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Abstract
The focus of this paper is on the link between network structure and the financial
performance of the individual firm. Under the hypothesis that firms access diverse
and valuable knowledge through collaboration we analyze how firms pick their col-
laborators and how knowledge flows impact the financial performance of the firm.
First, the evolution of the structure of the collaboration network of the French
aerospace sector is analyzed between 1980 and 2013. The global structure is identi-
fied and, using an ERGM and clustering identification, the structure of the network
is explained. Second, a panel regressions identifies a link between the position of the
individual firm inside the network and their financial performance.
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Introduction

The technological landscape expands continuously. Every day new technologies
are developed that are the result of the recombination of previous technologies. With
the diversity in technologies increasing it becomes increasingly difficult for firms to
master all the technologies they need to innovate, they hence seek collaborations5

(Pyka, 2002). When one puts all these collaborations together for a given technol-
ogy, sector or any other criteria we observe an innovation network. During these
collaborations firms can exchange knowledge and routines. This knowledge then dif-
fuses throughout the network. The speed and efficiency with which the knowledge
diffuses throughout the network depends upon its structure. A densely connected10

network allows for fast diffusion while sparsely connected network allow for a slower
diffusion.
The structure of the network is indeed a vital variable when it comes to knowledge
diffusion. In this light the small world structure has been identified as being the
most efficient structure ((Verspagen and Duysters, 2004), (Watts, 1999b), (Morone15

and Taylor, 2004), (Alghamdi et al., 2012)). This observation is however the result
of mostly theoretical work ((Cowan and Jonard, 2004), (Baum et al., 2003)) even
though the small world structure has been observed empirically ((Ahuja, 2000),(Van
der Pol et al. 2015)).
The differences in the structure of the network can be explained by differences in20

the knowledge base (Orsenigo et al., 2001), or simply by the fact that the sector is
organized in a particular manner (production chain).
In order to better understand how sectoral specificities can shape an innovation net-
work and how this impacts knowledge flows I chose to study the French Aerospace
collaboration network between 1980 and 2014. An analysis of the evolution of the25

network is performed to identify the global network structure. Community detection
helps to explain this structure. An ERGM model is then applied to verify different
hypotheses that explain link creation: triadic closure, technological proximity and
patent co-citations.
The importance of knowledge flows are not only relevant at the level of the global30

network structure but also at the level of the firm. Both the risks that collabora-
tions might entail as well as the benefits from a knowledge diffusion point of view
have been studied. In economic theory there appears to be a consensus on the idea
that an innovation network is more than the simple sum of its components. The
added value of the network resides in the sharing of knowledge between firms which35

results from the connections made between firms (or the employees inside the firms).
Accessing different knowledge sources is thus beneficial for the firm (McEvily and
Marcus, 2005), for innovation ((Kogut and Zander, 1992), (Tsai, 2001)) as well as
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survival and growth ((Fernandez et al., 2000), (Watson, 2007)).
A particular focus has hence been observed on the analysis of the flow of knowledge40

between firms on both the empirical level ((Hansen, 1999), (Sorenson et al., 2006),
(Wasko and Faraj, 2005)) and the theoretical level ((Cowan and Jonard, 2003), (Eg-
betokun and Savin, 2013)) allowing a better understanding of the manner in which
firms aim to benefit from these knowledge flows. This nourishes the idea that firms
according to the network position not all firms benefit in an identical manner from45

knowledge flows. More central firms might have access to a higher diversity of knowl-
edge while firms in densely clustered components might suffer redundancy in knowl-
edge and a lack of diversity. (Burt, 2004)
In this light, the second aim of this chapter is to identify a link between the position
of the firm inside the network and the performance of the firm.50

The document is organized as follows: Section 1 will present the macro analysis
of the evolution of the network structure. Section 2 will provide the ERGM model,
in section 3 the analysis of firms performance is conducted. Section 4 concludes.

1. The data

Since our focus is on knowledge flows we need data on collaborations that were55

initialized for the purpose of creating new technologies. We thus create an innova-
tion network from patent data. Whenever two or more firms are present on the same
patent a link is created between the firms. All patents were extracted from the Orbit
database, the firm names in the dataset were treated by hand to remove any typos
and text lost in translation.60

We restricted our focus on Patents deposited in France by French companies in or-
der to avoid any problems with data from different patent offices. For instance, the
USPTO tends to cite more intensely than the other offices while the German firms
make a heavier use of utility models. Restricting our dataset allows us to avoid biases
in these aspects.65

In order to select patents relative to airplane technologies a query was constructed
using a combination of keywords and IPC codes. We found that using only keywords
resulted in a heavy percentage of false positives while selecting patents according
to NACE codes was too restrictive. The combinatory method allows us to focus on
all the different technologies that make up an airplane. After all, an airplane is the70

perfect example of a multi-technology product (Prencipe, 1997).
Building such a query does require specific knowledge about the technologies inside
an aircraft and their corresponding keywords and IPC codes. The query we used
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Figure 1: The aerospace collaboration network as of 2014. Node size is proportional to the number of
collaborations, colors correspond to structural clusters identified by a maximization of modularity.
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Figure 2: Evolution of the number of patents and the corresponding trend. A distinction is made
between the number of patents deposited alone (red) and the number of patents deposited by
collaboration (blue)

here was provided by the VIA-INNO platform1 and is the result of repeated discus-
sions between aircraft engineers and the platform to ensure viable results. The query75

resulted in a dataset of 11992 patents with a priority date between 1980 and 2013.
9544 (79,59%) patents were deposited by a single firm, 2448 (20,41%) patents were
subject to a collaboration. From the 2448 patents we identified 4369 cooperations
between 1309 companies during the time period (1,78 cooperations on average per
patent). Aggregation of these collaborations results in the network in figure 1.80

