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Abstract. The use of domain-specific languages (DSLs) has become a
successful technique in the development of complex systems. Neverthe-
less, the construction of this type of languages is time-consuming and
requires highly-specialized knowledge and skills. An emerging practice
to facilitate this task is to enable reuse through the definition of lan-
guage modules which can be later put together to build up new DSLs.
Still, the identification and definition of language modules are complex
and error-prone activities, thus hindering the reuse exploitation when
developing DSLs. In this paper, we propose a computer-aided approach
to i) identify potential reuse in a set of legacy DSLs; and ii) capitalize
such potential reuse by extracting a set of reusable language modules
with well defined interfaces that facilitate their assembly. We validate
our approach by using realistic DSLs coming out from industrial case
studies and obtained from public GitHub repositories.

1 Introduction

A domain-specific language (DSL) is a software language whose expressiveness is
limited to a well-defined domain. A DSL offers the abstractions (a.k.a., language
constructs) needed to describe an aspect of a system under construction. For
example, we find DSLs to build graphical user interfaces [22] and to specify
security policies [15]. The use of DSLs has become a successful technique to
achieve separation of concerns in the development of complex systems [7].

Naturally, the adoption of such a language-oriented vision relies on the avail-
ability of the DSLs necessary to describe all the aspects of the system [3]. This
implies the development of many DSLs, which is a challenging task due the spe-
cialized knowledge it demands. The ultimate value of DSLs has been severely
limited by the cost of the associated tooling (i.e., editors, parsers, etc.) [13].

To improve cost-benefit when using DSLs, the research community in soft-
ware languages engineering has proposed mechanisms to increase reuse during
the language development process. The idea is to leverage previous engineer-
ing efforts and minimize implementation from scratch. In particular, there are
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approaches that take ideas from Component-Based Software Engineering [4] in
the construction of DSLs (e.g., [17,24]). Language constructs are grouped into
interdependent language modules that can be later integrated as part of the
specification of future DSLs. Current approaches for the modular development
of DSLs are focused on providing foundations and tooling that allow language
designers to specify dependencies among language modules as well as to provide
the composition operators needed during the subsequent assembly process.

In practice, however, reuse not necessarily achieved through monolithic pro-
cesses where language designers define language modules while trying to predict
that they will be useful in future DSLs. Contrariwise, the exploitation of reuse is
often an iterative process where reuse opportunities are discovered in the form of
replicated functionalities during the construction of individual DSLs. Those func-
tionalities can be extracted in reusable language modules. For example, many
DSLs offer expression languages with simple imperative instructions, variables
management, and mathematical operators. Xbase [1] is a successful experiment
that shows that, using compatible tooling, such replicated functionality can be
encapsulated and (re)used in different DSLs.

A major complexity of this reuse process is that both, the identification of
replicated functionalities and the extraction of the corresponding language mod-
ules are manually-performed activities. Language designers must compare DSL
specifications to identify replicated language constructs, and then, to perform a
refactoring process to extract those replications in language modules. Due the
large number of language constructs defined within a DSL, and the dependencies
among them, this process is tedious and error-prone [9]. As a result, modulariza-
tion approaches are often discarded, and non-systematic reuse practices such as
simple copy&paste are still quite popular in DSLs development processes. This
type of solutions produce many code clones within DSLs’ specifications thus
replicating bugs and increasing maintenance costs [26].

In this paper, we propose the use of reverse-engineering techniques to auto-
matically extract reusable language modules from a given set of legacy DSLs. To
this end, we define some comparison operators that allow the identification of
replicated language constructs. These operators take into account not only the
names of the constructs but also the inter-constructs relationships and the se-
mantics. Then, we extract replicated constructs as interdependent language mod-
ules whose dependencies are expressed through well-defined interfaces. Those
language modules can be later assembled among them to build up new DSLs.
The approach presented in this paper is implemented in a language workbench
on top of the Eclipse Modeling Framework.

The validation of our approach is twofold. Firstly, we apply the reverse-
engineering strategy to a case study, deeply explained by Crane et al. [8], and
composed of a set of DSLs for finite state machines. Secondly, we explore pub-
lic GitHub repositories in search of insights that indicate how common is the
phenomenon of specification clones in DSLs development process.

