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Decentralized Motion Control for Cooperative Manipulation
with a Team of Networked Mobile Manipulators

Antonio Petitti1, Antonio Franchi2,3, Donato Di Paola1, and Alessandro Rizzo4

Abstract— In this paper we consider the cooperative control
of the manipulation of a load on a plane by a team of mobile
robots. We propose two different novel solutions. The first is a
controller which ensures exact tracking of the load twist. This
controller is partially decentralized since, locally, it does not
rely on the state of all the robots but needs only to know the
system parameters and load twist. Then we propose a fully
decentralized controller that differs from the first one for the
use of i) a decentralized estimation of the parameters and twist
of the load based only on local measurements of the velocity of
the contact points and ii) a discontinuous robustification term
in the control law. The second controller ensures a practical
stabilization of the twist in presence of estimation errors. The
theoretical results are finally corroborated with a simulation
campaign evaluating different manipulation settings.

I. INTRODUCTION

In the last few years, cooperative manipulation has become
one of the most important research topics on multi-robot
systems [1]. The realization of networked teams of robots
able to manipulate and transport large or heavy loads is
nearly being achieved, thanks to progresses in research
and to the increased power of mobile manipulators [2].
The spectrum of applications includes search and rescue
missions [3], complex tasks in unstructured environments [4],
and human-robot interaction [5]. However, a number of
research challenges are still open. Starting from the es-
timation of the physical characteristic of the manipulated
body to the fully decentralized and robust control of the
motion of the load, several issues must be addressed. On
one hand, the on-line estimation of the inertial parameters
of the load allows to manipulate unknown objects and to
cope with time-varying inertial parameters [6]–[8]. Thus,
decentralized inertial parameter estimation algorithms are
highly desirable when dealing with decentralized motion
control algorithms. On the other hand, the state of the art
in cooperative manipulation regards the motion control of a
load under the limiting assumption that its inertial parameters
are known by all the robots in the team.

A common approach to the control problem is grounded
on the distributed impedance control [9], in which path plan-
ning and control tasks are decoupled, i.e., each manipulator
follows individually planned trajectories, taking into account
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the load geometry and the grasp points. In [10], the authors
propose an LQR-optimal control scheme for cooperative
manipulation subject to rigidity constraints, which regulates
the configuration of the multi-robot team and maintains its
formation. The approach only considers the maintenance of
the rigidity constraint and is not suitable for establishing
synchronized movements. Discrete and periodical individ-
ual trajectories to achieve coordinated manipulation can be
generated by Dynamic Movement Primitives (DMPs) [11].
Decentralized control approaches to cooperative manipula-
tion have also been presented. In [12], [13], a swarm of non-
articulated mobile robots cooperate to control the velocity of
a large rigid body, by means of local artificial potential fields.
In [14], a local information-based control law is designed to
solve the planar manipulation problem of rotating a rigid
object to a desired orientation. The distributed control of the
manipulators is realized at a kinematic level in continuous
time, by means of inverse kinematics relations.

In this paper, we consider the problem of controlling a
load whose motion is constrained on a plane and which
can be manipulated by a team of networked mobile robots.
In particular, we present two novel control strategies to
solve the cooperative manipulation problem. The first control
strategy is partially decentralized, in the sense that each
robot computes the control law locally and without the
knowledge of the state of all the other robots, yet the local
control law is based on the a priori knowledge of the
inertial/kinematic parameters of the manipulated load and
its current twist. The second control strategy is instead fully
decentralized. This strategy is similar to the first one apart
from two crucial aspects. First, the load parameters and state
are distributedly estimated leveraging recent results by some
of the authors of this paper [6]–[8]. Second, the control
law provides a robust control of the motion of the load
also in presence of estimation errors. The price to pay for
the full decentralization of the control strategy is a small
bounded error in the tracking of the desired linear/angular
velocity profile. This is unavoidable, due to the inherent
delays in the multi-hop communication network established
among the multi-robot team. Besides theoretical proofs, the
feasibility of the fully decentralized approach is also assessed
via numerical simulations in different operational scenarios
and in presence of sensor noise.