Figure 2 shows the evolution of the number of patents deposited between 1980
and 2013. In figure 2a. we distinguish between patents deposited by one firm and
patents that are the result of a collaboration. Figure 2b. shows a clear positive
trend in both patenting and collaborative patenting in the aerospace sector. Similar85

observations have been identified in other sectors such as biotech and software by
(Pyka and Scharnhorst, 2009), (Gulati et al., 2011) and (Salavisa et al., 2012) . The
trend for patenting alone is however much higher than for cooperative patenting:
5.626 « 19.82.
We observe an important increase in the number of patents from the year 2000 on-90

wards. This can be explained partially be the commercialization of the Airbus A380.

1Plateforme d’intelligence économique labelisé centre d’investissement sociétale par l’initiative
d’excellence de Bordeaux dans le cadre des investissements d’avenir de l’Etat Français (Website)
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A particular aspect of the aerospace sector is the fact that there are mass patent
deposits after the commercial release of an airplane which might explain some of the
variance in the dataset.
The trends clearly show in increase in the number of collaborations over time. We95

will now turn out attention to the analysis of the network resulting from these col-
laborations.

2. The French aerospace network

2.1. Network structure identification
In order to identify the structure of the network we will track the evolution of100

the network from 1980 onwards. This will allow us to have a clear vision of the
structuring of the network.

Figure 5 reports the number of new firms that enter the network each year. The
variance is explained by the previously discussed patenting behavior in the sector.
The evolution of the number of nodes (figure 3) is computed using a sliding window105

of 5 years. This allows to keep track of the active firms in the network. This shows
us that the network increases in size over the period with a decline during the last
period (note that 2008 implies the frame 2008-2013). The decline can be explained
by two factors. First, a small decline in the number of deposits in the last couple
of years (figure 2a). Second, the decline in the number of firms might be explained110

by the "Power8" program launched by Airbus in order to optimize their production
chain which resulted in a decrease in the number of suppliers.
We will check for two particular structures that have been observed and studied both
theoretically and empirically: A small world structure and a scale-free structure.
Both structures have different implications from a knowledge diffusion perspective.115

Previous research shows that small worlds are the optimal structure for knowledge
flows. We will start by checking for a small world structure.

The literature on economic networks stresses the importance of the overall struc-
ture of the network for knowledge flows. Two general network structure have been
identified empirically and studied theoretically: the small world structure (SW) and120

the scale-free structure (SF). In this section we will check the global network struc-
ture for both the SW and the SF structure. Even though we know the network will
exhibit only one of the two structures it is important to highlight why is has one
structure and not the other. We will start by checking for a SW structure.

2.2. Small world identification125

In order to check if our network has a small world structure we follow a method-
ology presented by (Gulati et al., 2012). Small world structures are defined by a
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Figure 5: Evolution of the number of new firms entering the collaboration network each year.

low average distance and a high clustering coefficient. The Clustering coefficient of
a network is defines as the ratio of observed triangles in the network to the number
of possible triangles. The average distance is simple the average number of links130

between any two nodes in the network.
Since nodes can be added each year we need to make sure that a decrease in cluster-
ing is the result of less firms connecting in triangles and not the simple result of an
additional node that reduces the overall clustering coefficient. The coefficients are
hence normalized and compared to a random network with an identical number of135

nodes and links.
The theory behind small worlds is that random networks have low clustering while
empirical networks have higher clustering. The latter is the results of social / eco-
nomic / geographic / ... motivations of the entities inside the network. As such, a
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network is a small world if its clustering coefficient is higher than that of a random140

graph of identical dimension (i.e same number of nodes and same number of links).
This would hence imply that the graph is not random and that there are some un-
derlying rules dictating the creation of ties in the network.
As for the average distance, we want it to be roughly identical to that of a random
graph. We note Cr (Lr) the clustering coefficient (path length) of the random net-145

work and C (L) the clustering (path length) of the empirical data.
We hence need to observe C

Cr
>> 1 and L

Lr
≈ 1.