The reminder of this paper is organized as follows: Section 2 introduces a set
of preliminary definitions/assumptions that we use all along the paper. Section
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3 presents a motivation to the problem by introducing a concrete development
scenario. Section 4 describes the proposed approach. Section 5 presents the val-
idation. Section 6 discusses the related work. Section 7 concludes the paper.

2 Background: Domain-specific languages in a nutshell

We use this section to introduce some basic definitions intended to establish a
unified vocabulary that facilitates the comprehension of the ideas presented in
the rest of the paper.

DSLs specification. Like general purpose languages, domain specific languages
are defined regarding three implementation concerns: abstract syntax, concrete
syntax, and semantics [11]. The abstract syntax refers to the structure of the
DSL expressed as the set of concepts that are relevant to the domain and the
relationships among them. The concrete syntax relates language concepts to a
set of symbols that facilitate the usage of the DSL. These representations are
usually supported by editors acting as the user interface of the DSL. Finally,
the semantics of a DSL assigns a precise meaning to each of its language con-
structs. More precisely, static semantics constrains the sets of valid programs
while dynamic semantics specifies how they are evaluated.

Technological space. There are diverse technological spaces available for the
implementation of the aforementioned concerns [18]. The abstract syntax can be
specified using context-free grammars or metamodels. The concrete syntax can
be either textual or graphical. The static semantics can be expressed through
diverse constraint languages. Finally, the dynamic semantics can be defined op-
erationally, denotationally, or axiomatically [20].

In this paper, we are interested in executable domain-specific modeling lan-
guages (xDSMLs) where the abstract syntax is specified by means ofmetamodels,
and dynamic semantics is specified operationally as a set of domain-specific ac-
tions [5]. Domain-specific actions are weaved on the metaclasses of a metamodel
[12]. The concrete syntax and static semantics are out of the scope of this paper.

Example: A DSL for finite state machines. Figure 1 shows a DSL for finite
states machines. In that case, the metamodel that implements the abstract syn-
tax contains three metaclasses: StateMachine, State, and Transition. There
are some references among those metaclasses representing the relationships ex-
isting among the corresponding language constructs.

The domain-specific actions at the right of the Figure 1 introduce the op-
erational semantics to the DSL. In this example, there is one domain-specific
action for each metaclass. In executable metamodeling, the interactions among
domain-specific actions can be internally specified in their implementation by
means of the interpreter pattern, or externalized in a model of computation [5].
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Instance: executable model 

name : String name : String 

Fig. 1: A simple DSL for finite state machines

3 Motivating scenario

Suppose a team of language designers working on the construction of the DSL
for finite state machines presented in section 2. During that process, language
designers implement the constructs typically required for expressing finite state
machines: states, transitions, events, and so on. Besides, a constraint language
that allows final users to express guards on the transitions should be provided,
as well as an expression language for the specification of actions in the states.

After language designers release the DSL for state machines, they are required
to build another DSL. The new DSL is intended to manipulate the traditional
Logo turtle, which is often used in elementary schools for teaching the first foun-
dations of programming [21]. Instead of states and transitions, Logo offers some
primitives (such as Forward, Backward, Left, and Right) to move a character
(i.e., the turtle) within a bounded canvas. Still, Logo also requires an expres-
sion language to specify complex movements. For example, final users may write
instructions such as: forward (x + 2).

At this point, language designers face the problem of reusing the expression
language they already defined for the state machine DSL. Because this expression
language was not implemented separately from the DSL for state machines, the
typical approach is to copy&paste its corresponding specification segment in
the second DSL. In doing so, language designers introduce specification clones
all along the project. This practice is repeated in the construction of each new
DSL where some reuse is needed. For example, if our language designers team
is required to build a third DSL such as a flowchart language that uses not only
expressions but also constraints, they will (again) copy&paste the corresponding
specification segments. After some iterations, we obtain a set of DSLs with many
specification clones, which is quite expensive to maintain.
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4 Proposed approach

We propose the use of reverse-engineering techniques to deal with the problem
illustrated above. Our proposal, summarized in Figure 2, starts from a classical
language development process where a team of language designers develops a set
DSLs (a.k.a., the DSLs portfolio) introducing specification clones by copy&paste
repeated constructs. This portfolio is the input of a reverse-engineering strategy
to extract a set of reusable language modules. Those modules are useful for two
purposes. First, they can be assembled to build a new version of the portfolio that
does not contain specification clones, thus reducing maintenance costs. Second,
they can be used in the construction of future DSLs. In that case, language
designers might have to build new language modules.

