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aInstitut de Radioprotection et de Sûreté Nucléaire, B.P. 3, 13115 Saint-Paul-lez-Durance Cedex,
France
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Abstract

This study is devoted to the effective elastic properties of nanoporous media con-

taining spherical nanovoids. Nanocomposites materials are strongly dependent on

their nanometric characteristic lengths. This size effect can not be directly modeled

using the classical homogenization schemes based on the Eshelby inclusion problem.

However recent studies have extended the continuum mechanics and well-known mi-

cromechanical models to the nanoscale. In this paper, it is shown that these models

can be replaced in a unified framework using the morphologically representative

pattern-based approach of Stolz and Zaoui (1991) and therefore can be generalized

to more complex microstructures. Following this approach, new bounds and esti-

mates are derived. Two particular cases are treated: i. the case of an ellipsoidal

spatial distribution of the voids, ii. the case of a biporous material containing both

spherical nanovoids and randomly oriented spheroidal microvoids. The second case is

typical of the microstructure of the irradiated uranium dioxide (UO2). Thereby, the
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associated result could be used for determining the poro-elastic properties of these

doubly voided materials.

Keywords: Nanoporous materials, Spherical voids, Effective elastic properties,

Micromechanical models, Morphologically representative pattern, Homogenization

1. Introduction

Nanoporous materials can be classified into the category of nanocomposites ma-

terials in which the characteristic length is typically of the order of a few nanometers

(< 100 nm, Paliwal and Cherkaoui (2012)). The particularity of this kind of materi-

als is the high surface/volume ratio. Indeed, atoms near a surface are in a different

local environment than those in the bulk: their coordination number is less than

that of the bulk atoms and their energy is different (Duan et al., 2005a,b; Paliwal

and Cherkaoui, 2012; Wang et al., 2011). Therefore there is a disturbed region some-

times called the interfacial region whose thickness is of the order of few atomic layers

(about one nanometer), which has a local elastic behavior different from that of the

bulk (Paliwal and Cherkaoui, 2012; Wang et al., 2011). The impact of surfaces is

often negligible in classical continuum mechanics but becomes predominant when the

number of surface atoms is high as in nanocomposite materials (Brisard et al., 2010a;

Duan et al., 2005b,a; Paliwal and Cherkaoui, 2012; Le Quang and He, 2008; Wang

et al., 2011). In particular, such surface effects have to be considered when deriving a

model for the effective elastic behavior of these materials. The main consequence of

the surface effects is a strong dependency of the effective properties to the nanometer

characteristic length (Duan et al., 2005b; Paliwal and Cherkaoui, 2012; Sharma and

Ganti, 2004). The present study is devoted to the modeling of the elastic proper-

ties of porous materials which exhibits cavities whose characteristic length is in the

nanometer range.
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Indeed, this is the case of the irradiated uranium dioxide (UO2), which is com-

monly used as a nuclear fuel. The modeling of its mechanical behavior from up-

scaling methods has recently motivated several studies (see for example (Vincent

et al., 2008; Vincent et al., 2009a,b; Julien et al., 2011; Vincent et al., 2014a,b)).

This material contains intragranular cavities whose radii range between one and ten

nanometers and pore density from 1023 m−3 to 1024 m−3 (Kashibe et al., 1993). Jelea

et al. (2011) have carried out atomistic simulations and have determined the elastic

moduli of a system built with periodic UO2 elementary cells containing spherical

nanocavities. Their results are compared to classical homogenization schemes in

elasticity (Mori-Tanaka and self-consistent) and experimental data. Although there

is a good agreement between the different results, it was shown that a surface effect

exists at the scale of nanometric intragranular cavities in UO2 and the results ob-

tained from the homogenization approach could be improved by taking into account

these surface effects.

Description of the disturbed region. The first step to derive a microme-

chanical model with surface effects consists in giving a mechanical description to the

disturbed region. There are mainly two ways to model this region. The first way

is a zero thickness approach and the disturbed region is treated as an ’interface’.

The interface stress model or ’imperfect coherent interface model’ assumes that the

traction vector is discontinuous across the surface and the displacement is continu-

ous (Sharma and Ganti, 2004; Wang et al., 2005; Duan et al., 2005c,b,a, 2006, 2007;

Wang et al., 2007; Le Quang and He, 2008; Brisard et al., 2010a,b; Wang et al.,

2011; Paliwal and Cherkaoui, 2012). This model is a limit case of a thin and stiff

interphase (Wang et al., 2005) and is often used to model the disturbed region for

nanocomposite materials.

The second way describes the disturbed region as an ’interphase’ (Marcadon,
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2005; Paliwal and Cherkaoui, 2012), i.e. as a classical three-dimensional coating.

Although this approach is less used than the interface stress model, it makes no as-

sumption concerning the stiffness and the thickness of the disturbed region. However

it often leads to more complex analytical results.

Homogenization process. Once the description of the interfacial region is cho-

sen, it has to be integrated in the homogenization process to derive models. Most

of the classical micromechanical models are based on the Eshelby inclusion problem

(Eshelby, 1957) and can not deal with surface effects. Relatively recent works (Duan

et al., 2005b; Brisard et al., 2010a,b) have extended these classical models to the

case of nanocomposite materials, particularly the Hashin (1962) composite sphere

assemblage model, the Mori and Tanaka (1973) model, and the generalized self-

consistent model (Christensen and Lo, 1979). These models, developed by analogy

with their classical counterparts, are based on a modified inclusion problem in which

the perfect interface1 between the spherical inclusion and the surrounding medium

is replaced by an imperfect coherent interface (as stated above, the term coherent

means that the displacement field is continuous across the interface). The solving of

this problem generally leads to non-uniform deformation fields inside the inclusion.

This generalization of the classical results are limited to the case of materials con-

taining nanospherical inclusions isotropically distributed inside the bulk. However,

it is shown in the sequel that they can be derived in the theoretical framework of

the morphologically representative pattern (MRP) theory (Stolz and Zaoui, 1991;

Bornert, 1996a; Bornert et al., 1996; Bornert, 1996b, 2001) and thus extended to the

case of materials with more complex microstructures such as an ellipsoidal spatial

1A perfect interface (or a perfect bonding condition) means that the traction vector and the

displacement are continuous across two adjacent media.
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distribution of voids.

Morphologically representative pattern. The MRP theory extends the clas-

sical approach: it allows to take some finer details of the microstructure into account

and particularly the local arrangement of the phases. It is convenient in the case

of nanoparticulate composites (also called materials with an inclusion-matrix mor-

phology2), in which the disturbed region is included between the matrix and the

heterogeneities and locally perturbs the mechanical fields. The establishment of the

effective elastic moduli through this approach requires the solving of auxiliary prob-

lems related to heterogeneous inclusions embedded in an infinite medium. In the

case of the spherical inclusions or voids, these auxiliary problems are similar to those

solved by Duan et al. (2005b) and correspond to a single spherical inclusion coated

with a disturbed region (modeled as an interface or an interphase) surrounded by a

matrix phase. It is shown here that the MRP approach delivers a better understand-

ing concerning the assumptions underlying in the already existing models.

