the quotientX/Y . Therefore we may setT ∗
πY (x)VY TπY (x) = T ∗

xVY Tx

which gives a meaning toT ∗
aVY Ta for anya ∈ X/Y .

We now discuss a result that allows for certain unbounded interactions. We shall denote by
Hs = Hs(X) the usual Sobolev spaces onX defined for any reals.

Theorem 1.6. Let h : X∗ → [0,∞) be locally Lipschitz with derivativeh′ such that for
some real numbersc, s > 0 and allk ∈ X∗ with |k| > 1 one has:

c−1|k|2s ≤ h(k) ≤ c|k|2s and |h′(k)| ≤ c
(
1 + |k|2s

)
. (1.11)

LetV =
∑

VY be a finite sum withVY : Hs → H−s symmetric operators satisfying:

(i) for eachµ > 0 there is a real numberν thatVY ≥ −µh(p)− ν,
(ii) limk→0 ‖[Mk, VY ]‖Hs→H−s = 0,
(iii) [Ty, VY ] = 0 for all y ∈ Y ,
(iv) s-lima∈SX/Y ,a→α T ∗

aVY Ta exists inB(Hs,H−s) for all α ∈ SX/Y .

Thenh(p)+V is a symmetric operatorHs → H−s, which induces a self-adjoint operator
H in L2(X) affiliated toE (X).

For the case whenVY are multiplication operators, we obtain the following.
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Remark 1.7. If VY is the operator of multiplication with a measurable function, then Con-
dition (2) of Theorem1.6is automatically satisfied. On the other hand, Condition (3)gives
thatVY (x + y) = VY (x) for all x ∈ X andy ∈ Y . This means thatVY = vY ◦ πY

for a Borel measurable functionvY : X/Y → R, which has to be such that the operator
of multiplication byvY ◦ πY is a continuous mapHs(X) → H−s(X). For this it suf-
fices that the operatorvY (qY ) of multiplication byvY be a continuous mapHs(X/Y ) →
H−s(X/Y ). The last condition then states thats-lima→α vY (qY + a) exists strongly in
B
(
Hs(X/Y ),H−s(X/Y )

)
.

Recall that a “two-body interaction”is a potentialV = V (qi − qj), that thus depends only
on the relative positionsqi andqj of the particlesi andj. We thus see that our interactions
are not necessarily two-body interactions but they are general k-body interactions.

Example 1.8. Let us assume thatX = Rn and letj = (j1, . . . , jn) be a multi-index.
Then we set|j| = j1 + · · · + jm andpj = pj11 . . . pjnn with p1 = −i∂1, etc. Theorem
1.6covers uniformly elliptic operatorsH =

∑
|j|,|k|≤s p

jajkp
k whose coefficientsajk are

finite sums of functions of the formvY ◦ πY with vY : X/Y → R bounded measurable
and such thatlimz→α vY (z) exists for eachα ∈ SX/Y . Note that we may allow theajk to
be irregular (just bounded and measurable) in the principalpart of the operator (terms with
|j| = |k| = s). Clearly the coefficients of the lower order terms can be unbounded.

It is remarkable that the spherical algebraS (X) := C(X)⋊X may be described in quite
explicit terms. In the next theorem and in what follows, we adopt the following convention:
if we write S(∗) in a relation, then it means that that relation holds forS(∗) replaced by
eitherS or S∗.

Theorem 1.9. The spherical algebraS (X) := C(X) ⋊ X consists of the operators
S ∈ B(X) that have the properties

lim
x→0

‖(Tx − 1)S(∗)‖ = 0 , lim
k→0

‖[Mk, S]‖ = 0 , and

s-lim
a→α

T ∗
aS

(∗)Ta exists for any α ∈ SX .

If S ∈ S (X) andα ∈ SX thens-lima→α T ∗
aSTa = τα(S) andτα(S) ∈ C∗(X). The map

τ(S) : α 7→ τα(S) is norm continuous, soτ : S (X) → C(SX)⊗ C∗(X). This mapτ is
a surjective morphism and its kernel is theK (X). Hence we have a natural identification

S (X)/K (X) ∼= C(SX)⊗ C∗(X) ∼= C0(SX ×X∗) . (1.12)

Let H be a self-adjoint operator affiliated toS (X). Then for eachα ∈ SX the limit
α.H := s-lima→α T ∗

aHTa exists andσess(H) = ∪ασ(α.H).

The next result is a general criterion of affiliation toS (X) for semi-bounded operators.

Theorem 1.10.LetH be a bounded from below self-adjoint operator onL2(X) such that
its form domainG satisfies the following condition: the operatorsTx andMk leaveG
invariant, the operatorsTx are uniformly bounded inG, andlimx→0 ‖Tx − 1‖G→H = 0.
Assume that‖[Mk, H ]‖G→G∗ → 0 ask → 0 and that the limitα.H := lima→α T ∗

aHTa

exists strongly inB(G,G∗), for all α ∈ SX . ThenH is affiliated toS (X), for eachα ∈ SX
the operator inL2(X) associated toα.H is self-adjoint, andσess(H) = ∪ασ(α.H).

Observe that these two-body type results go beyond the usualSchrödinger operator frame-
work hence could be useful in the study of dispersive partialdifferential equations, see for
example the recent preprint [4] and references therein.

Let us notice an important difference between Theorems1.3 and1.10. In the first men-
tioned theorem, one considers limits overra, with r → ∞, that is limits along rays,
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whereas in the second mentioned theorem, one considers general limits a → α (not just
along the ray corresponding toα). The stronger assumptions in Theorem1.10then lead to
a stronger result.

1.2. Contents of the paper. Let us briefly describe the contents of the paper. In Section2
we recall some facts concerning crossed products of translation invariantC∗-subalgebras
of Cu

b(X) by the action ofX and the role of operators with the “position-momentum limit
property” in this context. Then we discuss the question of the computation of the quo-
tient with respect to the compacts of such crossed products.In Section3 we briefly de-
scribe the topology and the continuous functions on the spherical compactificationX of
a real vector spaceX . This allows us to introduce and study in Section4 the spherical
algebraS (X) := C(X) ⋊ X . We obtain an explicit description of the operators which
belong toS (X) (Theorem4.2) and we also give an explicit description of the quotient
S (X)/K (X) (Theorem4.3). The canonical composition series of this algebra leads to
Fredholm conditions and a determination of the essential spectrum of the operators affil-
iated to it. In Section5 we give some general criteria for a self-adjoint operator tobe
affiliated to a generalC∗-algebra and apply them to the case ofS (X). The algebrasE(X)
andE (X) are studied in Section6. At a technical level the main result here is the descrip-
tion of the spectrum ofE(X) (Theorem6.14). Subsection6.3 is devoted to the study of
the Hamiltonian algebraE (X): we prove there our main results, Theorems6.18and6.21.
In Subsection6.4, we describe a general class of operators affiliated toE (X) (Theorem
6.28), for which we thus obtain an explicit description of the essential spectrum. Note
that Theorem6.24gives a description of the algebrasC(X/Y ) ⋊ X that generateE (X)
independent of their definition as crossed products.

This paper contains the full proofs of the results announcedin [19], as well as some exten-
sions of those results. Further results, especially related to the topology on the spectrum of
the algebraE(X), will be included in [20].

1.3. Acknowledgments. We thank B. Ammann and N. Prudhon for useful discussions.

2. CROSSED PRODUCTS AND LOCALIZATIONS AT INFINITY

In this section, we review some needed results from [18] relating essential spectra of oper-
ators and the spectrum (or character space) of some algebras.

For any functionu, we shall denote byMu the operator of multiplication byu on suitable
L2 spaces. Ifu : X → C andv : X∗ → C are measurable functions, thenu(q) andv(p)
are the operators onL2(X) defined as follows:u(q) = Mu, the multiplication operator by
u, andv(p) = F−1MvF , whereF is the Fourier transformL2(X) → L2(X∗). If x ∈ X
andk ∈ X∗, then the unitary operatorsTx andMk are defined onL2(X) by

(Txf)(y) := f(y − x) and (Mkf)(y) := ei〈y|k〉f(y) , (2.1)

and can be written in terms ofp andq asTx = e−ixp andMk = eikq.

We shall denote byC∗(X) the groupC∗-algebraof X : this is the closed subspace of
B(X) generated by the operators of convolution with continuous,compactly supported
functions. The mapv 7→ v(p) establishes an isomorphism betweenC0(X∗) andC∗(X).
We shall need the following general result about commutativeC∗-algebras. LetA be a
commutativeC∗-algebra andÂ be its spectrum (or character space), consisting of non-
zero algebra morphismsχ : A → C. Then the Gelfand transformΓA : A → C0(Â)
is defined byΓA(u)(χ) := χ(u) and is an isometric algebra isomorphism. In particular,
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any commutativeC∗-algebra is of the formC0(Ω) for some locally compact space (up to
isomorphism). The characters ofC0(Ω) are of the formχω, ω ∈ Ω, where

χω(u) := u(ω) u ∈ C0(Ω) . (2.2)

If X acts on aC∗-algebraA by automorphisms, we shall denote byA ⋊ X the cross-
product algebra, see [32, 38]. Here the real vector spaceX is regarded as a locally compact,
abelian group in the obvious way. Recall [17] that if A is a translation invariantC∗-
subalgebra ofCu

b(X), then an isomorphic realization of the cross-product algebraA⋊X is
the norm closed linear subspace ofB(X) generated by the operators of the formu(q)v(p),
whereu ∈ A andv ∈ C0(X∗). As a rule, we shall denote byτa the action ofa ∈ X on
our algebras of functions.

Definition 2.1. LetA ∈ B(X). We say thatA has the position-momentum limit property
if limx→0 ‖(Tx − 1)A(∗)‖ = 0 andlimk→0 ‖[Mk, A]‖ = 0.

A characterization of operators having the position-momentum limit property in terms of
crossed products was given in [17]: it is shown thatA has the position-momentum limit
property if, and only if,A ∈ Cu

b(X)⋊X .

If A is an operator onL2(X), then its translation byx ∈ X is defined by the relation

τx(A) := T ∗
xATx . (2.3)

The notationx.A := τx(A) will often be more convenient. Ifu is a function onX we
also denoteτx(u) ≡ x.u its translation given by(x.u)(y) = u(x + y). The notations are
naturally related:τx(u(q)) = (x.u)(q) ≡ u(x+ q). Note thatτx(v(p)) = v(p).

By “point at infinity” of X , we shall mean a point in the boundary ofX in a certain
compactification of it. We shall next definethe translation by a point at infinityχ for
certain functionsu and operatorsS defined onX . This construction will be needed for the
description of the essential spectrum of operators of interest for us.

Let us fix a translation invariantC∗-algebraA of bounded uniformly continuous functions
onX containing the functions that have a limit at infinity:C0(X) +C ⊂ A ⊂ Cu

b(X). We
denoteÂ its character space (that is, the space of non-zero algebra morphismsA → C).
ThenÂ is a compact topological space (for the weak topology). To everyx ∈ X , there is
associated the characterχx, defined byχx(u) := u(x) for u ∈ A (recall Equation2.2).
SinceC0(X) ⊂ A ⊂ Cu

b(X), X is naturally embedded as an open dense subset inÂ. Thus
Â is a compactification ofX and

δ(A) := Â \X , (2.4)

theboundaryof X in this compactification, is a compact set that can be characterized as
the set of charactersχ of A whose restriction toC0(X) is equal to zero.

Let us recall that ifx, y ∈ X , then(x.u)(y) = u(x + y) = χx(y.u). If u ∈ A, we extend
the definition ofx.u by replacing in this relationχx with a characterχ ∈ Â.

