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Logics of knowledge and action: critical
analysis and challenges

Andreas Herzig

Abstract We overview the most prominent logics of knowledge and action that were pro-
posed and studied in the multiagent systems literature. We classify them according to these
two dimensions, knowledge and action, and moreover introduce a distinction between indi-
vidual knowledge and group knowledge, and between a nonstrategic an a strategic interpreta-
tion of action operators. For each of the logics in our classification we highlight problematic
properties. They indicate weaknesses in the design of these logics and call into question
their suitability to represent knowledge and reason about it. This leads to a list of research
challenges.

Keywords Logic of action - Logic of knowledge - Common knowledge - Frame problem -
Uniform strategy

1 Introduction

A central issue in the study of multiagent systems (MAS) is the formal analysis of its relevant
concepts as well as their interplay. Agents are typically analysed in terms of the concepts
of knowledge, belief, desire, goal, and intention; their interaction is typically analysed in
terms of the concepts of action, event, and time. Following a well-established tradition in
philosophical logic and in the artificial intelligence subfield of knowledge representation,
many researchers have directed their attention to formal logics in order to account for these
concepts and design appropriate logical languages enabling formal reasoning.

In this paper we focus on the logics of two concepts playing a fundamental role in MAS:
knowledge and action. They are of utmost importance in any area of research whose aim
is to model intelligent agents, be they human or artificial. Typical situations to be modelled
are when agents with imperfect knowledge perform actions in order to achieve goals. Often
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the resulting models involve not only individual knowledge and individual actions, but also
group knowledge and joint actions. For example, the joint actions of speakers and hearers in
a dialogue build the common ground, which has been analysed in the literature as a kind of
group knowledge.

The main logics of knowledge and action that were proposed in the philosophical and
computer science literature are modal logics: extensions of classical propositional logic by
modal operators. The latter enable us to talk in a natural way about what an agent knows and
what the effects of his actions are. For example, the modal operator of knowledge is written
Ki, where i is an agent name and where the formula K;¢ reads “i knows that ¢”; and the
modal operator of ability is written (i), where the formula (i) reads “i can achieve ¢”. These
two kinds of operators combine in a natural way: for example, the formula (i)K; ¢ expresses
that i can achieve that j knows that ¢, and the formula K; — ()¢ expresses that i knows that j
cannot achieve ¢. Furthermore, we distinguish two different readings of action operators. In
a nonstrategic reading we say that i can achieve ¢ if the other agents do not act; in a strategic
reading we say that i can achieve ¢ whatever the other agents do. We reserve the traditional
‘diamond’ modal operator (i) for the former reading and use (i) for the latter, combining a
modal diamond and a modal box in a way that renders its ‘exists/for all’ quantification. The
notation generalises from individual agents to groups.

The first contribution of the present paper is a classification of the main logics of action
and knowledge along the knowledge dimension and the action dimension. In the knowledge
dimension we distinguish logics that do not account for knowledge at all, logics that only
account for individual knowledge, and logics that account for group knowledge; and in the
action dimension we distinguish logics that do not account for actions at all, logics that only
have nonstrategic action operators, and logics that have strategic action operators. This makes
up a 3x3 grid. Its simplest element is classical propositional logic: the logic which neither
accounts for knowledge nor for action. The other eight categories are extensions of classical
propositional logic by particular families of modal operators.

Our second and main contribution is a critical assessment of the most prominent existing
logics in each of the eight relevant categories. For all but classical propositional logic we
highlight one or more problematic properties. They can be traced back either to the design
of the logical language—some natural statements cannot be expressed—or to the design
of the logic itself—either too many or too little theorems. The former property affects the
suitability of these logics for knowledge representation while the latter affects their suitability
for drawing appropriate conclusions from the knowledge once it has been represented. Some
of these problems had already been identified in particular in the philosophical literature.
However, they were often ignored in the MAS and artificial intelligence literature.

We present each logic syntactically: we entirely omit the semantical aspects of the logics
(which are quite involved in some cases) and instead list and discuss for each logic under
examination its logical principles, i.e., its axioms and inference rules. This suffices to explain
the problems that we want to point out, while providing at the same time a concise and uniform
presentation. It also squares well with our knowledge representation perspective. This said,
we are aware that much of the work on logics for MAS is heavily semantic-driven, foremost
in the temporal logic literature where there was a ‘theorem proving vs. model checking’
debate [49] and where model checking is the most important reasoning technique. The model
checking perspective was also adopted by several authors in the epistemic logic literature
[75,89]. In the ‘theorem proving vs. model checking’ debate the main argument for the latter
was better chances for decidability and a generally lower complexity. We would however like
to separate such more mathematical concerns from our present more philosophical concerns:
the conceptual analysis should precede the investigation of computational properties, and we



believe that the conceptual weaknesses that we are going to highlight are important enough
to justify our enterprise.