Language 
designers 

DSLs portfolio 

Specification 
clones 

Classical DSLs 
development 

Reverse 
Engineering 

for reuse 

Language 
designers 

Modularization-based 
DSLs development 

REUSE 

Components 
Catalog 

Modules 
composition 

Copy&Paste 

Fig. 2: Approach overview

4.1 Principles of reverse-engineering for language reuse

Our reverse-engineering strategy is based on five principles that will be intro-
duced in this section. Then, we explain how we use those principles to extract a
catalog of reusable language modules.

Principle 1: DSL specifications are comparable. Hence, specification
clones can be automatically detected. Two DSL specifications can be com-
pared each other. This comparison can be either coarse-grained indicating if the
two specifications are equal regarding both syntax and semantics, or fine-grained
detecting segments of the specifications that match. The latter approach permits
to identify specification clones between two DSLs and supposes the comparison
of each specification element. In the case of the technological space discussed in
this paper, specification elements for the abstract syntax are metaclasses whereas
specification elements for the semantics are domain-specific actions.

For the case of comparison of metaclasses, we need to take into account
that a metaclass is specified by a name, a set of attributes, and a set of references
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to other metaclasses. Two metaclasses are considered as equal (and so, they are
clones) if all those elements match. Formally, comparison of metaclasses can be
specified by the operator +.

+ : MC ×MC → bool (1)

MCA + MCB = true =⇒
MCA.name = MCB .name ∧
∀a1 ∈MCA.attr | (∃a2 ∈MCB .attr | a1 = a2) ∧
∀r1 ∈MCA.refs | (∃r2 ∈MCB .refs | r1 = r2) ∧
|MCA.attr| = |MCB .attr| ∧ |MCA.refs| = |MCB .refs|

(2)

In turn, for the case of comparison for domain-specific actions we need
to take into account that –like methods in Java– domain-specific actions have
a signature that specifies its contract (i.e., return type, visibility, parameters,
name, and so on), and a body where the behavior is implemented. Two domain-
specific actions are equal if they have the same signature and body.

Whereas comparison of signatures can be performed by syntactic compari-
son of the signature elements, comparison of bodies can be arbitrary difficult.
If we try to compare the behavior of the domain-specific actions, then we will
have to address the semantic equivalence problem, which is known to be un-
decidable [16]. To address this issue, we conceive bodies comparison in terms
of its abstract syntax tree as proposed by Biegel et al. [2]. In other words, to
compare two bodies, we first parse them to extract their abstract syntax tree,
and then we compare those trees. Note that this decision makes sense because
we are detecting specification clones more than equivalent behavior. Formally,
comparison of domain-specific actions (DSAs) is specified by the operator ;.

; : DSA×DSA→ bool (3)

DSAA ; DSAB = true =⇒
DSAA.name = DSAB .name ∧
DSAA.returnType = DSAB .returnType ∧
DSAA.visibility = DSAB .visibility ∧
∀p1 ∈ DSAA.params | (∃p2 ∈ DSAB .params | p1 = p2) ∧
|DSAA.params| = |DSAB .params| ∧
DSAA.AST = DSAB .AST

(4)

Principle 2: Specification clones are viewed as overlapping. If a DSL
specification is viewed as sets of metaclasses and domain-specific actions, then
specification clones can be viewed as intersections (a.k.a., overlapping) of those
sets. Figure 3 illustrates this observation for the case of the motivation scenario
introduced in Section 3. We use two Venn diagrams to represent both syntax and
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semantic overlapping. In that case, the fact that the expression language is used
in all the DSLs is represented by the intersection in the center of the diagram
where the three sets overlap the metaclass Expression (and its domain-specific
actions). In turn, the intersection between the state machines DSL and Logo
shows that they overlap the metaclass Constraint that belongs to the constraint
language. Note that the identification of such overlapping is only possible when
there are comparison operators (principle 1) that formalize the notion of equality.