Definition 2.2. Letu ∈ A andχ ∈ Â. Then we define

(χ.u)(y) := χ(y.u) , ∀y ∈ X .

Sinceu ∈ Cu
b(X) (i.e. it is uniformly continuous), it is easy to check thatτχ(u) := χ.u ∈

Cu
b(X) and thatτχ : A → Cu

b(X) is a unital morphism. We will say thatτχ is themorphism
associated to the characterχ. We note that if the characterχ corresponds tox ∈ X , then
τχ = τx, so our notation is consistent.

In particular, we get “translations at infinity” ofu ∈ A by elementsχ ∈ δ(A). The
functionχ 7→ χ.u ∈ Cu

b(X) defined onÂ is continuous ifCu
b(X) is equipped with the
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topology of local uniform convergence, henceχ.u = limx→χ x.u in this topology for any
χ ∈ δ(A). One hasu ∈ C0(X) if, and only if,χ.u = 0 for all χ ∈ δ(A). We mention that
a translationχ.u by a point at infinityχ ∈ δ(A) does not belong toA in general. However,
we shall see that this is true in the caseA = E(X) of interest for us, so in this caseτχ is
an endomorphism ofA.

If A ∈ A ⋊ X , then we may also consider “translations at infinity”τχ(A) by elements
χ of the boundaryδ(A) of X in Â and we get a useful characterization of the compact
operators. The following facts are proved in [18, Subsection 5.1].

Proposition 2.3. For eachχ ∈ Â, there is a unique morphismτχ : A⋊X → Cu
b(X)⋊X

such that

τχ(u(q)v(p)) = (χ.u)(q)v(p) , for all u ∈ A, v ∈ C0(X) .

If A ∈ A⋊X , thenχ 7→ τχ(A) is a strongly continuous map̂A → B(X).

As before, we often abbreviateτχ(A) = χ.A. This gives a meaning to the translation by
χ of any operatorA ∈ A⋊X and any characterχ ∈ Â. Observe thatχ 7→ χ.A is justthe
continuous extension tôA of the strongly continuous mapX ∋ x 7→ x.A. In particular,

τχ(A) = s-lim
x→χ

T ∗
xATx for all A ∈ A⋊X and χ ∈ δ(A) . (2.5)

We haveK (X) = C0(X)⋊X ⊂ A⋊X . Then [18, Theorem 1.15] gives:

Theorem 2.4. An operatorA ∈ A⋊X is compact if, and only if,τχ(A) = 0 ∀χ ∈ δ(A).
In other terms:∩χ∈δ(A) ker τχ = K (X). The mapτ(A) = (τχ(A))χ∈δ(A) induces an
injective morphism

A⋊X/K (X) →֒ ∏
χ∈δ(A) Cu

b(X)⋊X. (2.6)

Remark 2.5. We emphasize the relation between this result and some factsfrom the the-
ory of crossed products. The operation of taking the crossedproduct by the action of
an amenable group transforms exact sequences in exact sequences [38, Proposition 3.19]
hence we have an exact sequence

0 → C0(X)⋊X → A⋊X → (A/C0(X))⋊X → 0 . (2.7)

SinceC0(X) ⋊ X ≃ K(X) we getA ⋊ X/K (X) ≃
(
A/C0(X)

)
⋊ X which reduces

the computation of the quotientA ⋊ X/K (X) to the description ofA/C0(X) which
is isomorphic toC(δ(A)). Moreover, we haveτχ = τχ ⋊ idX where the morphisms
τχ on the right hand side are those corresponding toA. We complete this remark by
noticing that ifχ andχ1 are obtained from each other by a translation byx ∈ X , then the
corresponding morphismsτχ andτχ1

are unitarily equivalent by the unitary corresponding
to x. In particular, in the above theorem and in the following corollary, it suffices to use
oneχ from each orbit ofX acting onδ(X).

Remark 2.6. Let us notice that in view of the results in [11, 38], the above theorem pro-
vides nontrivial information on the cross-product algebraC(δ(A)) ⋊X , and hence on the
action ofX on δ(A). It would be interesting to study the corresponding properties for
a general Lie groupG acting onCu

b(G). Morphisms analogous to theτχ can be defined
also in a groupoid framework [26, 30], but they do not have a similar, simple interpreta-
tion as strong limits. It would be interesting to understandthe connections between the
above theorem and the representation theory of groupoids [6, 7, 12, 24, 35]. Moreover,
several important examples of non-compact manifolds that arise in other problems lead to
groupoids that arelocally of the form studied in this paper (but possibly replacingX by a
general Lie groupG, see [21, 22, 29] and many other papers).
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Let A be a bounded operatorA. We shall say, by definition, thatλ /∈ σess(A) if, and only
if, A− λ is Fredholm. For self-adjoint operators, this is equivalent to the usual definition.
It means that the imagêA− λ of A − λ in the quotientB(X)/K (X) is invertible. So
σess(A) = σ(Â). On the other hand, the spectrum of anormal operator in a product of
C∗-algebras is equal to the closure of the union of the spectra of its components. Thus the
theorem above gives right away the following corollary.

Corollary 2.7. If A ∈ A⋊X is a normal operator thenσess(A) = ∪χ∈δ(A)σ(τχ(A)).

If A ∈ B(X), then the element̂A ∈ B(X)/K (X) may be calledlocalization at infinity
of A. If A ∈ A ⋊ X , then its localization at infinity can be identified with the element
τ(A) = (τχ(A))χ∈δ(A). Then the componentτχ(A) ∈ Cu

b(X) ⋊X is calledlocalization
of A at χ ∈ δ(A). Thusthe essential spectrum ofA ∈ A ⋊X is the closure of the union
of the spectra of all its localizations at infinity, where the “infinity” is determined byA.

We extend now the notion of localization at infinity and the formula for the essential spec-
trum to certain self-adjoint operators related toA⋊X . Recall that a that a self-adjoint op-
eratorH on a Hilbert spaceH is affiliated to aC∗-algebraC ⊂ B(H) if (H − z)−1 ∈ C

for some numberz outside the spectrum ofH . Clearly this impliesϕ(H) ∈ C for all
ϕ ∈ C0(R). We shall make some more comments on this notion after the next corollary.

Corollary 2.8. If H is a self-adjoint operator onL2(X) affiliated toA⋊X then for each
χ ∈ δ(A) the limitτχ(H) := s-limx→χ T

∗
xHTx exists andσess(H) = ∪χ∈δ(A)σ(τχ(H)).

The meaning of the limit above will be discussed below. Then the corollary is an immediate
consequence of Theorem2.4 if one thinks in terms of the functional calculus associated
to H . Indeed, a realλ does not belong toσess(H) if and only if there isϕ ∈ C0(R) with
ϕ(λ) 6= 0 such thatϕ(H) is compact.

For a detailed discussion of the notion of affiliation that weuse in this paper we refer to [2,
Sec. 8.1] (see also [9, Appendix A]). This notion is inspired by the quantum mechanical
concept of observable as introduced by J. Von Neumann in the 1930s (see e.g. [36, Sec.
3.2] for a general and precise mathematical formulation) and later (1940s) developed in
the Von Neumann algebra setting. A notion of affiliation in theC∗-algebra setting has also
been introduced by S. Baaj and S.L. Woronowicz [3, 39] but it is different from that we
use here:the contrary was erroneously stated in [17, p. 534], but has been corrected in [9,
p. 278]. For example, any self-adjoint operator on a HilbertspaceH is affiliated to the
algebra of compact operatorsK(H) in the sense of Baaj-Woronowicz, but a self-adjoint
operator is affiliated toK(H) in our sense if and only if it has purely discrete spectrum.

According to our definition, a self-adjoint operator affiliated to an “abstract”C∗-algebra
C is the same thing as a real valued observable affiliated toC , i.e. it is just a morphism
Φ : C0(R) → C . If C ⊂ B(H), then a densely defined self-adjoint operatorH defines an
observable byΦ(ϕ) = ϕ(H) for ϕ ∈ C0(R), and we say thatH is affiliated toC if this
observable is affiliated toC . But there are observables affiliated toC that are not of this
form: they are associated to self-adjoint operatorsK acting in closed subspacesK ⊂ H as
explained in the next remark. See [2, Sec. 8.1.2] for a more precise statement and proof.

We have to explain the meaning of the limits-limx→χ T
∗
xHTx whenH is an unbounded

self-adjoint operator.

Remark 2.9. Let Y be a topological space,z ∈ Y be a fixed point, and letHy be a set
self-adjoint operators (possibly unbounded), parametrized byY r {z}. The example that
we have in mind isHx := T ∗

xHTx, x ∈ X , andY obtained fromX by adding some
point of a compactification. We say thats-limy→z Hy existsif, by definition, the strong
limit Φ(ϕ) := s-limy→z ϕ(Hy) exists for each functionϕ ∈ C0(R). It is easy to see that
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this is equivalent to the existence ofs-limy→z(Hy − λ)−1 for someλ ∈ C r R. But we
emphasize thatthis does not mean that there is a self-adjoint operatorK onL2(X) such
thatΦ(ϕ) = ϕ(K) for all ϕ ∈ C0(R) if the notion of self-adjointness is interpreted in the
usual sense, which requires the domain to be dense inL2(X). However, the following is
true: there is a closed subspaceK ⊂ L2(X) and a self-adjoint operator (in the usual sense)
K in K such thatΦ(ϕ)ΠK = ϕ(K)ΠK andΦ(ϕ)Π⊥

K = 0, whereΠK is the projection onto
K. The couple(K,K) is uniquely defined and we writes-limx Hx = K. One may have
K = {0}, in which case we writes-limx Hx = ∞. See the Remark5.5for an example.

3. SPHERICAL COMPACTIFICATION

We now briefly discuss the spherical compactification of a vector spaces, its topology and
space of continuous functions. As before,X is a finite dimensional real vector space.
Recall that the sphere at infinitySX of X is the set of all half-linesα = â := R+a, with
R+ = (0,∞) anda ∈ X r {0}, equipped with the following topology: the open sets in
SX are the sets of the form{â, a ∈ O} with O open inX r {0}. Let us denote byX the
disjoint unionX∪SX . If | · | is an arbitrary norm onX thenSX is homeomorphic to the unit
sphereSX := {|ξ| = 1} in X andX = X ∪ SX can be endowed with a natural topology
that makes it homeomorphic to the closed unit ball inX . The resulting topological space
X will be referred to asthe spherical compactification ofX and is discussed in detail in
this subsection, since we need a good understanding of the continuous functions onX .

It is convenient to have an explicit description of the topology of X independent of the
choice of a norm. AconeC (in X) is a subset ofX stable under the action ofR+ by
multiplication. Put differently,C is a union of half-lines. Atruncated cone(in X) is the
intersection of a cone with the complement of a bounded set. Ahalf-lineα is eventually
in the truncated coneC if there isa ∈ α suchλa ∈ C if λ ≥ 1. Let C† ⊂ SX be the
set of half-lines which are eventually inC. Then the sets of the formC†, with C an open
truncated cone, form a base of the topology ofSX . For any open truncated coneC in X ,
we denoteC‡ := C ∪C†. Then the open sets ofX and the sets of the formC‡ form a base
of the topology ofX . It is easy to see thatX is a compact topological space in whichX
is densely and homeomorphically embedded. Moreover,X induces onSX the (compact)
topology we defined before.

By definition, a neighborhood ofα ∈ SX in X is a set that contains a subset of the form
C‡. We denotẽα the set of traces onX of the neighborhoods ofα in X. Thus, a set
belongs toα̃ if and only if it contains an open truncated cone that eventually containsα.
Let Y be a topological space and letu : X → Y . If α ∈ SX andy ∈ Y , then the limit
limx→α u(x) (or limα u) exists and is equal toy if, and only if, for each neighborhoodV
of y, there is a truncated coneC that eventually containsα such thatu(x) ∈ V if x ∈ C.
We shall need the following simple lemma.

