
HAL Id: hal-01284907
https://hal.science/hal-01284907v1

Submitted on 16 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Hacking nondeterminism with induction and
coinduction.

Filippo Bonchi, Damien Pous

To cite this version:
Filippo Bonchi, Damien Pous. Hacking nondeterminism with induction and coinduction.. Communi-
cations of the ACM, 2015, 58 (2), pp.87-95. �10.1145/2713167�. �hal-01284907�

https://hal.science/hal-01284907v1
https://hal.archives-ouvertes.fr

Hacking Nondeterminism with Induction and Coinduction

Filippo Bonchi Damien Pous
CNRS, ENS Lyon, LIP, Université de Lyon, UMR 5668

{filippo.bonchi,damien.pous}@ens-lyon.fr

ABSTRACT
We introduce bisimulation up to congruence as a technique
for proving language equivalence of non-deterministic finite
automata. Exploiting this technique, we devise an optimiza-
tion of the classic algorithm by Hopcroft and Karp [13].
We compare our approach to the recently introduced an-
tichain algorithms and we give concrete examples where we
exponentially improve over antichains. Experimental results
show significant improvements.

1. INTRODUCTION
Checking language equivalence of finite automata is a clas-

sic problem in computer science, with many applications in
areas ranging from compilers to model checking.

Equivalence of deterministic finite automata (DFA) can
be checked either via minimization [12] or through Hopcroft
and Karp’s algorithm [13], which exploits an instance of
what is nowadays called a coinduction proof principle [17,
22, 20]: two states are equivalent if and only if there exists a
bisimulation relating them. In order to check the equivalence
of two given states, Hopcroft and Karp’s algorithm creates
a relation containing them and tries to build a bisimulation
by adding pairs of states to this relation: if it succeeds then
the two states are equivalent, otherwise they are different.

On the one hand, minimization algorithms have the ad-
vantage of checking the equivalence of all the states at once,
while Hopcroft and Karp’s algorithm only checks a given
pair of states. On the other hand, they have the disad-
vantage of needing the whole automata from the beginning,
while Hopcroft and Karp’s algorithm can be executed “on-
the-fly” [8], on a lazy DFA whose transitions are computed
on demand.

This difference is essential for our work and for other re-
cently introduced algorithms based on antichains [25, 1,
7]. Indeed, when starting from non-deterministic finite au-
tomata (NFA), determinization induces an exponential fac-
tor. In contrast, the algorithm we introduce in this work

Extended Abstract, a full version of this paper is available
in Proc. POPL, 2013, ACM. Work partially funded by the
PiCoq (ANR-10-BLAN-0305) and PACE (ANR-12IS02001)
projects.

Copyright ACM, 2015. This is the author’s version of the work. It is
posted here by permission of ACM for your personal use. Not for redis-
tribution. The definitive version was published in Communications of the
ACM, 58(2):87-95, February 2015.
http://doi.acm.org/10.1145/2713167.

for checking equivalence of NFA (as well as those using an-
tichains) usually does not build the whole deterministic au-
tomaton, but just a small part of it. We write “usually”
because in few cases, the algorithm can still explore an ex-
ponential number of states.

Our algorithm is grounded on a simple observation on
DFA obtained by determinizing an NFA: for all sets X and
Y of states of the original NFA, the union (written +) of the
language recognized by X (written [[X]]) and the language
recognized by Y ([[Y]]) is equal to the language recognized
by the union of X and Y ([[X + Y]]). In symbols:

[[X + Y]] = [[X]] + [[Y]] (1)

This fact leads us to introduce a sound and complete proof
technique for language equivalence, namely bisimulation up
to context, that exploits both induction (on the operator +)
and coinduction: if a bisimulation R relates the set of states
X1 with Y1, and X2 with Y2, then [[X1]] = [[Y1]] and [[X2]] =
[[Y2]] and, by (1), we can immediately conclude that X1 +X2

and Y1 + Y2 are language equivalent as well. Intuitively,
bisimulations up to context are bisimulations which do not
need to relate X1 + X2 with Y1 + Y2 when X1 is already
related with Y1 and X2 with Y2.

To illustrate this idea, let us check the equivalence of
states x and u in the following NFA. (Final states are over-
lined, labeled edges represent transitions.)

x

a

��
z

a
oo

a &&
y

a
ff u

a ((

a

��
w

a
gg v

a
oo

The determinized automaton is depicted below.

{x} a //

1

{y} a //

2

{z} a //

3

{x, y} a //

4

{y, z} a //

5

{x, y, z}

a

GG
6

{u}
a
// {v, w}

a
// {u,w}

a
// {u, v, w} a

}}

Each state is a set of states of the NFA. Final states are
overlined: they contain at least one final state of the NFA.
The numbered lines show a relation which is a bisimulation
containing x and u. Actually, this is the relation that is built
by Hopcroft and Karp’s algorithm (the numbers express the
order in which pairs are added).

The dashed lines (numbered by 1, 2, 3) form a smaller
relation which is not a bisimulation, but a bisimulation up to
context: the equivalence of {x, y} and {u, v, w} is deduced
from the fact that {x} is related with {u} and {y} with
{v, w}, without the need to further explore the automaton.

http://doi.acm.org/10.1145/2713167

Bisimulations up-to, and in particular bisimulations up to
context, have been introduced in the setting of concurrency
theory [17, 21] as a proof technique for bisimilarity of CCS
or π-calculus processes. As far as we know, they have never
been used for proving language equivalence of NFA.