The evolution of the network was considered in two manner: using a 5-year sliding
window and a method in which data was added year after year. The results are
reported in figure 6a and 6b.150

Figure 6a shows that the clustering coefficient trends strongly away from 1, indi-
cating that the clustering observed in the networks increases faster than clustering
in a random network of identical dimension. This is the case for both methods,
showing that even when we remove firms that are no longer part of the network, the
clustering stays higher than random.155

The average distance however is too small, since L
Lr

< 1. The low distance can
be explained by densely connected clusters that are interconnected by large central
firms, as we discussed before, the assemblers and the CNRS. The results allow us
to conclude that the network is not a small world, not in the aggregate method nor
in the time-window network. The aerospace sectors is hence structurally different160

from the Biotech sector (van der Pol, 2015b) and the computer sector (Gulati et al.,
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2012).
The structure of the network seems to be highly correlated with the structural speci-
ficities of the aerospace sector. Indeed, knowledge stays within the clusters since
specific knowledge is developed inside each cluster. There is no need for knowl-165

edge to flow between all clusters since many parts are not technologically connected
(wheels and wings for instance). Communication and knowledge flows are necessary
between firms inside clusters since the parts developed by firms in clusters need to
interact and need to be compatible. The most central firms hence benefit from the
most knowledge flows since they have to assemble the different parts of the plane.170

We hence find diverging conclusions from the results in (Gulati et al., 2012) who
identified an inverted U-shape in the smallwordiness of their network. Our observa-
tions are the result of the specificities of the Aerospace sector. Gulati’s observations
were found in the automatized computer industry which resulted in a completely
different network structure.175

We can conclude here that there is a high tendency for firms to cluster which
confirms our previous observation that firms where organized in interconnected clus-
ters. The structure also appears to stay relatively stable when it comes to these
two indicators, especially in the time-laps network. In the 90’ has started a radical180

change in the organization of the sector resulting in many suppliers exiting the sec-
tor which has as a consequence a lower number of collaborators. These collaborators
collaborate more intensively resulting in a more stable structure.

Since the network is not a small world we will check for another structure. We185

can see in figure 1 that the networks looks like an interconnection of firms with a high
number of collaborations, this could point to what is called a "Scale Free" structure.
We will check for this structure now.

2.3. Scale-free structure identification
Scale free networks represent a particular structure that has been observed empir-

ically at different levels such as the world wide web, in lexicography or collaboration
networks. A scale-free structure is a network with a particular (asymmetrical) degree
distribution.
A network is build up from firms which can have a different number of links. We
start by computing how many firms have one link, how many have two and so on,
until we have classified all firms in the dataset. This gives us the degree distribution
of the network. What we observe is that there are a few firms with a large number
of links while there are many firms with a small number of links. We then transform
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Figure 7: The cumulative frequency distribution of the aerospace network in 2014

this distribution into a cumulative distribution graph, as shown in Figure 7. (the
scale is log-log). The idea behind a scale free network is that when we increase the
degree by a factor of k then the frequency drops by a factor of kα. This is verified for
all degrees k in the network. Since this decrease is identical for all values of k, the
distribution is called scale free. Typically a scale free distribution follows a power
law:

P (x) = c · x−α (1)

Where c is a normalizing constant. The idea is to fit a function to the observed190

data, if a line is fitted we check the quality of the fit. In the case of discrete data we
use a p.value to assert the quality (for continuous data the KS statistic would have
sufficed).
The cumulative density distribution is computed for each 5-year window and fitted
with a power-law and a log-normal function to the data. Since it is basically possible195

to fit a power law to any distribution, we need to check two values carefully. The first
value is referred to as xmin. It represents the lowest density for which the function
is fitted. If xmin = 1 then all possible densities.
are included in the fit. If xmin = 5 then density values 1 through 4 are ignored and
the power-law is fitted to the data for densities > 5. For instance, in figure 9 the200

cumulative frequency distribution of the network at is shown at 4 points in time. In
1986 the log linear fit starts at a density of 1, hence xmin = 1 while the power law
fit starts at xmin = 4. In order to check if the fit is statistically valid a goodness of
fit check is performed. A p.value is hence computed using bootstrapping with the
R package poweRlaw (Gillespie, 2015). If the p.value exceeds a fixed critical value205

we can reject H0. Figure 9 contains the p.values in the lower left corner. In the first
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Figure 8: Scale-free structure stabilization

period, starting in 1986, we can clearly see that the log linear fits the data perfectly
with an xmin = 1 . The power-law however fits the data poorly. We hence con-
clude that the network is not a scale-free network in the early stages of the network.
As time passes the power-law becomes significant, in addition the parameter of the210

power-law, α, stabilizes from the year 2000 onwards (see figure 8). The constant "c"
changes only with xmin (see the appendix for computation). Since this value also
stabilizes we can conclude that the structure of the network stabilizes over time.
The fact that we have a scale-free structure here shows that the network is an in-
terconnection of a small number of large stars with a large number of small stars.215

This implies that the probability that a firm will cooperate is proportional to the
number of cooperations the firm already has. At the same time it implies that firms
with many cooperations today have a high probability that they will cooperate in
the future. New links are created between firms that already cooperate a lot inside
the network. This proves the importance of core actors inside the network.220
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Figure 9: Power law fit over time

In order to understand this particular structure we turn to community identi-
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fication. The identification of clusters inside the network might shed light on the
interconnection of stars we have just identified.