The present study is organized as follows. The interface stress model typically

used for nanomaterials is shortly described in the section 2. In the section 3, the

theory and the main results concerning the MRP approach are summarized. This

section is also devoted to a direct use of the MRP theory in the case of nanoporous

materials and it is shown that the existing models can be directly derived from the

MRP approach. The section 4 deals with some original results, corresponding to

particular cases that can be easily treated following the MRP theory. It illustrates

the ability of the MRP approach to catch the effective elastic properties of materials

containing nanospherical voids. Two particular cases are discussed in this section: i.

2The material is made of a predominant phase in which heterogeneities (inclusions, voids or

heterogeneous inclusions) are included.
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spheroidal spatial distributions of voids, ii. a biporous medium containing spherical

nano-voids together with larger spheroidal voids. The second case is typical of the

microstructure of irradiated UO2 and the results are then plotted with characteristic

moduli for this material.

2. Nanomaterials: modeling of the disturbed region with the interface

stress model

As already stated, the interface stress model is intensively used in the case of

nanomaterials. It assumes a traction vector jump across the interface whereas the

displacement is continuous. This model has been proposed by Gurtin and Murdoch

(1975) developing a theoretical framework for the mechanical behavior of material

surfaces.

The Gurtin and Murdoch model consists in a set of two equations: a surface

constitutive law and a balance equation. The surface constitutive law is assumed to

be composed of two parts: a surface internal stress, called by analogy with liquids

a ’surface tension’, which is independent on the external loading and an elastic part

whose moduli are distinct from those of the bulk. The elastic behavior is often as-

sumed to remain isotropic in the tangent plane. For polycristals with intragranular

nanocavities, such as the irradiated UO2, due to the crystal anisotropy, the mechan-

ical behavior of the disturbed region around each cavity is probably not isotropic.

It is unlikely that the disturbed region is in a particular crystallographic orientation

and it is certainly randomly oriented. Although the hypothesis of an isotropic elastic

behavior of the disturbed region is not really equivalent to the case of randomly

oriented disturbed regions, the complexity generated by anisotropy to develop non-

numerical micromechanical models would be higher than the gain of precision by
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taking account it (Duan et al., 2005b; Paliwal and Cherkaoui, 2012). As a result, the

elastic behavior of the surface is commonly considered as isotropic.

The surface between two media (1 and 2) is denoted by Γ. The unit normal

vector to Γ (oriented from 1 to 2) is denoted by n and the two vectors tt and tb are

unit vectors contained in the tangent plane to Γ. These three vectors are assumed

to be pairwise orthogonal and (tt, tb, n) forms a vector basis for 3 dimensional

vectors (n = tt ∧ tb). The couple (tt, tb) is a basis for surface tangent vectors. The

second-order identity tensor in the tangent plane iT and the fourth-order identity

tensors in the tangent plane IT are defined as:

iT = i− n⊗ n (1)

IT =
∑

α,β=t,b

[

tα ⊗ tα ⊗ tα ⊗ tα +
1

2

(

tα ⊗ tβ ⊗ tα ⊗ tβ + tα ⊗ tβ ⊗ tβ ⊗ tα

)

]

(2)

where i is the classical second order identity tensor (ikl = 1 if k = l, ikl = 0

otherwise) and ⊗ denotes the tensor product. The two tensors iT and IT can be seen

as projectors onto the surface, in the sense that they serve to extract the tangential

parts of vectors or second order tensors. The surface constitutive relation which

expresses the surface stress σs in terms of the surface strain ϵs can be written in the

infinitesimal strain framework as follows (Huang and Wang, 2006; Ru, 2010):

σs = τsiT + Cs : ϵs (3)

Cs = 2(ksJT + µsKT ) (4)

The tensors JT = (1/2)(iT ⊗ iT ) and KT = IT − JT are two tensors among the

six classical tensors for the transversely isotropic basis of the fourth-order symmetric

tensors. They are projectors in the sense that if ϵ is a strain tensor, then the non-

zero components of KT : ϵ are only the transverse shear strains and JT : ϵ expresses
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the section changing in the tangent plane. The surface elastic moduli have unusual

dimensions. Indeed, they have the dimension of a force per unit length (N/m). This

work is devoted to the modeling of the effective elastic moduli. The influence of the

surface tension, denoted by τs in the equation (3), on the overall mechanical behavior

is not investigated in this article (τs is set to zero in the sequel).

The surface strain ϵs corresponds to the tangential part of the strain in the matrix

or in the inclusion at the interface and is determined from:

ϵs(x) = IT : ϵ1(x) = IT : ϵ2(x), ∀x ∈ Γ (5)

Concerning the balance equation, the most commonly used equation is the Gener-

alized Young Laplace equation. This equation links the stress jump at the interface

[σ] = σ2(x) − σ1(x), ∀x ∈ Γ to the surface stress σs and to the second-order

curvature tensor b (Brisard et al., 2010a,b) :

[σ] · n+ (σs : b)n+ divsσs = 0 (6)

Here, the operator divs refers to as the surface divergence of the two-dimensional

second-order tensors.

3. MRP-based approach

3.1. General Framework

The MRP-based approach was first proposed by Stolz and Zaoui (1991) and

then followed by Bornert et al. (1996); Bornert (1996a,b, 2001). It considers non

uniform admissible elastic fields over the phases on the heterogeneous material. This

approach allows to take into account some details on the microstructure, especially

the relative local phases arrangement. As a consequence, it allows to introduce some
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characteristic lengths in the micromechanical models. This approach is used by

Marcadon (2005) to derive the effective elastic properties of nanocomposite materials

with randomly distributed spherical inclusions. In Marcadon (2005), the disturbed

region is modelled as an interphase. On the other hand, Brisard et al. (2010b) also

use the MRP concept to derive a Mori-Tanaka-like estimate for the shear modulus

of a nanomaterial with randomly distributed spherical inclusions (which becomes a

bound under certain conditions).

The MRP approach assumes that the representative volume element (RVE) can

be split into separated subdomains. These subdomains are grouped together into

families called morphologically representative patterns. All the members of a pattern

exhibits the same geometry and the same spatial distribution of the mechanical

properties. The heterogenous medium is then characterized by the description of all

its patterns and the positions of all their members inside the volume as illustrated in

the figure 1. The patterns are described as morphologically representative by Bornert

et al. (1996) since they take into account some primary morphological characteristics

of the heterogeneous material such as the phase continuity or discontinuity, the

presence of inclusions in a surrounding material, the shapes and the orientations of

the inclusions.

Here, the domain occupied by the RVE is denoted by Ω. This domain can be

split into p patterns (subscript r ∈ [1, .., p]) and a surrounding matrix. Each pattern

has Nr members. The members (superscript i) of each pattern r are defined over

their domains Di
r centered at the points xi

r (∀r ∈ [1, .., p] and ∀i ∈ [1, .., Nr]).