Among these techniques one should also mention bisimu-
lation up to equivalence, which, as we show in this paper, is
implicitly used in Hopcroft and Karp’s original algorithm.
This technique can be explained by noting that not all bisim-
ulations are equivalence relations: it might be the case that
a bisimulation relates X with Y , and Y with Z, but not
X with Z. However, since [[X]] = [[Y]] and [[Y]] = [[Z]], we
can immediately conclude that X and Z recognize the same
language. Analogously to bisimulations up to context, a
bisimulation up to equivalence does not need to relate X
with Z when they are both related with some Y .

The techniques of up-to equivalence and up-to context can
be combined, resulting in a powerful proof technique which
we call bisimulation up to congruence. Our algorithm is in
fact just an extension of Hopcroft and Karp’s algorithm that
attempts to build a bisimulation up to congruence instead
of a bisimulation up to equivalence. An important prop-
erty when using up to congruence is that we do not need to
build the whole deterministic automata. For instance, in the
above NFA, the algorithm stops after relating z with u+w
and does not build the remaining states. Despite their use
of the up to equivalence, this is not the case with Hopcroft
and Karp’s algorithm, where all accessible subsets of the
deterministic automata have to be visited at least once.

The ability of visiting only a small portion of the deter-
minized automaton is also the key feature of the antichain
algorithm [25] and its optimization exploiting similarity [1,
7]. The two algorithms are designed to check language in-
clusion rather than equivalence and, for this reason, they do
not exploit equational reasoning. As a consequence, the an-
tichain algorithm usually needs to explore more states than
ours. Moreover, we show how to integrate the optimization
proposed in [1, 7] in our setting, resulting in an even more
efficient algorithm.

Outline
Section 2 recalls Hopcroft and Karp’s algorithm for DFA,
showing that it implicitly exploits bisimulation up to equiv-
alence. Section 3 describes the novel algorithm, based on
bisimulations up to congruence. We compare this algorithm
with the antichain one in Section 4.

2. DETERMINISTIC AUTOMATA
A deterministic finite automaton (DFA) over the alphabet

A is a triple (S, o, t), where S is a finite set of states, o : S →
2 is the output function, which determines if a state x ∈
S is final (o(x) = 1) or not (o(x) = 0), and t : S → SA

is the transition function which returns, for each state x
and for each letter a ∈ A, the next state ta(x). Any DFA
induces a function [[·]] mapping states to formal languages
(P(A?)), defined by [[x]](ε) = o(x) for the empty word, and
[[x]](aw) = [[ta(x)]](w) otherwise. For a state x, [[x]] is called
the language accepted by x.

Throughout this paper, we consider a fixed automaton
(S, o, t) and study the following problem: given two states
x1, x2 in S, is it the case that they are language equivalent,
that is, [[x1]] = [[x2]]?

Naive(x, y)

(1) R is empty; todo is empty;

(2) insert (x, y) in todo;
(3) while todo is not empty do

(3.1) extract (x′, y′) from todo;
(3.2) if (x′, y′) ∈ R then continue;

(3.3) if o(x′) 6= o(y′) then return false;
(3.4) for all a ∈ A,

insert (ta(x′), ta(y′)) in todo;
(3.5) insert (x′, y′) in R;

(4) return true;

Figure 1: Naive algorithm for checking the equiva-
lence of states x and y of a DFA (S, o, t). The code of
HK(x, y) is obtained by replacing the test in step 3.2

with (x′, y′) ∈ e(R).

This problem generalizes the familiar problem of checking
whether two automata accept the same language: just take
the union of the two automata as the automaton (S, o, t),
and determine whether their respective starting states are
language equivalent.

2.1 Language equivalence via coinduction
We first define bisimulation. We make explicit the under-

lying notion of progression, which we need in the sequel.

Definition 1 (Progression, Bisimulation). Given two re-
lations R,R′ ⊆ S2 on states, R progresses to R′, denoted
R� R′, if whenever x R y then

1. o(x) = o(y) and

2. for all a ∈ A, ta(x) R′ ta(y).

A bisimulation is a relation R such that R� R.

As expected, bisimulation is a sound and complete proof
technique for checking language equivalence of DFA:

Proposition 1 (Coinduction). Two states are language equiv-
alent iff there exists a bisimulation that relates them.

2.2 Naive algorithm
Figure 1 shows a naive version of Hopcroft and Karp’s

algorithm for checking language equivalence of the states x
and y of a deterministic finite automaton (S, o, t). Starting
from x and y, the algorithm builds a relation R that, in case
of success, is a bisimulation.

Proposition 2. For all x, y ∈ S, x ∼ y iff Naive(x, y).

Proof. We first observe that if Naive(x, y) returns true then
the relation R that is built before arriving to step 4 is a bisi-
mulation. Indeed, the following proposition is an invariant
for the loop corresponding to step 3:

R� R ∪ todo

Since todo is empty at step 4, we have R � R, i.e., R is
a bisimulation. By Prop. 1, x ∼ y. On the other hand,
Naive(x, y) returns false as soon as it finds a word which is
accepted by one state and not the other.

x
a //

1

y

a
((

2

z
a

hh

3

u
a
// v

a
((
w

a

hh

x
a,b //

1

y
a,b //

2 5

z a,bdd

3

4

v

a,b
((
w

a,b

hh

u a

66

b

;;

Figure 2: Checking for DFA equivalence.

For example, consider the DFA with input alphabet A =
{a} in the left-hand side of Figure 2, and suppose we want
to check that x and u are language equivalent.

During the initialization, (x, u) is inserted in todo. At the
first iteration, since o(x) = 0 = o(u), (x, u) is inserted in R
and (y, v) in todo. At the second iteration, since o(y) = 1 =
o(v), (y, v) is inserted in R and (z, w) in todo. At the third
iteration, since o(z) = 0 = o(w), (z, w) is inserted in R and
(y, v) in todo. At the fourth iteration, since (y, v) is already
in R, the algorithm does nothing. Since there are no more
pairs to check in todo, the relation R is a bisimulation and
the algorithm terminates returning true.