2.4. Cluster identification
The previously identified dataset leave us with over 4300 collaborations. The225

collaborations allow us to generate a network by creating a link between all firms
that have deposited a patent together. The result is shown in figure 1. The bigger
the size of the node the more collaborations the firm has. The coloring is the result
of a community detection algorithm based on modularity. Modularity measures how
well defined communities are inside a graph. Modularity gives a value between 0 and230

1, the more the value tends towards 1 to more clearly defined the communities are
(Newman and Girvan, 2004). For the result to be significant one expects a value of
at least 0.6.
An algorithm introduced by (Blondel et al., 2008) was used to identify these com-
munities using the open-source program Gephi (Bastian et al., 2009).235

This community detection algorithm identifies communities inside a network purely
based on the structural properties of the network. It starts by assigning each node
with a community, it then selects a node at random and create a community with
one of it’s direct neighbors. The neighbor with whom it will create a community is
the one that will maximize the modularity of the graph. This step is continued until240

maximum modularity is achieved. This method has the advantage of detecting auto-
matically the number of communities (clusters) in the network while other methods
ask the user for a fixed number of communities to be identified.
The results should however be handled with caution. The random component se-
lects a node at random. It is possible that different results emerge if a different245

node is chosen at the start of the algorithm. In fact, the sequence of choice of the
nodes plays an important role in the detection of the communities. We hence ran the
algorithm several times to make sure the same communities were detected on average.

The results are rather interesting given that the communities were clearly defined250

and easy to interpret. Different communities were identified around the following
firms:

- Hispano Hurel: Nacelles
- Rhodia: Chemicals
- Thompson: Seating255

- Messier Bugatti: Landing and braking.
- Pechiney Rhenalu: Structural elements (aluminium)
- Alcatel Lucent: Avionics and communication systems
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These clusters suggest local technological development according to different parts
included in the production of an aircraft. This allows us to understand the previously260

identified scale-free network structure. The large assemblers (Airbus, Snecma and
Thales) and the CNRS have a large number of links connecting them with first order
suppliers which in turn have their own clusters in which they are densely embedded.
This observation coincides with the industrial organization of the sector, which is
indeed rather hierarchical. Airbus, at the center, designs the aircrafts while exter-265

nalizing large portions of the production process to first order suppliers (Frigant
et al., 2006). The latter will work with other, second order suppliers. As such
there are not many competitors but competition is tough between the few (Niosi
and Zhegu, 2005). The sector has undergone a significant restructuring in the 90’
and the 2000’s resulting in the specialization of some suppliers while others diversi-270

fied their production to include other sectors (Frigant et al., 2006). In addition, the
sector has high barriers to entry, mainly because of high level of knowledge required.
The sector need an influx of cutting-edge technologies and hence close collaboration
with fundamental research. The collaboration network that we observe here reflects
these sectorial aspects: in a central position we find the CNRS (National Centre for275

Scientific Research) providing an influx of fundamental science to the large manufac-
turers and first order suppliers. While clusters exist around the first order suppliers
connecting specialized and diversified suppliers. This results in a particular network
structure that is made up from an interconnection of clusters. The overall structure
of the network resembles a connected caveman structure (Watts, 1999a) in which each280

specific part of the airplane is developed in it’s own cluster. In terms of knowledge
these firms need to collaborate with a large number of firms from different clusters
in order to assemble an aircraft. While there is no need for direct knowledge flows
between the landing and braking system and the nacelle manufacturer, Airbus needs
knowledge on both technologies to assemble the final product.285

The exception being that some firms connect all the clusters. Airbus has this central
position since it needs to absorb knowledge from all clusters. Very little knowledge
flows seem to exist between clusters, while there is a necessity for transfer intra-
cluster.
Innovation in the aircraft industry is the result of an interplay of technology push290

and market pull (Dosi, 2000). On the one side aircraft manufacturers aim at making
their aircrafts more cost efficient while there is a demand for governments to reduce
noise and make planes more eco-friendly.

We now have an idea of the manner in which the network is structured and to295

what extend sectoral particularities play a role in the structuring of the network. I
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now turn my attention to the mechanisms of tie formation at play in the formation
of the network. We hence switch from a sectorial perspective to a micro level vision.

3. Tie formation mechanism identification

Ties inside a network are rarely created at random. The objective of this section300

is to test three tie forming mechanisms that explain the observed network structure.

Technological proximity between firms is a requirement for cooperation. If firms
are too close together, they work on the same technologies and hence would not want
to collaborate. As the technological distance increases the complementarity of the305

knowledge bases of the firms increases. This results in an increase in the probability
of observing a collaboration. This complementarity does however reach a point where
technologies becomes too distant and the complementarity decreases. This results
in turn in a decrease in the probability of cooperation. These statements induce the
first hypothesis to test:310

Hypothesis 1 There is an inverted U-shape relation between the probability of a col-
laboration and the technological proximity of two firms.

We stated previously that social capital played an important role, especially since
the "power8" program launched to streamline production. It would hence seem im-
portant for firms to closely collaborate and collaborate with firms they know. This315

allows a homogenization of work methods. We hence hypothesize:

Hypothesis 2 Collaborators of collaborators have a higher probability to collaborate
than firms without a common connection.

We stated that firms inside clusters need to collaborate in order to render their
products compatible. From a technological point of view this would imply that320

firms need to cite each-others patents in order to protect their technologies. I hence
hypothesize:

Hypothesis 3 Firms that cite each-other have a higher probability of collaborating
than firms who do not.