The rest of the paper is organised as follows. In Sect. 2 we introduce two kinds of modal
operators of knowledge and two kinds of modal operators of action, leading to a grid of
nine classes of MAS logics. In the remaining sections we basically examine one exem-
plary logic per class, omitting the class having neither action nor knowledge operators. For
two of the classes we present two logics. We start by examining logics without knowl-
edge operators: Propositional Dynamic Logic (PDL) and Coalition Logic of Propositional
Control (CL-PC) as logics with nonstrategic action operators (Sect. 3) and Alternating-time
Temporal Logic (ATL) and Seeing-To-It-That Logic (STIT) as logics with strategic action
operators (Sect. 4).The following three sections examine logics with operators of individual
knowledge: the basic epistemic logic S5 (Sect. 5), Public Announcement Logic (PAL) as a
logic with nonstrategic action operators (Sect. 6), and Alternating-time Epistemic Temporal
Logic (ATEL) as a logic with strategic action operators (Sect. 7). The last three sections
are about extensions of some underlying logic with the common knowledge operator: s5CK
extends S5 (Sect. 8), PALCK extends PAL (Sect. 9), and ATELCK extends ATEL (Sect. 10).
Based on the critiques of the preceding sections, Sect. 11 concludes by a list of research
challenges.

2 A classification of MAS logics

We start by introducing a modal language that extends the language of classical propositional
logic by modal operators of knowledge and modal operators of action. We distinguish two
kinds of modal operators of knowledge and two kinds of modal operators of action.
Beyond the logical operators our language has the following non-logical symbols: propo-
sitional variables, action names, and agent names. More precisely, we suppose given

— a countable set of propositional variables P = {p, q, q1, .. .};
— acountable set of action names A = {a, b, by, .. .};
— a finite set of agent names I = {i, j, ji, ...}.

Nonempty subsets of I are called groups or coalitions.' For a given coalition J, the elements
of its complement J = I\ J are called the opponents of J. Throughout the paper we use
the term ‘group’ in general, while we use ‘coalition’ only when we reason strategically, i.e.,
when we take into account what the coalition’s opponents might do (cf. the readings of the
ability operators in Sect. 2.2).

All the logics in this paper will be presented syntactically, in terms of axiomatisations
made up of axiom schemas and inference rules. All of them have a classical basis that we do
not list explicitly: some axiom schemas for classical propositional logic plus the inference
rule of modus ponens. A deduction of a formula ¢ from a set of formulas I" is a finite sequence
of formulas whose last element is ¢ and which is such that each element of the sequence is
either an element of I, or an instance of an axiom schema, or is obtained from preceding
elements in the sequence by an inference rule. This is called deduction with global hypotheses
in modal logic. One may also define deduction with local hypotheses; the definition is a bit
more complicated. When ¢ is deducible from " with the axiomatisation £ then we write

' The set of agent names cannot be infinite if we want the set of all groups of agents to be enumerable—for
example, if [ were allowed to be the set of natural numbers then the set of subsets of I would be uncountable—,
and enumerability is necessary to obtain finite axiomatisations. Another way out is to only consider finite
subsets of an infinite set of agents. We refer to [48] for non-finite axiomatisations of logics of group knowledge.



I' Fr ¢. When I' = {x} is a singleton we write x . ¢, and when y is empty we write
Fr ¢ instead of @ -, ¢. In the latter case the deduction is called a proof, and provable
formulas are called theorems.

2.1 Modal operators of knowledge

The modal operators of knowledge are parametrised by either an individual agent or a set of
agents. In the former case of individual knowledge, modal formulas take the form K; ¢ where
¢ is a formula and are read “agent i knows that ¢”. In the latter case we distinguish several
kinds of group knowledge: shared, common and distributed.