These iterations are concisely described by the numbered
dashed lines in Figure 2. The line imeans that the connected
pair is inserted in R at iteration i. (In the sequel, when
enumerating iterations, we ignore those where a pair from
todo is already in R so that there is nothing to do.)

In the previous example, todo always contains at most one
pair of states but, in general, it may contain several of them.
We do not specify here how to choose the pair to extract in
step 3.1; we discuss this point in Section 3.2.

2.3 Hopcroft and Karp’s algorithm
The naive algorithm is quadratic: a new pair is added to

R at each non-trivial iteration, and there are only n2 such
pairs, where n = |S| is the number of states of the DFA.
To make this algorithm (almost) linear, Hopcroft and Karp
actually record a set of equivalence classes rather than a
set of visited pairs. As a consequence, their algorithm may
stop earlier it encounters a pair of states that is not already
in R but belongs to its reflexive, symmetric, and transi-
tive closure. For instance, in the right-hand side example
from Figure 2, we can stop when we encounter the dotted
pair (y, w) since these two states already belong to the same
equivalence class according to the four previous pairs.

With this optimization, the produced relation R contains
at most n pairs. Formally, ignoring the concrete data struc-
ture used to store equivalence classes, Hopcroft and Karp’s
algorithm consists in replacing step 3.2 in Figure 1 with

(3.2) if (x′, y′) ∈ e(R) then continue;

where e : P(S2) → P(S2) is the function mapping each re-
lation R ⊆ S2 into its symmetric, reflexive, and transitive
closure. We refer to this algorithm as HK.

2.4 Bisimulations up-to
We now show that the optimization used by Hopcroft and

Karp corresponds to exploiting an “up-to technique”.

Definition 2 (Bisimulation up-to). Let f : P(S2)→ P(S2)
be a function on relations. A relation R is a bisimulation
up to f if R� f(R), i.e., if x R y, then

1. o(x) = o(y) and

2. for all a ∈ A, ta(x) f(R) ta(y).

With this definition, Hopcroft and Karp’s algorithm just
consists in trying to build a bisimulation up to e. To prove
the correctness of the algorithm, it suffices to show that any
bisimulation up to e is contained in a bisimulation. To this
end, we the notion of compatible function [21, 19]:

Definition 3 (Compatible function). A function f : P(S2)→
P(S2) is compatible if it is monotone and it preserves pro-
gressions: for all R,R′ ⊆ S2,

R� R′ entails f(R) � f(R′) .

Proposition 3. Let f be a compatible function. Any bisi-
mulation up to f is contained in a bisimulation.

We could prove directly that e is a compatible function;
we however take a detour to ease our correctness proof for
the algorithm we propose in Section 3.

Lemma 1. The following functions are compatible:

id: the identity function;

f ◦ g: the composition of compatible functions f and g;⋃
F : the pointwise union of an arbitrary family F of com-

patible functions:
⋃
F (R) =

⋃
f∈F f(R);

fω: the (omega) iteration of a compatible function f , de-
fined by fω =

⋃
i f

i, with f0 = id and f i+1 = f ◦ f i;

r: the constant reflexive function: r() = {(x, x) | x ∈ S};

s: the converse function: s(R) = {(y, x) | x R y};

t: the squaring function: t(R) = {(x, z) | ∃y, x R y R z}.

Intuitively, given a relation R, (s∪id)(R) is the symmetric
closure of R, (r ∪ s ∪ id)(R) is its reflexive and symmetric
closure, and (r ∪ s ∪ t ∪ id)ω(R) is its symmetric, reflexive
and transitive closure: e = (r ∪ s ∪ t ∪ id)ω. Another way
to understand this decomposition of e is to recall that e(R)
can be defined inductively by the following rules:

x e(R) x
r

x e(R) y

y e(R) x
s

x e(R) y y e(R) z

x e(R) z
t

x R y

x e(R) y
id

Theorem 1. Any bisimulation up to e is contained in a
bisimulation.

Corollary 1. For all x, y ∈ S, x ∼ y iff HK(x, y).

Proof. Same proof as for Prop. 2, by using the invariant
R� e(R)∪ todo. We deduce that R is a bisimulation up to
e after the loop. We conclude with Thm. 1 and Prop. 1.

Returning to the right-hand side example from Figure 2,
Hopcroft and Karp’s algorithm constructs the relation

RHK = {(x, u), (y, v), (z, w), (z, v)}

which is not a bisimulation, but a bisimulation up to e: it
contains the pair (x, u), whose b-transitions lead to (y, w),
which is not in RHK but in its equivalence closure, e(RHK).

Naive(X,Y)

(1) R is empty; todo is empty;

(2) insert (X,Y) in todo;
(3) while todo is not empty do

(3.1) extract (X ′, Y ′) from todo;
(3.2) if (X ′, Y ′) ∈ R then continue;

(3.3) if o](X ′) 6= o](Y ′) then return false;
(3.4) for all a ∈ A,

insert (t]a(X ′), t]a(Y ′)) in todo;
(3.5) insert (X ′, Y ′) in R;

(4) return true;

Figure 3: On-the-fly naive algorithm, for checking
the equivalence of sets of states X and Y of an NFA
(S, o, t). HK(X,Y) is obtained by replacing the test
in step 3.2 with (X ′, Y ′) ∈ e(R), and HKC(X,Y) is ob-
tained by replacing it with (X ′, Y ′) ∈ c(R ∪ todo).

