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Abstract 

The current increasing importance of road transport in the overall greenhouse gas 

(GHG) emissions has led to the adoption of diverse policies for the mitigation of 

global warming. These policies focus in two directions, depending on whether they 

involve the reduction of emissions or the mitigation through carbon dioxide (CO2) 

sequestration. In this paper, the Tier 3 methodology from the European Monitoring 

and Evaluation Programme and the Environment Agency (EMEP/EEA) was applied 

to determine the evolution of Spanish motorway GHG emissions in the period 2005-

2010. According to the results, though the average daily traffic (ADT) is the major 

parameter, the average fleet age and vehicle size also affect the level of emissions. 

Data analysis also revealed a clear connection between the decrease in European 

trade volume during the financial crisis and the GHG release, despite its temporary 

character. Among the three improvement scenarios evaluated, reduced speed limit 

seems the most direct measure while the consequences of afforestation strongly 

depend on the traffic density of the stretch of the motorway considered. Finally, 

technological improvement requires a drastic change in the fleet to obtain substantial 

decrease. The combination of different policies would allow a more robust strategy 

with lower GHG emissions. 

 

Keywords GHG emissions, Road transport, CO2 mitigation 
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1. Introduction 

Recent scientific observations reveal that greenhouse gas (GHG) emissions from 

anthropogenic activities have modified their natural variability, causing an increase 

in their concentration levels (Crowley, 2001; Doney et al., 2006; García et al., 2010). 

The alteration of the energy balance has led to the environmental impact of climate 

change with adverse effects in ecosystem and society, evidenced even in short and 

medium terms (IPCC, 2007; Lindner et al., 2010; Walther et al., 2002). In order to 

prevent hazardous consequences and stabilize GHG concentration at an acceptable 

level, governments are adopting policies to slow down climate change. More than 

100 countries have agreed to set a global warming limit of 2ºC, which requires a 

decrease in global emissions of at least half 1990 levels (Meinshausen et al., 2009; 

UNFCCC, 1998). However, world emissions are increasing faster than at the 

beginning of the 1990s, especially in developing countries (Baiocchi et al., 2010). 

Even more, according to the International Energy Agency (IEA, 2011), global 

energy-related emissions of carbon dioxide (CO2), the main GHG, reached a record 

of 30.4 Gt in 2010. 

Energy sector is one of the main sources of GHG emissions derived from 

anthropogenic activities. Particularly, transport accounts for approximately 15% of 

overall emissions and is still increasing in most countries (Li, 2011; OECD/ITF, 

2010). In fact, this sector experienced the largest growth (+24%) in EU-27 GHG 

emissions between 1990 and 2008, with more than 90% coming from road transport; 

whereas total emissions were reduced to 11.1% below their 1990 level (EEA, 2011). 

In the case of Spain, energy-related sources in 1990 included 74.2% of the total of 

283.2 Mt CO2 eq emitted, with 19.5% of total emissions derived from transport. 

Almost two decades later, total emissions had increased 26.9% in 2009 while 
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specific transport emissions had grown by 52.6% from the corresponding level in 

1990, representing a final percentage of 25.7% (Spanish Ministry of the 

Environment and Rural and Marine Affairs, 2011).  

According to Spanish Ministry of Development (2009), GHG emissions from road 

transport account for about 90% of total GHGs from national transport sector. Light 

vehicles, including passenger cars, motorcycles and light freight vehicles, contribute 

with 66% to the total emissions, whereas heavy-duty vehicles and coaches account 

for 34%. With regard to driving conditions, 49.6% of road transport emissions in 

2006 were generated in high-speed ways, specifically in intercity routes. In the same 

base year, highways and motorways represented 48.1% of the total travelled 

kilometers in Spain, so that the contribution per travelled kilometer is higher than in 

other types of road (Spanish Ministry of Development, 2012). During the last years, 

travelled kilometers in highways and motorways have increased, reaching 51.5% of 

the total road transport in 2010.  