Syntactic overlapping Semantic overlapping 

Flowchart.eval() 

Metaclass Domain-specific action 

Constraint.eval() 
LogoPro.eval() 

Expression.eval() 

State.eval() 
Transition.fire() 

StateMachine.eval() 

Flowcharts 

Logo State Machines State Machines 

Flowcharts 

Constraint 

Expression 
 LogoProgram 

Logo 

StateMachine 

State 
Transition 

Flowchart 

Fig. 3: Syntactic and semantic overlapping in a set of DSLs

Principle 3: Breaking down overlapping produces reusable language
modules. According to principle 2, overlapping between two DSLs implies
the existence of repeated metaclasses/domain-specific actions (i.e., specifica-
tion clones). Those repeated elements can be specified once and reused in the
two DSLs [25, p. 60-61]. Hence, reusable language modules can be obtained by
breaking-down the overlapping existing among DSL specifications as illustrated
in Figure 4; each different intersection is encapsulated in a different language
module.

depends 

�� �� �� ��
����

�∩��

�∩��

�∩��

depends 

Fig. 4: Breaking down overlapping for obtaining reusable language modules

Principle 4: Abstract syntax first, semantics afterwards. As aforemen-
tioned, the abstract syntax of a DSL specifies its structure in terms of meta-
classes and relationships among them. Then, the domain-specific actions add
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executability to the metaclasses. Hence, the abstract syntax is the backbone of
the DSL specification, and so, the process of breaking down overlapping should
be performed for the abstract syntax first. Afterwards, we can do the proper for
the semantics. In doing so, we need to take into consideration the phenomenon
of semantic variability. That is, two cloned metaclasses might have different
domain-specific actions. That occurs when two DSLs share some syntax specifi-
cation but differ in their semantics.

Principle 5: Metamodels are directed graphs. Hence, breaking down a
metamodel is a graph partitioning problem. The metamodel that specifies
the abstract syntax of a DSL can be viewed as a directed graph G.

G =< V,A >

where:

– V: is the set of vertices each of which represents a metaclass.
– A: is the set of arcs each of which represents a relationships between two

meta-classes (i.e., references, containments, and inheritances).

This observation is quite useful at the moment of breaking down a metamodel
to satisfy the principle 4. Breaking down a metamodel can be viewed as a graph
partitioning problem where the result is a finite set of subgraphs. Each subgraph
represents the metamodel of a reusable language module.

4.2 Reverse-engineering process: The 5 principles in action

The reverse-engineering strategy to produce a catalog of reusable modules is
illustrated in Figure 5. It is composed of two steps: identifying overlapping and
breaking down.

Match 

Breaking down 

Merge Cut Encapsulate 

Identifying overlapping 

graph-partitioning 

Fig. 5: Breaking down the input set by cutting overlapping
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Identifying overlapping: match and merge. To identify syntactic overlap-
ping in a given set of DSLs, we start by producing a graph for each DSL according
to the principle 5. Then, we identify specification clones (the matching phase)
using the comparison operators defined in principle 1. After that, we have a set
of graphs (one for each DSL) and a set of matching relationships among some
of the vertex. At that point we can proceed to create the overlapping defined
in principle 2. To this end, we merge the matched vertex as illustrated in the
second square of Figure 5. This merging permits to remove cloned metaclasses.

To identify semantic overlapping, we check whether the domain-specific ac-
tions of the matched metaclasses are equal as well. If so, they can be considered
as clones in the semantic specification, so there is semantic overlapping. In that
case, these domain-specific actions are merged. If not all the domain-specific ac-
tions associated to the matched metaclasses are the same, different clusters of
domain-specific actions are created, thus establishing semantic variation points.

