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Abstract

In this paper we study the evolution of the collaboration network of structural
composite materials in aeronautics between 1980 and 2013.The network is
generated using patent and publication data and analyzed following a macro
to micro level methodology. All results and interpretations were discussed
and validated by engineers and executives from the relevant sector.

The macro analysis shows that the evolution of the network is correlated
with the life-cycle of the technology. During the research phase, the network
structure converges towards a small world. The network becomes a small
world when the development stage of the technology is reached. At this
point the newly developed technologies diffuse. The structure then diverges
from the small world structure once the technology has been integrated.

On a micro level the network shows that two diverging strategies in terms
of preferential attachment (Barabasi and Albert| 1999) lead to a significant
difference in terms of innovative performance.
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1. Introduction

Innovations are the driving force behind growing economies and pros-
perous firms. Achieving innovation is hence at the center of any business
strategy. With the growing complexity of new technologies, a single firm can
no longer master all the technologies needed for the production of a single
product. Accessing knowledge held by other firms becomes of vital impor-
tance for firms in order to innovate. Accessing different knowledge sources
has proven to be beneficial for the firm |McEvily and Marcus| (2005), for inno-
vation Kogut and Zander| (1992), Tsai (2001) as well as survival and growth
Watson| (2007).

Working under the Schumpeterian hypothesis that innovations are achieved
through the recombination of existing technologies, diversity is the key to
new innovations [Dosi (2000)), (Cowan and Jonard| (2007). By recombining
knowledge held in different firms new knowledge is created.

Cooperations started to appear between firms, changing the business land-
scape by a profound reconsideration of strategic decisions. Firms now focus
on the identification of efficient partners in order to absorb and recombine
as much relevant information as possible.

Empiric analyses show that the number of cooperations has increased steadily
over the last two decades paolo Saviotti (2007). During this same period
we can observe that cooperation has evolved from (predominantly) dyadic
cooperation to multilateral cooperations. Firms evolve in networks, an inter-
connection of cooperating firms with a common goal Pippel (2013).

In networks knowledge flows between firms, allowing them to learn from one
another. The manner in which firms benefit from the network depends in
part on the structure of the network since the structure defines how fast
and efficient knowledge flows through the network Verspagen and Duysters
(2004]).

The evolution of these networks has been studied in the past by many re-
searchers/Ahuja; (2000), Verspagen and Duysters| (2004)), Buchmann and Pyka
(2013), |[Konig et al.| (2011), ven der Valk et al.| (2011).

We hypothesize that there is a correlation between the evolution of the struc-
ture of a collaboration network and that of the technology life-cycle. More
precisely, the life-cycle of a technology is defined by a research and a devel-
opment stage. The structure of the network differers according to the stage
of the cycle. A first stage requires the absorption of knowledge from fun-
damental research and knowledge from other sectors. The second stage is
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defined by a diffusion of the new technology. In order to verify this hypothe-
sis we analyze the structure and evolution of the knowledge network relative
to structural composite materials. The first aim of this chapter is hence to
analyze how a collaboration network evolves when a new technology is being
developed.

Since we focus on an existing sector, firms already have collaborative links
with other firms. Firms hence need to make the strategic decision to either
collaborate with historic partners or collaborate with new firms. The impor-
tance of social capital in network evolution has been intensively studied. We
present here an example of two firms developing a same technology which
took opposite decisions in terms of collaboration. We will show how one
strategy resulted in a 10-year technological delay in development. The sec-
ond aim of this paper is hence to consider the impact of social capital as a
collaborator selection mechanism on innovation performance.

This chapter is organized as follows. In a first section we will present
the technology under analysis: Structural Composite Materials (SCM). We
will then present the data and methodology. Section 3 provides an analysis
of the IPC network, section 4 correlates section 3 with the evolution of the
collaboration network. Section 5 analyzes the impact of social capital on
innovative performance. Section 6 concludes.