Lemma 3.1. Let u : X → C be such that the limitU(α) := limx→α u(x) exists for
eachα ∈ SX . ThenU is a continuous function onSX . If u is continuous onX , then its
extension byU onSX is continuous onX.

Proof. Let us notice first thatlimλ→∞ u(λa) = U(α) for eacha ∈ α ∈ SX . Fix α ∈ SX
andε > 0. There is an open truncated coneC that eventually containsα (henceα ∈ C†)
such that|u(x)−U(α)| < ε for all x ∈ C. If β is another half-line eventually inC (that is,
β ∈ C†), thenlimx→β u = U(β). In particular, for eachb ∈ β we havelimλ→∞ u(λb) =
U(β). Sinceλb ∈ C for largeλ, we get that|U(β)−U(α)| < ε. Sinceβ ∈ C† is arbitrary
and since the setsC† form a basis of the topology ofSX , we see thatU is continuous.

To prove the last statement and thus to complete the proof, let us extendu by U on SX .
Then the reasoning used in the first half of the proof implies that |u(x) − u(α)| < ε for
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all x ∈ C‡. Since the sets of the formC‡ form a basis for the system of neighborhoods
of α ∈ SX in SX andα is arbitrary, the extension ofu to X by U is continuous onSX .
Hence ifu is continuous onX , then its extension toX is continuous everywhere. �

SinceX is a dense subset ofX, we may identify the algebraC(X) of continuous functions
onX with a subalgebra ofC(X). We now give several descriptions of this subalgebra that
are independent of the preceding construction ofX. Denote byCh(X) the subalgebra of
Cu
b(X) consisting of functions homogeneous of degree zero outsidea compact set:

Ch(X) := {u ∈ C(X), ∃K ⊂ X compact withu(λx) = u(x) if x /∈ K,λ ≥ 1}. (3.1)

Lemma 3.2. The algebraC(X) coincides with the closure ofCh(X) in Cb(X). Also,

C(X) = {u ∈ C(X), lim
λ→+∞

u(λa) exists uniformly in̂a ∈ SX } (3.2)

= {u ∈ C(X), lim
x→α

u(x) exists for eachα ∈ SX } . (3.3)

Moreover, ifu ∈ C(X) and ifA,B are compact sets inX such that0 /∈ A then

lim
λ→+∞

u(λa+ b) = u(â) uniformly in a ∈ A and b ∈ B . (3.4)

Proof. The spaceX is compact, and hence every continuous function onX is uniformly
continuous. This gives (3.2). Next, ifu ∈ C(X), then it follows from the properties of con-
tinuous functions that the restriction ofu to X satisfies the condition in (3.3). Conversely,
if u is as in (3.3), then Lemma3.1impliesu ∈ C(X). Thus we proved thatC(X) is given
by the relation (3.3).

We haveCh(X) ⊂ C(X) by the definition of the topology onX. SinceCh(X) separates the
points ofX we see thatCh(X) is dense inC(X). Observe that the topology we introduced
on X could be introduced directly in terms ofCh(X): for example,α̃ is the filter onX
defined by the sets{x ∈ X, |u(x)− u(α)| < 1} whenu runs overCh(X).

Let us show that (3.4) holds for anyu ∈ C(X). By the density property we have just
proved, we may assumeu ∈ Ch(X). Choose the norm| · | onX such thatu is homoge-
neous of degree zero for|x| ≥ 1 and identifySX with the corresponding unit sphereSX .
Let ω(θ) := sup |u(x) − u(y)| wherex, y ∈ SX , |x − y| ≤ θ. Then a simple geometric
argument gives|u(x)−u(y)| ≤ ω

(
(2|y|/|x|)1/2

)
if |x| ≥ 1+ |y| which implies (3.4). �

Note thatCh(X) is not stable under translations if the dimension ofX is larger than one.
But Equation (3.2), or a direct argument, immediately gives thatC(X) is invariant under
translations, and hence we may consider its crossed productS (X) := C(X) ⋊X by the
action ofX . This crossed product will be called thespherical algebraof X and we shall
explicitly describe it in the next section.

4. THE SPHERICAL ALGEBRA

We study now the spherical algebraS (X) := C(X)⋊X defined in the Introduction. We
begin with a lemma which will be needed in the proof of Theorem4.2. In order to clarify
the statement of the following lemma and in order to prepare the ground for the use of
filters in other proofs, we recall now some facts about filters[5].

A filter onX is a setξ of subsets ofX such that: (1)X ∈ ξ, (2) ∅ /∈ ξ, (3) if ξ ∋ F ⊂ G,
thenG ∈ ξ, and (4) ifF,G ∈ ξ thenF∩G ∈ ξ. If Y is a topological space andu : X → Y ,
thenlimξ u = y, or limx→ξ u(x) = y, means thatu−1(V ) ∈ ξ for any neighborhoodV of
y. The filterξ onX is calledtranslation invariantif, for eachF ∈ ξ andx ∈ X , we have
x + F ∈ ξ. We say thatξ is coarseif, for eachF ∈ ξ and each compactK in X , there is
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G ∈ ξ such thatG+K ⊂ F . Recall that we have denoted byα̃ the set of traces onX of
the neighborhoods ofα in X . Clearlyα̃ is a translation invariant and coarse filter onX for
eachα ∈ SX .

Lemma 4.1. Letξ be a translation invariant filter inX , letK be a compact neighborhood
of the origin, andu ∈ Cu

b(X). Then

lim
ξ

u = 0 ⇔ lim
a→ξ

∫

a+K

|u(x)| dx = 0 ⇔ s-lim
a→ξ

u(q + a) = 0 . (4.1)

Proof. Recall thatu(q) denotes the operator of multiplication byu andu(q + a) is its
translation bya. We haves-limu(q + a) = 0 if, and only if,

∫
|u(x + a)f(x)|2dx → 0

asa → ξ for all f ∈ L2(X), by the definition of the strong limit. By takingf to be the
characteristic function of the compact setK and by using the Cauchy-Schwartz inequality,
we obtainlima→ξ

∫
a+K

|u(x)|dx = 0. Reciprocally, if this relation is satisfied then it is
also satisfied withK replaced by any of its translates becauseξ is translation invariant.
By summing a finite number of such relations, we getlima→ξ

∫
a+M

|u(x)|dx = 0 for
any compactM . Sinceu is bounded, we also obtainlima→ξ

∫
a+M

|u(x)|dx = 0 for any
compactM , and hencelima→ξ

∫
|u(x)f(x)|2dx = 0, for any simple functionf . Using

again the boundedness ofu, we then obtainlima→ξ

∫
|u(x)f(x)|2dx = 0 for f ∈ L2(X).

We now show thatlimξ u = 0 is equivalent tolima→ξ

∫
a+K

|u(x)|dx = 0. We may
assumeu ≥ 0 and sinceu anda 7→

∫
a+K u(x)dx are bounded uniformly continuous

functions, we may also assume thatξ is coarse†. If limξ u = 0, then{u < ε} ∈ ξ, for any
ε > 0. Sinceξ is coarse, there isF ∈ ξ such thatF +K ⊂ {u < ε}, hence, ifa ∈ F , then∫
a+K u(x)dx ≤ ε|a+K| = ε|K|. Thus we havelima→ξ

∫
a+K u(x)dx = 0. Conversely,

assume that this last condition is satisfied and letε > 0 Sinceu is uniformly continuous,
there is a compact symmetric neighborhoodL ⊂ K of zero such that|u(x)− u(y)| < ε if
x, y ∈ L. Then

u(a)|L| =
∫

a+L

(u(a)− u(x))dx +

∫

a+L

u(x)dx ≤ ε|L|+
∫

a+L

u(x)dx

hencelim supa→ξ u(a) ≤ ε|L|. �

Recall thatτa(S) = T ∗
aSTa, where the unitary translation operatorsTa are defined in (2.1).

Theorem 4.2. The algebraS (X) := C(X)⋊X consists of theS ∈ B(X) that have the
position-momentum limit property and are such thats-lima→α τa(S)

(∗) exists∀ α ∈ SX .

Proof. Let A be the set of bounded operators that have the properties in the statement of
the theorem. We first show thatS (X) ⊂ A . Recall that in the concrete realization we
mentioned above,Cu

b(X) ⋊ X is identified with the norm closed linear space generated
by the operatorsS = u(q)v(p) with u ∈ Cu

b(X) andv ∈ C0(X∗), while C(X) ⋊ X is
the norm closed subspace generated by the same type of operators, but withu ∈ C(X). It
follows that an operatorS = u(q)v(p), with u ∈ C(X), has the position-momentum limit
property and

s-lim
a→α

T ∗
aSTa = s-lim

a→α
u(q + a)v(p) = u(α)v(p) , (4.2)

because of relation (3.4). ThusS (X) ⊂ A and it remains to prove the opposite inclusion.

It is clear thatA is aC∗-algebra. From [18, Theorem 3.7] it follows thatA is a crossed
productA = A⋊X with A ⊂ Cu

b(X) if, and only if,A ⊂ Cu
b(X)⋊X and

x ∈ X, k ∈ X∗, S ∈ A ⇒ TxS ∈ A andMkSM
∗
k ∈ A . (4.3)

†This follows from [18, Lemma 2.2] and a simple argument, which shows that the roundenvelope of a
translation invariant filter is coarse. We do not include thedetails since in our applicationsξ = α̃ which is coarse.
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By the definition ofA , the conditionA ⊂ Cu
b(X) ⋊X is obviously satisfied. Moreover,

we haveT ∗
aTxSTa = TxT

∗
aSTa andT ∗

aMkSM
∗
kTa = MkT

∗
aSTaM

∗
k , and hence the last

two conditions in (4.3) are also satisfied. ThereforeA is a crossed product. Theorem 3.7
form [18] gives more: the unique translation invariantC∗-subalgebraA ⊂ Cu

b(X) such
that A = A ⋊ X is the set ofu ∈ Cu

b(X) such thatu(q)v(p) andu(q)v(p) belong to
A if v ∈ C0(X∗). In our case, we see thatA is the set of allu ∈ Cu

b(X) such that
s-lima→α T ∗

au(q)
(∗)Tav(p) exists for allα ∈ SX andv ∈ C0(X∗). But the operators

T ∗
au(q)

(∗)Ta = u(∗)(q+a) are normal and uniformly bounded and the union of the ranges
of the operatorsv(p) is dense inL2(X), hence

A = {u ∈ Cu
b(X), ∃ s-lim

a→α
u(q + a) ∀α ∈ SX}.

Let us fixα and letu ∈ Cu
b(X) be such that the limits-lima→α u(q + a) exists. This limit

is a function, but since the filter̃α is translation invariant, this function must be in fact a
constantc. Applying Lemma4.1to u− c we getlimα u = c. Lemma3.2then gives

A = {u ∈ Cu
b(X), ∃ lim

x→α
u(x) ∀α ∈ SX} = C(X).