II. PROBLEM STATEMENT

We consider a team of n mobile robots, with index set I =
{1, . . . , n} and n ≥ 2, where each robot i ∈ I is equipped
with a manipulator. A load, whose motion is constrained on
a plane, has to be manipulated by the multi-robot team. We
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model the load as a rigid body B whose center of mass
(CoM) is denoted with C. Each robot i ∈ I exerts a torque
and a force in a contact point, indicated as Ci, on the body
B. We denote with pC ∈ R2 the position of C in a reference
inertial frame W = {OW − ~x, ~y} and with pCi

the position
of Ci in W . Furthermore, we indicate with fi ∈ R2 and
τi ∈ R the force and torque, respectively, applied by the
i-th robot in Ci and expressed in W . Thus, we define the
dynamical model of the load B as[

v̇C
ω̇

]
=

n∑
i=1

[
m−1I2×2

0
0

J−1[(pCi
−pC)⊥]

T
J−1

] [
fi
τi

]
, (1)

where vC ∈ R2 is the velocity of C, m ∈ R>0 is the mass
of B, J ∈ R>0 is its moment of inertia, and ω ∈ R is its
rotational rate (i.e., the magnitude of the angular velocity
vector, which is always directed as ~x × ~y). We denote the
twist of B with x =

[
vTC ω

]T
. A schematic representation

of the described setting is depicted in Fig. 1.
Finally, we assume that each robot i ∈ I is equipped with

a wireless communication device with limited communica-
tion radius. We indicate with G = (I, E) the static undirected
graph representing the communication network established
among the robots, where E ⊆ I × I is the set of the avail-
able bidirectional communication links. The generic robot
i ∈ I exchanges information only with its communication
neighbors Ni = {l ∈ I | (i, l) ∈ E}. Moreover, we assume
that the communication graph G is and remains connected
over time. Given the aforementioned scenario, in this paper
we solve the following two problems.

Problem II.1 (Partially Decentralized Motion Control of a
Load). Consider a team of n robots and a load B, where
each robot knows the kinematic/inertial parameters of the
load and its current twist, but does not know the states of
the other robots. Design a partially decentralized control
law such that the team is able to control the twist along
a known desired trajectory. Specifically, given any twist
reference xd(t), continuously differentiable w.r.t. time, the
control law must guarantee that

lim
t→∞

‖xd(t)− x‖ = 0.

In order to define the second problem, let us consider the
following constraint:

Constraint II.1 (Local measurements and communication).
Each robot i ∈ I, which interacts with the load B at the
contact point Ci, can only locally measure the velocity vCi

of the contact point and can only control the applied wrench[
fTi τi

]T
. These and possibly other internal quantities that

are locally available can be transmitted via communication
only to the robots in the neighbor set Ni.
Problem II.2 (Fully Decentralized Motion Control of a
Load). Given a team of n robots, communicating through
a network G = (I, E), and a load B, design a fully de-
centralized control law (i.e., which respects Constraint II.1)
such that the team is able to practically control the twist of
the load B. Specifically, given any velocity reference xd(t),

W

~x

~y

O

C
f1

f2

f3

f4 f5

Fig. 1: A team of five KUKA youBot performing a cooperative
manipulation task with the relevant symbols used in the paper.

continuously differentiable w.r.t. time, the control law must
guarantee that

lim
t→∞

‖xd(t)− x‖ < ε,

where ε is a known, small bound.

Remark II.1. We remark that this work focuses on the
control of the twist of the manipulated object. The control
of the position followed by the mobile base is out of the
scope of this paper. Furthermore, we assume that each robot
is able to adjust the position of its mobile base in order
to avoid collisions (with other robots and the load), while
guaranteeing the exertion of the desired force and torque.