2. Structural Composite Materials

Structural Composite Materials (SCM) were first developed by chemists
in the early 20th century and have since been used in sport equipment and the
automotive industry. It caught the attention of civil aircraft manufacturers
during the late 70s. During this period, research programs focusing on the
optimization of energy consumption were launched by the European Union
and the american government. The aim of these programs was to exploit
composite materials in order to increase energy efficiency for aircrafts by the
means of weight reduction. This makes SCM the perfect candidate for a
study to analyze how a network is structured in order to absorb an existing
technology from other sectors and develop it for its own needs.

The aerospace sector has a particular structure, it is organized as a pro-
duction chain. An aircraft being a multi-technological product, each part of
the airplane is developed in a different part of the network (see chapter 4 for
more details).
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In the value chain that makes up the sector, a small number of firms occupies
a strategic (central) position, these firms assemble intermediary products be-
fore sending them to either the final assembler (Airbus, Boeing etc.) or to
other firms that use intermediary goods for larger parts. Firms with these
specific positions in the value chain are called ”pivot firms” (Frigant et al.
2006). These firms have to master all the technologies of the downstream
firms in order to complete their part of the aircraft.

The introduction of a new technology such as SCM, can only succeed if the
value chain adapts to the technology. Indeed, the introduction of SCM alter
the structure of an aircraft in many dimensions. Pivot firms have to adjust
their production methods and hence so do the downstream firms. Integrating
SCM in the aerospace industry hence implies a thorough understanding of
the core and linkage technologies (Prencipe, |[1997)) by all the actors implicated
in aeronautical programs.

3. Data and methodology

In order to generate the collaboration network around the SCM technol-
ogy in aeronautics we need to identify all firms working with SCMs. We call
this first step ”Technology Framing”.

3.1. Technology framing

We used patent and publication data to generate our network. Patents

were extracted from Orbit while publications were extracted from Scopus.
In order to extract all relevant patents and publication we started by framing
the technologies involved in the production of SCM. The framing process is
an iterative process based on discussions with engineers and executives from
the aerospace sector.
We conducted an initial search for relevant IPC codes by identifying parts
of the aircraft that can be made out of SCM. A detailed search was then
conducted in order to identify what specific products and technologies are
involved in the creation of composite materials (resins, matrices). We then
discussed these codes and terms with engineers who would confirm or in-
firm the relevance. New codes and terms were identified based upon these
discussions and then discussed again. This process allows us to frame the
technology and build up a query that extracts patents beyond the scope of
keywords which would result in false positives and unidentified patents and
publications.
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Two queries were constructed, one for publications and one for patents. The
results in figure 1 show the evolution of the number of patents and publica-
tions identified. A total number of 9000 patents and 12000 publications were
identified worldwide between 1980 and 2014.

The analysis was initiated in 1980 since it is the point at which SCM caught
the attention of aircraft manufacturers. We checked patents and publication
before 1980 and confirmed the latter.
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Figure 1: Distribution of the number of patents and publications over time.

3.2. Data treatment

The collaboration network. We used the previously described query to ex-
tract patents and publications.

The Orbit database uses algorithms to extract and translate data from patents,
this results in terms that get lost in translation and textual mistakes. In ad-
dition to this, names on patents often do not match names on publication.
For example, we observe the name ” Airbus SA” on a patent, ”Airbus S.A”.
on a publication, even mistakes like ” Aerhjbus” appear in the data. We used
Intellixir to clean any mismatches or textual mistakes. Intellixir is a browser
based tool for patent and publication analysis. It has a feature that auto-
matically cleans the data. A final treatment was conducted by hand to clean
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any remaining problems.

Once the data was cleaned all firm names were extracted from the patents
and publications to generate a network. A link was created between two firms
that co-wrote or co-deposited a patent. A link resulting from a publication
was hence treated as a link resulting from a patent. A date was added to
each link, which was the priority date for patents and the publication date
for publications.

