The importance of the depth for text-image selection strategy in Learning to Rank
Résumé
We examine the effect of the number documents being pooled, for constructing training sets, has on the performance of the learning-to-rank (LTR) approaches that use it to build our ranking functions. Our investigation takes place in a multimedia setting and uses the ImageCLEF photo 2006 dataset based on text and visual features. Experiments show that our LTR algorithm, OWPC,outperforms other baselines.