This proves the theorem. �

For eachα ∈ SX andS ∈ S (X) := C(X)⋊X , we then define

τα(S) := s-lim
a→α

T ∗
aSTa . (4.4)

Theorem 4.3. If S ∈ S (X) andα ∈ SX , thenτα(S) ∈ C∗(X) and the mapτ(S) :
α 7→ τα(S) is norm continuous, henceτ : S (X) → C(SX) ⊗ C∗(X). The resulting
morphismτ is a surjective morphism and its kernel is the setK (X) = C0(X) ⋊ X of
compact operators onL2(X). Hence we have a natural identification

S (X)/K (X) ∼= C(SX)⊗ C∗(X) ∼= C0(SX ×X∗) . (4.5)

Proof. If S = u(q)v(p), then, from (4.2), we getτα(u(q)v(p)) = u(α)v(p), and thus
τ(S) = ũ ⊗ v(p), whereũ is the restriction ofu : X → C to SX . The first assertion
of the theorem then follows from the density inS (X) of the linear space generated by
the operators of the formu(q)v(p). The fact thatτα are morphisms follows from their
definition as strong limits, and it implies the fact thatτ is a morphism. Since the range
of a morphism is closed andu 7→ ũ is a surjective mapC(X) → C(SX), we get the
surjectivity ofτ . It remains to show thatker τ = C0(X) ⋊X . By what we have proved,
A0 = ker τ is the set of operatorsS that have the position-momentum property and are
such thats-lima→α TaSTa = 0 for all α ∈ SX . The argument of the proof of Theorem
4.2 with A replaced byA0 shows thatA0 = A0 ⋊ X , with A0 equal to the set of all
u ∈ Cu

b(X) such thatlimx→α u(x) = 0 for all α ∈ SX , and henceA0 = C0(X). �

Remark 4.4. The fact thatτα(S) belongs toC∗(X) can be understood more generally
as follows. Since the filterα is translation invariant, ifS is an arbitrary bounded operator
such that the limitSα := s-lima→α T ∗

aSTa exists, thenSα commutes with all theUx, and
henceS is of the formv(p), for somev ∈ L∞(X∗). If S has the position-momentum limit
property, then it is clear thatSα also has the position-momentum limit property, which
forcesv ∈ C0(X∗).

We have the following consequences of the above theorem. We do not need closure in the
union sinceτα(S) dependsnormcontinuously onα. See [31] for a general discussion of
the need of closures of the unions in results of this type.

Corollary 4.5. LetS ∈ S (X) be a normal element. Thenσess(S) = ∪ασ(τα(S)).

Corollary 4.6. LetH be a self-adjoint operator affiliated toS (X). Then for eachα ∈ SX
the limitα.H := s-lima→α T ∗

aHTa exists andσess(H) = ∪ασ(α.H).
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For the proof and for the meaning of the limit above, see Remark 2.9.

We give now the simplest concrete application of Corollary4.6. The boundedness condi-
tion onV can be eliminated, but this requires some technicalities, which will be discussed
in the next section.

Proposition 4.7. LetH = h(p) + V , whereh : X∗ → R is a continuous proper function
andV is a bounded symmetric linear operator onL2(X) satisfying

(i) limk→0 ‖[Mk, V ]‖ = 0,
(ii) α.V := s-lima→α T ∗

aV Ta exists for eachα ∈ SX .

ThenH is affiliated toS (X), we haveα.H = h(p) + α.V , andσess(H) = ∪ασ(α.H).
Moreover, for eachα ∈ SX , there is a functionvα ∈ Cu

b(X
∗) such thatα.V = vα(p).

Proof. First we have to check that the self-adjoint operatorH is affiliated toS (X). For
this, it suffices to prove that there is a numberz such that the operatorS = (H − z)−1

satisfies the conditions of Theorem4.2. To check the position-momentum limit property
we have to prove that(Tx − 1)S and [Mk, S] tend to zero in norm whenx → 0 and
k → 0 (the condition involvingS∗ will then also be satisfied sinceS∗ is of the same form
asS). Since the range ofS is the domain ofh(p), the first condition is clearly satisfied.
If we denoteS0 = (h(p) − z)−1 and choosez such that‖V S0‖ < 1, then we have
S = S0(1 + V S0)

−1 andS0 ∈ C∗(X) hence[Mk, S0] tends to zero in norm ask → 0.
It remains to be shown that(1 + V S0)

−1 also satisfies this condition: but this is clear
because the set of bounded operatorsA such that‖[Mk, A]‖ → 0 is aC∗-algebra, hence a
full subalgebra ofB(X).

The fact thats-lima→α T ∗
aSTa exists and is equal toα.S = (α.H − z)−1 for eachα ∈ SX

is an easy consequence of the relationT ∗
aSTa = S0(1 + T ∗

aV TaS0)
−1.

Finally, to show thatα.V = vα(p), for somevα ∈ Cu
b(X

∗), we use the argument of
Remark4.4. Indeed, we shall have this representation for some boundedBorel functionvα
which must be uniformly continuous becauselimk→0 ‖[Mk, α.V ]‖ = 0. �

Example 4.8. A typical example is whenV is the operator of multiplication by a bounded
Borel functionV : X → R such thatV (α) := limx→α V (x) exists for eachα ∈ SX .
Thenα.V is the operator of multiplication by the numberV (α). Note that by Lemma3.1
the limit functionα 7→ V (α) is continuous onSX , even ifV is not continuous onX .

5. AFFILIATION CRITERIA

We now recall, for the benefit of the reader, a little bit of theformalism that we shall use
below. If H is a self-adjoint operator on a Hilbert spaceH, then the domain of|H |1/2
equipped with the graph topology is called theform domainof H . If we denote itG, then
we have natural continuous embeddingG ⊂ H ⊂ G∗, whereG∗ is the space adjoint of
G (the space of conjugate linear continuous forms onG). The operatorH : D(H) →
H extends to a continuous symmetric operatorĤ ∈ B(G,G∗), which has the following
property: a complex numberz belongs to the resolvent set ofH if, and only if, Ĥ − z is a
bijective mapG → G∗. In this case,(H−z)−1 coincides with the restriction of(Ĥ−z)−1

to H. Conversely, letG be a Hilbert space densely and continuously embedded inH. If
S : G → G∗ is a symmetric operator, then theoperator induced byS in H is the operator
H in H whose domain is the set ofu ∈ G such thatSu ∈ H given byH = S|D(H). If
S − z : G → G∗ is a bijective map for some complexz, thenD(H) is a dense subspace of
H, the operatorH is self-adjoint, and̂H = S. If S is bounded from below, thenG coincides
with the form domain ofH . From now on, we shall drop the “hat ”from the notation̂H
and write simplyH for the extended operator when there is no danger of confusion.
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Lemma 5.1. LetG be a Hilbert space densely and continuously embedded inL2(X). Then
the following conditions are equivalent:

• The operatorsTx andMk leave invariantG, we have‖Tx‖B(G) ≤ C for a number
C independent ofx, andlimx→0 ‖Tx − 1‖G→H = 0.

• G = D(w(p)) for some proper Borel functionw : X∗ → [1,∞) such that there
exists a compact neighborhoodL of zero inX∗ andc > 0 such thatsupℓ∈Lw(k+
ℓ) ≤ cw(k) for all k ∈ X∗.

Proof. We discuss only the nontrivial implication. DenoteH = L2(X). Since{Tx}x∈X

is a strongly continuous unitary group inH that leavesG invariant, the restrictionsTx|G
form aC0-group inG, which by assumption is (uniformly) bounded. It is well known that
this implies that there is a Hilbert structure onG, equivalent to the initial one, for which the
operatorsTx|G are unitary (indeed,R is amenable). Thus, from now on, we may assume
that the operatorsTx are unitary inG. Then, by the Friedrichs theorem, there exists a
unique self-adjoint operatorG onH with the following properties:

(i) G ≥ c > 0 for some numberc;
(ii) G = D(G);
(iii) for all g ∈ G, we have‖g‖G = ‖Gg‖.

By hypothesis, the unitary operatorTx leaves invariant the domain ofG and ‖g‖G =
‖GTxg‖ = ‖T ∗

xGTxg‖ for all g ∈ D(G) andx ∈ X . By the uniqueness ofG, we have
T ∗
xGTx = G, and henceG commutes with all translations. It follows that there is a Borel

functionw : X∗ → [c,∞) such thatG = w(p). We have

‖(Tx − 1)‖G→H = ‖(Tx − 1)G−1‖H→H = ‖(eixP − 1)w−1(P )‖H→H

= esssup
p∈X∗

|(eixp − 1)w−1(p)|

andw−1 is a bounded Borel function. It follows thatw−1 tends to zero at infinity.

Now we shall use the fact that theMk also leave invariantG. Then the group induced by
{Mk} in G is of classC0. In particular,‖w(p)Mℓg‖ ≤ C‖w(p)g‖ if ℓ ∈ L andg ∈ G.
SinceM∗

ℓ w(p)Mℓ = w(p+ℓ), we get‖w(p+ℓ)w(p)−1f‖ ≤ C‖f‖ for ℓ ∈ L andf ∈ H,
which means thatw(k + ℓ)w(k)−1 ≤ C for all k ∈ X∗ andℓ ∈ L. Thus for each fixedk,
w is bounded onk + L, hencew is bounded on any compact. �

The next result is a general criterion of affiliation toS (X) for semi-bounded operators.

Theorem 5.2. LetH be a self-adjoint operator onL2(X) that is bounded from below and
its form domainG satisfies the conditions of Lemma5.1. Assume that‖[Mk, H ]‖G→G∗ → 0
ask → 0 and that the limitα.H := lima→α T ∗

aHTa exists strongly inB(G,G∗), for all
α ∈ SX . ThenH is affiliated toS (X), for eachα ∈ SX the operator inL2(X) associated
toα.H is self-adjoint, andσess(H) = ∪ασ(α.H).

Proof. We shall use Theorem4.2 and then Corollary4.6. We first check that the first
condition of Theorem4.2 is satisfied. Let us denoteR = (H + i)−1. We have‖(Tx −
1)‖G→H = ‖(Tx − 1)|R|1/2‖, and hencelimx→0 ‖(Tx − 1)R‖ = 0. As explained above,
R extends uniquely to an operatorR̂ ∈ B(G∗,G). The operatorsMk leaveG invariant and
thus extend continuously toG∗. Consequently, we have[Mk, R̂] = R̂[H,Mk]R̂. Hence
we getlimk→0 ‖[Mk, R̂]‖G∗→G = 0, which is more than enough to show thatH has the
position-momentum limit property.

To finish the proof of the proposition, it is enough to check the last condition of The-
orem 4.2 and then use Corollary4.6. Clearly α.H : G → G∗ satisfies〈g|α.Hg〉 =
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lima→α〈Tag|HTag〉 for eachg ∈ G. Note that since we assumedH bounded from
below, we may assume thatH ≥ 1 (otherwise we add to it a sufficiently large num-
ber). Then, ifw is as in Lemma5.1, the norm‖w(p)g‖ defines the topology ofG,
and hence〈u|Hu〉 ≥ c‖w(p)u‖2 for some numberc and all u ∈ G. This implies
〈Tag|HTag〉 ≥ c‖w(p)Tag‖2 = c‖w(p)g‖2. Thus we get〈g|α.Hg〉 ≥ c‖w(p)g‖2,
and henceα.H is a bijective mapG → G∗. Next, to simplify the notation, we set
Ha = T ∗

aHTa, Hα = α.H , and note that since these operators are isomorphismsG → G∗,
we haveH−1

a −H−1
α = H−1

a (Hα−Ha)H
−1
α as operatorsG∗ → G, which clearly implies

s-lima→α T ∗
aH

−1Ta = H−1
α in B(G∗,G), which is more than enough to prove the conver-

gence of the self-adjoint operatorsT ∗
aHTa to the self-adjoint operatorα.H in L2(X) in

the sense required in Corollary4.6. �

In the next theorem, we consider operators of the formh(p) + V , with V unbounded, and
impose onh the simplest conditions that ensure that the form domain ofh(p) is stable
under the operatorsMk. Obviously, much more general conditions could have been used
to obtain the same result, however, these conditions are well adapted to elliptic operators
with non-smooth coefficients. For any real numbers, let Hs ≡ Hs(X) be the Sobolev
space of orders onX . Also, let | · | be any norm onX∗.