Due to the importance of transport sector, there is an urgent need to adopt 

improvement measures in order to limit GHG emissions. These improvements can be 

achieved by applying transport policies focused in two directions: i) reduction of 

emissions or ii) mitigation through CO2 capture or sequestration processes (Smith, 

2004). Moreover, the reduction of emissions from road transport can be addressed by 

promoting an updating of technologies or by forcing a change in the operation of the 

existing vehicles. In this study, three main strategies were selected, according to the 

suitability of the above-mentioned policies in the Spanish context. These scenarios 

include forestry activities that compensate CO2 release, technological improvement 

of vehicles and changes in driving patterns (Barkenbus, 2010; EMEP/EEA Emission 

Inventory Guidebook, 2009; Hansen et al., 1995; McCarl and Sands, 2007). 
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Regarding the involved stakeholders, the first option would be the only feasible one 

for the motorway operator, whereas the change in driving patterns through speed 

limitation would require the government intervention and a technological updating 

would constitute a more widespread measure, affecting international vehicle 

manufacturers and policy-makers. 

The use of afforestation and reforestation as compensation options has been long 

discussed (Bala et al., 2007; Canadell and Raupach, 2008; Kaul et al., 2010; 

Malmsheimer et al., 2008; Marland and Schlamadinger, 1997). The rationale behind 

this strategy lies on the photosynthesis process by which plants uptake CO2 from the 

atmosphere. The Kyoto Protocol explicitly mentions that GHG removal by sinks 

resulting from direct human-induced forestry activities shall be used to meet the 

reduction commitments assigned to each country (UNFCCC, 1998). However, 

several drawbacks in the inclusion of forestry activities in the GHG inventory have 

been reported. In this sense, European Commission (2008) argues that the adoption 

of this strategy would require a standard of monitoring and reporting of emissions 

that is not currently available. In addition, it could delay the development of carbon-

efficient technologies and threat local ecosystems due to the potential use of faster 

growing species. Streck et al. (2009) pointed out the non-permanence of the carbon 

stored in biomass and soils due to disturbances, such as fires or illegal logging. 

Furthermore, some authors suggest that global forestation could even lead to 

warming due to surface albedo changes, specifically in middle and high latitudes 

(Betts, 2000; Bala et al., 2007). Finally, as the relative potential contribution of forest 

sinks will decline within the century, forest-carbon absorption should not be 

considered a long-term solution to global warming but a temporary alternative 

(Malhi et al., 2002). 
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Concerning technological measures, policies shall focus on the development of 

alternative energy sources with lower GHG emissions or the reduction of energy use 

through the substitution of inefficient vehicles. Nowadays, transport is mainly 

dependent on non-renewable liquid fuels such as gasoline and diesel, which are 

linked to 40% of the total energy consumption in the world (Tan et al., 2008). In the 

Spanish case, these fuels were responsible of 99.8% of total GHG emissions from 

road transport in 2009 (Spanish Observatory for Sustainability, 2011). According to 

several authors, the substitution of these fuels by renewable sources such as ethanol 

can lead to reductions of 60-80% in GHG emissions while hydrogen fuel cell 

vehicles may result in an improvement of 60% (González-García et al., 2010; 

Nguyen et al., 2007; Stephens-Romero et al., 2009). Another possibility is the 

reduction of fuel consumption through vehicle downsizing, lower power-to-weight 

ratios or more efficient technologies (Michaelis and Davidson, 1996; Zervas, 2010a). 

However, new technologies are emerging slowly in Spain, where gasoline and diesel 

include 99% of national road fleet (Spanish General Directorate of Traffic - DGT -, 

2012). Thus, the substitution of vehicles shall be encouraged so as to increase the 

number of low-consumption vehicles. Among the measures to substitute vehicles 

with high emissions, many studies show the effectiveness of taxing size or gasoline, 

as well as subsidizing new vehicles (West, 2004). 

Nevertheless, fuel consumption and therefore GHG emissions depend not only on 

vehicle technology, but also on driving patterns. Indeed, a strong dependency 

between pollutant emissions and speed level has been widely reported (André and 

Hammarström, 2000; Ntziachristos and Samaras, 2000; Pandian et al., 2009). 

Regarding this effect, Sjodin et al. (1998) measured a large on-road fleet in a tunnel, 

showing that there was a minimum in the emissions of carbon monoxide (CO) and 
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CO2 for a speed range between 60 and 80 km/h, which is in agreement with the 

values reported in other studies (Barth and Boriboonsomsin, 2008; El-Shawarby et 

al., 2005). As a result, a decrease in speed limit has been proposed as a feasible 

policy to reduce GHG emissions (Barkenbus, 2010). 