3. NON-DETERMINISTIC AUTOMATA
We now move from DFA to non-deterministic automata

(NFA). A NFA over the alphabet A is a triple (S, o, t), where
S is a finite set of states, o : S → 2 is the output function,
and t : S → P(S)A is the transition relation: it assigns to
each state x ∈ S and letter a ∈ A a set of possible successors.

The powerset construction transforms any NFA (S, o, t)
into the DFA (P(S), o], t]) where o] : P(S)→ 2 and t] : P(S)→
P(S)A are defined for all X ∈ P(S) and a ∈ A as follows:

o](X) =

o(x) if X = {x} with x ∈ S
0 if X = 0

o](X1) + o](X2) if X = X1 +X2

t]a(X) =

ta(x) if X = {x} with x ∈ S
0 if X = 0

t]a(X1) + t]a(X2) if X = X1 +X2

(Here we use the symbol + to denote both set-theoretic
union and Boolean or; similarly, we use 0 to denote both
the empty set and the Boolean ‘false’.) Observe that in
(P(S), o], t]), the states form a semi-lattice (P(S),+, 0), and
o] and t] are, by definition, semi-lattices homomorphisms.
These properties are fundamental for the up-to technique we
are going to introduce. In order to stress the difference with
generic DFA, which usually do not carry this structure, we
use the following definition.

Definition 4. A determinized NFA is a DFA (P(S), o], t])
obtained via the powerset construction of some NFA (S, o, t).

Hereafter, we use a new notation for representing states
of determinized NFA: in place of the singleton {x}, we just
write x and, in place of {x1, . . . , xn}, we write x1 + · · ·+xn.
Consider for instance the NFA (S, o, t) depicted below (left)
and part of the determinized NFA (P(S), o], t]) (right).

x

a

BB

a &&
y

a
ff z

aoo x
a // y + z

a // x+ y
a // x+ y + z

a

FF

In the determinized NFA, x makes one single a-transition
into y + z. This state is final: o](y + z) = o](y) + o](z) =

x

a

EE

a &&
y

a
gg z

aoo

u

a

DD

x
a //

1

y + z
a //

2

x+ y
a //

3

x+ y + z

a

FF
4

u

a

DD

Figure 4: A bisimulation up to congruence.

o(y) + o(z) = 1 + 0 = 1; it makes an a-transition into t]a(y+
z) = t]a(y) + t]a(z) = ta(y) + ta(z) = x+ y.

Algorithms for NFA can be obtained by computing the de-
terminized NFA on-the-fly [8]: starting from the algorithms
for DFA (Figure 1), it suffices to work with sets of states,
and to inline the powerset construction. The corresponding
code is given in Figure 3. The naive algorithm (Naive) does
not use any up to technique, Hopcroft and Karp’s algorithm
(HK) reasons up to equivalence in step 3.2.

3.1 Bisimulation up to congruence
The semi-lattice structure (P(S),+, 0) carried by deter-

minized NFA makes it possible to introduce a new up-to
technique, which is not available with plain DFA: up to con-
gruence. This technique relies on the following function.

Definition 5 (Congruence closure). Let u : P(P(S)2) →
P(P(S)2) be the function on relations on sets of states de-
fined for all R ⊆ P(S)2 as:

u(R) = {(X1 +X2, Y1 + Y2) | X1 R Y1 and X2 R Y2} .

The function c = (r∪s∪ t∪u∪ id)ω is called the congruence
closure function.

Intuitively, c(R) is the smallest equivalence relation which
is closed with respect to + and which includes R. It could
alternatively be defined inductively using the rules r, s, t,
and id from the previous section, and the following one:

X1 c(R) Y1 X2 c(R) Y2

X1 +X2 c(R) Y1 + Y2
u

Definition 6 (Bisimulation up to congruence). A bisimu-
lation up to congruence for an NFA (S, o, t) is a relation
R ⊆ P(S)2, such that whenever X R Y then

1. o](X) = o](Y) and

2. for all a ∈ A, t]a(X) c(R) t]a(Y).

Lemma 2. The function u is compatible.

Theorem 2. Any bisimulation up to congruence is con-
tained in a bisimulation.

We already gave in Introduction an example of bisimula-
tion up to context, which is a particular case of bisimulation
up to congruence (up to context means up to (r ∪ u ∪ id)ω,
without closing under s and t).

Figure 4 shows a more involved example illustrating the
use of all ingredients of the congruence closure function (c).
The relation R expressed by the dashed numbered lines (for-
mally R = {(x, u), (y+z, u)}) is neither a bisimulation nor

a bisimulation up to e since y + z
a→ x + y and u

a→ u,
but (x + y, u) /∈ e(R). However, R is a bisimulation up to
congruence. Indeed, we have (x+ y, u) ∈ c(R):

x+ y c(R) u+ y ((x, u) ∈ R)

c(R) y + z + y ((y + z, u) ∈ R)

= y + z

c(R) u ((y + z, u) ∈ R)

In contrast, we need four pairs to get a bisimulation up to
equivalence containing (x, u): this is the relation depicted
with both dashed and dotted lines in Figure 4.

Note that we can deduce many other equations from R;
in fact, c(R) defines the following partition of sets of states:

{0}, {y}, {z}, {x, u, x+y, x+z, and the 9 remaining subsets}.

3.2 Optimized algorithm for NFA
The optimized algorithm, called HKC in the sequel, relies

on up to congruence: step 3.2 from Figure 3 becomes

(3.2) if (X ′, Y ′) ∈ c(R ∪ todo) then continue;

Observe that we use c(R∪todo) rather than c(R): this allows
us to skip more pairs, and this is safe since all pairs in todo
will eventually be processed.