Theorem 5.3. Leth : X∗ → [0,∞) be a locally Lipschitz function with derivativeh′ such
that, for some real numbersc, s > 0 and allk ∈ X∗ with |k| > 1, we have:

c−1|k|2s ≤ h(k) ≤ c|k|2s and |h′(k)| ≤ c
(
1 + |k|2s

)
. (5.6)

LetV : Hs → H−s symmetric such thatV ≥ −µh(p) − ν, for some numbersµ, ν, with
µ < 1. We assume thatV satisfies the following two conditions:

(i) limk→0 ‖[Mk, V ]‖Hs→H−s = 0,
(ii) ∀α ∈ SX the limitα.V := s-lima→α T ∗

aV Ta exists strongly inB(Hs,H−s).

Thenh(p)+V andh(p)+α.V are symmetric operatorsHs → H−s and the operatorsH
andα.H associated to them inL2(X) are self-adjoint and affiliated toS (X) := C(X)⋊
X . Moreover, the essential spectrum ofH is given by the relationσess(H) = ∪ασ(α.H).

Proof. If we denotew =
√
1 + h, then the form domainG of h(p) isG = D(w(p)) = Hs.

The second condition of Lemma5.1will be satisfied ifsup|ℓ|<1 h(k+ℓ) ≤ c(1+h(k)) for
some numberc > 0, which is clearly true under our assumptions onh. Then note that we
haveh(p) +V + ν +1 ≥ (1−µ)h(p) + 1 as operatorsG → G∗ and this estimate remains
true if V is replaced byα.V . It follows thath(p) + V + ν +1 : G → G∗ is bijective hence
the operatorH induced byh(p)+V in L2(X) is self-adjoint. The same method applies to
α.H . Thus the conditions of Theorem5.2are satisfied and we may use it to get the results
of the present theorem. �

Example 5.4. The simplest examples which are covered by the preceding result are the
usual elliptic symmetric operators

∑
|s|,|t|≤m psgstp

t with bounded measurable coeffi-
cientsgst such thatlima→α gst(x + a) = gαst exists for eachx ∈ X andα ∈ SX .
HereX = Rn, the indicess, t belong toNn with for example|s| = s1 + · · · + sn,
andps = ps11 . . . psnn with pj = −i∂xj . The operator inL2(X) associated with the pre-
ceding differential expression will be self-adjoint and bounded from below with the usual
Sobolev spaceHm as form domain if

∑
|s|=|t|=m〈psu|gstptu〉 ≥ µ‖u‖2Hm − ν‖u‖2 for

some numbersµ, ν > 0. Then the localizations at infinity will be the operatorsα.H of
the same form, but withgst replaced bygαst. Note that we could allow the lower order
coefficientsgst to be more singular and all thegst could be non-local operators.
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Remark 5.5. The situations considered in Example5.4could give the wrong impression
that the localizations at infinityα.H are self-adjoint operators in the usual sense onL2(X).
The following example shows that this is not true even in simple situations. LetH =
p2 + v(q) in L2(R) with v(x) = 0 if x < 0 andv(x) = x if x ≥ 0. It is clear that
H has the position-momentum limit property and ifR = (H + 1)−1 it is not difficult to
check thats-lima→+∞ T ∗

aRTa = 0 ands-lima→−∞ T ∗
aRTa = (p2 + 1)−1. Indeed, the

translated potentialsva(x) = (T ∗
a v(q)Ta)(x) = v(x + a) form an increasing family, i.e.

va ≤ vb if a ≤ b, such thatva(x) → +∞ if a → +∞ andva(x) → 0 if a → −∞. Thus
H+∞ = ∞, in the sense that its domain is equal to{0}, andH−∞ = p2.

Remark 5.6. In view of the Remark5.5, it is tempting to see what happens in the case
of the Stark HamiltonianH = p2 + q. In fact the situation is much worse:H has not
the position-momentum property (both conditions of Definition 2.1 are violated by the
resolvent ofH) and we haves-lim|a|→∞ T ∗

aHTa = ∞ ands-lim|k|→∞ M∗
kHMk = ∞,

while the essential spectrum ofH is R. So the localizations ofH in the regions|p| ∼ ∞
and|q| ∼ ∞ say nothing about the essential spectrum ofH .

We now recall some definitions and a result from [9] that can be also be used for operators
that are not semi-bounded and that will be especially usefulin the more general context of
N -body Hamiltonians.

Let H0 be a self-adjoint operator on a Hilbert spaceH with form domainG. We say that
a continuous sesquilinear formV on G (i.e. a symmetric linear mapV : G → G∗) is a
standard form perturbationof H0 if there are positive numbersµ, ν with µ < 1 such that
either±V ≤ µ|H0| + ν or H0 is bounded from below andV ≥ −µH0 − ν. In this case
the operator inH in H associated toH0 + V : G → G∗ is self-adjoint (see the comments
at the beginning of this section).

We do not need to recall the definition ofstrict affiliation, but we use the following alterna-
tive definition: a self-adjoint operatorH is strictly affiliated to aC∗-algebraC of operators
onH if, and only if, there isθ ∈ C0(R) with θ(0) = 1 such thatlimε→0 ‖θ(εH)C −C‖ =
0, for all C ∈ C . The following is a consequence of Theorem 2.8 and Lemma 2.9 in [9].

Theorem 5.7. LetH0 be a self-adjoint operator,V a standard form perturbation ofH0,
andH = H0 + V the self-adjoint operator defined above. Assume thatH0 is strictly
affiliated to aC∗-algebraC of operators onH. If there isφ ∈ C0(R) with φ(x) ∼ |x|−1/2

for largex such thatφ(H0)
2V φ(H0) ∈ C , thenH is also strictly affiliated toC .

We may of course replaceφ(H0)
2V φ(H0) ∈ C by the more symmetric and simpler look-

ing conditionφ(H0)V φ(H0) ∈ C , but this will not cover in the applications the case when
the operatorV is of the same order asH0.

The next proposition is an immediate consequence of Theorem5.7. Note that below the
form domain ofh(p) is the domain ofk(p), wherek is the function|h|1/2. It is clear that
if h is a proper continuous function, thenh(p) is strictly affiliated toS (X).

Proposition 5.8. LetH = h(p) + V , whereh : X∗ → R is a continuous proper function
andV is a standard form perturbation ofh(p). If (1+ |h(p)|)−1V (1+ |h(p)|)−1/2 belongs
to S (X) thenH is strictly affiliated toS (X).

We may replace above(1+ |h|)−1/2 by any function of the formθ◦h with θ as in Theorem
5.7. Indeed,Cb(X∗) is obviously included in the multiplier algebra ofS (X).

For 0 ≤ s ≤ 1 let Gs = D(|h(p)|s) equipped with the graph topology and letG−s be its
adjoint space. SoG1 = G, G0 = H andG−1 = G∗. If V is a continuous symmetric form
onG such thatV G1 ⊂ G−s for somes < 1 then for eachµ > 0 there is a realν such that
±V ≤ µ|h(p)|+ν, henceV is a standard form perturbation ofh(p) andH is well defined.



ESSENTIAL SPECTRUM 19

Corollary 5.9. LetH = h(p) + V , whereh : X∗ → R is a continuous proper function,
and letV be a continuous symmetric form onG such thatV G1 ⊂ G−s with s < 1. Letφ be
a smooth function such thatφ(x) ∼ |x|−1/2 for largex and denoteL = φ(H0)V φ(H0). If
limk→0 ‖[Mk, L]‖ = 0 andα.V = s-lima→α T ∗

aV Ta exists inB(G,G∗) for eachα ∈ SX ,
thenH is affiliated toS (X), we haveα.H = h(p) + α.V , andσess(H) = ∪ασ(α.H).

Two more comments in connection with the results of this section (and of the next one).
We stated the applications of the abstract theorems in a way adapted to elliptic operators,
but the extension to hypoelliptic operators is easy: it suffices to consider functionsh ∈ Cm

with derivatives of orderm bounded and to replace the Sobolev spaces by spaces associated
to weights of the form

∑
|γ|≤m |h(γ)(k)|. On the other hand, it is obvious that Theorem5.7

covers matrix differential operators, e.g. the Dirac operator (which are not semi-bounded).
Indeed, it suffices to replaceL2(X) by L2(X) ⊗ E with E a finite dimensional Hilbert
space and to consider the algebraS (X) × B(E). A more general and natural object is
S (X)⊗K(E) whereE can be infinite dimensional [18, Section 4].

6. N-BODY TYPE INTERACTIONS

In this section we introduce and study the algebra of potentials (or elementary interactions)
in theN -body case.

6.1. The algebra of elementary interactions.We recall that, for each linear subspace
Y ⊂ X , we have denoted byπY : X → X/Y the canonical surjection. The mapu 7→
u ◦ πY then gives an embeddingCu

b(X/Y ) ⊂ Cu
b(X), which will be systematically used

below. Consequently, the subalgebras ofCu
b(X/Y ) will be thought of as subalgebras of

Cu
b(X), for exampleC0(X/Y ) andC(X/Y ) are regarded as embedded inCu

b(X).

As explained in Subsection1.1 in the Introduction, the (abelian)algebra of elementary
interactions of typeC is defined by:

E(X) := 〈C(X/Y ), Y ⊂ X〉 := C∗-subalgebra ofCu
b(X) generated byC(X/Y ), (6.1)

whereY ranges throughall subspaces ofX . The algebraE(X) will play a leading role in
our approach. From the definition, it follows thatE(X) is a translation invariant subalgebra
since the generating subspacesC(X/Y ) are already translation invariant. The “N -body
type Hamiltonians” we are interested in turn out to be self-adjoint operators affiliated to the
crossed productE(X)⋊X . We shall thus study general self-adjoint operators affiliated to
the crossed productE(X)⋊X . The algebraE(X) is not graded, as in the standardN -body
framework of the algebraRC0

(X) defined in the Introduction, but has a natural filtration
that plays an important role in our analysis.

Let us fix a linear subspaceZ ⊂ X . ThenX/Z is a finite dimensional real vector
space, and hence theC∗-algebraE(X/Z) ⊂ Cu

b(X/Z) is well defined and the embed-
ding Cu

b(X/Z) ⊂ Cu
b(X) allows us to identifyE(X/Z) with a C∗-subalgebra ofE(X).

If Y ⊃ Z is another linear subspace thenY/Z ⊂ X/Z and we may identifyX/Y =
(X/Z)/(Y/Z). Therefore we can identify

E(X/Z) = C∗-subalgebra ofE(X) generated by∪Z⊂Y C(X/Y ) . (6.2)

Thus, theC∗-algebraE(X) is equipped with a family ofC∗-subalgebrasE(X/Y ), where
Y runs over the set of linear subspaces ofX , such that, for0 ⊂ Z ⊂ Y ⊂ X , we have

C = E(0) = E(X/X) ⊂ E(X/Y ) ⊂ E(X/Z) ⊂ E(X) . (6.3)

Recall now thatSX consists of the half-lines ofX . We shall denote by[α] the one dimen-
sional subspace generated by a half-lineα ∈ SX . Observe that the algebrasE(X/[α]) are
maximal among the non-trivial subalgebras ofE(X) of the formE(X/Y ).
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Translation at infinity along a directionα = R+a ∈ SX gives us a linear projection
τα of E(X) onto the subalgebraE(X/[α]) as follows. Let us define foru ∈ E(X) and
a ∈ X r {0}

τα(u)(x) := lim
r→+∞

u(ra+ x) . (6.4)

Lemma 6.1. LetY ⊂ X be a real, linear subspace andu ∈ C(X/Y ). Then

τα(u) =

{
u(πY (α)) ∈ C if α 6⊂ Y

u if α ⊂ Y .