Controlling GHG emissions from the transport sector requires an accurate 

computation of these gases for the evaluation of the strategies related to climate 

policy (Creutzig et al., 2011). Different alternatives for the quantification of GHG 

emissions may be used for this purpose. Weigel et al. (2010) distinguish two main 

categories: registry based calculators and Life Cycle Assessment calculators. 

Registry based calculators allow a consistent approach to end-use GHG emissions, 

whereas Life Cycle calculators may enable a holistic assessment of a wider system 

that includes the emissions associated with the production, use and disposal of fuels 

and vehicles. Regarding the inventoried gases, current climate policies focus on 

direct GHGs, whose behavior is relatively well-known. However, Fugestveldt et al. 

(2008) highlighted the need to take into account other mechanisms by which 

emissions from transport can also affect climate. Among these mechanisms, direct 

emissions of aerosols and indirect GHGs such as precursors of tropospheric ozone or 

related gases which potentially affect the oxidation capacity of the atmosphere 

should be considered. 

The present study aims to develop a detailed assessment of GHG emissions and 

evaluate feasible improvement scenarios within the Spanish context. As operational 

emissions have been proven as the dominant contribution to GHG emissions from 

road transport (Chester and Horvath, 2009), the evaluation will focus on emissions 

which are directly generated from vehicle circulation. Therefore, a registry based 

calculation was applied to three model stretches. The objective is to analyze the 
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evolution of emissions from motorway transport during the recent years as well as 

the alternatives to reduce these emissions. The selected stretches allow the evaluation 

of low, medium and high route lengths and traffic intensities. The Tier 3 

methodology allows the quantification of 12 gases from the GHGs listed by IPCC 

(2007): CO2, CO, methane (CH4), nitrous oxide (N2O) and 8 non-methane volatile 

organic compounds (NMVOCs), including ethane, propane, butane, ethylene, 

propylene, toluene, acetaldehyde and acetone. The contribution of different types of 

vehicles was also calculated. Finally, a sensitivity analysis of three limitation 

measures was carried out, showing the effect of forestry mitigation, technological 

improvement and speed dependency on total emissions. 

 

2. Methodology 

2.1. GHG emissions from road transport 

The development of the emission inventory was performed according to the 

methodology Tier 3 described by the European Monitoring and Evaluation 

Programme and the Environment Agency (EMEP/EEA Emission Inventory 

Guidebook, 2009). The calculation procedure combines a set of technical data, such 

as emission factors, and activity data, mainly average daily traffic (ADT) that gives 

the total vehicle-kilometers travelled (VKT) per year.  

As mentioned before, emissions are strongly dependent on vehicle size and 

technology (Michaelis and Davidson, 1996). For this reason, the Tier 3 methodology 

has a specific set of equations with characteristic parameters to determine emission 

factors from each type of vehicle. Thus, a detailed classification of the national fleet 

was considered. Emissions factors and other technical data were taken from 

EMEP/EEA Emission Inventory Guidebook (2009), whereas the distribution of 



 

9 

 

technologies was estimated from the national road fleet data of the Spanish General 

Directorate of Traffic (DGT, 2012). Annual ADT and VKT, as well as the length of 

the evaluated stretches, were obtained from the Ministry of Development (2012) for 

the period 2005-2010. This information is detailed within the Supplementary 

Material. 

The Tier 3 approach distinguishes two types of emissions referred to engine 

operation. Hot emissions (EHOT) refer to the operation of the engine at its normal 

temperature whereas cold-start emissions (ECOLD) occur during the transient 

warming-up of the engine. The algorithm also takes into account three different 

conditions: urban, rural and highway driving. Cold-start emissions are mainly 

attributed to urban and secondarily to rural conditions. The engine generally achieves 

hot operation before reaching the motorway, so no cold-start emissions are 

associated with highway driving in the applied methodology. Total emissions 

(ETOTAL) are calculated as the sum of cold and hot emissions from the three driving 

conditions. However, as the system boundaries in the present work are limited to 

motorway transport, total emissions corresponded to hot emissions of highway 

driving, as shown in eq 1. 

,TOTAL HOT URBANE E ,COLD URBANE ,HOT RURALE ,COLD RURALE , ,HOT HIGHWAY COLD HIGHWAYE E 

    (1) 

The calculation method allowed the quantification of pollutants from three 

categories. The gases of the first group, namely CH4, N2O, CO and total volatile 

organic compounds (VOC), were calculated from eq 2, based on the specific 

emission factors for hot engine operation and highway driving. 