A formula ¢ is shared knowledge in the group of agents J, written EK ¢, if each agent
in J knows that . EK ;¢ is therefore identical to the conjunction of individual knowledge:

EK,¢ < /\ Kig.
ieJ

In most presentations EK ;¢ is actually defined as an abbreviation of ;. ; K;¢. The concept
can therefore be added without any technical difficulties to a logic of individual knowledge,
and we do not present it in more detail here.

A formula ¢ is common knowledge in J, written CK ¢, if it is shared knowledge that ¢,
it is shared knowledge that it is shared knowledge that ¢, and so on. Intuitively, CK, ¢ is
therefore equivalent to an infinite conjunction:

CK]q)(—) EK]¢AEKJEK]¢AEKJEK]EKJ¢A"' .

Such an infinite conjunction is however not a well-formed formula: differently from the
shared knowledge operator, the common knowledge operator cannot be defined from the
modal operators of individual knowledge by means of an abbreviation. The way out is to add
the modal operators CK; to the language and to give them the status of full-fledged logical
connectives.

A formula ¢ is distributed knowledge in group J if ¢ follows from the combined knowledge
of the agents in J. It is somewhat difficult to grasp the concept syntactically beyond that
informal definition. We here do so only in an approximate manner and view distributed
knowledge as ‘hypothetical common knowledge’: ¢ is distributed knowledge in the group of
agents J, written DK ¢, if it is the case that when each agent communicates all his individual
knowledge to all the other agents in J then ¢ becomes common knowledge in J. We do not go
into the details for two reasons: first, the standard way of presentating distributed knowledge
is semantical (in terms of the intersection of the accessibility relations of the group members)
and cannot be characterised axiomatically (because intersection of accessibility relations is
not modally definable); second, its semantics has some known conceptual problems: there
are Kripke models where formally there is distributed knowledge that ¢, while intuitively
this is not the case [83,94]. Moreover, distributed knowledge was not studied to the same
extent as common knowledge. We are going to discuss it briefly in two places: in Sect. 9.3 we
explain the shortcomings of our definition of distributed knowledge as hypothetical common
knowledge when examining the extension of Public Announcement Logic (PAL) with group
knowledge, and in Sect. 10 we discuss the role of distributed knowledge when investigating
uniform strategies in logics with group knowledge.

Common knowledge implies shared knowledge, shared knowledge implies individual
knowledge, individual knowledge implies distributed knowledge, and distributed knowledge
implies truth; in formulas, we have CK ;¢ — EK ¢, EK;j9 — Kipifi € J, K¢ — DK, ¢



Table 1 The modal operators of

knowledge Type of operator Notation Reading

Individual Kig “Agent i knows that ¢”
Group EK;¢ “It is shared knowledge in J that ¢”,
“Every agent in J knows that ¢”
CKjo “It is common knowledge in J that ¢”
DK ;¢ “It is distributed knowledge in J that ¢”

ifi € J,and DK;¢ — ¢. In the case of singleton groups, all three concepts of group
knowledge coincide with individual knowledge: the formulas CKy; ¢, EK¢, K;¢, and
DKj;y¢ are all equivalent.

The different modal operators of knowledge and their readings are listed in Table 1.

2.2 Modal operators of action and ability

The modal operators of action relate an agent or group of agents to a formula that is viewed
as the outcome of the agent’s action.

Most of the MAS logics deal with potential action, as opposed to actual action: they talk
about the ability of an agent or a group of agents to achieve some outcome, and not about
what they actually do. We are therefore mainly going to deal with modal operators of ability.

Modal operators of ability can be interpreted in two ways. In the nonstrategic interpretation
it is supposed that no other action is performed: the outcome is achieved ceteris paribus. In
the strategic interpretation the outcome is achieved whatever the other agents do. (There
seems to be no scholarly name for that opposite of ceteris paribus; ceteris mutandis, ceteris
variantis, or ceteris agentis might be suitable.) The strategic interpretation is appropriate to
reason about strategic games, where one studies whether an agent or a coalition of agents
has a winning strategy.

— Inthe nonstrategic interpretation, modal formulas take the form (J)¢ and are read “group
J can achieve ¢ while the other agents don’t act”.
— Inthe strategic interpretation, modal formulas take the form {J )¢ and are read “coalition

J can achieve i whatever the opponents do”.”

In nonstrategic contexts we talk about groups, while in strategic contexts we talk about
coalitions and their opponents.