III. PARTIALLY DECENTRALIZED CONTROL

In this section, we propose a novel control algorithm
for cooperative manipulation that solves Problem II.1. The
proposed control law is based on the knowledge of the
parameters of the dynamical model of the manipulated load
B expressed in (1) and of the number of robots n. In the
following, and limited to this section, we assume that all
these parameters, the velocity v̇C , and the rotational rate
ω are known (or measurable). We indicate with pG ∈ R2

the position in W of the geometric center G of the contact
points, i.e., pG = n−1

∑n
i=1 pCi

. Moreover, we consider
the following compact notation for vector differences: zij =
pCi
− pCj

, zi = pCi
− pG, and zC = pG − pC . Thus,

substituting pCi − pC = zi + zC in (1), we obtain[
v̇C
ω̇

]
=

n∑
i=1

[
m−1I2×2

0
0

J−1z⊥i
T
J−1

] [
fi
τi

]
+

[
0
0

J−1z⊥C
T

] n∑
i=1

fi. (2)

Proposition III.1. Let be given a desired twist trajectory

xd(t) =
[
vdC

T
(t) ωd(t)

]T
for the load. Assume that the

desired trajectory is continuously differentiable w.r.t. time.
If each robot i ∈ I applies the following control law:

fi =
m

n
uC −

mz⊥C
T
uC∑n

i=1 ‖zi‖2
z⊥i +

Juω∑n
i=1 ‖zi‖2

z⊥i , (3)

τi = 0, (4)
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where

uC = v̇dC + kv(v
d
C − vC), (5)

uω = ω̇d + kω(ωd − ω), (6)

then the velocity of the CoM and the rotational rate of
the load converge globally and exponentially to the desired
signals vdC(t) and ωd(t).

Proof. Plugging (3) and (4) in (2) we obtain

v̇C =

n∑
i=1

uC
n

+

(
m−1Juω∑n
i=1 ‖zi‖2 −

z⊥C
T
uC∑n

i=1 ‖zi‖2

) n∑
i=1

z⊥i︸ ︷︷ ︸
=0

= uC ,

ω̇ =
m

Jn
uC

n∑
i=1

z⊥
T

i︸ ︷︷ ︸
=0

− mz⊥C
T
uC

J
∑n
i=1 ‖zi‖2

n∑
i=1

z⊥i
T
z⊥i +

+
uω∑n

i=1 ‖zi‖2
n∑
i=1

z⊥i z⊥
T

i +
m

Jn
z⊥

T

C

n∑
i=1

uC−

− mz⊥C
T
uC

J
∑n
i=1 ‖zi‖2

z⊥
T

C

n∑
i=1

z⊥i︸ ︷︷ ︸
=0

+
uω∑n

i=1 ‖zi‖2
z⊥

T

C

n∑
i=1

z⊥i︸ ︷︷ ︸
=0

=

= −mz⊥C
T
uC

J
+ uω +

mz⊥C
T
uC

J
= uω.

Hence, we obtain

v̇C = v̇dC + kv(v
d
C − vC), ω̇ = ω̇d + kω(ωd − ω), (7)

which, in turn, implies vC → vdC(t) and ω → ωd(t) globally
and exponentially.

We observe from (3)–(4) that the proposed control law
does not make use of the torque exerted by the robots of the
network. This property can turn very useful when the load
is large w.r.t. the characteristic dimensions of the robots and
thus using local torques becomes impracticable.

Remark III.1. We remark that (3) is not defined for the
special case in which zi = 0, for all i. In fact, in this case
it results

∑n
i=1 ‖zi‖2 = 0. However, zi = 0, for all i, (i.e.,

having all the contact points coinciding) is a meaningless,
if not impossible, practical case in real applications.

In order to implement the control law (3)–(6), the i-th
robot needs to know the following seven quantities: i) m
and J , ii) zC(t), zi(t),

∑n
i=1 ‖zi‖2 (constant), and iii) vC(t)

and ω(t). We remark that the number and size of these
quantities is independent from the number of robots.