; , ; ,HOT j k k k HOT j kE N M e     (2) 
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where EHOT;j,k are the total hot exhaust emissions of the pollutant j produced by 

vehicles of technology k driven on highways (g), Nk is the number of vehicles of 

technology k, Mk is the mileage per vehicle driven by vehicles of technology k (km), 

and eHOT;j,k is the emission factor for pollutant j for the vehicle technology k (g/km) 

calculated according to specific equations for each type of vehicle. The product of Nk 

and Mk represents the total VKT, which is the total of km travelled by all the 

vehicles of technology k on the road during the reference period. 

Equation 3 was applied to calculate CO2 emissions, which depend on fuel 

consumption and specifications. 

2

,

; ,

: , : ,

44.011
12.011 1.008 16.000

k m

CO k m

H C m O C m

FC
E

r r
 

   
 (3) 

where ECO2;k,m are CO2 emissions produced by vehicles of technology k and fuel m 

(g), FCk,m is the fuel consumption of those vehicles, rH:C,m is the ratio of hydrogen 

(H) to carbon (C) for fuel m determined as rH:C = 11.916(H/C), and rO:C,m is the ratio 

of oxygen to carbon for the same fuel calculated as rO:C = 0.7507(O/C). FCk,m 

required in eq 3 is calculated in the same way as pollutants of group 1, according to 

eq 2. 

Finally, different NMVOCs were estimated by the use of fractions specified in 

EMEP/CORINAIR guide. In particular, indirect GHGs from Collins et al.
 
(2002) 

were inventoried, including ethane, propane, butane, ethylene, propylene, toluene, 

acetaldehyde and acetone. Total GHG emissions were unified and measured in terms 

of Global Warming Potential (GWP), defined as the impact of human emissions on 

the radiative forcing of the atmosphere (Guinée et al., 2011). A 100-year time 

horizon was considered by applying the factors given by Forster et al. (2007). 
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2.2. CO2 storage in forest species 

The quantification of the carbon stored in biomass and CO2 uptake was based on one 

of the methodologies proposed by IPCC for estimating carbon stocks (IPCC, 2003). 

Due to the controversy over the use of forestry activities for mitigation, a 

conservative approach was taken and accordingly, only CO2 uptake of aboveground 

biomass during the build-up of forests was considered. Nevertheless, several authors 

estimate that only 10-30% of the carbon sequestration occurs in the forest floor and 

mineral soil, while the main contribution corresponds to the trees themselves (Pérez-

Cruzado et al., 2012; Richter et al., 1999). In fact, De Vries et al. (2006) reported an 

average ratio of 4.1 between carbon sequestration in the tree and the soil for 

European forests, which is even higher in the case of Southern European areas (8.9). 

Therefore, the quantification in the present study was underestimated in about 10-

20% of the actual value. Equation 4 was applied to estimate the total carbon stored in 

the biomass, which depends on the geometry and species.   

 1C VOB D BEF R CF Nt        (4) 

where C is the total carbon in biomass (kg/tree), VOB is the volume over bark of 

free bole (m
3
/tree), D is basic wood density (kg/m

3
), BEF is the biomass expansion 

factor for conversion of VOB to aboveground tree biomass, R is root-to-shoot ratio, 

CF is the carbon fraction of dry matter (kg C/kg biomass), and Nt is the number of 

trees. CO2 uptake is obtained by just multiplying the value by 44/12 according to the 

stoichiometric rate. 

VOB is the volume of the tree excluding roots and branches, that is measured from 

stump or buttress to crown point or first main branch (Brown, 1997). This volume 

was calculated according to eq 5 given by Burriel et al.
 
(2004). 
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2

2
f

DBH
VOB H K

 
    

 
 (5) 

where DBH is the diameter at breast height (1.3 m) expressed in m, H is the height 

of the tree (m), and Kf is a dimensionless shape coefficient which depends not only 

in the species, but also in the size of the tree. 

According to the scope of the present study, a typical Spanish distribution of species 

was considered. The data for determining CO2 uptake by forests were obtained from 

IPCC (2003) and the on-line MiraBosc software (SiBosC, 2012), a tool developed by 

the Catalonian Centre for Ecological Research and Forestry Applications (CREAF) 

and the Department of Environment and Housing (DMAH). 