Only the so-called modal logics of agency deal with actual action. We here limit ourselves
to one such operator: the operator of seeing-to-it-that, abbreviated ‘stit’ [19,64]. Agency
formulas take the form Stit; ¢ and are read “J achieves ¢ whatever the opponents do”. There
exists another tradition studying a similar modal operator of agency that is read “i brings it
about that” [34,60,90]. We do not discuss it here because the logics of these operators lack
the modal operator of historical possibility: the latter will be instrumental for us in Sect. 7,
where we relate stit logics to other strategic logics in order to solve the problems occurring
there.

All the modal operators of action that we have introduced up to now relate agents and
outcomes, but leave implicit the action the agent performs to achieve the outcome. There exist

2 We have chosen the notation ({J )—the nesting of a modal diamond and a modal box—in order to signal
a V3 quantification. It is however not standard in the literature, where one can find (J) in Pauly’s Coalition
Logic CL and ((J)) in Alternating-time Temporal Logic (ATL).



Table 2 The modal operators of ability and action

Type of operator Notation Reading

Nonstrategic (m)p “Action 7 can achieve g if the other agents do nothing”,

“There is an execution of program 7 after which ¢”

(J)p “Group J can achieve ¢ while the other agents don’t act”
Strategic {Jhy “Coalition J can achieve 1 whatever the opponents do”
Stitj ¢ “Coalition J achieves ¢ whatever the opponents do”

Table 3 The grid of MAS logics

Knowledge
Action No actions Nonstrategic action Strategic action
No uncertainty CL-PC; PDL ATL; STIT
Individual knowledge S5 PAL ATEL
Group knowledge s5CK par.CK aTELCK

logics with names for actions in the language. Beyond such atomic actions they also allow
to talk about complex actions, that may also be called plans. Complex actions are built from
atomic actions by means of program operators such as sequential composition and iteration.
Modal formulas take the form ()¢ and are read “there is an execution of plan 7 after which
¢”. In principle such so-called dynamic operators can be interpreted both in a nonstrategic
and in a strategic way. The only standard logic in the literature with such dynamic operators,
PDL, comes with the first interpretation. However and as we will discuss in Sect. 4, logics with
strategic operators {J] that are indexed by actions committing some agents to perform some
actions were proposed recently in the literature. When the committed agents are exactly those
of J then we obtain a dynamic operator with a strategic interpretation. While the standard
syntax of PDL does not provide agent names, we suppose that each action name a € A
comes with an agent name i € [ identifying the author of a. This is written a; or i:a. The
logical language is extended in this way in many papers in the MAS literature, for example in
[55,65,84].
The different modal operators of ability and action are summarised in Table 2.

2.3 The grid of MAS logics

Our classification of logics according to the knowledge and the action dimension leads to
the nine classes of logics that are depicted in the 3x3 grid in Table 3. We do not mention
there any logic lacking both knowledge operators and action operators: this would be good
old classical propositional logic, which it is not interesting for our enterprise.

For each of the remaining eight classes we give one prominent logic. As we have motivated
above, we discuss further representatives for the two classes of logics without knowledge
operators: in the nonstrategic category we discuss PDL and in the strategic category we
discuss STIT.

In the rest of the paper we are going to critically examine each of the ten logics in our
grid.



3 No uncertainty, nonstrategic actions: PDL and CL-PC

We start by recalling PDL, which is a logic with names for actions, and show that it suffers
from the frame problem. We then present a dialect of PDL solving the frame problem,
Dynamic Logic of Propositional Assignments (DL-PA). We finally recall CL-PC, which is a
logic without explicit actions, and present its embedding into DL-PA.

3.1 Propositional Dynamic Logic (PDL)

The authors of PDL [51,52] were motivated by the verification of computer programs. Later,
PDL was also applied in philosophy of action [100]. Its language has modal formulas of the
form ()¢, where ¢ is a formula and 7 is a complex action—alias a plan or a program—, read
“there exists a possible execution of 7 after which ¢ or “action 7 possibly achieves ¢ (if the
opponents do nothing)”. The latter reading indicates that in PDL, the interpretation of actions
is nonstrategic. The modal operator () comprehends an existential quantification; a dual

operator [7] with a universal quantification is defined by the abbreviation [ ]¢ def —(T)—ep.
It therefore has to be read “g after every possible execution of 7 or “mr necessarily achieves
¢ (if the opponents do nothing)”. The program  is either an atomic program a, a sequential
composition 7; 7, a nondeterministic composition 7 U 7, a finite iteration 7, or a test ¢?,
where ¢ is a formula. The standard programming instructions can then be defined as PDL
programs: for example, the program T? is the ‘skip’ action, (¢?; 1) U (—¢?; 2) is nothing
but the conditional “if ¢ then 7 else 77 and (¢?; 7w)*; —¢? is the loop “while ¢ do 7.