Breaking down: cut and encapsulate. Once overlapping among the DSLs
of the portfolio has been identified, we extract a set of reusable language mod-
ules. This process corresponds to break-down the graph produced in the last
phase using a graph partitioning algorithm. The algorithm receives the graph(s)
obtained from the merging process and returns a set of vertex clusters: one clus-
ter for each intersection of the Venn diagram. Arcs defined between vertices in
different clusters can be considered as cross-cutting dependencies between clus-
ters. Then, we encapsulate each vertex cluster in the form of language modules.
Each module contains a metamodel, a set of domain-specific actions, and a set
of dependencies towards other language modules.

Dependencies between language modules can be viewed through the clas-
sical required and provided roles in components-based software development
illustrated in Figure 6. There is a requiring module that uses some constructs
provided by a providing module. The requiring module has a dependency rela-
tionship towards the providing one. To avoid direct references between modules,
we introduce the notion of interfaces for dealing with modules’ dependencies. The
requiring language has a required interface whereas the providing one has the
provided interface. A required interface contains the set of constructs required
by the requiring module that are supposed to be replaced by actual construct
provided by another module(s).

Semantics 
(Domain-specific 

actions) 

Abstract Syntax 
(Metamodel) 

Requiring Module 

Semantics 
(Domain-specific 

actions) 

Abstract Syntax 
(Metamodel) 

Providing Module <<Model Type>> 
Requiring Interface 

<<Model Type>> 
Providing Interface 

subtypeOf 

Fig. 6: Interfaces for language modules
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We use model types [23] to express both required and provided interfaces.
A module can have some references to the constructs declared in its required
interface. In turn, the relationship between a module and its provided interface
is implements (deeply explained in [9]). A module implements the functionality
exposed in its model type. If the required interface is a subtype of the pro-
vided interface, then the provided interface fulfills the requirements declared in
a required interface.

Implementation. The approach presented in this paper is implemented in the
Puzzle tool suite 3, which is developed on top of the Eclipse Modeling Frame-
work (EMF). In that context, metamodels are specified in the Ecore language
whereas domain-specific actions are specified as methods in Xtend. The map-
ping between metaclasses and domain-specific actions are specified through the
notion of aspect introduced by Kermeta [12] and Melange [9].

5 Evaluation

The evaluation of our approach is twofold. First, we evaluate the correctness of
the approach using a test oracle that consists of a well-documented case study
where we exactly know the existing overlapping among the involved DSLs. We
execute the reverse-engineering on the case study, and we check that the pro-
duced language modules are consistent with the known overlapping. Second, we
evaluate relevance of our proposal. More concretely, we use empirical data to
demonstrate that the phenomenon of specification clones actually appears in
DSLs that we obtain from public GitHub repositories.

5.1 Evaluating correctness: The state machines case study

Test oracle. To evaluate the correctness of our approach, we use the case study
introduced by Crane et al. [8]. It is composed of three different DSLs for express-
ing state machines: UML state diagrams, Rhapsody, and Harel’s state charts.
These three DSLs have some commonalities since they are intended to express
the same formalism. For example, all of them provide basic concepts such as
StateMachine, State, and Transition. According to the development scenario
we address in this paper, these commonalities will be materialized as clones in
the DSL specifications. However, not all those DSLs are exactly equal. They
have both syntactic and semantic differences.

Syntactic differences are reified by the fact that not all the DSLs provide
the same constructs. There are differences in the support for transition’s trig-
gers and pseudostates. Whereas Rhapsody only supports atomic triggers, both
Harel’s statecharts and UML provide support for composite triggers. In Harel’s
statecharts triggers can be composed by using AND, OR, and NOT operators. In
turn, in UML triggers can be composed by using the AND operator. In addition,
whereas there are pseudostates that are supported by all the DSLs (Fork, Join,

3 Puzzle’s website: http://damende.github.io/puzzle/

http://damende.github.io/puzzle/
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ShallowHistory, and Junction); there are two psueudostates i.e., DeepHistory
and Choice that are only supported by UML. The Conditional pseudostate is
only provided by Harel’s state charts. Figure 7 shows a table with the language
constructs provided by each DSL.
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Fig. 7: Oracle for evaluation of correctness

In turn, semantic differences are reified by the fact that not all the DSLs have
the same behavior at execution time. For example, whereas Harel’s statecharts
attend simultaneous events in parallel, both UML and Rhapsody follow the run
to completion principle. So, simultaneous events are attended sequentially [8].
Consequently, not all the domain-specific actions are the same. In particular, the
domain-specific actions eval() and step() in the StateMachine metaclass are
different in each DSL.