Corollary 2. For all X,Y ∈ P(S), X ∼ Y iff HKC(X,Y).

Proof. Same proof as for Proposition 2, by using the invari-
ant R � c(R ∪ todo) for the loop. We deduce that R is a
bisimulation up to congruence after the loop. We conclude
with Theorem 2 and Proposition 1.

The most important point about these three algorithms is
that they compute the states of the determinized NFA lazily.
This means that only accessible states need to be computed,
which is of practical importance since the determinized NFA
can be exponentially large. In case of a negative answer, the
three algorithms stop even before all accessible states have
been explored; otherwise, if a bisimulation (possibly up-to)
is found, it depends on the algorithm:

• With Naive, all accessible states need to be visited, by
definition of bisimulation.

• With HK, the only case where some accessible states
can be avoided is when a pair (X,X) is encountered:
the algorithm skips this pair so that the successors of
X are not necessarily computed (this situation never
happens when starting with disjoint automata). In the
other cases where a pair (X,Y) is skipped, X and Y are
necessarily already related with some other states in R,
so that their successors will eventually be explored.

• With HKC, accessible states are often skipped. For a
simple example, let us execute HKC on the NFA from
Figure 4. After two iterations, R = {(x, u), (y+ z, u)}.
Since x+ y c(R) u, the algorithm stops without build-
ing the states x + y and x + y + z. Similarly, in the
example from the Introduction, HKC does not construct
the four states corresponding to pairs 4, 5, and 6.

This ability of HKC to ignore parts of the determinized NFA
can bring an exponential speed-up. For an example, consider

x
a //a,b :: x1

a,b // · · ·
a,b // xn

y
b //a,b :: y1

a,b // · · ·
a,b // yn

z
a,b //a,b :: z1

a,b // · · ·
a,b // zn

Figure 5: Family of examples where HKC exponen-
tially improves over AC and HK; we have x+ y ∼ z.

the family of NFA in Figure 5, where n is an arbitrary nat-
ural number. Taken together, the states x and y are equiv-
alent to z: they recognize the language (a+b)?(a+b)n+1.
Alone, x recognizes the language (a+b)?a(a+b)n, which is
known for having a minimal DFA with 2n states.

Therefore, checking x+y ∼ z via minimization (as in [12])
requires exponential time, and the same holds for Naive and
HK since all accessible states must be visited. This is not the
case with HKC, which requires only polynomial time on this
example. Indeed, HKC(x+y, z) builds the relation

R′ = {(x+ y, z)}
∪ {(x+ Yi + yi+1, Zi+1) | i < n}
∪ {(x+ Yi + xi+1, Zi+1) | i < n} ,

where Yi = y+y1+ . . .+yi, and Zi = z+z1+ . . .+zi. R
′ only

contains 2n+1 pairs and is a bisimulation up to congruence.
To see this, consider the pair (x+y+x1+y2, Z2) obtained
from (x+y, z) after reading the word ba. Although this pair
does not belong to R′, it belongs to its congruence closure:

x+y+x1+y2 c(R
′) Z1+y2 (x+y+x1 R

′ Z1)

c(R′) x+y+y1+y2 (x+y+y1 R
′ Z1)

c(R′) Z2 . (x+y+y1+y2 R
′ Z2)

Remark 1. In the above derivation, the use of transitivity
is crucial: R′ is a bisimulation up to congruence, but not a
bisimulation up to context. In fact, there exists no bisimu-
lation up to context of linear size proving x+ y ∼ z.

We now discuss the exploration strategy, i.e., how to choose
the pair to extract from the set todo in step 3.1. When look-
ing for a counter-example, such a strategy has a large influ-
ence: a good heuristic can help in reaching it directly, while
a bad one might lead to explore exponentially many pairs
first. In contrast, the strategy does not impact much looking
for an equivalence proof (when the algorithm eventually re-
turns true). Actually, one can prove that the number of steps
performed by Naive and HK in such a case does not depend
on the strategy. This is not the case with HKC: the strategy
can induce some differences. However, we experimentally
observed that breadth-first and depth-first strategies usu-
ally behave similarly on random automata. This behaviour
is due to the fact that we check congruence w.r.t. R ∪ todo
rather than just R (step 3.2): with this optimization, the
example above is handled in polynomial time whatever the
chosen strategy. In contrast, without this small optimiza-
tion, it requires exponential time with a depth-first strategy.

3.3 Computing the congruence closure
For the optimized algorithm to be effective, we need a

way to check whether some pairs belong to the congruence

closure of a given relation (step 3.2). We present a simple
solution based on set rewriting; the key idea is to look at
each pair (X,Y) in a relation R as a pair of rewriting rules:

X → X + Y Y → X + Y ,

which can be used to compute normal forms for sets of states.
Indeed, by idempotence, X R Y entails X c(R) X + Y .

Definition 7. Let R ⊆ P(S)2 be a relation on sets of states.
We define ;R ⊆ P(S)2 as the smallest irreflexive relation
that satisfies the following rules:

X R Y

X ;R X + Y

X R Y

Y ;R X + Y

Z ;R Z′

U + Z ;R U + Z′

Lemma 3. For all relations R, ;R is confluent and nor-
malizing.

In the sequel, we denote by X↓R the normal form of a set
X w.r.t. ;R. Intuitively, the normal form of a set is the
largest set of its equivalence class. Recalling the example
from Figure 4, the common normal form of x+ y and u can
be computed as follows (R is the relation {(x, u), (y+z, u)}):

x+ y
**

u
ww

x+ y + u
++

x+ u
ss

x+ y + z + u

Theorem 3. For all relations R, and for all X,Y ∈ P(S),
we have X↓R = Y ↓R iff (X,Y) ∈ c(R).