The domains Dr (∀r ∈ [1, .., p]) are centered at the origin and are such that the

domains Di
r are obtained from the domains Dr by a translation of xi

r. So a pattern is

characterized by a given domain Dr and a spatial distribution of local elastic moduli

Cr(u) (∀u ∈ Dr).
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Figure 1: Schematic illustration of the MRP approach: particular case of a decomposition of the

RVE using two patterns (whose the external shape is spherical) and a surrounding matrix.

While the domains Dr and the distributions of the local elastic moduli Cr are

assumed to be given data, only statistical information on the characteristic func-

tions are available. The first and second order informations, respectively the volume

fractions and the correlation functions3, are supposed to be known. This paper is

devoted to the particular case of an ellipsoidal distribution of the centers.

The total domain Ω is not necessarily described by the patterns only. A domain

Dm can subsist around the patterns: an homogeneous matrix phase surrounding

all the patterns can be considered and it is called the Matrix Outside the Patterns

(MOP) in the sequel: the subscript associated to this domain ism. Its elastic stiffness

tensor is denoted by Cm and cm denotes its volume fraction.

The overall stress and strain are defined as the volume averages of the local stress

3In the present work, the correlation functions prs have the following form: ∀(r, s) ∈ [1, p]2 ∀h ̸=

0 prs(h) = ψrs(||α : h||) where α is a second-order symmetric normalized tensor and ψrs a scalar

function with scalar arguments. The case α = i corresponds to the isotropic case.

10



and strain fields over the RVE:

σ̄ =
1

|Ω|

∫

Ω

σ(x) dx, ϵ̄ =
1

|Ω|

∫

Ω

ϵ(x) dx. (7)

The averages of the stress and the strain over the domain Dr are respectively

denoted by ⟨σ⟩Dr
and ⟨ϵ⟩Dr

:

⟨σ⟩Dr
=

1

|Dr|

∫

Dr

σ(x) dx, ⟨ϵ⟩Dr
=

1

|Dr|

∫

Dr

ϵ(x) dx. (8)

From the MRP-based description, different kinds of models can be derived. These

models contain distinct morphological informations. First-order bounds can be de-

rived. The upper bound is called the Generalized Voigt (GV) bound and is expressed

as follows:

CGV
M = cmCm +

p
∑

r=1

crC
GV
Mr with ⟨Cr : ϵr⟩Dr

= CGV
Mr : ϵ̄, ∀ ϵ̄ (9)

The lower bound, called the Generalized Reuss (GR) bound, is expressed as

follows:

(

CGR
M

)−1
= cm (Cm)

−1 +
p

∑

r=1

cr
(

CGR
Mr

)−1

with
〈

(Cr)
−1 : σr

〉

Dr

=
(

CGR
Mr

)−1
: σ̄, ∀ σ̄

(10)

The tensors CGV
Mr and CGR

Mr are the overall stiffness tensors obtained from the

study of a single pattern r subjected to the macroscopic strain ϵ̄ (for CGV
Mr ) or to

the macroscopic stress (for CGR
Mr ) σ̄ on its boundary. It corresponds to a Generalized

Hashin assemblage of pattern r subjected to ϵ̄ or σ̄ at infinity (Bornert, 2001).

As in the classical approach, the previous bounds can be improved by adding

informations on the spatial distribution of the centers of the patterns. A procedure
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inspired of the classical Hashin and Shtrikman variational formulation has been de-

rived in the MRP context and lead to second-order bounds or estimates. As already

stated, the spatial distribution of the centers of the patterns is assumed to be el-

lipsoidal. For the three cases presented herefater, Bornert (2001) shows that the

optimal polarization fields are obtained by solving p + 1 auxiliary problems. Each

problem is relative to an inclusion (made by a single pattern or by the MOP) embed-

ded in an infinite medium. The infinite medium, also called the reference medium,

is indexed by 0 and its elastic stiffness tensor is denoted by C0. A remote strain ϵ0 is

applied at infinity. The mean polarization field over the domain Dr ⟨τ ⟩Dr
is defined

as ⟨σ⟩Dr
− C0 : ⟨ϵ⟩Dr

. Then a tensor T0
Mr is introduced for each auxiliary problem:

⟨τ ⟩Dr
= T

0
Mr : ϵ

0 (11)

Again, each auxiliary problem can be seen as a problem of a generalized Hashin

assemblage where the overall strain is equal to the mean strain over the pattern. The

fourth-order tensor linking ⟨σ⟩Dr
and ⟨ϵ⟩Dr

is thus commonly denoted by CHS
Mr(C

0):

⟨σ⟩Dr
= CHS

Mr(C0) : ⟨ϵ⟩Dr
(12)

Moreover, one should remark that the previous tensors CGV
Mr and CGR

Mr can be deter-

mined from the tensor CHS
Mr(C0) as follows:

lim
∥C0∥→+∞

CHS
Mr(C0) = CGV

Mr , lim
∥C0∥→0

CHS
Mr(C0) = CGR

Mr (13)

where ∥ . ∥ denotes a norm for the fourth order symmetric tensors. Indeed, when

C0 tends to the rigid case, an homogeneous strain is applied on the boundary of the

pattern and when C0 tends to the porous case, an homogeneous stress is applied on

its boundary.

Following Bornert (1996b), three particular cases are considered here. In the first

case (case 1 ), the reference medium has the same elastic properties as the matrix.
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This model is called the Mori-Tanaka-type model or the Generalized Mori-Tanaka

model (GMT). In the second case (case 2 ), the volume fraction of matrix which is

not included inside the patterns (the MOP) is equal to zero. The tessellation of the

RVE consists in a Hashin-like assemblage. Such a material is called a Generalized

Hashin assemblage. To build such an assemblage, the following conditions have to

be checked:

- the patterns have all the same ellipsoidal external shape (same aspect ratio

and same orientation) and this shape is related to the spatial distribution of

the centers of the patterns,

- the assemblage is fractal and so the patterns can not have a well definite size.

In this second case, the choice for the reference medium remains free. In the third

case (case 3 ), the external shape of the patterns is related to the spatial distribution

of the centers of the patterns (as in the previous case). So the patterns have all the

same ellipsoidal external shape. But unlike the previous case, the volume fraction of

the matrix which is not included in the patterns is not necessarily equal to zero. In

this case, the MOP can be treated as an additional homogeneous pattern. For these

three specific cases, the effective stiffness tensor can be written as:

Case 1:

CGMT
M = Cm +

(

I− ⟨Tm
Mr⟩M : Pm

d

)−1
: ⟨Tm

Mr⟩M (14)

In this expression, the operator ⟨.⟩M is defined as the average ⟨X⟩M =
∑p

r=1 crXr

and I is the classical fourth-order identity tensor. The tensor P0
d is the Hill tensor

related to the ellipsoidal spatial distribution of the centers of the patterns and to the

stiffness tensor of the reference medium C0. The Hill tensor P(C0) is related to the

Eshelby tensor SE(C0):

P(C0) = SE(C0) : C
−1
0 (15)
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Case 2 (cm = 0):

CHS
M (C0) = C0 +

(

I−
〈

T0
Mr

〉

M
: P0

d

)−1
:
〈

T0
Mr

〉

M
(16)

Case 3: Here the MOP can then be seen as an additional homogeneous pattern.