From this data we create two series of temporal networks, a first using
a 5-year window [Powell et al.| (2005), Buchmann and Pykal (2013), a second
using a cumulative method. Each method adds specific information about
the evolution of the network. The 5-year window allows us to put an end
date on a collaboration. This method allows us to track the number of active
firms in the network and how they are connected, allowing us to track more
precisely when the network starts to decline. It paints a precise picture of the
behavior of firms and the interest they have for the technology. For example,
if the technology has become obsolete this will be visible by a decline in the
number of firms present in the network and an absence of new firms. From a
purely practical point of view it allows us to delete bankrupt firms, or firms
which changed their name from our dataset.
The cumulative network keeps the history of the network, this allows us to
observe if old firms work more intensively together or if the evolution is de-
fined by new entrants. It allows us to see where a particular technology
was fostered and how it spreads through the network (by bridging structural
holes for example).
For the purpose of knowledge collaborative behavior we will use the 5-year
window network. For the purpose of knowledge flows we will focus on the
cumulative network, even if the collaboration is over firms still have a social
link with each other and collaborations hence last longer than the time they
work together |Dahl and Pedersen| (2004).
Since this network shows the origins of technologies. Even if a collaboration
does not exist anymore, and the firms has exited the network, the knowledge
still exists and is still exploitable.
For the purpose of identifying knowledge (creation and flow) we use IPC
codes present on patents. For the specific analysis of the flow of knowledge
we will use patent citations to identify which firm is influenced by which firm.
This will allow us to track when a firm starts working on a specific technology

6
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and who the firm learned from In addition, since we have dynamic data, it
will allow us to see if some firms are leaders and other followers.

The knowledge network. In order to identify the life-cycle of the technology
we use [PC codes present on the patents. Whenever two or more IPC codes
are present on the same patent a link is created between them. The Interna-
tional Patent Classification (IPC) classifies patented technologies according
to different technological fields. The system itself is crescendo is nature. The
more digits, the more precise the codes become from a technological point of
view. A 4-digit level defines a broad definition of technologies, for instance
B64C defines ” Aeroplanes; helicopters”. The 7-digit level goes one step fur-
ther into detail by specifying for B64C1, 7 Fuselages; Constructional features
common to fuselages, wings, stabilizing surfaces, or the like”. Going a step
further, at the 9-digit level we will find ”Floors” for code B65C1/18.

We use 3 different digit levels for our analysis, the 4, 7 and 9 digit levels.

In order to obtain a 4-digit network, all IPC codes are reduced to their 4-digit
format. For example B64C001/23 is a 9-digit code, in order to obtain the
corresponding 4-digit code, one simply reduced the code to 4-digits: B64C.
The same goes for the 7-digit code which would be B64C001 in this example.
Just as for the collaboration network we use a 5-year window and a cumula-
tive method.

4. The technology life-cycle

In the early phases of the technology life-cycle patents are deposited using
codes that refer to the core elements of the technology. This should result,
as the number of patents increases, in the appearance of a cluster intercon-
necting all the core-technologies. This core is reinforced as the number of
patents increases since the same technologies are used. From a structural
point of view:

Hypothesis 1:. We should hence observe an increase in the clustering coeffi-
cient of the network during this research phase.

Once the research phase has reached its peak the development stage
starts. This stage is defined by the incorporation of the technology for new
applications. These applications are less densely connected than the core
technologies since they have specific applications. In the knowledge network

7
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this means that new nodes are added to the previously build cluster. From
a structural point of view

Hypothesis 2:. this results in a decrease of the clustering coefficient since the
nodes are added to the periphery of the network and will not interconnect
with other IPC codes relative to other applications. The average distance
(as well as the diameter of the network) should increase due to these new
nodes.

In theory then,

hypothesis 3:. the network should have the structure of a core-periphery net-
work.

I will start by checking for the presence of a core-periphery structure before
proceeding to the analysis of the evolution of the clustering coefficient and
the average distance.