The star-free fragment of PDL is the set of formulas without the iteration operator *, that
is also called ‘Kleene star’.

As we have already said in Sect. 2.2, while the original language of PDL is not designed
for multiple agents, one may nevertheless accommodate them by indexing atomic actions
with agent names: we suppose that the members of the set of action names A have the form
i:b where i is an agent and b is an action name. For example, the formula (i1:b1) T A[iz:b1]L
expresses that i1 is able to perform b and i> is not.

The axiomatisation of PDL is given in Table 4. The principles in the left column, RE({r)),
N((m)), M((rr)), C({m)), and Dual({mr)), are common to all so-called normal modal logics
[20,29]; M({mr)) and C((mr)) can be replaced by the axiom K({7)): ([7]p A [7](¢—1¥)) —
[r]yr. The right column of Table 4 is about the PDL program operators. Its schemas Segq,
Nondet, and Test are equivalences without program operators on the right. It follows that
for the star-free fragment, all program operators can be eliminated. For the iteration operator *
there are two axioms: FP((rr*)) is a fixpoint axiom and LFP ({7 *)) is a least fixpoint axiom.

When ¢ is deducible from I" in PDL we write I" Fppr, ¢. The following version of the
deduction theorem holds:

x Feor @ iff Fppp, [((1:b1 U -+ Uinihy) [ x — o,

where {i|:b1, ..., i,:b,} is the set of atomic actions occurring in ¢.
The problem of deciding the satisfiability of a PDL formula is PSPACE complete for the
star-free fragment and EXPTIME complete for the full language [91].

3.2 Reasoning about ability and the frame problem

In PDL, one can describe an atomic action i:b by means of formulas stating its pre-
conditions and (possibly conditional) effects. These formulas respectively take the form
Precond — (i:b)T and Cond — [i:b]Effect. A set of such formulas makes up a theory



Table 4 Axiomatisation of PDL

/
RE((7)) oo e Seq (m1: m2)p <> (m1)(m2)e
N((r)) —(7)L Nondet (T Umle < (m1)e V (m)e
M(()) (T V) = ((mhe V (1)¥) Test (WY < oAy
C({m)) ((m)e v {m)¥) — (T)(e Vv ¥) FP((1*)) (") < @ Vv () (m*)e
Dual((r)) [lp < —(7)—¢ LEP((7*)) (T*)p = (9 V(T*) (=@ A (7))

of actions ActionTheory. Given ActionTheory, one typically wants to check whether given
the description of the initial state Init, the group of agents {iy, ..., i,} is possibly able to
achieve the goal Goal by means of a sequence of atomic actions i1:by; - - -; ip:b,. This is
the most basic multiagent version of a prediction task. More elaborate versions with syn-
chronous or asynchronous execution of actions can be designed [35]. Formally, the above
prediction task amounts to checking whether Init — (i1:by; - - - ; i,:b,)Goal can be deduced
from ActionTheory, i.e., to checking whether

ActionTheory Fppy, Init — (i1:b1; - - -5 in:by)Goal.

The above formula only guarantees that the group is possibly able to achieve ¢. If actions
are nondeterministic then we often rather want to know whether the group is necessarily able
to achieve ¢. We then have to check the deducibility of the following formula:

ActionTheory + Init — ((ilzbl; e dyby) T Airiby; -0 i,,:b,,]Goal).

Let us suppose we want to formulate an action theory for a domain containing the action
i:moveBlocky, 1, of agent i moving some block from location L to L>. Suppose the set of
propositional variables [P contains BlockRed. Then the action theory has to contain the two
implications

BlockRed — [i:moveBlocky, 1,]BlockRed,
—BlockRed — [i:moveBlocky,, 1,]—BlockRed

in order to guarantee that the colour of the block is not altered by moving it. Formulas
of that form are called frame axioms. Intuitively, action theories should not contain such
formulas; instead, they should rather be deducible from it. This however fails to be the
case here: the logic PDL is too weak and suffers from the so-called frame problem [82].
Formally and according to Reiter [93], an appropriate reasoning about actions formalisms
should have action descriptions with size much smaller than Card(P) x Card(I) (assuming
that PP is finite). His argument appeals to the principle of inertia, which basically says that an
action only modifies the truth value of very few propositional variables and leaves the others
unchanged.