Proof. If α 6⊂ Y , πY (α) is a half line inX/Y , and henceu(πY (α)) is defined. The fact
that the limit is as stated follows from the definition. �

Note that in the above lemmaτα(u) is a constant ifα 6⊂ Y . The lemma gives right away
the following.

Proposition 6.2. If α ∈ SX and u ∈ E(X), then, for anya ∈ α, the limit τα(u)(x)
exists for allx ∈ X , is independent of the choice ofa ∈ α, andτα(u) ∈ E(X). The map
τα : E(X) → E(X) is an algebra morphism with rangeE(X/[α]) andτα(u) = u for all
u ∈ E(X/[α]).

Proof. Lemma6.1 shows that the mapτα mapsC(X/Y ) to itself, if α ⊂ Y , and maps
C(X/Y ) to C otherwise. The subspace ofB ⊂ E(X) for which the limitτα(u)(x) exists
for anyx is a norm closed, conjugation invariant subalgebra ofE(X). SinceB contains the
generators ofE(X), we obtain thatB = E(X). Consequently, the limitτα(u)(x) exists
for all u ∈ E(X) and allx ∈ X . Also, we obtain thatτα maps the generators ofE(X)
to a system of generators ofE(X/[α]) ⊂ E(X), and henceτα mapsE(X) ontoE(X/[α])
surjectively.

To complete the proof, we notice thatτα ◦ τα = τα on the standard system of generators
of E(X), and henceτα = id on the range ofτα, that is, onE(X/[α]). �

Remark 6.3. Thus for eachα ∈ SX the relation(6.4) defines a unital endomorphismτα
of E(X) which is also a linear projection ofE(X) onto the subalgebraE(X/[α]). We note
that τα does not commute withτβ in general: if a subspaceZ does not containα andβ
andu ∈ C(X/Z) thenτατβ(u) = u(πZ(β)) andτβτα(u) = u(πZ(α)).

Remark 6.4. For the purpose of this paper, the elements ofE(X) should be thought as
multiplication operators on the spaceL2(X). If, according to the notational conventions
from the beginning of Section2, we denote byu(q) the operator of multiplication by
u ∈ E(X) and, if we setτα(u(q)) = τα(u)(q), then we get an expression similar to (4.4):

τα(u(q)) = s-lim
r→+∞

T ∗
rau(q)Tra = s-lim

r→+∞
u(ra+ q) . (6.5)

We emphasize however thats-lima→α T ∗
au(q)Ta does not existfor generalu ∈ E(X).

The next few results concern the subalgebrasE(X/Y ).

Proposition 6.5. Let α = (α1, α2, . . . , αn) be a system of half-lines, which generate a
subspaceY of X . Then

E(X/Y ) = E(X/[α1]) ∩ · · · ∩ E(X/[αn]). (6.6)

The morphismτα := τα1
τα2

. . . ταn is a linear projection ofE(X) ontoE(X/Y ).
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Proof. If u ∈ C(X/Z), for someZ, then Lemma6.1 givesτα(u) = u if Y ⊂ Z and
τα(u) ∈ C otherwise. In any case,τα(u) ∈ E(X/Y ). Sinceτα is a morphism, we see
that the range ofτα is included inE(X/Y ) andτα(u) = u if u ∈ E(X/Y ). Thusτα is
a linear projection ofE(X) ontoE(X/Y ). Hence ifu ∈ E(X) we haveu ∈ E(X/Y ) if
and only if τα(u) = u. If u belongs to the right hand side of (6.6) thenτα(u) = u, so
u ∈ E(X/Y ). �

Note that a permutation of theα1, α2, . . . , αn will give a different projection ontoE(X/Y )
(see Remark6.3). More generally, ifβ = (β1, . . . , βm) is a second system of half-lines
which generatesY , thenτβ is a projectionE(X) → E(X/Y ) distinct fromτα in general.

By using (6.3) and (6.6) we get

E(X/Y ) =
⋂

α⊂Y E(X/[α]) = {u ∈ E(X), τα(u) = u ∀α ⊂ Y } (6.7)

from which we get

E(X/Y ) = {u ∈ E(X), u(x+ y) = u(x) ∀ y ∈ Y } = E(X) ∩ Cu
b(X/Y ). (6.8)

Indeed, ifC is the middle term in (6.8), thenE(X/Y ) ⊂ C, by the definition ofE(X/Y )
and the definition ofτα shows thatC is included in the right hand side of (6.7).

Proposition 6.6. If Y, Z are subspaces ofX thenE(X/(Y + Z)) = E(X/Y ) ∩ E(X/Z).

Proof. Let Y ′, Z ′ be supplements ofY ∩ Z in Y andZ respectively. Choose a basis
a1, . . . , an of Y + Z such thata1, . . . , ai is a basis ofY ′, thenai+1, . . . , aj is a basis of
Y ∩Z, andaj+1, . . . , an is a basis ofZ ′. Denoteαk the half-line determined byak. From
(6.6) we get

E(X/Y ) = ∩k<jE(X/[αk]) and E(X/Z) = ∩k>iE(X/[αk])

henceE(X/Y ) ∩ E(X/Z) = ∩n
k=1E(X/[αk]) which isE(X/(Y + Z)) by (6.6). �

6.2. The character space.We now turn to the study of the spectrum (or character space)
of the algebraE(X) of elementary interactions. We begin with an elementary remark.

Let x ∈ X . Then tox there corresponds the characterχx(u) = u(x) on Cu
b(X). The

characterχx is completely determined by its restriction to the idealC0(X) of Cu
b(X).

Similarly, if α ∈ X , thenα defines a characterχα : C(X) → C by χα(u) = u(α).

The following lemma and its corollary will provide a crucialingredient in the proof of
Theorem6.14identifying the spectrum ofE(X), which is one of our main results.

Lemma 6.7. LetY ⊂ X be a subspace, letB be theC∗–algebra generated byC(X) and
C(X/Y ) in Cu

b(X), and letα ∈ SX r SY . Then the characterχα of C(X) extends to a
unique character ofB. This extension is the restriction ofτα toB.

Proof. Recall that the canonical projectionπY : X → X/Y extends to a continuous map
πY : XrSY → X/Y , which sendsSX rSY ontoSY . Thusβ := πY (α) ∈ SY andχβ is
a character ofC(X/Y ). Letχ be a character ofB such thatχ|C(X) = χα. We shall verify
now thatχ|C(X/Y ) = χβ .

To prove thatχ|C(X/Y ) = χβ , it suffices to show that the kernel ofχβ is included in that

of χ, which means that foru ∈ C(X/Y ) with u(β) = 0, we should haveχ(u) = 0. By
a density argument, it suffices to assume thatu = 0 on a neighborhoodV of β in X/Y .
It is clear that we can findv ∈ C(X) with v(α) = 1 with support in theπ−1

Y (V ), hence
uv = 0. Sinceu, v ∈ B, we have

0 = χ(uv) = χ(u)χ(v) = χ(u)χα(v) = χ(u)v(α) = χ(u) .
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This proves thatχ|C(X/Y ) = χβ , as claimed.

From the relationχ|C(X/Y ) = χβ just proved, we obtain the uniqueness ofχ, sinceC(X)

andC(X/Y ) generateB. To complete the proof, let us notice that the restriction ofτα to
C(X) is χα and its restriction toC(X/Y ) is also character, becauseα 6⊂ Y . Thusτα is a
character onB and we getχ = τα|B by uniqueness. This completes the proof. �

Corollary 6.8. Let χ1 andχ2 be characters ofE(X). Let us assume thatχ1 = χ2 on
E(X/[α]) and that there existsα ∈ SX such thatχ1(u) = χ2(u) = u(α) for all u ∈ C(X).
Thenχ1 = χ2.

Proof. It is enough to show thatχ1 = χ2 on each of the algebrasC(X/Y ), since the later
generateE(X), by definition. Sinceχ1 = χ2 = χα on C(X), we obtainχ1 = χ2 on all
C(X/Y ) with α 6⊂ Y , by Lemma6.7. SinceC(X/[α]) contains (indeed, it is generated
by) all C(X/Y ) with α ⊂ Y , the result follows. �

We now proceed to the construction of the characters ofE(X). We begin with a remark
concerning the simplest nontrivial case that helps to understand the general case.

Remark 6.9. If α ∈ SX andβ ∈ SX/[α], then[β] is the one dimensional subspace gener-
ated byβ in X/[α], and henceπ−1

[α] ([β]) is a two dimensional subspace ofX that we shall
denote by[α, β]. Note that we may and shall identify(X/[α])/[β] with X/[α, β]. Then
Proposition6.2 gives us two morphismsτα : E(X) → E(X/[α]) andτβ : E(X/[α]) →
E(X/[α, β]) that are linear projections. Thusτβτα : E(X) → E(X/[α, β]) is a morphism
and a projection and ifa ∈ X/[α, β] thenu 7→ (τβταu)(a) is a character ofE(X).

We now extend the construction of the above remark to an arbitrary number of half-lines.
However, it will be convenient first to introduce the following notations.

Notations 6.10. Our construction involves finite sequences−→α := (α1, α2, . . . , αn) with
0 ≤ n ≤ dim(X) and linear subspaces[−→α ] := [α1, α2, . . . , αn] of X associated to them.
If n = 0, then we define−→α as the empty set and we associate to it the subspace ofX
reduced to zero:[∅] = {0}. If n = 1 then−→α = (α1) with α1 ∈ SX and, as before,[α1]
is the one dimensional subspace ofX generated byα1. The casen = 2 is treated in the
Remark6.9and we extend the notation ton ≥ 3 by induction:αn ∈ SX/[α1,...,αn−1] and
[α1, . . . , αn] = π−1

Y ([αn]) is ann-dimensional subspace ofX (hereY = [α1, . . . , αn−1]).

Note that we may identifyX/[α1, . . . , αn] =
(
X/[α1, . . . , αn−1]

)
/[αn]. We denotẽΩ(n)

X

the set of the just defined−→α of lengthn and

Ω
(n)
X := {(a,−→α ), −→α = (α1, α2, . . . , αn) ∈ Ω̃

(n)
X , a ∈ X/[α1, . . . , αn] } .

In particular,Ω(0)
X ≡ X andΩ(N)

X ≡ Ω̃
(N)
X if N = dim(X), since[α1, . . . , αN ] = X . Let

ΩX =
⋃dim(X)

n=0 Ω
(n)
X . (6.9)

Definition 6.11. If (a,−→α ) ∈ Ω
(n)
X , then we define

τ−→α = ταnταn−1
. . . τα1

and τa,−→α = τaτ−→α , (6.10)

which are endomorphisms ofE(X). We agree thatτ∅ is the identity ofE(X).

In particular, the range ofτ−→α is E(X/[−→α ]) andτ−→α is an endomorphism ofE(X) and a
linear projection ofE(X) onto the subalgebraE(X/[−→α ]). The morphisms of the formτα
considered in Proposition6.5 also have these properties, but they may be distinct from
theτ−→α , the objectsα and−→α being different in nature. Note also that, sincea ∈ X/[−→α ],
translation bya is a morphismτa of E(X/[−→α ]), henceτa,−→α is well defined.

We now introduce what will turn out to be a parametrization ofthe characters ofE(X).
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Definition 6.12. If (a,−→α ) ∈ ΩX , we define the characterχa,−→α of E(X) by the formula

χa,−→α (u) := χa(τ−→α (u)) = τ−→α (u)(a) . (6.11)

We need to explain what happens in the limit casen = dim(X).

Remark 6.13. Letn = dim(X) and(a,−→α ) ∈ Ω
(n)
X . Then[−→α ] = X , and henceX/[−→α ] =

0, so the only possible choice fora is a = 0. Moreover,τ−→α : E(X) → C is already a
character. Sinceτ0 = id, we getχ0,−→α = τ−→α .