4.1. Core-periphery check

Checking for a scale-free structure is done by fitting a function to the cu-
mulative degree distribution of a network. A CP network has a small number
of highly connected nodes (the core) and a large number of (relatively) less
connected nodes (the periphery). This can be observed directly when we
represent the degree distribution of the network. Which is simply a plot
with the number of nodes with degree k£ on the y-axis and the degree on the
x-axis. This distribution is then transforms into a cumulative degree distri-
bution as can be seen in figure [5] A function is fitted to the CFD in order
to check for a core-periphery structure. The most sought-after (and found)
structure is represented by a power law which has the form: p(k) = ¢ k.
In a log-log plot this non-linear function becomes linear. We also check for
another form which is the log-normal function. The functions are fitted us-
ing a maximum likelihood estimation. As previously a 5-year window and a
cumulative method are used.

Figure [7| shows the results for the 4-digit network. Even though the p.value
for the window configuration shows that the power law fit is statistically sig-
nificant, this is only the case for part of the distribution. Indeed we can see
that the straight line starts towards the end of the distribution. We hence
cannot confirm that the distribution follows a power law. However the log-
linear distribution is both signification and represents almost the complete
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distribution. This confirms the presence of a core-periphery structure at the
4-digit level. The log-linear form shows a small decrease in the fraction of
nodes when the density is decreased by a factor of 1 at the beginning of the
distribution. This remains the case until a density of 20 showing that the
network is quite densely connected. Almost all nodes have at least 3 links.
The core is much more densely connected than the scale-free network identi-
fied in chapter 4. The core is hence surrounded by a periphery that is itself
(relatively) densely connected as shown in figure [7, We hence conclude that
the 4-digit network has a core-periphery structure. Both in the 5-year win-
dow case and the cumulative method. The same conclusion is valid for the
7-digit network even though the window shows that the core-periphery struc-
ture appears towards the end of the period. The 9-digit network structure
also has a core-periphery structure when we consider the cumulative method.
The window method does not show proof of a core-periphery network. We
deduce from these results that hypothesis 3 is verified. The P.values for all
configurations are provided in the annex.



255

260

265

275

280

285

4.2. Clustering and average distance

Now that we have established that the structure of the network is indeed
a core-periphery structure. We now turn to the analysis of the structure of
the network.

Figure |8 shows that the clustering coefficient in the 4-digit configuration
is high from the start due to a relatively small number of nodes. In figure
we see that the number of technological combinations is exhausted towards
the end of the period (i.e the number of links stabilizes in the +1 method).
In addition this core is very densely connected (density =0.95) hence 95%
of all possible links are present. The clustering coefficient is decreasing over
the whole period in the additional configuration. Figure [2| shows the densely
connected core of the IPC network at the 4-digit level.

1. B29C: SHAPING OR JOINING OF PLASTICS; SHAPING OF SUB-

STANCES IN A PLASTIC STATE, IN GENERAL; AFTER-TREATMENT

OF THE SHAPED PRODUCTS

2. B32B: LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA

OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB,
FORM

3. B64C: AEROPLANES; HELICOPTERS

4. B64D: EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLY-
ING SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING
OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIR-
CRAFT

The combination of these technologies make perfect sense since the tech-
nology under study is a combination of aircraft technologies and the devel-
opment of composite materials. Around this core we find C-section codes
relative to chemistry, G-section codes relative to physics and H, mechanical
engineering. The construction of the core is clear.

In the 5 year window case we also see this decline even though there is an
increase in the later stages. Since the last 2 years are defined by a decrease
in the number of deposits (due to patent deposit times) in the later period
clustering goes up. Even the newer patents still have the core IPC codes
present, the lower number of patents hence result in the same core but lower
number of peripheral technologies which results in an increase in clustering.
This can be seen in figures[3] The number of new nodes as well as the number
of links is sharply reduced in the last periods.