In contrast, the addition of frame axioms to a PDL action theory results in a set of formulas
whose size is in the order of Card(IP) x Card(I).

3.3 Reiter’s solution to the frame problem

The frame problem not only plagues PDL, but virtually every logic-based framework for
reasoning about a dynamic system. Interestingly, it was also investigated during the last
decade in theoretical computer science, where separation logic is considered to be a solution
that enables local reasoning about memory structures such as heaps or chained lists [87]. In



the artificial intelligence field of reasoning about actions, a lot of dedicated logical formalisms
were developed in the eighties in order to solve the frame problem, including the Situation
Calculus [82], the Event Calculus [101], the Fluent Calculus [103], and so-called action
languages such as A, B, C, C+, and most recently 5C [41,71].

One of the most popular solutions to the frame problem is Reiter’s [92,93] in terms of
what he calls successor state axioms. While Reiter’s original framework was the Situation
Calculus, his solution can be imported into PDL if we augment it by variables for action
names, quantifiers and the equality predicate. We call the resulting logic PDLY. We know of
no result in the literature about the precise relationship with first-order dynamic logic [51,52]
where variables do not range over atomic programs but over objects of the world (just as in
first-order logic) and just note that the two logics are a priori different.

The successor state axiom for the propositional variable BlockRed can be formulated in
pDLY as

Vx ([x]BlockRed <~ (x:(i :paintRed) v (BlockRed N x;é(i:paintBlue)))),

where in order to simplify we suppose that i is the only agent who is able to paint and that
the only available colours are red and blue. The general form of a successor state axiom for
a propositional variable p is

Vx([xlp < yp(x)),

where x is a variable ranging over the set of actions and y,(x) is a boolean formula. It
determines the truth value of p after action x given the truth value of y,(x) before x. This
presupposes complete knowledge about the pre- and postconditions of each action a. In other
words, Reiter’s solution does not work when there are integrity constraints, such as that a
block cannot be both red and blue and that a block must have a colour. Taking such constraints
into account would pose the ramification problem.

Reiter’s basic action theories have one successor state axiom per propositional variable
in . This solves the frame problem: the cardinality of a basic action theory is linear in that
of P, and if we suppose with Reiter that the length of each successor state axiom is bounded
then we obtain an action theory whose size is also linear in that of P.

While the basic version of Reiter’s solution is for deterministic actions only, nondeter-
minism can be modelled by means of PDL’s operator of nondeterministic composition.

To sum it up, the adoption of Reiter’s solution seems to require quantification over
action names, which is not available in PDL. However, as we will show in the sequel,
Reiter’s solution can be captured in a simple variant of PDL that stays in the propositional
realm.

3.4 DL-PA: a variant of PDL solving the frame problem

It was shown in [114] that Reiter’s basic action theories can be captured in a dialect of PDL.
Its extension by the PDL program operators, called DL-PA, was further studied in [12,59].
We first describe that logic and then the embedding.

The language of DL-PA is just as that of PDL, except that atomic actions are not just abstract
names: they do something concrete, namely to assign formulas ¢ to propositional variables p.
Such assignments are written p:=¢. The original language only contains assignments of T
and _L; however, the more general assignment p:=¢ can be considered to be an abbreviation
of (p?; p:=T)U(—¢?; p:=1).Forexample, BlockAt; ,:=_1 makes BlockAt, false. We here
only present an axiomatisation of star-free DL-PA and refer the reader to the above papers



for the full logic. The four axiom schemas that have to be added to those of PDL are the
following:

(p=0)¥ < [p:=0l¥
(pi=¢)p < ¢
q < (p=p)q forq#p

The first says that assignments are serial and deterministic. The second says that p is true
after the assignment of ¢ to p if and only if ¢ was true before. The third says that assignments
to p do not modify other variables.

Reasoning in DL-PA has several advantages over PDL: the logic is compact and has the
interpolation property; model checking has the same complexity as satisfiability checking;
the Kleene star is eliminable (from which it follows that every DL-PA formula is reducible to a
boolean formula). Complexity of satisfiability is PSPACE complete for its star-free fragment
[59].