We are ready now to prove one of our main results, which is a description of all the char-

acters of the algebraE(X). Recall that we denote bŷE(X) the character space ofE(X).

Theorem 6.14. The mapΩX → Ê(X) defined by(a,−→α ) 7→ χa,−→α is bijective.

Proof. The preceding construction shows thatχa,−→α is a character, therefore we only need
to show that every characterχ of E(X) is of this form and that the pair(a,−→α ) is uniquely
determined. To this end, we look at the restriction ofχ to the subalgebraC(X) and proceed
by induction on the dimension ofX .

Every character ofC(X) is of the formu 7→ u(x) = χx for somex ∈ X. Hence there is a
uniquex ∈ X such thatχ|C(X) = χx. If x = a ∈ X , thenχ(u) = u(a) for all u ∈ E(X),
and thusχ = χa,∅. The charactersχ of this form are characterized by the fact that the
restriction ofχ to C0(X) is non-zero. The value ofa is then determined by restriction to
C0(X), since there is a one-to-one correspondence between the characters ofC0(X) and
the points ofX . Thus all the charactersχa,∅, a ∈ X , are distinct.

Now assume thatx = α ∈ SX and that the assertion of the theorem is true for all vector
spaces of dimension strictly less than that ofX (induction hypothesis). Then the theorem
holds for the spaceX/[α], so there is

−→
β = (β1, . . . , βk) with

β1 ∈ X/[α], β2 ∈ X/[α, β1], . . . , βk ∈ X/[α, β1, . . . , βk−1] ,

such that the restriction ofχ to E(X/[α]) is given byχ(u) = (τ−→
β
u)(b) for someb ∈

(X/[α])/
−→
β . That is,χ = χ

b,
−→
β

onE(X/[α]). Let a = b and let−→α be obtained by includ-

ing α in front of the sequence
−→
β , more precisely−→α = (α, β1, . . . , βk). Thenχa,−→α (u) =

(τ−→
β
◦ ταu)(b) and the charactersχ andχa,−→α coincide onE(X/[α]). On the other hand,

on C(X), the charactersχ andχa,−→α coincide with the characterχα : E(X/[α]) → C.
Thereforeχ = χa,−→α by Corollary6.8.

The same argument can be used to show that we obtain a one-to-one parametrization of
all these characters. We shall proceed once more by induction on the length of−→α . If
χa,−→α = χ

b,
−→
β

, we have two possibilities: first that their restrictions toC0(X) is non-zero

and, second, that their restrictions toC0(X) is zero. In the first case, we must have−→α = ∅
and

−→
β = ∅, by the discussion earlier in the proof. By restricting toC0(X), we also

obtaina = b ∈ X . Let us assume that−→α 6= ∅, thenχa,−→α restricts to zero onC0(X)

and hence
−→
β 6= ∅ as well. Since the restrictions ofχa,−→α andχ

b,
−→
β

to C(X/Y ) areχα1

andχβ1
respectively, we obtainα1 = β1. The proof is completed by induction using the

restrictions of these characters toE(X/[α1]), as in the first part of the proof. �

We shall describe now the morphismτχ onE(X) defined as the translation by a character

χ = χa,−→α ∈ Ê(X), see Section2, Definition2.2.

Theorem 6.15. The translation morphism associated to the characterχa,−→α by Definition
2.2is the unital endomorphismτa,−→α of E(X) introduced in Definition6.11.
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Proof. If χ = χa ≡ τa,∅ for somea ∈ X , then this is just the usual translation bya, i.e.
τχa(u) = τa(u) = a.u is the functionx 7→ u(a + x). In general, we have to use the
definition in Definition2.2, that is,(τχ(u))(y) = χ(y.u) for all y ∈ X . Thus, ifχ = χa,−→α

as above, then from Definition6.12we get

(τχ(u))(x) = χa,−→α (x.u) = χa(τ−→α (x.u)) .

It is clear thatX acts by translation on each of the algebrasE(X/Y ) and that the morphism
τ−→α : E(X) → E(X/−→α ) is covariant for this action, that is,τ−→α (x.u) = x.(τ−→α (u)). Thus

(τχ(u))(x) = χa(x.(τ−→α (u))) = (x.(τ−→α (u)))(a) = (τ−→α (u))(x + a) ,

and hence we getτχ(u) = τaτ−→α (u), which is (6.10). �

Remark 6.16. Although we shall not use this here, let us mention that in view of Remark
2.5 and of Theorem6.15, it is interesting to notice that the action ofX on the space of
characters ofE(X) is given byτx(χa,−→α ) = χa−π−→α (x),−→α , whereπ−→α is the canonical map
X → X/[−→α ]. Hence, for the determination of the essential spectrum, itis enough to
consider the charactersχ0,−→α and their associated translationsτχ0,−→α

= τ0,−→α = τ−→α . This
issue, as well as further results, especially related to thetopology on the spectrum of the
algebraE(X), will be discussed in [20].

6.3. The Hamiltonian algebra. We now apply the results we have proved to the study of
essential spectra. SinceE(X) is a translation invariantC∗-subalgebra ofCu

b(X) such that
C0(X) + C ⊂ E(X), we may takeA = E(X) in Section2. The algebra generated by the
Hamiltonians that are of interest for us is the crossed product

E (X) := E(X)⋊X. (6.12)

As explained in Section2, E (X) can be thought as the closed linear subspace ofB(X)
generated by the operators of the formu(q)v(p) with u ∈ E(X) andv ∈ C0(X∗). On the
other hand, sinceC(X/Y ) is a translation invariantC∗-subalgebra ofCu

b(X) we may also
consider the crossed productC(X/Y )⋊X and we clearly have

E (X) = C∗-subalgebra ofB(X) generated by
⋃

Y⊂XC(X/Y )⋊X. (6.13)

Similarly, for any subspaceY ⊂ X we may consider the crossed productE (X/Y ) =
E(X/Y ) ⋊ X . We thus obtain a family ofC∗-subalgebras ofE (X) which, as a conse-
quence of (6.3), has the following property: ifZ ⊂ Y then

C∗(X) = E (0) = E (X/X) ⊂ E (X/Y ) ⊂ E (X/Z) ⊂ E (X). (6.14)

From the general facts described in Section2, and by taking into account the properties
of E(X) established in the preceding subsection, we see that for anyA ∈ E (X) the map
x 7→ τx(A) = T ∗

xATx extends to a strongly continuous mapχ 7→ τχ(A) ∈ E (X) on the
spectrum ofE(X) such that

τχ
(
u(q)v(p)

)
= τχ

(
u(q)

)
v(p) for all u ∈ E(X) andv ∈ C0(X∗).

Hereχ ∈ Ê(X) hence it is of the form described in Theorem6.14 and the associated
endomorphismτχ of E(X) is described in (6.10). Note that, in virtue of Theorem2.4, we

are only interested in the characters that belong to the boundaryδ(E(X)) of X in Ê(X),
which are those with−→α 6= ∅. Then Proposition2.3and Theorem6.14imply:

Proposition 6.17. Let χ = χa,−→α ∈ δ(E(X)). Then there is a unique continuous linear
mapτa,−→α : E (X) → E (X) such thatτa,−→α (u(q)v(p)) = (τa,−→α u)(q)v(p) for all u ∈ E(X)
and v ∈ C0(X∗). This map is a morphism and a linear projection ofE (X) onto its
subalgebraE(X/[−→α ])⋊X .

Now we shall use the special form of the morphismsτa,−→α in order to improve the com-
pactness criterion of Theorem2.4.
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Theorem 6.18. Let A ∈ E (X). Then for eachα ∈ SX anda ∈ α the limit τα(A) ≡
α.A := s-limr→+∞ T ∗

raATra exists and is independent of the choice ofa. The mapτα
is a morphism and a linear projection ofE (X) onto its subalgebraE(X/[α]) ⋊ X . The
operatorA is compact if, and only if,τα(A) = 0 for all α ∈ SX .

Proof. The first assertion follows from the preceding results, but it is easier to prove it
directly. Indeed, it suffices to considerA of the formA = u(q)v(p) with u ∈ E(X) and
v ∈ C0(X∗). ThenT ∗

raATra = τra(A) = τra(u(q))v(p) which converges to(α.u)(q)v(p)
by Proposition6.2 (or see Remark6.4). The properties of the endomorphismτα are con-
sequences of the same proposition. Everything follows alsoby using general properties of
crossed products and the fact that at the abelian levelτα : E(X) → E(X/[α]) is a covariant
morphism. To prove the compactness assertion, note first that τα(A) = 0 if A is compact
becauseTra → 0 weakly asr → ∞. Then ifA ∈ E (X) andτα(A) = 0 for all α ∈ SX
then it is clear by (6.10) thatτa,−→α (A) = 0 if −→α 6= ∅ henceτχ(A) = 0 for all χ ∈ δ(E(X)),
and soA is compact by Theorem2.4. �

Remark 6.19. If Y is a linear subspace ofX then the algebrasE(X/Y ) andE (X/Y )
are a priori defined by our formalism as algebras of operatorson L2(X/Y ). In Section
6.1 we definedE(X/Y ) as a subalgebra ofCu

b(X) and by relation (6.8) this is natural
because of our general convention to identify subalgebras of Cu

b(X/Y ) with subalgebras
of Cu

b(X). On the other hand, we note that the algebrasE (X/Y ) = E(X/Y ) ⋊ (X/Y )
andE(X/Y )⋊X are quite different objects: indeed

E(X/Y )⋊X ≃
(
E (X/Y )

)
⊗ C∗(Y ) (6.15)

by a general fact from the theory of crossed products, namely

(A⊗ B)⋊ (G×H) ≃ (A⋊G)⊗ (B ⋊H) (6.16)

if (A, G) and(B, H) are amenableC∗ dynamical systems. In particular:

E(X/[α])⋊X ≃
(
E (X/[α])

)
⊗ C∗([α]) (6.17)

Corollary 6.20. The mapτ(A) =
(
τα(A)

)
α∈SX

induces an injective morphism

E (X)/K (X) →֒ ∏
α∈SX

E(X/[α])⋊X . (6.18)

The following theorem is an immediate consequence of the preceding corollary.

Theorem 6.21. LetH be a self-adjoint operator onL2(X) affiliated toE (X). Then for
eachα ∈ SX anda ∈ α the limit τα(H) ≡ α.H = s-limr→+∞ T ∗

raHTra exists and is
independent of the choice ofa. We haveσess(H) = ∪α∈SXσ(α.H).

The question whether the union∪α∈SXσ(α.H) is closed or not will not be treated in this
paper (see [31] for related results). That the union is closed ifE (X) is replaced by the
standardN -body algebraEC0

(X) is shown in [18, Theorem 6.27] and is a consequence
of the fact that{τα(A), α ∈ SX} is a compact subset ofEC0

(X) for eachA ∈ EC0
(X).

Unfortunately this is not true in the present case.

Lemma 6.22. If A ∈ E (X), then{τα(A), α ∈ SX} is a relatively compact subset of
E (X), but is not compact in general.