We actually have X↓R = Y ↓R iff X ⊆ Y ↓R and Y ⊆ X↓R,
so that the normal forms of X and Y do not necessarily
need to be fully computed in practice. Still, the worst-case
complexity of this sub-algorithm is quadratic in the size of
the relation R (assuming we count the number of operations
on sets: unions and inclusion tests).

Note that many algorithms were proposed in the litera-
ture to compute the congruence closure of a relation (see,
e.g., [18, 23, 2]). However, they usually consider uninter-
preted symbols or associative and commutative symbols,
but not associative, commutative, and idempotent symbols,
which is what we need here.

3.4 Using HKC for checking language inclusion
For NFA, language inclusion can be reduced to language

equivalence: the semantics function [[−]] is a semi-lattice ho-
momorphism, so that for all sets of states X,Y , [[X+Y]] =
[[Y]] iff [[X]] + [[Y]] = [[Y]] iff [[X]] ⊆ [[Y]]. Therefore, it suffices
to run HKC(X+Y, Y) to check the inclusion [[X]] ⊆ [[Y]].

In such a situation, all pairs that are eventually manipu-
lated by HKC have the shape (X ′+Y ′, Y ′) for some sets X ′,
Y ′. Step 3.2 of HKC can thus be simplified. First, the pairs
in the current relation only have to be used to rewrite from
right to left. Second, the following lemma shows that we do
not necessarily need to compute normal forms:

Lemma 4. For all sets X,Y and for all relations R, we
have X+Y c(R) Y iff X ⊆ Y ↓R.

At this point, the reader might wonder whether checking
the two inclusions separately is more convenient than check-
ing the equivalence directly. This is not the case: checking
the equivalence directly actually allows one to skip some
pairs that cannot be skipped when reasoning by double in-
clusion. As an example, consider the DFA on the right of

Figure 2. The relation computed by HKC(x, u) contains only
four pairs (because the fifth one follows from transitivity).
Instead, the relations built by HKC(x, x+u) and HKC(u+x, u)
would both contain five pairs: transitivity cannot be used
since our relations are now oriented (from y ≤ v, z ≤ v and
z ≤ w, we cannot deduce y ≤ w). Figure 5 shows another
example, where we get an exponential factor by checking the
equivalence directly rather than through the two inclusions:
transitivity, which is crucial to keep the relation computed
by HKC(x+y, z) small (see Remark 1), cannot be used when
checking the two inclusions separately.

In a sense, the behaviour of the coinduction proof method
here is similar to that of standard proofs by induction, where
one often has to strengthen the induction predicate to get a
(nicer) proof.

3.5 Exploiting Similarity
Looking at the example in Figure 5, a natural idea would

be to first quotient the automaton by graph isomorphism.
By doing so, one would merge the states xi, yi, zi, and one
would obtain the following automaton, for which checking
x+y ∼ z is much easier.

x
a

''
a,b ::

y
b
//a,b :: m1

a,b // · · ·
a,b // mn

z
a,b

77

a,b ::

As shown in [1, 7] for antichain algorithms, one can do
better, by exploiting any preorder contained in language in-
clusion. Hereafter, we show how this idea can be embedded
in HKC, resulting in an even stronger algorithm.

For the sake of clarity, we fix the preorder to be similar-
ity [17], which can be computed in quadratic time [10].

Definition 8 (Similarity). Similarity is the largest relation
on states � ⊆ S2 such that x � y entails:

1. o(x) ≤ o(y) and

2. for all a ∈ A, x′ ∈ S such that x
a→ x′, there exists

some y′ such that y
a→ y′ and x′ � y′.

To exploit similarity pairs in HKC, it suffices to notice that
for any similarity pair x � y, we have x+y ∼ y. Let �
denote the relation {(x+y, y) | x � y}, let r′ denote the
constant-to-� function, and let c′ = (r′∪s∪t∪u∪id)ω. Ac-
cordingly, we call HKC’ the algorithm obtained from HKC

(Figure 3) by replacing (X,Y) ∈ c(R ∪ todo) with (X,Y) ∈
c′(R ∪ todo) in step 3.2. The latter test can be reduced to
rewriting thanks to Theorem 3 and the following lemma.

Lemma 5. For all relations R, c′(R) = c(R ∪ �).

Theorem 4. Any bisimulation up to c′ is contained in a
bisimulation.

Corollary 3. For all sets X,Y , X ∼ Y iff HKC’(X,Y).

4. ANTICHAIN ALGORITHMS
Even though the problem of deciding NFA equivalence is

PSPACE-complete [16], neither HKC nor HKC’ are in PSPACE:
both of them keep track of the states they explored in the
determinized NFA, and there can be exponentially many
such states. This also holds for HK and for the more recent

General case Disjoint inclusion case

HKC’

HKC

88

AC’

ee

HK

99

AC

ff 99

Naive

ee 88

HKC’

AC’

OO

HKC↔ AC

OO

HK↔ Naive

OO

Figure 6: Relationships among the algorithms.

antichain algorithm [25] (called AC in the following) and its
optimization (AC’) exploiting similarity [1, 7].

The latter algorithms can be explained in terms of coin-
ductive proof techniques: we establish in [4] that they actu-
ally construct bisimulations up to context, i.e., bisimulations
up to congruence for which one does not exploit symmetry
and transitivity.

Theoretical comparison. We compared the various algo-
rithms in details in [4]. Their relationship is summarised in
Figure 6, where an arrow X→Y means that (a) Y can explore
exponentially fewer states than X, and (b) Y can mimic X,
i.e., the coinductive proof technique underlying Y is at least
as powerful as the one of X.