10
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The 7 and 9-digit network reveal more interesting information. We can ob-
serve a clear increase in the clustering coefficient from the beginning of the
period to 1993 for the 7-digit network and 1995 for the 9-digit network. These
dates coincide with the point at which the collaboration network enters the
small world zone. From that point on the clustering coefficient declines un-
til it increases again for the same reason as we previously discussed for the
4-digit network.

The peak is observable both in the cumulative network and the 5-year win-
dow even though the window networks are more hectic. These points seem to
confirm our hypothesis that there is a link between the evolution of the IPC
network and the collaboration network. In order to further investigate that
the evolution of both networks are rules by an evolution from research stage
to development stage, (March, [1991)). If this is indeed the case we should
observe some variation of a core-periphery structure.

4.3. Network structure and the technology life-cycle

A network can evolve in two dimensions, the number of links and the
number of nodes. Figure 2 shows the evolution of different network indica-
tors from the cumulative network and from the 5-year window network.
The growth rate of the number of nodes shows that new firms appeared in the
network each year. This growth rate is however not homogenous. Two phases
can be distinguished in the evolution of the network. A first phase spanning
from 1980 to 1995, highlights a high volatility in the number of firms present
in the network and in the other network indicators. This phase is the research
phase in the life-cycle of the technology, during which firms identify relevant
partners to collaborate with. The number of collaborations decreases over
time. Collaborations rely on trust and mutual understanding Floréan and
Telll (2004) which take time to emerge between partners Prencipe and Tell
(2001). When no previous interaction has allowed for the emergence of trust,
firm use referrals to identify reliable collaborators Hanakia et al.|[(2010). This
results in the creation of strong ties between firms which cooperate multiple
times |Granovetter| (1983) and reduces, over time, the number of cooperations
between firms since they will have a tendency to collaborate with the same
firms Hanaki et al.| (2010).

The number of links in the 5 year window network shows indeed a large
number of collaborations in this early stage in the evolution of the network.
Remarkably the clustering coefficient stays high and stable over this period
of time. Implying that the number of links increases faster than the number

11
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of nodes and that firms work together in close clusters. This can be easily
understood since an airplane is made up from a different parts that require
different technologies |[Prencipe (1997)), each technology is fostered in its own
cluster.

If we look at the 5-year window we observe that the number of firms in the
network starts a significant decline in 1995, accompanied by a significant de-
cline in the number of new collaborations in the network. This marks the
beginning of the development stage.

The technologies developed by different firms are now diffusing though
the network to be integrated in intermediary and final products. The in-
termediary product are assembled by firms with a strategic position inside
the production chain called pivot firmTalbot| (2013)). The downstream firms
which researched the technology now exit the network while the pivot firms
develop the technology further. This results in the a stabilization of the net-
work indicators in the cumulative network implying that firms are working
with firms with which they have established strong links in the past.

The network ends with a low centrality and high clustering coefficient,
clearly showing that the network is build from interconnected clusters.

4.4. Typology of the network structure

The interest in the global structure of a network is motivated by ques-

tions related to the efficiency of a network in terms of knowledge diffusion.
Research on innovation network has resulted in the identification of several
typologies, mainly small worlds |Watts| (1999)), Gulati et al.| (2012)), Tomasello
et al.| (2013)), Baum et al.| (2003))), scale free networks Barabési and Albert
(1999) and nested split graphs Konig et al. (2011)).
Small worlds are of particular interest since theoretical models show that this
structure is particularly efficient when it comes to the diffusion of information
though a network. A small world network is characterized by a low average
distance and a high clustering. The clustering assures that firms have enough
access to diverse and new knowledge to innovate. The low average distance
ensure that the knowledge is quickly transferred to the rest of the network.
Following Watts and Strogatz| (1998), Baum et al.| (2003) and Gulati et al.
(2012) we check the structure of our network for a small world structure.