IV. FULLY DECENTRALIZED CONTROL

In this section, we propose a fully decentralized controller
that solves Problem II.2, satisfying the limitations imposed
by Constraint II.1. This achievement is made possible by

i) distributedly estimating m, J , zC(t), zi(t),∑n
i=1 ‖zi‖2, vC(t), and ω(t) using the algorithm

in [7];

Estimator

Controller

LoadRobot

Robotic 

Network

Fig. 2: A block diagram representing the closed loop system for
the fully decentralized control. The estimator produces the inertial
parameters needed to the decentralized controller. The dashed
rectangle groups the modules running locally on the i-th robot.

ii) using the estimates of m, J , zC(t), zi(t),
∑n
i=1 ‖zi‖2 in

place of the corresponding (unknown) actual quantities
in (3); and

iii) modifying (5) and (6) in the controller algorithm to
achieve robustness to estimation errors.

A schematic representation of the proposed approach is given
in Fig. 2.

A. Overview of the Decentralized Estimation Algorithm

To obtain a decentralized estimate of m, J , zC(t), zi(t),
vC(t), and ω(t) we use a recent decentralized estimation
algorithm [6], [7], [8] proposed by part of the authors of
this paper. Thus, once the estimated parameters are available
to each robot, we can apply a robust and fully decentralized
version of the partially decentralized control law, which will
be described in Sec. IV-B. In this subsection, we present
a brief summary of the decentralized parameter estimation
algorithm. For the details about the working principles,
including the elucidation of the measurement noise influence
on the accuracy of the estimation, we refer the reader
to [6], [7], and [8]. First, considering (2), the following holds:

Fact IV.1. Assuming that p1 and p2 are the positions of any
two points of B expressed in W , and considering two time
instants t′ and t′′, the rigid body constraint can be used to
compute p2(t′′) from p1(t′), p2(t′), and p1(t′′):

p2(t′′) = Γ(p1(t′),p2(t′),p1(t′′)) = (8)

=

(
p2(t′)Tp1(t′)

)
p1(t′′) +

(
p2(t′)Tp⊥1 (t′)

)
p⊥1 (t′′)

‖p1(t′)‖ .

The decentralized estimation algorithm consists of four
steps. The steps are sequentially executed, i.e., each step, of
finite duration, needs only the information of the previous
ones. We indicate with t0 the start time of the algorithm and
with tk, k = 1, . . . , 4, the end time of each step. Moreover,
we indicate with the superimposed symbol ·̂ the estimates of
a given inertial parameter.

Step 1: Estimation of zij . Each robot i applies an
arbitrary force fi(t) and uses ṽCi

(a noisy measurement
of vCi ), combined with the measurements obtained from
its neighbors. The vector zij is locally estimated by the
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separate computation of its two factors: (i) ~yij (time-varying
axis) computed directly from ṽCi

− ṽCj
(ii) dij (constant

coordinate) computed from ṽCi−ṽCj via filtering and online
linear least squares that converges to the optimal estimate of
ẑij at time t1.

Step 2: Estimation of J (constant). For t ≥ t1, four
substeps are executed in parallel to produce an estimate Ĵ
of the moment of inertia J .

Step 2.1. Each robot i computes ẑi(t), using ẑij(t) and
the algorithm in [15].

Step 2.2. Each robot i applies a force fi(t) = kz ẑ
⊥
i (t).

While the body moves, each robot i locally estimates the
rotational rate of B as ω̂i(t) = −

(
ẑTij
˜̇z⊥ij) (ẑTij ẑij)−1 ,

where j ∈ Ni, and runs a dynamic consensus algorithm [16]
to converge to a common estimate ω̂.

Step 2.3. Each robot performs a local estimate hat Ĵi of
the moment of inertia of the load J , using the knowledge
of the applied force and the estimated angular speed. Then,
an average consensus algorithm [17] is used to reach an
agreement on a common estimate Ĵ . This estimate becomes
available at t2.

Step 3: Estimation of zC(t). Each robot i applies an
arbitrary nonzero force fi(t) and is able to estimate ω(t).
Then, each robot computes ẑC using a nonlinear observer,
detailed in [6], and considering the estimate Ĵ , previously
obtained. After the convergence time of the observer, indi-
cated with t3, zC(t) is estimated using the formula ẑC(t) =
ẑi(t) + Γ(ẑC(t3), ẑij(t3), ẑij(t)), where Γ is defined in (8)
and j ∈ Ni.