Proof. We first show that{τα(A), α ∈ SX} is a relatively compact set inE (X). Since
the product and the sum of two relatively compact subsets is relatively compact, it suffices
to prove this forA in a generating subset of the algebraE (X), so we may assume that
A = u(q)v(p) with u ∈ C(X/Y ) andv ∈ C0(X∗) for some subspaceY . Thenτα(A) = A
if α ⊂ Y andτα(A) = τα(u)v(p) if α 6⊂ Y . In the second case we haveτα(u) ∈ C and
|τα(u)| ≤ ‖u‖, so it is clear that the set of theτα(A) is relatively compact.
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We shall give now an example when this set is not closed. LetX = R2, Y = {0}×R, and
let us identifyX/Y = R× {0}. The operatorA will be of the formA = u(q)v(p) so that
τα(A) = τα(u)(q)v(p) with u = u0 + uY for someu0 ∈ C(X) anduY ∈ C(X/Y ). We
haveX/Y = R× {0} ≡ [−∞,+∞] henceSX/Y consists of two points±∞. If α ∈ SX

thenτα(u) = u0(α) + τα(uY ) whereτα(uY ) = uY if α ⊂ Y andτα(uY ) = uY (πY (α))
if α 6⊂ Y . In the last case we have only two possibilities:τα(uY ) = uY (+∞) if α is in
the open right half-plane andτα(uY ) = uY (−∞) if α is in the open left half-plane.

Let β be the upper half-axis, i.e.β = {(0, y), y > 0}, and let us chooseu0 such that
u0(γ) 6= u0(β) for all γ ∈ SX , γ 6= β. Then chooseuY such thatuY (+∞) − uY (−∞)
be strictly larger thanu0(γ) − u0(β) for all γ ∈ SX . Then{τα(u), α ∈ SX} consists
of the following elements:u0(β) + uY , u0(−β) + uY , u0(α) + uY (+∞) if α is in the
open right half-plane, andu0(α) + uY (−∞) if α is in the open left half-plane. We shall
prove that this set is not closed. Let{αn} be a sequence of rays in the open right half-
plane which converge toβ. Thenταn(u) = u0(αn) + uY (+∞) is a sequence of complex
numbers which converges tou0(β) + uY (+∞). This number cannot be of the formτγ(u)
for someγ ∈ SX because ifγ ⊂ Y thenτγ(u) = u0(γ) + uY is not a number, ifγ
is in the open right half-plane thenτγ(u) = u0(γ) + uY (+∞) which cannot be equal
to u0(β) + uY (+∞) becauseu0(γ) 6= u0(β), and if γ is in the open left half-plane
thenτγ(u) = u0(γ) + uY (−∞) which cannot be equal tou0(β) + uY (+∞) because
u0(γ)− u0(β) < uY (+∞)− uY (−∞). �

Remark 6.23. It is important to notice that finding good compactificationsof X related to
theN -body problem is useful for the problem of approximating numerically the eigenval-
ues and eigenfunctions ofN -body Hamiltonians [1, 15, 14, 13, 16, 37]. In particular, this
gives a further justification for trying to find the structureof the character space ofE(X).

6.4. Self-adjoint operators affiliated toE (X). Our purpose here is to show that the class
of self-adjoint operators affiliated toE (X) is quite large. For this we need a more explicit
description of the algebrasC(X/Y ) ⋊X . Observe first that ifZ is a supplement ofY in
X , soZ is a linear subspace ofX such thatY ∩ Z = {0} andY + Z = X , then:

C(X/Y )⋊X = C∗(Y )⊗ S (Z) relatively toL2(X) = L2(Y )⊗ L2(Z). (6.19)

Indeed,C(X/Y )⋊X is the norm closed subspace generated by the operators of theform
u(q)v(p) with u ∈ C(X/Y ) andv(p) ∈ C∗(X). But onceZ is chosen, we may identify
C(X/Y ) = 1 ⊗ C(Z) andC∗(X) = C∗(Y ) ⊗ C∗(Z), hence (6.19). Of course, this is a
particular case of the relation (6.16) from Remark6.19.

It is useful to express (6.19) in an intrinsic way, independent of the choice ofZ. This is in
fact an extension of Theorem4.2to the present setting.

Observe first that ifA is a bounded operator onL2(X) and[A, Ty] = 0 for all y ∈ Y , then
T ∗
xATx depends only on the classz = πY (x) of x in X/Y . Thus we have an actionτ of

X/Y on the set of operatorsA in the commutant of{Ty}y∈Y such thatτz(A) = T ∗
xATx

if πY (x) = z. Later on we shall keep the notationτa(A) = T ∗
aATa for a ∈ X/Y since

the correct interpretation should be clear from the context.

Theorem 6.24.C(X/Y )⋊X is the set ofA ∈ B(X) which have the position-momentum
limit property and are such that

(i) [A, Ty] = 0 for all y ∈ Y ,
(ii) for eachα ∈ SX/Y the limit s-lim τa(A)

(∗) with a → α in X/Y exists.

Proof. Let α̌ = π−1
Y (α̃) be the inverse image of the filter̃α through the mapπY , i.e.

the set of subsets ofX of the formπ−1
Y (F ) with F ∈ α̃. This is a translation invariant
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filter of subsets ofX and if f is a function defined onX/Y with values in a topological
spaceB then limz→α f(z) = b if and only if limx→α̌ f ◦ πY (x) = b. It is then clear
that the condition (ii) above is equivalent to the fact thats-limx→α̌ T ∗

xATx exists for each
α ∈ SX/Y . Now the proof is essentially a repetition of the proof of Theorem4.2, the filter
α̃ onX/Y being replaced by the translation invariant filterα̌ onX . �

Now we describe concrete classes of self-adjoint operatorsaffiliated toE (X). There is no
simple analogue of Theorem5.2in the present context, but one can extend Proposition4.7
and Theorem5.3. For this we shall use the following particular case of Theorem5.7.

Proposition 6.25. LetH0 be a positive operator strictly affiliated to aC∗-algebra of oper-
atorsC on a Hilbert spaceH. LetV be a continuous sesquilinear form onD(H

1/2
0 ) such

thatV ≥ −µH0−ν for some numbersµ, ν withµ < 1. If (H0+1)−1V (H0+1)−1/2 ∈ C ,
then the form sumH = H0 + V is a self-adjoint operator strictly affiliated toC .

Now we give two affiliation criteria similar to those pointedout in the case ofS (X).

Proposition 6.26. Let H = h(p) + V whereh : X∗ → [0,∞) is a continuous, proper
function andV =

∑
Y VY where theVY are bounded symmetric linear operators on

L2(X) that are equal to zero but for a finite number ofY and satisfy:

(i) limk→0 ‖[Mk, VY ]‖ = 0,
(ii) [Ty, VY ] = 0 for all y ∈ Y ,
(iii) s-lima∈X/Y,a→α T ∗

aVY Ta exists for eachα ∈ SX/Y .

ThenH is affiliated toE (X).

Example 6.27. For example, letVY be the operator of multiplication byvY ◦ πY where
vY : X/Y → R is bounded, Borel, andlimz→α vY (z) exists for eachα ∈ SX/Y .

We denote| · | a quadratic norm onX∗.

Theorem 6.28. Leth : X∗ → [0,∞) be locally Lipschitz with derivativeh′ such that for
some real numbersc, s > 0 and allk ∈ X∗ with |k| > 1 one has:

c−1|k|2s ≤ h(k) ≤ c|k|2s and |h′(k)| ≤ c
(
1 + |k|2s

)
. (6.20)

LetV =
∑

VY with VY = 0 but for a finite number ofY andVY : Hs → H−s symmetric
operators satisfying the following conditions:

(i) for eachµ > 0 there is a real numberν thatVY ≥ −µh(p)− ν
(ii) limk→0 ‖[Mk, VY ]‖Hs→H−s = 0,
(iii) [Ty, VY ] = 0 for all y ∈ Y ,
(iv) s-lima∈SX/Y ,a→α T ∗

aVY Ta exists inB(Hs,H−s) for all α ∈ SX/Y .

Thenh(p)+V is a symmetric operatorsHs → H−s which induces a self-adjoint operator
H in L2(X) affiliated toE (X).

Both Proposition6.26and Theorem6.28follow from Proposition6.25. Indeed, let us set
〈p〉 = (1 + |p|2)1/2. Since we have1 + h(p) ∼ 〈p〉2s, it suffices to prove that for eachY
the operator〈p〉−2sVY 〈p〉−s is in C(X/Y )⋊X . This clearly follows from Theorem6.24.

Example 6.29.Theorem6.28covers uniformly elliptic operatorsH =
∑

|j|,|k|≤s p
jajkp

k

(with s ≥ 1 integer andj, k multi-indices) whose coefficientsajk are finite sums of func-
tions of the formvY ◦ πY with vY : X/Y → R bounded measurable and such that
limz→α vY (z) exists for eachα ∈ SX/Y . Note that we may allow theajk to be irregular
(i.e. only bounded measurable) in the principal part (i.e.|j| = |k| = s) of the operator
because above we have the power〈p〉−2s and not〈p〉−s on the left ofVY . Of course, the
coefficients of the lower order terms are allowed to be unbounded, cf. Theorem6.28.
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Example 6.30. We give more explicit conditions on the lower order terms in the case of
non-relativistic Schrödinger operators. ThenX is an Euclidean space (so we may identify
X/Y = Y ⊥) andH0 := ∆ = p2 is the (positive) Laplace operator, hences = 1. The total
Hamiltonian is of the formH = ∆ +

∑
Y VY where the sum is finite andVY = 1 ⊗ V ◦

Y

whereV ◦
Y : H1(Y ⊥) → H−1(Y ⊥) is a symmetric linear operator whose relative form

bound with respect to the Laplace operator onY ⊥ is zero. Then assumeMkV
◦
Y = V ◦

Y Mk

for all k ∈ Y ⊥. For example,V ◦
Y could be the operator of multiplication by a function

vY : Y ⊥ → R of Kato classKn(Y ) with n(Y ) = dim(Y ⊥) (see Section 1.2 in [8],
especially assertion (2) page 8) but it could also be a distribution of non zero order. Indeed,
we may take asvY the divergence of a vector field onY ⊥ whose components have squares
of Kato class (e.g. are bounded functions): this covers highly oscillating perturbations
of potentials which have radial limits at infinity. Note thatthe Kato class is convenient
becausevY ◦ πY is of classKdim(X), see [8, p. 8]. To get (iv) of Theorem6.28it suffices
to assumelima→α vY (·+a) exists strongly inB(H1(Y ⊥),H−1(Y ⊥)) for eachα ∈ SY ⊥ .

The perturbationsV considered above are all of theN -body type, i.e. they are sums of
componentsVY indexed by subspacesY of X which formally look likeVY = vY ◦ πY

with vY : X/Y → R. In the usualN -body problem this is perfectly natural because the
correspondingC∗-algebra is graded, hence a productVY VZ is of the formVY ∩Z (with a
careful interpretation of the product if the potentials areunbounded). But this is not the
case in the present context so we shall also give some examples whereV contains products
of someVY andVZ .

The next proposition is a an easy consequence of the definitions. Note that themultiplier
algebraME (X) of E (X) can be identified with the set of operatorsM ∈ B(X) such that
MA andAM belong toE (X) for all A ∈ E (X). For exampleE(X)∪E (X) ⊂ ME (X).

Proposition 6.31. LetH0 be a self-adjoint operator (strictly) affiliated toE (X). If V is a
symmetric operator inME (X) thenH = H0 + V is (strictly) affiliated toE (X).

One may extend this to irregular or unboundedV by a regularization procedure. For ex-
ample, assume that we are in the context of Theorem6.28and letV be a locally integrable
function such the convolutionsθ ∗ V with C∞

c functions belong toE(X). If for any func-
tionsξ,ξ2 of classC∞

c onX∗ the operatorsξ1(p)(θ ∗ V )(q)ξ2(p) converge in norm when
θ → δ, thenh(p) + V is affiliated toE (X). This holds ifV is a bounded Borel function.
One may extend this idea to operatorsV : Hs → H−s even in the non local case by using
an abstract version of the regularization by convolutions,namely

∫
X
T ∗
xV Txη(x)dx.
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PONTOISE, FRANCE

E-mail address: vladimir.georgescu@math.cnrs.fr
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