Results. Figure 8 presents the results produced by Puzzle for the first part of
the analysis: identification of overlapping. The figure shows the Venn diagrams
for both syntactic and semantic overlapping. In the case of the syntactic over-
lapping, the cardinalities of the intersections in the Venn diagram match the
test oracle. In turn, the domain-specific actions eval() and step() associated
to the StateMachine metaclass are correctly identified as different in each DSL.

Figure 9 presents the results for the second part of the approach: breaking
down overlapping. There is a language module that contains all the constructs
shared by the three DSLs. That is, the constructs existing in the intersection
Harel∩UML∩Rhapsody. Note that the behavioral differences are materialized
by several implementations of the semantics, i.e., semantic variation points.

Also, other language modules encapsulate pseudostates and triggers sepa-
rately. This is because pseudostates and triggers are supported differently in the
DSLs, so they should be specified in different language modules. In this way,
language designers can pick the desired constructs to build a particular DSL.
Particularly, to obtain the Harel’s statecharts DSL, we need to compose the
modules 1, 2, and 5. In turn, to obtain UML we need to compose modules 1, 3,
and 4. Finally, to obtain Rhapsody we need to compose modules 1 and 5. The
instructions to replicate this experiment are available online4.

4 Website for experiment 1: http://puzzlestatemachines.weebly.com/

http://puzzlestatemachines.weebly.com/
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Fig. 8: Overlapping detected by Puzzle in the state machines case study.

Module 1 

UMLLike.aspects 

RhapsodyLike.aspects 

HarelLike.aspects 

Module 3 

UMLHarelLike.aspects 

!  StateMachine 
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!  Fork  
!  Join 
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!  FinalState 
!  Constraint 
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!  Program 
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!  NotTrigger 
!  OrTrigger 

Module 4 

UMLLike.aspects 

!  Choice 

Module 5 

RhapsodyHarelLike.aspects 

!  Conditional 

Fig. 9: Language modules extracted by Puzzle in the state machines case study.

5.2 Evaluating relevance: Are specification clones a real
phenomenon in DSLs development processes?

Although our experience indicates that copy&paste is a real practice in language
development processes so it is normal to find specification clones, we still need
to verify that it is a phenomenon that appears in other development teams,
and industrial contexts. To answer that question, we explored public GitHub
repositories in search of DSLs that are built on the same technological space that
we used in our approach. The intention is to confirm the existence of specification
clones among those DSLs. The results are presented in this section, and all the
data and tooling needed to replicate these experiments are available on-line 5.

5 Website for experiment 2: http://empiricalpuzzle.weebly.com/

http://empiricalpuzzle.weebly.com/
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Data. We conducted an automatic search on GitHub repositories to find Ecore
metamodels enriched with operational semantics written as Kermeta aspects
in Xtend. As a result of this search, we obtained a data set composed 2423
metamodels. Nevertheless, because Kermeta 3 and its implementation in Xtend
is a quite recent idea, we found very few data for the semantics part. Besides, all
of them have been developed in our research team. We decided to conduct the
analysis only in the metamodels since we consider that detection of specification
clones at the level of the abstract syntax can give us a good insight about the
existence of copy&paste practices in DSLs development processes.

Experiment. To identify specification clones in the metamodels from our data
set, we performed a pair-wise comparison among all the metamodels (w.r.t. the
+ operator introduced in section 4). Then, we compute the matrix O(i, j) where
each cell (i, j) contains the number of cloned metaclasses between the metamod-
els i and j. O(i, j) = 0 means that there is no cloned metaclasses between the
metamodels i and j. We are interested in the cells (i, j) such that O(i, j) 6= 0 and
i 6= j. Those cells correspond to a pair of metamodels with some specification
clones. Then, we analyze the matrix with two questions in mind: (1) how many
metamodels have some specification clones among them?; and (2) how many
classes are cloned from one metamodel to the other?.