Its auxiliary problem consists in an homogeneous inclusion with stiffness Cm and with

the same shape as the patterns. This inclusion is embedded in an infinite medium

with stiffness C0 subjected to a remote strain ϵ0 at infinity. As in expression (11), a

tensor T0
m can be introduced such that: ⟨τ ⟩Dm

= T0
m : ϵ0. In this case:

CHS
M (C0) = C0 +

(

I−
〈

T0
Mr

〉

M
: P0

d − cmT
0
m : P0

d

)−1
:
(

〈

T0
Mr

〉

M
+ cmT

0
m

)

(17)

If the patterns have the same shape as the spatial distribution of their centers

(cases 2 and 3 always meet this condition), then (inequality in the sense of the

quadratic forms):

CGR
M < CHS

M (C0) < CGV
M (18)

Unlike case 1, cases 2 and 3 allow an arbitrary reference medium. The specific

choice C0 = CHS
M (C0) lead to a self-consistent model called the Generalized Self-

Consistent model (GSC).

3.2. Auxiliary problem for spherical nanovoids with interface stress model

The objective is to apply the MRP approach to the case of a porous material with

spherical nanovoids. Here, the auxiliary problem of a pattern made by a spherical

cavity (index v) embedded in a matrix layer (index m) is considered. At the interface

between the cavity and the matrix, the disturbed region is taken into account by using

the interface stress model. This pattern is denoted by S. The outer shape of the

pattern is chosen spherical and concentric with respect to the cavity. The center of

the pattern is defined as the center of the cavity. The radius of the cavity and the
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external radius of the pattern are respectively denoted by r1 and r0. The porosity

of the pattern S, denoted by fS , is equal to (r1/r0)3. The surfaces Γ1 and Γ0 are

respectively characterized by r = r1 and r = r0 in the classical spherical coordinates

system.

The study is limited to the case of an ellipsoidal spatial distribution of the cen-

ters of the voids. Following the MRP approach, auxiliary problems are defined as

heterogeneous inclusions (with the same microstructures as the patterns) which are

embedded in an infinite homogeneous medium (called the reference medium and de-

noted by 0) submitted to a remote strain ϵ0 applied at infinity. This problem is

illustrated in the figure 2. Hereafter, the domain occupied by a phase i is denoted

by ωi. The set of equations reads as follows (u refers to a displacement field and ϵ

is the linearized strain tensor):

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

divσ = 0, ϵ =
1

2

(

gradu+Tgradu
)

in ω0 and ωm

σ = C0 : ϵ in ω0 and σ = Cm : ϵ in ωm
(

σ
(0) − σ

(m)
)

· n = 0 and
(

u
(0) − u

(m)
)

= 0 on Γ0
(

σ
(m) − σ

(v)
)

· n+ (σs : b)n+ divsσs = 0, ϵs = IT : ϵ, σs = Cs : ϵs on Γ1

σ = 0 in ωv and u = ϵ
0 · x when ||x|| → ∞

(19)

where σ(0), σ(m), and σ(v) denote the stress tensors respectively in the infinite

medium, in the matrix, and in the void. The vectors u(0), u(m), and u(v) denote

the displacement vectors respectively in the infinite medium, in the matrix, and in

the void. The vector n denotes the unit normal vector to Γi (∀i ∈ {0, 1}) oriented

to the matrix.

The elastic behaviors of the matrix and the reference medium are assumed to be
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r1

r0

Ε
0

Reference medium

Matrix

Coherent imperfect interface

Figure 2: Problem of the heterogeneous inclusion in an infinite reference medium for spherical

nano-voids with the interface stress model.

isotropic (J = 1/3(i⊗ i), K = I− J):

Cm = 3kmJ+ 2µmK and C0 = 3k0J+ 2µ0K (20)

The surface elastic tensor is specified in the equation (4). The determining of the

fourth-order tensor T0
MS and CHS

MS is given in Appendix A by solving the problem

(19). Due to the spherical symmetry and to the isotropic behaviors of the phases,

these tensors are isotropic and they can be written as follows:

T0
MS = T 0

MS|hJ+ T 0
MS|dK, CHS

MS = 3kHS
MSJ+ 2µHS

MSK (21)

where T 0
MS|h, k

HS
MS are given in (A.2), and T 0

MS|d, µ
HS
MS are given in (A.8).

Unlike the effective bulk modulus kHS
MS , the shear modulus µHS

MS depends on the

stiffness C0 (to be more precise it depends only on the shear modulus µ0). Following

(13), the tensors CGV
MS and CGR

MS are obtained:

CGV
MS = 3kHS

MSJ+ 2µGV
MSK, CGR

MS = 3kHS
MSJ+ 2µGR

MSK (22)
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The shear moduli µV
MS and µR

MS are given in (A.15). They will be used after to derive

the GV and GR bounds according to the equations (9) and (10).

3.3. Particular cases derived from the MRP approach

In this section, some particular cases derived from the generalized estimates and

bounds and based on the pattern S are treated. By the way, it is shown how the

already existing models for nanoporous media can be replaced into the framework of

the MRP approach.

3.3.1. GMT estimates

In the case of the GMT models, the reference medium has the same elastic prop-

erties as the matrix. Therefore the polarization fields over the MOP and in the

matrix phases included inside the patterns vanish. It implies that the external shape

and the external length of the patterns have no influence on the overall properties

evaluated with this kind of models. Then the external shape of the patterns are

not necessarily related to the spatial distribution of the centers, unlike other models

(such as the GSC estimate, the GV and GR bounds). The external radii of the

patterns characterizing the distance between the centers of the patterns, the packing

effects can not be taken into account. In this case, the tensor Tm
MS used to derive the

GMT estimates for the effective moduli (equation (14)) is expressed as:

Tm
MS = Tm

MS|hJ+ Tm
MS|dK (23)

where Tm
MS|h and Tm

MS|d are respectively specified in (A.4) and (A.16).