The fact that the execution of an assignment p:=¢ leaves unchanged the truth values of
all those g that are different from p leads to a solution to the frame problem. For example,
the action i:moveBlocky,, 1, can be captured by the DL-PA program

i:moveBlocky, 1, = (Repi:,,mveBlockLlYL2 ?; Free?; BlockAty,,:=1; BlockAtr,:=T),

where we suppose that the propositional variables Rep;.,..oveBiock L1l and Free are true when
the action moveBlocky 1, is in agent i’s repertoire and when the block is free, respectively.
For that action, the formulas

BlockRed — [i:moveBlocky,, 1,]BlockRed,
—BlockRed — [i:moveBlocky 1 ,]—~BlockRed

are both DL-PA theorems.

Let us make this precise. A successor state axiom Yx ([x] D <V (x)) is explicit if for
every a that does not occurin y, (x), yp(a) <> pis a theorem of classical propositional logic.
For such actions [a]p <> p is therefore a theorem, which means that an action that does not
occur in y,(x) cannot modify p. Special cases are Reiter’s original definition of successor
state axioms [92] and local effect successor state axioms [118]. The successor state axiom
for BlockRed in Sect. 3.3 is clearly explicit.

The theorem below basically says that for explicit basic action theories, action a’s effects
according to Reiter are exactly the effects of the DL-PA assignment program

Ta = (qf:=yge(@); -+ g5 =y (@),

where qf, ..., gy are all variables whose successor state axiom mentions a. It is formulated
for the extension PDLY of PDL by action variables, quantification and equality within which
we have presented Reiter’s solution in Sect. 3.3 and follows from Theorem 18 of [1 1413

Theorem 1 Let ActionTheory be a set of explicit successor state axioms, one per proposi-
tional variable p. Let ¢ be some PDL formula. For each atomic program a, let {qf, ..., q;}
be the set of propositional variables q; such that a occurs in the successor state axiom for

3 We here give a simplified version; the original formulation is not about the above extension pDLY of PDL,
but about logic ES [70]. The latter is a variant of the Situation Calculus where situation terms are suppressed
(and which is therefore closer to modal logics) and which moreover comes with sensing actions and epistemic
operators.



gy and such that qif occurs in ¢. Let ¢' result from replacing each abstract atomic action a
in ¢ by the complex assignment program w, = (qla::yqtlz (@); -+ gy =yqe (a)). Then

ActionTheory oy @ if and only if Fprpa ¢

The length of ¢’ is quadratic in the length of ¢, and the embedding of Reiter’s solution to
the frame problem is therefore polynomial [114, Theorem 27].

One might argue that the above resultis not very impressive: after all, frame axioms can also
be encoded in PDL by systematically augmenting action theories with a polynomial number
of frame axioms. We have seen in the end of Sect. 3.2 that this however violates Reiter’s
criterion for a solution to the frame problem because the cardinality of the action theory is in
the order of Card(P) x Card(I). In contrast, the encoding into DL-PA is satisfactory because
it is based on Card(A) action descriptions 7,, one per action a € A. Differently from PDL
and the Situation Calculus, these action descriptions appear directly in the formula, i.e., there
are no action names that are axiomatised separately in an action theory.

We view DL-PA as a sort of Assembler language for reasoning about change. Its applica-
bility to update and revision operations, planning tasks, argumentation theory and answer-set
programming has been demonstrated recently [33,36,54,62]. In the rest of the section we
show that it captures a logic of ability.

3.5 Coalition Logic of Propositional Control (CL-PC) and its embedding into DL-PA

Coalition Logic of Propositional Control (CL-PC) was introduced in [110,112]. It is a MAS
logic with nonstrategic actions that does not account for uncertainty. Just as in boolean
games [21,53], the idea is that each propositional variable is controlled by some agent. When
i controls p then i can modify the truth value of p at will. An action of i is therefore identified
with the change of some of i’s variables. It is supposed that control is not only exclusive—
each variable is controlled by at most one agent—, but also exhaustive —each variable is
controlled by at least one agent.

The language of CL-PC relates agents to outcomes. It has formulas of the form (J)¢,
read “group J can achieve ¢ by modifying its variables while the opponents don’t act”. The
dual [J]e may be read “group J cannot prevent ¢”. The fact that i controls p can then be
expressed by the CL-PC formula (i) p A (i)—p.