 

3. Results 

3.1. GHG emissions trends during 2005-2010 

First of all, GHG emissions of road transport, derived directly from engine operation 

were determined for the period 2005-2010 years in three model stretches: low ADT 

(Sevilla-San Rafael), medium ADT (Sevilla-Cádiz) and high ADT (Barcelona-

Tarragona). According to Spanish road legislation, average speeds of 120 km/h and 

85 km/h were considered, respectively for light and heavy vehicles. Figure 1 shows 

the tendency observed for each stretch, whose emissions were clearly dependent on 

the ADT and, therefore, on VKT, as expected from previous works (Marshall et al., 

2005; Melania et al., 2011). Thus, a higher ADT corresponded to a larger level of 

emissions according to an approximately linear function. The slight deviation from 

this behavior mainly came from the different vehicle distributions among the 

analyzed years.  
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Regarding the evolution during the considered period, there was a remarkable 

change in 2007 and 2008. In fact, two regions for both high ADT and medium ADT 

model stretches can be distinguished in Figure 1. The first region showed a 

continuous increase in emissions between 2005 and 2007, whereas the second period 

experienced a marked drop. This decrease led to emission reductions in 2010 of 

2.0% in the case of medium ADT stretch and 13.9% in the high ADT stretch. 

Particularly for the low ADT stretch, GHG emissions considerably increased by 

24.2% from 2005 to 2010. The reason of this divergence with respect to the behavior 

observed in the other stretches could be the recent construction of the road, 

inaugurated in 2004, that explains the pronounced increase, specifically from 2005 to 

2007. Indeed, considering 2007 as a reference year with a stabilized traffic density, 

the growth for the last three years was limited to 1.5%.  

The main explanation for the drop in GHG emissions is probably the world financial 

crisis that started during the analyzed period. In fact, the estimated reduction due to 

the downturn in economic activity ranges from 3 to 10%, which points out the 

sharpest decrease in emissions in the past 40 years (OECD/ITF, 2010). European 

road transport has been especially affected by the financial crisis in the freight sector, 

which shrank by more than 6% in Spain between 2008 and 2009 (Pasi, 2009). In 

spite of the global diminution in emissions, Peters et al. (2012) aim that the crisis has 

only had a temporary effect, and predict a rapid growth for emissions during the next 

years.  
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Figure 1. Evolution of total GHG emissions for three motorway stretches during 

2005-2010 for average speeds of 120 km/h and 85 km/h for light and heavy vehicles 

 

The different level of emissions prevents the comparison between absolute values for 

the three model stretches. However, Figure 2 presents a relative assessment that 

expresses data in terms of GHG emitted per km travelled. Available databases
 
(EEA, 

2011; EPA, 2009; UK Government, 2012a, 2012b) show that emissions of common 

vehicles may vary from approximately 100 to 500 g CO2/km. According to the 

results of the case study, total emissions divided by VKT ranged from 235 to 285 g 

CO2 eq/km. The vehicle distribution is a significant parameter that influences 

emissions, causing divergences between the calculated values. New technologies 

often have a lower rate of emissions that can partially explain the decrease observed 

in Figure 2. However, the weight and size of the vehicles must be also taken into 

account (De Mol et al., 2009; Zervas, 2010b). As mentioned above, freight transport 

has suffered a drop due to the economic recession.  Heavy-duty vehicles associated 

to this sector have higher average emissions per km than light vehicles, so the 

decrease in freight road transport should have contributed to the decrease of 

emissions since 2008.  
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Figure 2. Average GHG emissions per km travelled in each motorway stretch for 

average speeds of 120 km/h and 85 km/h for light and heavy vehicles 

 

Despite revealing a similar evolution over the years, GHG emissions per km for the 

high ADT stretch (Barcelona-Tarragona) adopt values between 10 and 13% higher 

than the corresponding emissions in medium and low stretches. As identical national 

fleet data were taken into account for the three stretches, this deviation cannot be 

attributed to different vehicle technologies. Figure 3 demonstrates that the ratio of 

light to heavy vehicles is likely to be the main reason of the discrepancy. Actually, 

the highest relative emissions match to the stretch with a lower amount of light 

vehicles. According to Figure 3a, Barcelona-Tarragona has an average percentage of 