In the general case, AC needs to explore much more states
than HKC: the use of transitivity, which is missing in AC, al-
lows HKC to drastically prune the exploration. For instance,
to check x+y ∼ z in Figure 5, HKC only needs a linear number
of states (see Remark 1), while AC needs exponentially many
states. In contrast, in the special case where one checks for
the inclusion of disjoint automata, HKC and AC exhibit the
same behaviour. Indeed, HKC cannot make use of transitiv-
ity in such a situation, as explained in Section 3.4. Things
change when comparing HKC’ and AC’: even for checking in-
clusion of disjoint automata, AC’ cannot always mimic HKC’:
the use of similarity tends to virtually merge states, so that
HKC’ can use the up to transitivity technique which AC’ lack.

Experimental comparison. The theoretical relationships
drawn in Figure 6 are substantially confirmed by an empir-
ical evaluation of the performance of the algorithms. Here,
we only give a brief overview; see [4] for a complete descrip-
tion of those experiments.

We compared our OCaml implementation [4] for HK, HKC
and HKC’, and the libvata C++ library [14] for AC and AC’.
We use a breadth-first exploration strategy: we represent
the set todo from Figure 3 as a FIFO queue. As mentioned
at the end of Section 3.2, considering a depth-first strategy
here does not alter the behaviour of HKC in a noticeable way.

We performed experiments using both random automata
and a set of automata arising from model-checking problems.
• Random automata. We used Tabakov and Vardi’s model [24]
to generate 1000 random NFA with two letters and a given
number of states. We executed all algorithms on these NFA,
and we measured the number of processed pairs, i.e., the
number of required iterations (like HKC, AC is a loop inside
which pairs are processed). We observe that HKC improves
over AC by one order of magnitude, and AC improves over HK
by two orders of magnitude. Using up-to similarity (HKC’

 1

 10

 100

 1 10 100 1000 10000 100000

n
u

m
b

er
 o

f
ch

ec
k

ed
 N

F
A

number of processed pairs

HK
AC

HKC

Figure 7: Distributions of the number of processed
pairs, for 1000 experiments with random NFA

and AC’) does not improve much; in fact, similarity is al-
most the identity relation on such random automata. The
corresponding distributions for HK, HKC, and AC are plotted
on Figure 7, for automata with 100 states. Note that while
HKC only improves by one order of magnitude over AC when
considering the average case, it improves by several orders
of magnitude when considering the worst cases.
• Model checking automata. Abdulla et al. [1, 7] used au-
tomata sequences arising from regular model-checking ex-
periments [5] to compare their algorithm (AC’) against AC.
We reused these sequences to test HKC’ against AC’ in a
concrete scenario. For all those sequences, we checked the
inclusions of all consecutive pairs, in both directions. The
timings are given in Table 1, where we report the median val-
ues (50%), the last deciles (90%), the last percentiles (99%),
and the maximum values (100%). We distinguish between
the experiments for which a counter-example was found, and
those for which the inclusion did hold. For HKC’ and AC’, we
display the time required to compute similarity on a separate
line: this preliminary step is shared by the two algorithms.
As expected, HKC and AC roughly behave the same: we test
inclusions of disjoint automata. HKC’ is however quite faster
than AC’: up to transitivity can be exploited thanks to sim-
ilarity pairs. Also note that over the 546 positive answers,
368 are obtained immediately by similarity.

5. CONCLUSIONS
Our implementation of HKC is available online [4], together

with proofs mechanized in the Coq proof assistant and an
interactive applet making it possible to test the presented
algorithms online, on user-provided examples.

Several notions analogous to bisimulations up to congru-
ence can be found in the literature. For instance, self-
bisimulations [6, 11] have been used to obtain decidability
and complexity results about context-free processes. The
main difference with bisimulation up to congruence is that
self-bisimulations are proof techniques for bisimilarity rather
than language equivalence. Other approaches, that are inde-
pendent from the equivalence (like bisimilarity or language)
are shown in [15, 3, 19]. These papers propose very general
frameworks into which our up to congruence technique fits
as a very special case. However, to our knowledge, bisimu-

algorithm
inclusions (546 pairs) counter-examples (518 pairs)

50% 90% 99% 100% 50% 90% 99% 100%

AC 0.036 0.860 4.981 5.084 0.009 0.094 1.412 2.887
HKC 0.049 0.798 6.494 6.762 0.000 0.014 0.916 2.685

sim time 0.039 0.185 0.574 0.618 0.038 0.193 0.577 0.593
AC’ - sim time 0.013 0.167 1.326 1.480 0.012 0.107 1.047 1.134
HKC’ - sim time 0.000 0.034 0.224 0.345 0.001 0.005 0.025 0.383

Table 1: Timings, in seconds, for language inclusion of disjoint NFA generated from model-checking.

lation up to congruence has never been proposed before as
a technique for proving language equivalence of NFA.

We conclude with directions for future work.

Complexity. The presented algorithms, as well as those
based on antichains, have exponential complexity in the
worst case while they behave rather well in practice. For in-
stance, in Figure 7, one can notice that over a thousand ran-
dom automata, very few require to explore a large amount
of pairs. This suggests that an accurate analysis of the av-
erage complexity might be promising. An inherent problem
comes from the difficulty to characterise the average shape
of determinised NFA [24]. To avoid this problem, with HKC,
we could try to focus on the properties of congruence rela-
tions. For instance, given a number of states, how long can
be a sequence of (incrementally independent) pairs of sets
of states whose congruence closure collapses into the full re-
lation? (This number is an upper-bound for the size of the
relations produced by HKC.) One can find ad-hoc examples
where this number is exponential, but we suspect it to be
rather small in average.