Results. Figure 10 shows two charts with the results to the experiment. The
chart at the left is intended to answer the first question. In this chart, each
entry x of the horizontal axis represents one metamodel of the data set. In
turn, the vertical axis i.e., y(x) shows the amount of metamodels with some
specification clones for x. Formally, y(x) = (+k| 0 ≥ k ≥ 2423∧O(x, k) > 0 : 1).
For example, the metamodel with ID 1.053 has some specification clones with
272 metamodels. Note that each point located up the zero line of the vertical
axis represents a metamodel with some specification clones with one or more
metamodels, thus suggesting that specification clones is a real phenomenon.

The chart at the right of the Figure 10 is intended to answer the second
question. In this chart, each entry x of the vertical axis represents one meta-
model of the data set. The vertical axis i.e., z(x) shows the average amount of
cloned classes for x. Formally, z(x) = 1/y(x) ∗ (+k| 0 ≥ k ≥ 2423 : O(x, k)) For
example, the metamodel 1.928 shares, in average, 99.4 metaclasses with other
metamodels. Note that there is an important amount of metamodels whose av-
erage overlapping size is between 0 and 100 metaclasses. Note also that there
are four metamodels that share about 600 metaclasses. This case corresponds
to a set of different versions of a metamodel for UML.

6 Related work

Reuse in DSLs development processes. The research community in software
language engineering has previously studied mechanisms to leverage reuse in
the development of DSLs. In this context, languages modularization is probably
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(1.053,272) (995, 717.7) 

(994, 631.3) 
(993, 589.0) 

(996, 526.0) 

(1.928, 99.4) 

Fig. 10: Results for the evaluation of overlapping in GitHub metamodels

the most popular approach. We can find approaches supporting complex mod-
ularization scenarios such languages extension (e.g., [10]) applicable to diverse
technological spaces such as metamodeling [24] or attribute grammars [17].

Another approach to leverage reuse in DSLs is the definition of domain-
specific metamodeling languages [14,26]. The idea is to define abstract language
constructs that can be useful in several DSLs, and to provide mechanisms to spe-
cialize such abstract constructs to particular application contexts. For example,
a language designer can define a DSL for finite state machines with an abstract
behavior, and adapt it to several DSLs according to the needs of the final users.

More recent approaches are focused on facilitating the reuse process itself.
For instance, Melange [9] is a tool-supported language that introduces some
operators (such as slice, inheritance, and merge) intended to manipulate legacy
DSLs in such a way that they can be easily integrated into new developments.

The main contribution of our approach is the advance towards the automa-
tion of the reuse process. We show that, under certain conditions, the process
can be automated through reverse-engineering techniques. We exploit the reuse
opportunities in the form of specification clones, thus reducing maintenance costs
and facilitating the construction of future DSLs.

Déjà vu in object-oriented programming? There is a symbiosis between exe-
cutable metamodeling and object-oriented programming. Besides, there are sev-
eral approaches intended to extract reusable modules from legacy object-oriented
software systems (e.g., [6,19]). Our approach, however, should not be viewed as
yet another technique to extract reusable object-oriented components. Rather,
we propose to take advantage of such symbiosis and use advances achieved in
object-oriented programming to solve problems that also occur during the de-
velopment of executable DSL. Indeed, there is still large room to exploit those
ideas to improve reverse-engineering techniques in DSLs. In doing so, the central
issue to consider is the separation of concerns in DSL specifications. That is, the
fact that the syntax and semantics of the DSLs are usually specified separately,
in many cases, using different metalanguages.
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7 Conclusion

In this paper, we presented an approach to exploit reuse during the construction
of DSLs. We show that it is possible to automate the reuse process by identify-
ing specification clones in DSLs and automatically extracting reusable language
modules that can be later used in the construction of new DSLs. We evaluated
our approach in an industrial case study, and we demonstrate that there is an
important amount of potential reuse in DSLs we obtain from public repositories.
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