In order to test these hypotheses an Exponential Random Graph Model is used.325

Before going into the details of the model we need to specify some elements for
hypothesis 1.
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3.1. Technological proximity
Many measures of technological proximity exist, some are based on patent cita-

tions (Chang, 2012), (Marco and Rausser, 2008), (Mowery et al., 1998) while others330

use IPC codes (Jaffe, 1986), (Breschi et al., 2003). The idea is that the different
technologies firms work on are not chosen at random, they co-exist because they
have factors in common (Teece et al., 1994). This idea has led to different measures
of technological proximity between firms, the most prominent was initiated by (Jaffe,
1986) further developed by (Breschi et al., 2003). Finer measures exist, see for in-335

stance (Bar and Leiponen, 2012) or (Bloom et al., 2013).
For the present paper it is chosen to use an IPC based measure of technological
proximity. We will use a slightly different measure than the ones previously cited,
even though based on IPC codes. Our aim is to provide the likelihood of a cooper-
ation based on the technologies mastered by firms. Therefore we hypothesize that340

firms cooperate on technologies that are closely related in order to ensure proper
incorporation of new technologies into an aircraft. As such having 1 technology in
common is motive enough for two firms to cooperate. If we were to use one of the
more common measures the prediction could be biased.

345

3.1.1. A measure of technological proximity
An IPC takes the following form: B64C1/18. Each part of the code (B, 64, C,

1,/18) indicates a practical classification. Hence B stands for Performing operations
and Transporting, B64 reduces the technologies to Aircraft, Aviation and Helicopters,
B64C denotes Airplanes and Helicopters, B64C1 are Fuselages, wings etc. B64C1/14350

are windows. The longer the code the more precise the technology. We hence use
the full length of the IPC-codes. When a firm deposits a patent we can deduce from
the IPC codes what a firm has been working on and what technology it masters.
We base our measure of techno- logical proximity on an analysis of IPC codes. The
indicator of proximity computes the overlap in IPC codes between two companies.355

Figure 10 shows two firms with 3 IPC codes. The numbers in the matrix corre-
spond to the level of proximity. If both firms work on B they will have an overlap of
1, if they both work on B64 the overlap is 2 and so-on. Figure 10. shows an example.
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Figure 10: Illustration of the proximity measure used in the ERGM

I defend the position that knowledge about one specific technology is enough to360

initiate a collaboration. The use of complete portfolios would induce a lot of noise
in the data. In the end, firms cooperate often for a particular set of skills and not
for all the skills used by a firm. A downside of this method is that the dataset is
reduced to firms depositing both alone and by cooperation. We can only assume a
firm masters a certain technology if it has deposited a patent alone. Cooperation365

data is then needed to create a network. Firms that only deposit by cooperation are
hence excluded from the dataset.
We hence computed a proximity matrix for 176 firms and generated the network that
connected them.

3.2. Motivation for cooperation370

In order to test for a link between technological proximity and probability to
cooperate we need some indication that firms do in fact collaborate for knowledge
and not just for financial needs.
To verify the latter we have a look at the IPC codes on the patents and try to
identify if firms work on specific IPC codes when they cooperate. In order to do so375

we classified firms in to three groups, 1) firms that exclusively deposit patents by
cooperation, 2) Firms that exclusively deposit patents alone and 3) firms that do
both. We then extract only the firms that deposit alone, and by cooperation. Firms
that only deposit on their own are not connected in the network. Also, in the case of
a cooperation we are unable to identify which IPC code is mastered by which firm.380

An alone deposit is a proof that the firm masters the technology. From the resulting
dataset we extracted all alone deposits and all the IPC codes in which a firm deposited
alone. We did the same with all the co-deposits. We then have for each firm a list of
the IPC mobilized when it deposits alone and a list with IPC codes mobilized when
it deposits together with another firm. We compared the list to identify IPC codes385

that were mobilized only by cooperation and only by alone deposit. The results
show that for 27% of all co-deposits mobilize IPC that are not mobilized during
alone deposits. In the remaining patents 54% of the IPC codes (on average) we not
mobilized during alone deposits. These results clearly show that cooperations induce
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firms to mobilize specific technologies and hence that cooperations are technologically390

oriented. We can hence start our analysis of technological proximity as a motivation
for cooperation.

3.3. The Exponential Random Graph Model
An Exponential Random Graph Model models the global structure of a network

while allowing inference on the likelihood of a link between two nodes. It is basically395

a modified logistic regression, the models are modified in the sense that they do
not require a hypothesis of independence between observations. As such if firm A
is connected to B and C, there is a high probability that B knows C through its
connection with A. A link between B and C has hence a higher probability than B
connecting with a random node. This implies that a link between two nodes depends400

upon the existence of a link between other nodes. Regular logistic regressions are
unable to account for these aspects. These levels of dependence are however vital for
the understanding of social and economic networks. In our case we hypothesize that
firms with higher technological proximity will have a higher likelihood of connecting
and hence proximity plays a vital role in the explanation of the global network405

structure.
The model to estimate is given in equation 2.