If the interface is rigid (i.e. ks and µs tend to infinity) or if the radius r1 of the

void is equal to zero, then the tensor Tm
MS reduces to (with fS = 1, it means that

there is no matrix phase inside the pattern S):

T
m
MS = (3km + 4µm)J+

5µm(3km + 4µm)

3(km + 2µm)
K (24)
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On the other hand, if the interface is soft (i.e. ks and µs are vanishing) or if the

radius r1 of the void tends to infinity, then its expression reduces to (with fS = 1):

Tm
MS = −

3km(3km + 4µm)

4µm
J−

10µm(3km + 4µm)

9km + 8µm
K (25)

The two previous expressions correspond to the classical tensors Tm
i without surface

effect, corresponding respectively to rigid inclusions and to pores. In other words:

- when the interface is very stiff or when the radius of the void r1 tends to zero,

the medium behaves as if the cavities were replaced by stiff inclusions,

- when the interface is infinitely soft or when the radius tends to infinity, the

surface effect becomes negligible and the medium behaves as a classical porous

medium without surface effect.

When the medium contains a single pattern S, the effective stiffness tensor related

to the GMT scheme is expressed as follows:

CGMT
M = Cm +

(

I− cST
m
MS : Pm

d

)−1
: cST

m
MS (26)

where cS is the volume fraction of the pattern S in the RVE. Then, the total porosity

over the RVE, denoted by f in the sequel, is equal to fS cS . This result shows that

the tensor CGMT
M depends on fS and cS only through the total porosity f . Again, it

means that the overall properties evaluated with this model do not depend on the

external radius r0 of the pattern S.

In the particular case of an isotropic spatial distribution of the centers of the

pattern S, this expression leads to the following bulk and shear moduli:

kGMT
M = km +

f

3

(3km + 4µm)(4ks − 3kmr1)

4(1− f)ks + r1(3fkm + 4µm)
(27)
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µGMT
M = µm + f

5βdµm(3km + 4µm)

3kmδd + 4µmζd − 6fβd(km + 2µm)
(28)

where βd, δd, and ζd are given in (A.16). Therefore the effective moduli are equal to

those already established by Duan et al. (2005b).

From this, an ellipsoidal spatial distribution of the centers can be easily taken into

account using the adapted expression of Pm
d . The influence of the spatial distribution

of the centers of the pattern S on the effective elastic properties will be investigated

in section 4.1.

3.3.2. Other bounds and estimates

The self-consistent model of Duan et al. (2005b) can also be directly refound

by using the expressions (17), (21), (A.2), and (A.8) together with C0 = CGSC
M and

fS = f . In this case, it means that cS = 1, cm = 0, and the tensor P0
d is the Hill

tensor for a spherical inclusion. The bulk modulus evaluated from this model is

equal to that evaluated from the GMT model (equation (27)) and the effective shear

modulus is obtained by solving:

Vd

(

µGSC
M

)2

+ (Rd − Vn)µ
GSC
M − Rn = 0 (29)

where Vn, Vd, Rn and Rd are expressed in (A.9).

The composite sphere assemblage models (CSA) of Duan et al. (2005b) (only

derived for the bulk modulus) can also be directly refound by using the MRP ap-

proach. Indeed, these models provide bounds for the effective elastic properties of a

generalized Hashin assemblage built with the single pattern S (without MOP). For

such a material, the CSA models of Duan et al. (2005b) are simply the GV and GR

bounds obtained from the equations (9) and (10):

CGV
M = CGV

MS and CGV
M = CGV

MS
(30)
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with the tensors CGV
MS and CGV

MS given by the equations (22) and taking fS equal to

the total porosity f .

The three previous models (GSC estimate, GV and GR bounds) lead to the

same effective bulk modulus which is also the bulk modulus obtained from the GMT

estimate. The GV and GR bounds being equal, it means that the exact effective

bulk modulus for this material bas been obtained. Let us remark that the GV and

GR bounds for the shear modulus are now available.

For building a generalized Hashin assemblage with a single pattern (which is a

fractal structure), the members of the pattern must be distinct in size and homothetic

(by definition) in order to tessellate the entire domain. However, for the GMT,

GSC, GV, and GR models, a characteristic length has been fixed in the pattern (by

considering that the interfacial region has zero thickness) and the entire domain is

directly built with one pattern. So in these models, all the members of the pattern

have the same size and it can not tessellate, strictly speaking, all the entire domain.

By doing so, these models are not representative of a generalized Hashin assemblage

built from a single pattern. This difficulty can be overcome by introducing a MOP.

Then the first-order bounds derived by Le Quang and He (2008) (LQH bounds)

can also be derived from the MRP approach. Let us consider a material made of a

MOP and p patterns S(i) where the porosity of each pattern, f (i)
S , is equal to 1 for

all i from 1 to p: it means that the matrix is only in the MOP and that there is no

matrix inside the pattern. Each pattern S(i) has its own interface moduli denoted

by k(i)
s and µ(i)

s , its own internal radius r(i)1 , and volumic fraction fi. In this case, the

GV and GR bounds can be expressed as:

CGV
M = cmCm +

i=p
∑

i=1

fiC
GV
MS(i) and

[

CGR
M

]−1
= cm

[

Cm

]−1
+

i=p
∑

i=1

fi
[

CGR
MS(i)

]−1
(31)
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where the tensors CGV
MS(i) and CGR

MS(i) are derived from the equations (22):

CGV
MS(i) =

4k(i)
s

r(i)1

J+ 2
k(i)
s + 6µ(i)

s

5r(i)1

K

CGR
MS(i) =

4k(i)
s

r(i)1

J+
10k(i)

s µ(i)
s

(6k(i)
s + µ(i)

s )r(i)1

K

(32)

If the stiffness tensor Cm is isotropic, then the previous bounds match with the

bounds of Le Quang and He (2008). Nevertheless, the bounds of Le Quang and He

(2008) are not based on the MRP theory but on admissible fields which are uniform

in the matrix and in the pores together with the variational principle. In fact, these

assumptions are, in this case, in full agreement with those of the GV and GR models.

The bounds of Le Quang and He (2008) (for the porous media) appear as a particular

case of the GV and GR bounds derived with the patterns S(i).

In the approach of Le Quang and He (2008), the admissible field over the matrix is

fully uniform which is a crude approximation. This is not the case for the GV and

GR bounds when the f (i)
S remain free, which implies that an amount of matrix can

be taken into account inside each pattern. This would lead to non-uniform fields

inside the matrix of the composite and a better description of the heterogeneity of

the exact fields inside the composite. Following this idea, it means that it would be

more relevant to build bounds based on the GV and GR procedure with a non-zero

amount of matrix inside each pattern. This is illustrated in the figure 3. The GMT,

GSC, GV, GR, and LQH models are compared in the case of a porous material

with a single mono-sized population of cavities. The models derived from the MRP

approach are evaluated by setting fS to f (no MOP). One should remark that the

GMT and GSC estimate are close to each other and they respect the GV and GR

bounds. Moreover it appears that the GV and GR bounds improve the LQH bounds.

In the following, the material data used for the numerical implementations are:
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• Em = 188 GPa, νm = 0.3, for the Young modulus and the Poisson ratio of

the matrix. These values are relative to compact UO2 at 1200oC following the

study of Martin (1989).