Model checking. The experiments summarized in Table 1
show the efficiency of our approach for regular model-checking
using automata on finite words. As in the case of antichains,
our approach extends to automata on finite trees. We plan
to implement such a generalisation and link it with tools
performing regular tree model-checking.

In order to face other model-checking problems, it would
be useful to extend up-to techniques to automata on infinite
words, or trees. Unfortunately, the determinisation of these
automata (the so called Safra’s construction) does not seem
suitable for exploiting neither antichains nor up to congru-
ence. However, for some problems like LTL realizability [9]
that can be solved without prior determinization (the so-
called Safraless approaches), antichains have been crucial in
obtaining efficient procedures. We leave as future work to
explore whether up-to techniques could further improve such
procedures.

6. REFERENCES
[1] P. A. Abdulla, Y.-F. Chen, L. Hoĺık, R. Mayr, and

T. Vojnar. When simulation meets antichains. In
TACAS, volume 6015 of LNCS, pages 158–174.
Springer, 2010.

[2] L. Bachmair, I. V. Ramakrishnan, A. Tiwari, and
L. Vigneron. Congruence closure modulo associativity
and commutativity. In FroCoS, volume 1794 of LNCS,
pages 245–259. Springer, 2000.

[3] F. Bartels. Generalised coinduction. Math. Struct. in
Comp. Sci., 13(2):321–348, 2003.

[4] F. Bonchi and D. Pous. Extended version of this
abstract, with omitted proofs, and web appendix for
this work. http://hal.inria.fr/hal-00639716/ and
http://perso.ens-lyon.fr/damien.pous/hknt, 2012.

[5] A. Bouajjani, P. Habermehl, and T. Vojnar. Abstract
regular model checking. In CAV, volume 3114 of
LNCS. Springer, 2004.

[6] D. Caucal. Graphes canoniques de graphes
algébriques. ITA, 24:339–352, 1990.

[7] L. Doyen and J.-F. Raskin. Antichain Algorithms for
Finite Automata. In TACAS, volume 6015 of LNCS.
Springer, 2010.

[8] J.-C. Fernandez, L. Mounier, C. Jard, and T. Jéron.
On-the-fly verification of finite transition systems.
Formal Methods in System Design, 1(2/3):251–273,
1992.

[9] E. Filiot, N. Jin, and J.-F. Raskin. An antichain
algorithm for ltl realizability. In CAV, volume 5643 of
LNCS, pages 263–277. Springer, 2009.

[10] M. R. Henzinger, T. A. Henzinger, and P. W. Kopke.
Computing simulations on finite and infinite graphs.
In FOCS. IEEE Computer Society, 1995.

[11] Y. Hirshfeld, M. Jerrum, and F. Moller. A polynomial
algorithm for deciding bisimilarity of normed
context-free processes. TCS, 158(1&2):143–159, 1996.

[12] J. E. Hopcroft. An n log n algorithm for minimizing in
a finite automaton. In International Symposium of
Theory of Machines and Computations, pages
189–196. Academic Press, 1971.

[13] J. E. Hopcroft and R. M. Karp. A linear algorithm for
testing equivalence of finite automata. Technical
Report 114, Cornell Univ., December 1971.

[14] O. Lengál, J. Simácek, and T. Vojnar. Vata: A library
for efficient manipulation of non-deterministic tree
automata. In TACAS, volume 7214 of LNCS, pages
79–94. Springer, 2012.

[15] M. Lenisa. From set-theoretic coinduction to
coalgebraic coinduction: some results, some problems.
ENTCS, 19:2–22, 1999.

[16] A. Meyer and L. J. Stockmeyer. Word problems
requiring exponential time. In STOC, pages 1–9.
ACM, 1973.

[17] R. Milner. Communication and Concurrency. Prentice
Hall, 1989.

[18] G. Nelson and D. C. Oppen. Fast decision procedures
based on congruence closure. J. of the ACM,
27(2):356–364, 1980.

[19] D. Pous. Complete lattices and up-to techniques. In
APLAS, volume 4807 of LNCS, pages 351–366.
Springer, 2007.

[20] J. Rutten. Automata and coinduction (an exercise in

http://hal.inria.fr/hal-00639716/
http://perso.ens-lyon.fr/damien.pous/hknt

coalgebra). In CONCUR, volume 1466 of LNCS, pages
194–218. Springer, 1998.

[21] D. Sangiorgi. On the bisimulation proof method.
Math. Struct. in Comp. Sci., 8:447–479, 1998.

[22] D. Sangiorgi. Introduction to Bisimulation and
Coinduction. Cambridge University Press, 2011.

[23] R. E. Shostak. Deciding combinations of theories. J. of
the ACM, 31(1):1–12, 1984.

[24] D. Tabakov and M. Vardi. Experimental evaluation of
classical automata constructions. In LPAR, volume
3835 of LNCS, pages 396–411. Springer, 2005.

[25] M. D. Wulf, L. Doyen, T. A. Henzinger, and J.-F.
Raskin. Antichains: A new algorithm for checking
universality of finite automata. In CAV, volume 4144
of LNCS, pages 17–30. Springer, 2006.

	Introduction
	Deterministic automata
	Language equivalence via coinduction
	Naive algorithm
	Hopcroft and Karp's algorithm
	Bisimulations up-to

	Non-deterministic automata
	Bisimulation up to congruence
	Optimized algorithm for NFA
	Computing the congruence closure
	Using HKC for checking language inclusion
	Exploiting Similarity

	Antichain algorithms
	Conclusions
	References