Pr(X = x | θ) = Pθ(x) = 1
k(θ) · exp(θ1 · z1(x) + θ2 · z2(x) + . . .+ θp · zp(x)) (2)

WhereX is the empirical observed network, x is the simulated network, θ a vector
of parameters, zi the different variables and k(θ) the normalizing constant. In short,
the probability that the network generated by the model is identical to the observed410

network depends upon the given variables. If we consider that technological prox-
imity has a role to play, we introduce it as a variable. The model will then generate
links while increasing (iteratively) the probability that nodes with higher proximity
will connect. This is repeated a certain number of times. If, on average, the network
generated is equal to the observed network then we can conclude that proximity plays415

a role the structuring of the network. For a more complete explanation of ERGM
models see (Lusher et al., 2012), (van der Pol, 2015a).

Each variable either increases or decreases the probability of observing the graph
we are looking for. ERGMs are hence close to logistic regression except for the hy-
pothesis of independence of observations.420

Table 2 shows the regression results, not that these coefficients cannot be inter-
preted as such. In order to compute the precise impact one needs to transform them
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into odds.
We see that we used several factors to explain the structure. We stated that techno-425

logical proximity was a decisive factor in collaboration between firms in the aerospace
sector. The models shows that this is indeed the case. Firms with a higher tech-
nological proximity have a tendency to work together. More precisely the odds of
a link between firms that are technologically close is higher than the odds of a link
between firms that are technologically far.430

Moreover there appears to be an inverted U-shape to this relation as shows by the
significance of the variable proximity2. This would imply that firms collaborate if
they can learn from one another but if they are too close in terms of technology
then the probability of a link deteriorates. Firms that are too close in terms of
technologies can consider that the other firm has nothing to offer them and hence435

prefer collaborating with a firm that has different technologies. Hypothesis 1 is hence
verified.
The altkstar parameter checks (and controls) for the scale-free structure. Since the
parameter is significant we see that the model has correctly identified the scale-free
structure we previously found.440

Taking the kstar2 and triangle parameter together allows for checking for triadic
closure (Lusher et al., 2012). Since both the parameters are significant we conclude
that firms with a common node have a higher probability of connecting than firms
with no common node. It hence seems that the trust that diffuses through the net-
work as well as the increased performance due to common practices is a motivator445

for collaboration. Hypothesis 2 is verified.
Finally, co-citations are significant as well. Hypothesis 3 is hence also verified.

We have studied the overall structure of the network and concluded that the
structure has the features of a Scale Free network, implying that firms with a high450

number of collaborations is a predictor of collaborations. The network is build up
from different clusters where different technologies are fostered explaining why the
structure observed in not a small world. Moreover we identified three tie formation
mechanisms at work that give the network the shape that it has. Firms strategically
cooperate in for technologies. These collaborations alter their position in the network455

and hence their exposition to knowledge flows. One could then argue that specific
positions inside the network allows firms to be exposed to more and more diverse
knowledge flow that they can take advantage off. In the following section I will aim
at identifying a link between the position of the firm inside the network and the
impact on its performance.460
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Table 1

Dependent variable:
Network

(1) (2) (3)
edges −7.267∗∗∗ −1.121∗

(0.228) (0.626)

kstar2 0.155∗∗∗
(0.003)

degree2 −1.336∗∗∗ 14.467∗∗∗
(0.255) (2.970)

edgecov.citation −20.934∗∗∗
(1.090)

triangle 3.428∗∗∗ 1.923∗∗∗ 1.726∗∗∗
(0.007) (0.0001) (0.0002)

gwesp −0.439∗∗∗
(0.166)

gwesp.alpha 0.523
(0.385)

edgecov.proximity2 1.565∗∗∗ 6.620∗∗∗
(0.271) (0.345)

altkstar.1.6 −1.864∗∗∗
(0.172)

altkstar.1.7 −3.371∗∗∗
(0.086)

Akaike Inf. Crit. 578722 617651 9813
Bayesian Inf. Crit. 578760 617689 9851

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
Table 2: ERGM model results
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4. Impact of network position of the firm on performance

The objective of the this section is to establish a link between financial perfor-
mance and structural position. The structural position of the firm is important
mainly because of knowledge flows. Innovations are achieved by the recombination
of knowledge (Schumpeter, 1942). Since the knowledge stock inside a firm expands465

slowly and diversity decreases over time, external knowledge sources are important.
The position of the firm inside the network defines the number and the diversity of
knowledge sources to which the firms has access.
We will conduct a panel data analysis to estimate the influence of the position of the
firm on it’s performance.470

We hence need to find financial data for the identified firms. From our sample of
1309 depositors we need to eliminate all research institutions, financial institutions
and government agencies. For the financial analysis these were removed. We were
able to identify 676 firms in our set of 1309 firms. The financial performance of the
firm will be measured by the Return On Assets (ROA) of the firms:475

ROAt = Net Incomet
Total Assetst

(3)

The ROA seems the appropriate measure since the denominator of the ROA in-
cludes intellectual property and all capital mobilized for R&D activities. The data
will be extracted from the Amadeus database. We run into a problem with the cho-
sen timeframe. Since we have network data over 34 years we would have liked to
have 34 years of financial data. This was however not possible due Amadeus’ policy.480

Firms are automatically deleted from the database once they have not transferred
any data for 3 years. This means that firms that changed their names during the
34 year period are no longer in the database. Using DVDs from a previous version
of Amadeus (between 2000 and 2007) we were able to extract a relatively complete
dataset over the years 2000 to 2012. We hence recomputed the network structure to485

include only links between firms in the dataset.