81% light vehicles, whereas Segovia-San Rafael and Sevilla-Cádiz hold percentages 

of 90 and 92%, respectively. In addition, the percentage was found to increase 

continuously from 2007 onwards. This behavior was coincident with the reduction 

observed for the emissions per km in Figure 2. Furthermore, Figure 3b shows that 

light vehicles accounted for a range between 64% and 83% of the total emissions, so 

the unitary contribution (emissions per vehicle) was indeed substantially lower for 

this category than for heavy vehicles.  
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Figure 3. Percentage of light vehicles from the total fleet for each model stretch 

(a) and relative contribution to GHG emissions (b) 

 

Figure 4 represents the role of all the gases affecting climate that can be measured by 

the Tier 3 methodology. According to the 100-year GWPs from Forster et al. (2007), 

CO2 is the major contributor to the total emissions, with nearly 97% of the impact. 

This behavior is consistent with the tendency observed for both European and 

American vehicles from sources such as Ecoinvent database (Spielman et al., 2007) 

or Davis et al. (2010). In these databases, CO2 contribution to the total GWP 

accounts for 95-98%.  Among the secondary gases, emissions mainly come from CO 

and N2O. Regarding GWPs for CH4 and NMVOC emissions, a wide uncertainty 

range in GWPs was reported. The factors for these compounds include the impacts 

on tropospheric ozone, CH4 through changes in hydroxyl radicals (OH) and CO2. 

The uncertainties are attributable to the short lifetimes of NMVOCs and the 

nonlinear chemistry involved in ozone and OH chemistry (Collins et al., 2002). 

However, due to the low contribution of such gases to the total emissions, no 

significant variation is expected when considering a change in GWPs. Indeed, an 

increase of 100% in NMVOCs GWP, which corresponds with the maximum 
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uncertainty range reported by Collins et al. (2002), would mean less than 0.15% of 

change in the contribution of the other GHGs to the total GWP.   

 

Figure 4. Average contribution of each gas to the total 100-year GWP 

 

3.2. Improvement potential of reduction scenarios  

Three alternative scenarios were proposed in order to assess the improvement actions 

proposed. Forestry activities, new technologies and speed dependency were 

evaluated through a sensitivity analysis. GHG reduction in the three cases was 

compared with a current scenario, which refers to the latest quantified emissions in 

2010. 

Figure 5 illustrates the compensation potential of forests. According to Figure 5a, a 

significant GHG reduction of about 10,000 t CO2 requires at least 100,000 

exemplars. Considering a mean density of 1,100 trees/ha from Palahí et al.
 
(2006), a 

total surface of 90.9 ha should be afforested. However, the effectiveness of the 

measure would strongly be dependent on the traffic density of the stretch. As shown 

in Figure 5b, the planting of 90.9 ha forest would be a successful measure to mitigate 

nearly 75% emissions of a low ADT stretch during one year of exploitation, whereas 

the same surface would suppose no more than 2.2% in a high ADT such as 

Barcelona-Tarragona. 
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Figure 5. GHG compensation potential of forest species: tons of CO2 vs number 

of trees and land surface (a) and CO2 reduction percentage of 100,000 trees with 

respect to total GHG emissions per year (b) 

 

The second scenario evaluates the substitution of vehicles by new technologies. This 

change will certainly affect the national road fleet in the near future, not only due to 

the encouragement measures of climate policies, but also as an inherent evolution of 

the vehicles. Nevertheless, the effect of the substitution is rather limited. A moderate 

variation, such as the substitution of light or heavy vehicles by Euro 5 technologies, 

allows less than 1% of average reduction that can rise to 1.6% if both measures are 

combined. Higher diminutions may be achieved by applying more drastic changes. 

In this sense, the substitution of all passenger cars with hybrid vehicles would mean 

an improvement of 10.3% with respect to the current emissions. However, this 

change will probably imply a substantial modification of the manufacturing 

processes that should be taken into account by extending the limits of the system.  

The speed dependency of emissions is presented in Figure 6. An average speed 

scenario of 120 km/h for light vehicles was considered as the baseline. According to 

the results, a decrease of speed of such vehicles from 120 to 115 km/h (-4.2%) 
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involves a global reduction of 4.4% emissions that can be improved until 8.2% when 

increasing the limitation to 110 km/h (-8.3%). On the contrary, an equivalent raise in 

speed would entail a growth of 5.0% in GHG emissions for 125 km/h and 10.8% in 

the case of 130 km/h. Therefore, GHG emissions clearly depend on speed following 

an exponential behavior. 