• ks = 26.85 N/m, µs = 14.46 N/m for the bulk and the shear moduli of the

surface. This value for the bulk is in the range of those specified by Wolfer

(2011) for Al, Au, and Ag nanoparticles. Unfortunately, to the best of our

knowledge, these surface moduli are not known for compact UO2. Here, the

equivalence between the interface and the thin elastic layer of Brisard et al.

(2010a) has been used to derive the proposed values for ks and µs: the layer is

considered to be 200 times stiffer than the matrix; its thickness is set to 0.001

nm following Le Quang and He (2008) in such a way that it remains smaller

than the typical length of the nanocavities.

4. New estimates for nanoporous materials

In this section, two particular cases are considered to illustrate the ability of the

MRP approach to extend the existing models: the influence of a spatial distribu-

tion of the centers of the voids is investigated, then the case of a bi-porous material

containing spherical nanovoids and randomly oriented spheroidal microvoids is con-

sidered.

4.1. Ellipsoidal spatial distribution of voids

Unlike the other models, the GMT estimates easily allow to take into account a

spheroidal spatial distribution of the centers of the patterns without defining new

patterns with an external shape related to the distribution. Here the material is

assumed to be composed of mono-sized voids. Thus the GMT estimate is still derived
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Figure 3: Effective shear modulus (normalized with respect to the shear modulus of the matrix) as a

function of the radius of the cavities. The total porosity f is equal to 5 %. The models are evaluated

by setting fS = f .

from the equation (26). As already stated for this kind of model, one can impose

fS = 1 without loss of generality (it implies that f = cS). The Hill tensor Pm
d is then

related to the spheroidal distribution and is expressed by the equation (15) in terms

of the Eshelby tensor SE(Cm). Denoting by a and b the semi-length of the vertical

(z axis) and the horizontal axes of the spheroid (ellipsoid which is rotation invariant

around the z axis) the spheroidal distribution aspect-ratio is expressed as:

ωd = a/b (33)

The overall material presents a transversely isotropic symmetry with respect to the

z axis. The effective stiffness tensor can be put under the following form:

CGMT
M = nEl + 2ktJt +

√
2l(F+TF) + 2µtKt + 2µlKl (34)
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where El, Jt, F, TF, Kt and Kl are the basis tensors for fourth-order transversely

isotropic tensors defined in (Suquet and Bornert, 2001).

The figures 4 and 5 show the evolutions of the effective elastic constants as a

function of the aspect ratio ωd for an oblate (a < b) and a prolate (a > b) spheroidal

spatial distribution of the centers4. The radius of the voids is set to r1 = 1 nm. The

total porosity is set to an artificially large value f = 25 % in order to enhance the

effect of the voids. The effective elastic constants are normalized with respect to the

effective elastic constants when the spatial distribution is isotropic (ωd = 1). The

following observations can be made:

• first, one can observe that the overall behavior becomes more anisotropic when

ωd tends to 0 (oblate case) and when 1 − 1/ωd tends to 1 (prolate case): the

difference between the longitudinal coefficients (n, µl) and the transverse coef-

ficients (kt, µt) increases when ωd tends to these paricular values.

• in the oblate case, the longitudinal coefficients (n, µl) become stiffer when

ωd tends to 0 and the transverse coefficients become softer compared to the

isotropic case (ωd = 1).

• in the prolate case, only the coefficient n becomes softer when ωd tends to infin-

ity whereas the coefficients µl, kt, µt become stiffer compared to the isotropic

case (ωd = 1).

The physical meaning of the two previous items is tricky because of the various ef-

fects taken into account in the model. First, the interface induces more stiffness for

the overall behavior whereas the void phase induces softening. Secondly, the spatial

4For prolate spheroid, the evolution of the effective elastic constants is plotted as a function of

1− 1/ωd to browse all the range of the possible values of the aspect-ratio.
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distribution of the centers of the patterns induces changes in the distances between

the cavities and their interactions: for example, when ωd tends to 0, the spherical

voids are spaced far away from each other in the transverse plane and they tend to

line up in the axial direction (as already pointed out by Ponte Castañeda and Willis

(1995) in the case of rigid particles or cracks). Thirdly, the differences in the behav-

iors between the matrix and the interface can also influence the overall behavior. To

see the influence of the distribution of the centers on the overall behavior, one can

write the following Taylor expansion due to Ponte Castañeda and Willis (1995):

CGMT
M = Cm + cST

m
MS + (cST

m
MS) : P

m
d : (cST

m
MS) +O

[

(cS)
3] (35)

It appears that the shape of the distribution affects CGMT
M through the Hill tensor

Pm
d to second order in the volume fraction of the pattern. Let us introduce a new

tensor called the first distribution effect tensor as:

H = Tm
MS : Pm

d : Tm
MS (36)

The evolution of this H tensor can be used for studying the specific evolutions of the

parameters n, µl, kt, µt shown in the figures 4 and 5. The figure 6 illustrates the

evolution of the transversely isotropic coefficients ofH with respect to ωd in the oblate

case. One can observe that the transverse coefficients of H (resp. the longitudinal)

decreases (resp. increases) when ωd tends to 0 (aligned case). This is in accordance

with the evolutions of the transversely isotropic coefficients of CGMT
M shown in the

figure 4. When ωd tends to 0, the spherical voids are spaced far away from each other

in the transverse plane. It may be understood that the interactions between the voids

decrease in the transverse plane which could lead to softer transverse coefficients.

On the other hand, it implies that the voids are spaced close to each other in the

longitudinal direction. Therefore, the interactions between the voids may increase in
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this direction which could lead to stiffer longitudinal coefficients. It is also possible

to demonstrate that the transverse shear of the H tensor is zero when ωd tends to

0 (aligned case). It means that, in this case and for the transverse shear of CGMT
M ,

the voids are so far from each other that the interaction effect is neglectable and the

model reduces to the dilute case.

Moreover it has been shown that the longitudinal shear (resp. the transverse shear)

coefficient for the difference H(ωd = 0)−H(ωd = 1) is still positive (resp. negative)

for all the values of the other coefficients (matrix and interface coefficients, radius of

the voids). It implies that the overall longitudinal shear (resp. the overall transverse

shear) predicted by the model will be still stiffer (resp. softer) in the aligned case

(ωd = 0) than in the isotropic case (ωd = 1).

The same conclusion can not be generalized to the other coefficients (n, l, kt) of

CGMT
M . It is illustrated in the figure 7, where the H tensor exhibits another trend for

its transversely isotropic coefficients (n, l, kt), for other choices of the parameters

(Em = 100 GPa, νm = 0.2, ks = 50 N/m , µs = 30 N/m).