12
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Gulati’s |Gulati et al.| (2012) method compares the structure of an empir-
ical network to that of a random network. We compute the clustering (C')
and average distance (L) of our network, we then approximate the clustering
(Cr) and average distance (Lr) of a random graph with the same number
of links and edges. The clustering and average distance of both graphs are
then compared. The idea is that we want an empirical clustering coefficient
higher than the clustering in the random graph. However we want an average
distance approximatively identical. For a graph to be a small world we hence
want:

C L
— 1 — =1 1
o > and I, (1)

Figure [L0] shows the results for our network for each year. We observe
that the network converges towards a small world structure which it reaches
around 1997, at the beginning of the development phase where knowledge
flow intensifies. The network keeps it small world structure for about 10
years. During these years knowledge diffusion takes place. The technologies
developed by the downstream firms are diffused to the pivot firms which
include them for further development.

The observed decline is the result of the technology reaching maturity, firm
may from that point on have turned their attention to a new generation of
composite materials which might be outside of the scope of our query.

Our results are hence different from those found by Gulati et al. |Gulati
et al.| (2012) who observed a network that kept the small world property at
each point in time. Our result is due the fact that we analyze a network for
one specific technology. At the genesis of the network small clusters forms
in which different parts of the technologies are developed. These clusters
interconnect over time reducing the average distance between firms, resulting
in the observed convergence towards the small world structure.

One could argue that the convergence is the result of the increase in the
number of firms in the network, resulting in a higher average distance. Figure
shows indeed that each year new firms are added to the network, while
the clustering coefficient shows a steady increase.

The indicators used here are adjusted for network size in order to com-
pensate for network size. Additionally, new firms enter the network even
when the network diverges from the small world property. The convergence
is hence the result of the propensity of firms to interconnect rather than the
addition of new firms.

13
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5. Micro-meso analysis

We will now turn our attention to a specific part of the network. In the
aerospace sector, two major competing actors are of interest: Airbus and
Boeing. As we discussed before, these firms need to be able to learn all
technologies related to SCM in order to include them into the production of
the final product. Based on what we previously discussed we can imagine two
diverging strategies in terms of knowledge absorption for these firms. Either
they decide to cooperate with firms from other sectors that have experience in
the field or they cooperate based on social capital, i.e they pick firms based
on their whether or not they have previously cooperated. In this section
we will show how these two strategies lead to different results in terms of
innovate performance.

5.1. Network position

Boeing was present in the network since the 1980’s while Airbus entered
the market a couple of years later (this is why all graphs start in 1985). A
first clue giving away the diverging strategies can be observed in Figure 5.
When Boeing entered the market and until 1998, it has a clustering coeffi-
cient of 0. The clustering coefficient measures the number of collaborators of
Boeing that work together. A clustering of 0 hence means that none of the
collaborators of Boeing have worked together. At the complete opposite we
find Airbus which entered with a clustering of 1. Where Boeing took the risk
of collaborating with firms specialized in composite materiald’] Airbus chose
to cooperate with a cluster of its historical partners. The strong links the
firm has created in the aerospace sector have highly influenced its absorption
strategy.

These observations are reinforced by the study of the citation network of
both firms. Figure 7 shows the firms cited by Boeing and Airbus and the
firms citing Boeing and Airbus. We observe here that the European company
is largely influenced by the firms it has previously collaborated with while
Boeing has a larger variety in its inspirations. At the center of this graph we
find firms that inspired both firms. Above Airbus we find firms that inspired
only Airbus, underneath Boeing we find firms that only inspired Boeing.
The larger the arrow the higher the number of citations between two firms.
We hence observe that Boeing has a large variety of inspirations with a low