4.1. Variables and theoretic background
In this subsection we will discuss the different variables included in the analysis.

490

- Technological diversity. We mobilize the Schumpeterian hypothesis that inno-
vation is achieved by the recombination of ideas. This hypothesis implies that
firm exposed to a large variety of ideas will have a high potential for innovation
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(Dosi, 2000),(Cowan and Jonard, 2007). In other terms, the advancement on
the inventive trajectory will be faster than firms with a low diversity. In the495

latter case firms risk decreasing returns to innovation. We compute a variable
called "neighborhood diversity" which computes for each year the number of
technologies in the neighborhood of the firm ? Each technology will be an IPC
code. We do not include the IPCs of the focal firm. We wish to understand
the influence of the neighborhood, hence we correct for firm’s diversity to avoid500

polluting our data. This leads to the following hypothesis:

Hypothesis 4 The technological diversity in the neighborhood of the firm has a
positive impact on its performance.

- Clustering of the focal firm. Two theories claim the importance of clustering
in a network. The two theories do however oppose each other when it comes505

to the sign of the impact. A first theory suggests that having collaborators
work together results in a positive impact on innovation and performance .
The cooperations allow for a better understanding of the functioning of each
firm. This information will allow firms to better organize their innovative
activities.The effect is enhanced when cooperations are repeated over time,510

the more they know about each other the more efficient the cooperation. The
other theory however suggests that a social lock-in might occur when firm
cooperate too often, they would rather work with people they know rather
than take the risk of finding a partner that is not efficient. This will result in a
reduction of the innovativeness of firms, by the means of a stagnation or even515

reduction of the diversity of technologies. Instead of cooperating with a firm
that masters new technologies they keep cooperating with firms that master
the same technologies. This leads to the following hypothesis:

Hypothesis 5 Clustering has a positive impact on the performance of the firm
due a better mutual understanding of firms.520

- Centrality and average distance of the focal firm. A network connects firms by
creating paths between them. Knowledge flows between firms that are directly
or indirectly connected. A firm with a position on many of these paths has
access to more knowledge flows. This position is measured by the betweenness
centrality coefficient which takes into account the position of a firm on path525

between other firms (Wasserman, 1994). The higher the centrality of the firm,
the more it is on the crossroads of knowledge flows. The higher the centrality
of the firm, the more it is able to benefit from diverse sources of knowledge.
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The average distance gives a measure of the average distance a firm is removed
from all other firms in the network. The closer it is to all other firms the more530

beneficial the knowledge flows should be. An argument against this idea is that
if the distance is too low there is a high risk of redundancy of information and
hence low distance should have a negative influence on the performance of the
firm. I hence test the following hypothesis:

Hypothesis 6 The more central the firm, the better the performance due to an535

increased access to knowledge flows.

- Number of patents of the firm The number of patents gives an indication of
the innovative dynamism of the firm. The more patents are deposited by
the surrounding firms the more knowledge they accumulated. The following
hypothesis is hence tested:540

Hypothesis 7 The more patents in the neighborhood of the firm the stronger
the knowledge spillovers to the focal firm.

- Number of technologies for the focal firm The more technologies mastered by
the firm the easier it should be for the firm to learn new knowledge which
should result.545

Hypothesis 8 The absorption capacity of the firm is positively related to it’s
performance.

4.2. Variable lags and panel regression
We have two different data sources. The financial data from 2012 comes from the

performance in the year 2012, the patent data from 2012 does however result from550

cooperations that took place any time before 2012. In order to perceive an effect
of the cooperation on the performance we need to include lags in the patent-related
variables. How far back the lags should go depends entirely on the type of informa-
tion, some have a faster influence on the performance than other do. In terms of lag
we will consider that a cooperation is initiated 3 years before the priority date of the555

patent. This means that the transfer of some types of information may flow from
that point on. The effects of the knowledge flow should be visible at about the date
of priority of the patent. The effects of the production of the patented technology
should be visible (if the technology is indeed put into production) at any point in
time from t− 1 on.560

Structural variables: Firms are influenced by the knowledge held within the firm at
the moment of collaboration. The diversity is hence lagged to t− 3: firms connected
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by a patent in 2010 cooperated in 2007 and are hence influenced by the diversity
in the firm in the year 2007. However, since it takes time to absorb the knowledge
and put it to use the impact on the ROA should be observed some time after the565

initialization of the cooperation, we will consider 3 years. Hence the variable Diver-
sity is not lagged, the same is applied to the number of patents and the number of
technologies. All the other variables are lagged at t − 3 since the knowledge flows
may influence the performance from the start of the cooperation on.