4.2. A second population of cavities

Let us consider now the case of a bi-porous material. The first population of

voids is assumed to be composed of nano-spherical voids and the second population

is assumed to be composed of spheroidal (more precisely oblate) voids whose the

size is larger enough to avoid the surface effects. The spatial distribution of the

centers of the voids is assumed to be isotropic. As already stated in the introduction,

such a microstructure is representative of the irradiated UO2. Indeed, this material

contains intragranular cavities, almost spherical in shape with a typical diameter of

a few nanometers, and at a larger scale, intergranular cavities, roughly ellipsoidal in

shape with a typical size of a few microns and located at the grain boundaries (see
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Figure 4: Effective elastic constants as a function of the aspect ratio for an oblate spheroidal spatial

distribution of the centers of the pattern S. The total porosity f is equal to 25 % and the radius of

the voids is 1 nm.

for example (Vincent et al., 2008; Vincent et al., 2009a; Vincent et al., 2014a)).

Two patterns have to be specified: i. a pattern for the spherical nanovoids (we

make use of the already defined pattern S), ii. a pattern denoted by E made of a

spheroidal oblate microvoid (without surface effect). The major axis of the ellipsoidal

cavity are denoted by a and b and the aspect ration ω is equal to a/b. The auxiliary

problem related to the pattern E is a classical Eshelby inclusion problem (where

the inclusion is a void). The total porosity is denoted by f . The porosity of the

nano-spherical voids is equal to αf and the porosity of spheroidal voids is equal to

(1−α)f where α is a parameter, ranging from 0 to 1. The GMT estimate is derived
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Figure 5: Effective elastic constants as a function of the aspect ratio for a prolate spheroidal spatial

distribution of the centers of the pattern S. The total porosity f is equal to 25 % and the radius of

the voids is 1 nm.

from (14):

⟨Tm
Mr⟩M = αfTm

MS + (1− α)f⟨Tm
E ⟩! (37)

The operator ⟨.⟩
!
denotes an average over all the orientations. The tensor Tm

E is

the classical tensor for an ellipsoidal cavity without surface effect:

Tm
E = −Cm : (C

⋆

m)
−1 : (C

⋆

m + Cm) (38)

with C
⋆

m = P−1
m − Cm and Pm = SE(Cm) : C−1

m . The tensor SE(Cm) is the Eshelby

tensor relative to the shape of the oblate voids when the matrix is the reference

28



n l kt Μt Μl

0.0 0.2 0.4 0.6 0.8 1.0
0

5.0% 1010

1.0% 1011

1.5% 1011

2.0% 1011

2.5% 1011

Aspect ratio Ωd

Tr
an
sv
er
se
ly
iso
tr
op
ic
co
ef
fic
ie
nt
so
fH
"P
a#

Figure 6: Transversely isotropic constants of H as a function of the aspect ratio for an oblate

spheroidal spatial distribution of the centers of the pattern S. The total porosity f is equal to 25 %

and the radius of the voids is 1 nm.

medium. Then according to Gatt et al. (2005), the average can be expressed as:

⟨Tm
E ⟩! =

(

T
m
E :: J

)

+
1

5

(

T
m
E :: K

)

(39)

The evolution of the effective moduli (normalized with respect to the matrix

moduli) as a function of the total porosity is illustrated in the figures 8 and 9. From

these figures, one can observe that the relative difference for the effective bulk moduli,

between the case where all the porosity corresponds to oblate microvoids and the case

where all the porosity corresponds to spherical nanovoids, is about 20 % when the

porosity reaches 5 % which is a common value for the porosity in irradiated UO2. A

similar trend can be observed for the effective shear modulus.

29



n l kt

0.0 0.2 0.4 0.6 0.8 1.0
$1% 109

0

1% 109

2% 109

3% 109

Aspect ratio Ωd

Tr
an
sv
er
se
ly
iso
tr
op
ic
co
ef
fic
ie
nt
so
fH
"P
a#

Figure 7: Transversely isotropic constants of H as a function of the aspect ratio for an oblate

spheroidal spatial distribution of the centers of the pattern S. The total porosity f is equal to 25 %

and the radius of the voids is 1 nm. Specific case where Em = 100 GPa, νm = 0.2, ks = 50 N/m,

µs = 30 N/m.

5. Conclusion

This study is devoted to the modeling of the elastic behavior of porous media

with spherical nanovoids. It is shown here that the existing models can be directly

derived following the Morphologically Representative Pattern (MRP) approach of

Stolz and Zaoui (1991). Several particular cases have been considered to illustrate

the ability of the MRP approach to extend the existing estimates and bounds. First

the influence of a spatial distribution of the centers of the voids has been investigated,

showing a complex dependence of the elastic moduli with respect to the material
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Figure 8: Normalized effective bulk modulus as a function of the total porosity. Aspect ratio of the

microvoids ω = 0.2. Radius of the spherical nanovoids r = 1 nm.

and geometric parameters. A new model has been proposed for dealing with an

ellipsoidal spatial distribution of the voids. It has been checked that, for an isotropic

spatial distribution, the proposed model reduces to the model of Duan et al. (2005b).

Then the case of a bi-porous material containing spherical nanovoids and randomly

oriented spheroidal microvoids has been treated. This result is of a great interest for

modeling the elastic behavior of bi-porous materials such as the irradiated uranium

dioxide. This work proves that the MRP approach can be easily applied to complex

microstructures such as nanovoids together with different kinds of heterogeneities.

Appendix A. Auxiliary problem

The auxiliary problem relative to the pattern S (section 3.2) is defined as a

spherical cavity (radius r1) surrounded by a matrix layer (index m, radius r0). This
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Figure 9: Normalized effective shear modulus as a function of the total porosity. Aspect ratio of the

microvoids ω = 0.2. Radius of the spherical nanovoids r = 1 nm.

domain is embedded in an infinite homogeneous medium (reference medium, index

0) submitted to a remote strain ϵ0 applied at infinity. The interface stress model is

applied at the interface between the void and the matrix.

Appendix A.1. Hydrostatic loading

First, an hydrostatic remote strain ϵ0 = ϵ0hi is applied. The displacement field

and stress vector in each phases have the following forms (in the spherical coordinates

system):

∀i ∈ {m, 0}, u(i) =
(

Air +
Bi

r2

)

er and σ
(i) · n =

(

3kiAi −
4µiBi

r3

)

er (A.1)

The four constants, A0, B0, Am and Bm have to be determined by using the

boundary conditions. For the displacement field in the reference medium at infinity,
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it comes that A0 = ϵ0h. Then, the three other constants are obtained from the

continuity of the stress vector at Γ0, the continuity of the displacement at Γ0, and

the equilibrium conditions of the imperfect coherent interface at Γ1.

Then the average of the stress and strain fields over the pattern S can be easily

expressed and it comes that:
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

T 0
MS|h =

(3k0 + 4µ0)(4αh − 3k0βh)

4γh

kHS
MS =

4

3

3kmµm(1− fS)r1 + ks(3km + 4fSµm)

(3fSkm + 4µm)r1 + 4(1− fS)ks

(A.2)
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⎪
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⎪

⎪

⎪

⎪

⎪

⎩

αh = ks(4fSµm + 3km) + 3(1− fS)kmµmr1

βh = 4(1− fS)ks + r1(3fSkm + 4µm)

γh = ks(4((1− fS)µ0 + fSµm) + 3km)

+r1(3fSkm(µ0 − µm) + µm(3km + 4µ0))

(A.3)

Particularly, when the reference medium is the matrix, it comes that:

Tm
MS|h = fS

(3km + 4µm)(4ks − 3kmr1)

4(ks + µmr1)
(A.4)

The scalar fS = (r1/r0)3 corresponds to the porosity of the pattern S.