Step 4: Estimation of vC(t) and m (constant). Each
robot i applies an arbitrary nonzero force fi(t) and computes
v̂C = ṽCi−ω̂(t)ẑi(t)

⊥, where all the quantities in the rhs are
computed during the previous steps and are locally available
after t ≥ t3. Based on v̂C and on the average of the applied
forces, each robot computes a local estimate hat m̂i of the
body mass m. An average consensus algorithm is then used
to converge to a common estimate of the mass m̂, which,
for t ≥ t4, will be known by all the robots.

B. Decentralized Robust Control
In this section, we modify the partially decentralized

controller (3)–(6), in order to make it decentralized and
robust to estimation uncertainties. We observe that the
presented approach completely matches the requirements
of Constraint II.1, since it does not require an all-to-all
communication scheme, nor a central processing unit in
charge of computing the control force to be applied by each
mobile manipulator.

As explained in Section III, plugging (3) and (4) in (2),
we obtain the dynamics in (7). However, when estimates are
used in place of the corresponding real values, this is not true
anymore, due to the existing uncertainties and noise. Thus,
a more robust approach is needed. Let us first rewrite the
control law (3) and (4) as

f̂i =
m̂

n
ûC −

m̂(ẑ⊥C)T ûC∑n
i=1 ‖ẑi‖2

ẑ⊥i +
Ĵ ûω∑n
i=1 ‖ẑi‖2

ẑ⊥i , (9)

τ̂i = 0, (10)

where ûC and ûω are additional robustifying inputs. Then,
define the vector x̂ =

[
v̂TC ω̂

]T
. Furthermore, consider the

error vectors e = xd−x and ê = xd− x̂. We note that it is
possible to write x = x̂+ζ, where ζ

(
m̂, Ĵ , ẑC(t), ẑi(t)

)
is

an uncertainty term due to the presence of estimation errors.
Plugging (9)–(10) in (2) yields the following dynamics:

ẋ =

[
v̇C
ω̇

]
= Ĝ(t)

[
ûC
ûω

]
= Ĝ(t)û, (11)

where Ĝ(t) =

[
Ĝ11 ĝ12

ĝT21 ĝ22

]
, and

Ĝ11 = m̂
m

(
1− ẑ⊥T

C

∑n
i=1 ẑ⊥i∑n

i=1 ‖ẑi‖2

)
I2×2, ĝ12 = Ĵ

m

∑n
i=1 ẑ⊥i∑n

i=1 ‖ẑi‖2 ,

ĝ21 = m̂
J

(
z⊥C − ẑ⊥C∑n

i=1 ‖ẑi‖2

n∑
i=1

z⊥Ti ẑ⊥i +

z⊥C∑n
i=1 ‖ẑi‖2 ẑ⊥TC

n∑
i=1

ẑ⊥i

)
, ĝ22 = Ĵ

J

(
1 +

z⊥T
C

∑n
i=1 ẑ⊥i∑n

i=1 ‖ẑi‖2

)
.

We observe that Ĝ(t) depends both on the estimated and
on the true values of the inertial parameters. In the ideal
case where no estimation errors are present (that is to say,
m̂ = m, Ĵ = J , ẑi = zi, and ẑC = zC), then Ĝ(t) = I3×3.

Proposition IV.1. Let be given a desired twist trajectory

xd(t) =
[
vdC

T
(t) ωd(t)

]T
for the load. Assume that the

desired trajectory is continuously differentiable w.r.t. time.
Let each robot i ∈ I apply the control laws in (9) and (10),
where

û =

[
ûC
ûω

]
=

[
v̇dC
ω̇d

]
+ ρ(t,x)

ê

‖ê‖ , (12)

and ρ(t,x) : R×R3 → R>0 is a control gain whose design
will be specified in the following. Then, the error ê converges
globally and in finite time to 0, while the error e converges
to ζ globally and in finite time.