We do not give the entire axiomatics of CL-PC here and refer the reader to [110]. Instead,
the principles of the logic will become clear through the embedding into DL-PA that we state
as Theorem 2. But let us first discuss two CL-PC theorems in order to limber up:

((yp A (i)=p) = L(G) p A ()—p),
((i)p A (i)g) = (i) (pAQ).

The first theorem says that an agent’s action repertoire is not changed by the performance
of actions. The second theorem comes from the fact that control is exercised over atomic
formulas and not over complex formulas. Note that these are theorems and not theorem
schemas; for example, the replacement of ¢ by —p in the last formula results in a non-
theorem.

The focus of CL-PC is reasoning about nonstrategic (ceteris paribus) ability: given a set
of CL-PC formulas AbilityTheory describing the abilities of the different agents by means of
formulas of the form (i) p A (i)—p, one may check whether

AbilityTheory ‘c1,.pc Init — ({iy, ..., iy})Goal



holds, where Init describes some initial situation and Goal some goal. As the agents’ reper-
toires are not changed by the performance of actions, this is the same as

Fcr-pe (AbilityTheory A Init) — ({iy, ..., in})Goal.

Let P, be the set of propositional variables occurring in ¢. For every agent i € I and
variable p € Py, let Ctrl; , be a fresh propositional variable (not occurring in ¢); the intended
meaning of Ctrl; j is that i controls p. Then the formulas

Excl, = /\ /\ =(Ctrli,p N Ctrlj p),
pePy i, jeli#]

NV ¢y

pEP, i€l

Exhy,

describe exclusivity and exhaustivity of the control over Py,.
Given a set of agents J and a propositional variable p, we define the following program:

varyy , = T?2U ((\/ Ctrli,pl)?; p]::—-pl).
ieJ
It either does nothing or flips the truth value of p if p is under the control of one of J’s
members. For example:

(vary{i}‘p)p = (T? U (Ctrl; p7; p:=—-p))p
< (TNhp Vv {(Ctrl; p?) (p:=—p)p
< pV (Ctrl; p AN —p)
< pV Ctrlp.

Therefore [vary;y ,1p <> p A =Ctrl; . Then for a finite set of propositional variables
P = {pls-~-,pn} gP,WEdeﬁne

varyy p = varyj i cccivaryy

which nondeterministically changes the truth value of some of the variables of P that are
under J’s control.
The theorem below is a consequence of Theorems 4 and 5 of [59].

Theorem 2 Let ¢ be a CL-PC formula and let ¢’ be the DL-PA formula resulting from
replacing each subformula (J )y of ¢ by (varyj,m)w. Then

Fer-ec ¢ ifand only if Fpi.pa (Exhy A Excly) — ¢
Note that the length of ¢’ is polynomial in that of ¢.

3.6 Strategic reasoning in CL-PC

It was argued in [110] that in CL-PC one can also reason about strategic ability: as pointed out
there, the CL-PC formula (J)[J ]g expresses that J can achieve ¢ next whatever J ’s opponents
do. Itis claimed that this captures at least the spirit of the formula {J ) X¢ of Pauly’s Coalition
Logic CL. Indeed, if we take a CL theorem and replace its strategic operators {J )X by (J )[7]
then the resulting formula is a CL-PC theorem [110, Theorem 4.1].

In the rest of the section we have a look at the other direction.



Consider the following equivalence:
v = (J)1(pve) < (J)T1p v (1)U ]g

It basically says that if J can achieve p\Vg whatever its opponents do then either J controls
p or J controls g. We are going to establish that it is a theorem of CL-PC. The difficult part
is to prove that Yy = [J](pVvq) < [J]p V [J]q is a theorem of CL-PC; the rest follows by
principles of normal modal logics. We prove that

Vo = aryg , J(PVQ) < varys ,\1p V [varyg ,1q

is a theorem of DL-PA, from which it follows by Theorem 2 that vy is a theorem of CL-PC.
The following equivalences are all theorems, where we write Ctrl; , instead of \/; _,; Ctrl; :

[varyj’{p}]p\/[varyj’{q}]q <~ (p/\ﬁCtrljﬁp) Y (q/\ﬂCtrlj’q)

<~ (p A (—-Ctrlj,p\/ﬁp)) \ (q A (ﬁCtrlqu\/—-q))

< (pvq) A (=Crrl5 N pV=q) A

(ﬂCtrljﬁpV—-p\/q