Appendix A.2. Deviatoric loading

Then a deviatoric remote strain is applied (in the cartesian coordinates system):

ϵ
0 = −γ(ex ⊗ ex + ey ⊗ ey − 2ez ⊗ ez) (A.5)
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In each phase (∀i ∈ {m, 0}), the displacement and stress vector fields are (νi

refers to Poisson ratios):

u(i) = −
(

Air +Bir3 +
Ci

r2
+

Di

r4

)(

1− 3 cos2(θ)
)

er

−
(

3Air +
(7− 4νi)r3

2νi
Bi +

6(1− 2νi)

(5− 4νi)r2
Ci −

2

r4
Di

)

cos(θ) sin(θ)eθ

(A.6)

σ(i) · n
µi

=
(

Ai −
1

2
r2Bi −

2(5− νi)

(5− 4νi)r3
Ci −

4

r5
Di

)(

1 + 3 cos(2θ)
)

er

−
(

6Ai +
(7 + 2νi)r2

νi
Bi +

12(1 + νi)

(5− 4νi)r3
Ci +

16

r5
Di

)

cos(θ) sin(θ)eθ

(A.7)

The eight constants A0, B0, C0, D0, Am, Bm, Cm and Dm have to be determined.

The remote strain imposes that A0 = γ and B0 = 0. The six other constants are

obtained from the continuity of displacement field components ur and uθ at Γ0, the

continuity of the stress field components σrr and σrθ at Γ0, and the equilibrium of

the imperfect coherent interface at Γ1. The averages of the stress and strain fields

over the pattern S can then be derived. Then the deviatoric parts of the tensors

T0
MS and CHS

MS read:

T 0
MS|d = −10

3k0 + 4µ0

15(k0 + µ0)r30
µ0

C0

γ
and µHS

MS =
Rn +Vnµ0

Rd +Vdµ0
(A.8)

The constants Rn, Rd, Vn and Vd depend on the material properties and the

geometry (km, µm, ks, µs, r0 and r1) but do not depend on the elastic properties

of the reference medium. Moreover, they are polynomials of the second degree in

terms of r1 and they can be written as Rn = A(3, 1), Rd = A(4, 2), Vn = A(1, 2),

Vd = A(2, 3) with:

A(i, j) =
3

∑

k=1

fk(i, j)r
k−1
1 (A.9)
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The functions fk(i, j) (with k ∈ [1, .., 3]) have the following forms:

f1(i, j) = ksµsµ3−j
m ξ(M(i)

1 ,M(i)
2 ,M(i)

3 )

f2(i, j) = µ4−j
m

[

ksξ(M
(i)
4 ,M(i)

5 ,M(i)
6 ) + µsξ(M

(i)
7 ,M(i)

8 ,M(i)
9 )

]

f3(i, j) = µ5−j
m ξ(M(i)

10 ,M
(i)
11 ,M

(i)
12 )

(A.10)

where

ξ(x, y, z) = k2
mx+ kmµmy + µ2

mz (A.11)

The coefficients M(i)
j , (∀i ∈ [1, · · · , 4], ∀j ∈ [1, · · · , 12]) depend only on the porosity

of the pattern fS = (r1/r0)3 and can be written as:

M(i)
j = a(i)j + b(i)j fS + c(i)j f 5/3

S + d(i)j f 7/3
S + e(i)j f 10/3

S (A.12)

where the coefficients a(i)j , b(i)j , c(i)j , d(i)j , and e(i)j (∀i ∈ [1, · · · , 4], ∀j ∈ [1, · · · , 12])

are obtained from the tables A.1 and A.2, with the following relations:

∀j ∈ [1, · · · , 12], a(2)j = a(1)j , a(3)j = a(4)j ,

c(2)j = c(1)j = −c(3)j = −c(4)j ,

d(2)j = d(1)j = −d(3)j = −d(4)j ,

e(3)j = −e(1)j , e(4)j = −e(2)j

(A.13)

The expression of C0/γ (in (A.8)) does not depend on γ, then the expressions of

T0
MS does not depend on the amplitude of the external loading. Its expression can

easily be derived using (11) and (12):

C0

γ
= r30

15(k0 + µ0)(µ0 − µHS
MS)

(9k0 + 8µ0)µ0 + 6µHS
MS(k0 + 2µ0)

(A.14)

Unlike the effective bulk modulus kHS
MS , the shear modulus µHS

MS depends on the stiff-

ness C0 (only on µ0). From this remark and the equation (13), it comes:

µGV
MS =

Vn

Vd
and µGR

MS =
Rn

Rd
(A.15)
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j a(1)j b(1)j c(1)j d(1)j e(1)j

1 -288 1080 -3024 1800 432

2 -1392 -600 -2016 2400 1608

3 -1632 -920 -336 1800 1088

4 -576 -1080 1512 450 -621

5 -2208 600 -504 3300 -2028

6 -1632 920 -336 1800 -1312

7 -432 1080 -4536 2700 -702

8 -1992 -600 -4536 3000 -912

9 -2176 -920 -1008 1000 -256

10 -432 -1080 3024 -2025 513

11 -1608 600 2016 -1500 492

12 -1088 920 336 -200 32

Table A.1: Coefficients a(1)j , b(1)j , c(1)j , d(1)j , and e(1)j (∀j ∈ [1, · · · , 12]).
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j b(2)j e(2)j a(3)j b(3)j b(4)j

1 1800 -288 -342 -2025 -1170

2 2400 -1392 -708 -1500 -300

3 1800 -1632 -48 -200 -120

4 -1800 414 -684 2025 1170

5 -2400 1812 -732 1500 300

6 -1800 1968 -48 200 120

7 1800 468 -513 -2025 -1170

8 2400 1128 -948 -1500 -300

9 1800 384 -64 -200 -120

10 -1800 -342 -513 2025 1170

11 -2400 -708 -492 1500 300

12 -1800 -48 -32 200 120

Table A.2: Coefficients b(2)j , e(2)j , a(3)j , b(3)j , and b(4)j (∀j ∈ [1, · · · , 12]).
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Let us remark that, when the reference medium is the matrix, it comes that:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

Tm
MS|d = fS

10µm(3km + 4µm)βd

3kmδd + 4µmζd
βd = (ks + r1µm)(µs − r1µm)

δd = 3r1µm(r1µm + µs) + 2ks(2r1µm + µs)

ζd = 3ks(r1µm + µs) + 2r1µm(r1µm + 2µs)

(A.16)
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