Proof. Consider V (x) = 1
2 êT ê as a Lyapunov candidate

function, which is positive definite in ê = 0, and consider its
time derivative V̇ (x) = ˙̂e

T
ê. Computing the time derivative

of ê, we obtain ˙̂e = ẋd − ˙̂x = ẋd − ẋ + ζ̇ = ẋd − Ĝû + ζ̇.
The time derivative of the Lyapunov candidate function is

V̇ (x) =
(
ẋd − Ĝû + ζ̇

)T
ê

=
[
ẋd − Ĝ

(
ẋd + ρ ê

‖ê‖

)
+ ζ̇
]T

ê

=
[(

I3×3 − Ĝ
)

ẋd
]T

ê− ρ (êT ĜT )ê
‖ê‖ + ζ̇

T
ê

≤
(

1−
∥∥∥Ĝ∥∥∥)∥∥ẋd∥∥ ‖ê‖ − ρ∥∥∥Ĝ∥∥∥ ‖ê‖+

∥∥∥ζ̇∥∥∥ ‖ê‖ .
Thus, if we choose ρ(t,x) such that

ρ(t,x) >
(1−‖Ĝ‖)‖ẋd‖
‖Ĝ‖ +

‖ζ̇‖
‖Ĝ‖ , ∀t,∀x, (13)

then V̇ (x) results to be negative definite in ê = 0. Thus,
the thesis holds due to the Lyapunov theorem [18] . Hence,
from the definition of ê, it follows that e globally converges
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Fig. 3: The trajectory followed by the load twist x during the
whole manipulation task. In the time interval t ∈ [0, 145[ the first
estimation phase takes place. The time interval t ∈ [145, 200] is
related to the second estimation+control phase that leads to the
convergence of the state to the desired sinusoidal reference. In this
simulation, we assume a team of n = 10 robots communicating
over a line-topology network.

to ζ. Thus, the magnitude of the tracking error ‖e‖ is upper
bounded by the magnitude of the estimation error ζ.

Therefore, it follows from Proposition IV.1 that the control
law in (9)–(10) and (12)–(13) solves Problem II.2 with ε =
‖ζ‖. However, the control law defined in (9)–(10) and (12)–
(13) is discontinuous and may lead to control chattering,
which can be notoriously avoided by smoothing the control
discontinuity [18].

C. Tuning of ρ(t,x)

As stated in Proposition IV.1, the convergence of the
control depends on the choice of ρ(t,x). If an approximate
knowledge of the geometrical properties of B is given, then
it is possible to define an upper bound ḡ of

∥∥∥Ĝ∥∥∥. Otherwise,

after the estimation phase, the value of
∥∥∥Ĝ∥∥∥ can be approx-

imated as the maximum value produced by the execution of
Monte Carlo simulations based on the confidence intervals
of the estimates. From specifications related to the accuracy
of the estimation phase, it is possible to evaluate also an
upper bound ζ̄ on the estimation error affecting v̂C and ω̂.
Similarly, if v̇dC and ω̇d are bounded, an upper bound x̄d on∥∥ẋd∥∥ exists. Therefore, in this case the value of ρ(t,x) can
be set as ρ(t,x) = x̄d/ḡ + x̄d + ζ̄/ḡ + ε, where ε is any
non negative constant. A time-varying function that upper
bounds

∥∥ẋd(t)∥∥ is another possible choice for ρ(t,x), where,
in this case, the actuation effort can be minimized, taking into
account the norm of the velocity to be tracked. On the other
hand, the time required to reach the convergence must be
taken into account in the design of ρ, since it is bounded by
(see, e.g., [18])

tC =
‖e0‖
ρ(t,x)

, (14)

where e0 is the error at the initial instant of the control phase.
As a final remark, it should be also taken into account

that a large value of ρ(t,x) can lead to instability when the
required actuation effort is not physically admissible.