'We refer here to firms that have worked with composite materials in other sectors
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frequency while Airbus tends to cite more frequently the same firms. These
firms are often previous collaborators.
Theory on preferential attachment [Barabasi and Albert| (1999)) suggest that
firms might motivate their decision to cooperate with a specific firms if they
have previously worked together. Firms who know each other have the ad-
vantage of cooperating more efficiently because they know how the other
operates.
Boeing ignored these benefits and chose to identify specialists, with the risk
it would lose in efficiency during the cooperation because of a lack of social
capital.
Towards the second phase of the evolution of the network we observe that
both firms have very similar positions in terms of centrality. The betweenness
centrality measures the relative position of a firm on all the paths connecting
all other firms. This means that a high betweenness centrality is synonymous
with a position through which many information flows may be captured. Fig-
ure 5 shows that both firms converge to a similar level of centrality as can
be observed for the other indicators. This implies that both firms had an
identical position for the absorbing of new technologies which is expected
considering their position in their respective value chain.
The number of cooperations marks however a point of divergence. Airbus
has accelerated the number of firms with which it collaborates from 1997 on-
wards. Boeing on the other hand has been much more conservative, ending
with less than half the collaborations of Airbus.

We observe two different strategies resulting in nearly identical network
positions. The resulting innovative performance is however not the same as
we will show in the next subsection.

5.2. The race for innovation

By extracting IPC codes from Boeing and Airbus’ patents we are able
to track when firms deposit patents in specific IPCs that are at the core of
SCMs technology. Two of these core IPCs are: B64C1 (”Fuselages, Wings,
stabilizing surfaces, or the like”E[) and B29C70 (”Shaping composites”).
From the patents we create a network connecting IPC codes with Airbus and
Boeing. If there is a link between Boeing and B64C1 that means that Boeing
has deposited a patent using this code. The results are shown in figure 6,

2Titles given by WIPO in the international patent classification
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the thicker the link between the IPC and the firm the more deposits using
the IPC were identified.

In the center of the graph we find IPC that were used by both firms, the
most relevant IPC codes are found here. From a dynamic perspective we
can observe when a firms first deposits a patent in one of those relevant IPC
codes. We hence created a dynamic network that allowed us to observe when
a firm deposits its fist patent in a certain technology.

This representations can show how far a head (or far behind) a firm is com-
pared to another. In our case we observed that Boeing deposited in the 2
IPC codes 10 years before Boeing did, showing clearly that Airbus has a
technological lag compared to Boeing.

This lag can be explained by the previously identified strategy of Airbus,
who decided to research the technology with historical partners. This deci-
sion was made even though the identified partners might not have been the
most specialized firms in the sector.

Boeing’s strategy however paid off, it positioned itself as gatekeeper be-
tween two sectors and it took the risk of collaborating with firms it has
no connection with. Their knowledge absorption strategy was hence more
efficient.

6. Conclusion and Discussion

This document has shown that the evolution of the collaboration network
for a specific technology is correlated with the life-cycle of the technology. In
the research stage of the technology, small clusters form in which different as-
pects of the technology are researched. Over time these clusters interconnect
resulting in a convergence towards a small world structure at which point
the development stage starts and the technologies start to diffuse.

On a micro level we showed that a firm using social capital to find its collab-
orators fell 10 years behind a competitor who chose to cooperate with firms
that had experience with the technology from another sector.
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Figure 2: The technology core, representing a 95% interconnection rate
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Figure 3: Evolution of the clustering coefficient in a 5-year window (left column) and a
cumulative setting (right column) for the IPC network at the 4, 7 and 9 digit levels.
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Figure 4: Power law fit to the IPC network at the 4 digit level. The cumulative method
is on the left, the window method is on the right. A p.value higher or equal to 0.1 shows

a good fit.
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Figure 5: Power law fit to the IPC network at the 7 digit level. The cumulative method
is on the left, the window method is on the right. A p.value higher or equal to 0.1 shows
a good fit.
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Figure 6: Power law fit to the IPC network at the 9 digit level. The cumulative method
is on the left, the window method is on the right. A p.value higher or equal to 0.1 shows
a good fit.
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Figure 7: The full 4-digit IPC network for structural composite materials in aeronautics
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Figure 8: Evolution of the clustering coefficient in a 5-year window (left column) and a
cumulative setting (right column) for the IPC network at the 4, 7 and 9 digit levels.
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Figure 13: TPC network of Boeing and Airbus
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Figure 14: Citations of Airbus and Boeing
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