570

We include 2 types of variables in this regression. Structural variables and tech-
nology variables. We have a panel of 1605 observations over a 10 year period. We
use a standard linear panel regression to test the influence of the network on the
performance of the firm. The previously discussed variables were included with the
corresponding lags:575

ROAt,t+1 = Clustering ∗ densityt−3 + Centralityt−3 + AverageDistancet−3 +
Technologicaldiversity+Numberoftechnologies+Numberofpatents+Numberofcooperations

In a first regression we only integrated the variables relative to the position of the580

firm inside the network (model (1)), a second regression includes only the technology
variables (model (2)), the last model show the regression with both types of variables
(model(3))
In order to assess which type of regression is adequate for the data several statistical
tests were performed. The Lagrange Multiplier Test (Breusch-Pagan) showed that585

there is presence of panel effects in the data, simple OLS regressions are hence re-
jected.
We then checked for time fixed effects in the data, by adding a dummy variable for
each year and compared the regression results with an F-test, the results show that
no time-fixed effects have to be included in the model. A fixed, random and pooled590

model were then tested against each other, the fixed effects was retained as the best
model. Since the data presented serial correlation and heteroscedasticity, we used
robust estimates.

The results of the regression are shown in table 2. All variables have a significant595

impact on the ROA of the with the exception of the number of cooperations and the
number of patents. The latter observation is rather to be expected. Not all patents
have the same value only a small portion of patents have an exploitable value. The
number of cooperations shows that not all cooperations have a benefit in terms of
knowledge flows. The number of collaborations is higher than the number of col-600
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laborators. As such it can be interpreted as the intensity of collaborations between
firms, i.e how close firms are socially. The impact of social links is an order of mag-
nitude lower than the impact of knowledge transfer by other objects and is difficult
to capture.

605

The structural variables are all significant, showing that the position of the firm
in the network does indeed have an impact on the performance of the firm. The
adjusted clustering measure shows that firms with a higher clustering coefficient per-
form better. The collaboration of collaborators is hence a positive effect. The idea
that working with people who already know each other seems to be validated.610

In terms of knowledge absorption the central position of a firm is significant. The
more central the firm is, the more knowledge it is able to absorb. The measure re-
tained here is the betweenness centrality which measures the extend to which a firm
is positioned on the a path between all the firms in the network. The higher the
centrality the more favorable the position for knowledge absorption. The Average615

distance measures how far is firm is positioned from other firms, the further away
the less knowledge the firm is exposed to. As such, the negative coefficient of this
variable confirms the hypothesis that knowledge flows in the network have a decaying
factor.

620

The technology related variables highlight the importance of technological diver-
sity. Innovation literature puts forth the idea that innovations are achieved by the
recombination of ideas. The diversity of technologies in the neighborhood of the firm
should hence have a positive impact on the performance of the firm. The regression
shows that this hypothesis is validated.625

The final variable, the number of technologies mastered by the firm, has a negative
impact. In our particular case, i.e the aerospace sector; the firms with the most
technologies are suppliers with a specific position in the value chain. The regression
show that specialized firms perform better than diversified firms, in a network. Spe-
cialized firms have to advantage of detaining valuable knowledge that can result in630

efficient innovations through collaboration. Diversified firms might be less interesting
for cooperations and hence partner with less than optimal partners.

5. Conclusion and discussion

The production chain characteristic of the aerospace sector results in a network
in which different clusters foster different technologies. These clusters are intercon-635

nected by a small number of large firms resulting in a Scale-Free structure. The
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Table 3

Dependent variable: Return on Assets

Network var. Techno. var. Combined
Adjusted clustering 0.646∗∗ 0.623∗

(0.313) (0.322)

Centrality 0.890∗ 0.941∗
(0.513) (0.501)

Average distance −0.328∗∗ −0.335∗∗∗
(0.128) (0.127)

Technological diversity 0.002∗∗∗ 0.001∗∗∗
(0.0004) (0.0005)

Number of technologies −0.005∗∗∗ −0.005∗∗∗
(0.001) (0.001)

Number of patents 0.004 0.003
(0.004) (0.004)

Number of cooperations 0.001 −0.001
(0.004) (0.003)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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specificities of the aerospace sector play a vital role in the shaping of the collab-
oration network. These results show that a small world structure is not always a
desirable structure. Indeed, in theoretical models the structure is often sought after
and used as an exogenous structure for diffusion analysis.The present chapter shows640

that in sectors such as the aerospace sector, a small world structure would make no
sense and would perform much less efficiently.
We have shown that technological proximity explains collaboration between firms but
that it this behavior follows an inverted U-shape, implying that there is a butter zone
in which firms will want to work together. The analysis of the performance of the645

firm tends to indicate that a central position in the network goes hand in hand with
better performance for the firm. This is explained by the access to knowledge flows
by firms with a high centrality and a low average distance. The choice of partner is
proven to be important for two reasons, the clustering of the firm and the specializa-
tion of the firm. If the partner evolves in an environment in which collaborators of650

collaborators collaborate, this will have a positive impact on it’s performance. If the
firm choses a specialized firm to innovate with this will also have a positive impact
on the performance of the focal firm.
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Appendix

Computation of the normalizing constant of the power-law.´∞
−∞ p(x) = 1⇔

´ xmin
+∞ p(x)dx = 1765

⇔ c
´ xmin

+∞ x−αdx = 1

⇔
´ xmin

+∞ x−αdx = 1
c

770

⇔
[
x1−α

1−α

]xmin
∞

= 1
c

⇔ 1
(1−α) [x1−α]xmin∞ = 1

c

⇔ c(α, xmin) = α−1
xα−1
min

775
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