V. NUMERICAL SIMULATIONS

In this section, we assess the performance of the presented
distributed control algorithm by means of numerical simula-

tions. We assume a load of mass m = 50 kg and moment
of inertia J = 86.91 kg m2. We use two different teams of
robots comprising n = 4 and n = 10 units, respectively, to
execute a cooperative manipulation tasks. In both cases, the
considered communication topology is assumed to be a line.
The results of the simulation campaign are also reported in
the accompanying video. The velocity measurement noise is
Gaussian with zero mean and covariance matrix Σi = σI2×2,
where σ = 0.2 m/s, ∀i ∈ I. As in [7], the selected
measurement noise yields uncertainties on the estimates of
the mass and moment of inertia as m̂ = m ± 0.0113 kg
and Ĵ = J ± 0.0004 kg m2, respectively. Moreover, the
uncertainty of the observation of zC can be approximated as
σzx

C
= 0.075 m along the x coordinate and σzy

C
= 0.033 m

along the y coordinate.
In order to assess the robustness of the proposed control

algorithm, we run several independent trials using different
velocity references. In Fig. 3, the trajectory followed by the
components of the twist x during a complete cooperative
manipulation task, performed by a team of n = 10 robots,
is shown. The duration of the first estimation phase is 145 s,
after which the control is activated, while the estimator still
keeps estimating the time-varying quantities. We observe that
in the latter phase, any time-varying reference trajectory xd

can be tracked, assuming that the constraints on the design
of ρ(t,x) are verified, as explained in Sec. IV-C.

In the following of this section, we focus on the control
phase that occurs for t > 145 s, given that in the case under
exam the estimation phase takes place in the interval t =
[0, 145] s (see the simulations in the accompanying video).
In Fig. 4 the trend of the velocity of C, the angular rate of B,
the force applied to B, and the tracking error, for a sinusoidal
and a constant reference, respectively, are illustrated for a
manipulation task performed by a team of n = 10 robots. We
observe that the convergence time of the control algorithm
is less than 1 s. Obviously, we achieve the same convergence
time for the tracking of the desired angular rate. However,
a small residual oscillating tracking error exists at steady
state. This behavior is due to the estimation error because,
as explained in Sec. IV-B, the control guarantees only the
convergence of the error ê to 0. If an estimation error, due
to the measurement noise, is present in the observation of
vC and ω, then it will cause a small oscillation of e around
0 at steady state. A similar oscillatory phenomenon is also
present in the actuation signals. However, except for the
beginning of the control phase, the magnitude of the forces
exerted by the manipulators is always in the interval ±3 N.
The same considerations can be made for a team of n = 4
robots dealing with the same cooperative manipulation task,
as shown in Fig. 5. We observe that, for a team of 10 robots,
the magnitude of the residual forces at steady state exerted
by the manipulators is less than in the case where 4 units
are involved, as it is reasonable to expect.

VI. CONCLUSIONS

In this paper, we have presented a novel cooperative
control approach for the manipulation of a load by means
of a team of mobile robots. We have proposed two control
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Fig. 4: Example of the tracking of a sinusoidal velocity reference
(on the left) and a constant velocity reference (on the right) for the
load B, performed by n = 10 robots. From the top, the trajectories
followed by the velocity of the center of mass of B, vC , and by the
angular rate, ω, of B are illustrated, as well as the exerted forces
fT = [fT1 , . . . , fT10]

T and the tracking error e.

schemes: a partially decentralized controller, in which each
robot computes the control law locally, but it has an a
priori knowledge of the physical parameters of the load,
and a fully decentralized approach in which each robot does
not know any information about the load. In both cases,
however, robots do not have access to any information about
the state of the others robot in the team. We have proved
that the partially decentralized control law converges toward
a desired reference signal. Moreover, we have proved that
the fully decentralized controller converges up to a small
bounded error in the tracking of the desired linear/angular
velocity profile. Future work will deal with the 3D case in
which each aerial robot could be used as a force effector [19]
thus allowing, e.g., distributed realization of the flying hand
concept [20]. Nevertheless, the manipulation of an object
in a 3D environment requires the estimation algorithm to
be extended in a non trivial manner. Furthermore, we will
aim to investigate the use of different control laws for
the partially decentralized controller, inspired by different
optimality criterions.
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