 

Figure 6. Average effect of speed of light vehicles on total GHG emissions  

 

4. Discussion  

4.1. Conditioning factors of GHG emissions.  

The comparison between the selected model stretches allows observing that ADT is 

the most relevant factor affecting GHG emissions from motorway transport. This 

parameter directly settles the VKT that affects the fuel consumption calculated from 

eq 2 and consequently CO2 emissions. As CO2 contribution accounts for more than 

96% of total emissions, any change in fuel consumption would involve a substantial 

alteration in the environmental impact of the road on global warming. The 

importance of VKT for the reduction of GHG emissions from transport has been 

widely reported in the literature (Boies et al., 2009; Melaina et al., 2011; Thambiran 

and Diab, 2011). The quantified emissions show, indeed, that the drop in VKT 
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during the last three years of the analyzed period has turned into a significant 

reduction of GHG release. No mitigation policy related to VKT diminution has been 

proposed in Spain yet, but the improvement in fuel consumption has been pursued by 

reducing the speed limitation by 8%. 

Another factor that should be considered is the evolution of vehicles. The GHG 

emissions per km for the three model stretches decreased by 5% in 2010 with respect 

to the values of 2005. This tendency reflects the substitution of old vehicles by new 

technologies. As an example, new passenger cars in EU reduced their average 

emissions from 162.4 to 140.3 g CO2 eq/km during the mentioned period (EEA, 

2011), which implies a reduction of 13.6%. The results observed in this research 

work show a significantly lower decrease, which can be due to the fact that new 

technologies only represent 4% of the total fleet for the last year, and passenger cars 

stand for nearly 78% of these new vehicles.  

In addition, a relationship between the average capacity of the road fleet and unitary 

emissions was checked out. In this sense, emissions per km are function of the 

engine size and the weight of the vehicle (De Mol et al., 2009; EMEP/EEA Emission 

Inventory Guidebook, 2009; Zervas, 2010a; Zervas, 2010c). According to the results, 

the contribution of passenger cars to GHG emissions was strongly dependent on the 

engine capacity. For example, CO2 emissions from a gasoline passenger car with a 

1.2 L engine are between 15-30% lower than those from a vehicle with 2.0 L engine 

of the same technology. In the case of fleet weight, stretches with large percentages 

of heavy vehicles actually emit higher levels of GHGs, as shown in Figure 3. 

Consequently, the reduction in unitary emissions observed from 2008 in Figure 2 can 

be partially attributed to the drop in ADT of heavy vehicles. 
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4.2. Influence of financial crisis 

The present study confirms the decrease of GHG emissions from transport since 

2008, coinciding with the start of the financial crisis. It has been already pointed out 

that the recession has brought a sharp drop in EU emissions, which supposed a 14% 

reduction compared to 1990 levels (European Commission, 2010; OECD/ITF, 2010). 

Our results show slightly more moderate global diminutions, by 5-9% annually 

during the period 2007-2010, except from the low ADT stretch, that revealed a 

yearly increase of 3% from 2008 to 2010. The reduction has especially affected the 

sector of road freight transport due to the decline in European trade volume 

(OECD/ITF, 2009; Pasi, 2009). In the considered model stretches, the lowest 

percentage of heavy vehicles was found in 2010, with 14-31% fewer vehicles from 

this category than in 2005. Nevertheless, despite current projections for the next 

years predict lower GHG levels than expected before the crisis, several authors 

maintain that the decrease has been rather limited and emissions will rapidly grow 

after this period, partly due to emerging economies (Enkvist et al., 2010; OECD/ITF, 

2011; Peters et al., 2012). 

 

4.3. Effectiveness of mitigation measures 

The sensitivity analysis for the three mitigation scenarios demonstrates the 

limitations of individual measures to overcome climate change. Firstly, carbon offset 

projects, which include afforestation and reforestation activities as temporary credits, 

are gaining interest in the business field, not only to accomplish future legislation but 

also as a marketing tool or an indicator of social corporate responsibility (FAO, 

2010). Nevertheless, a relevant GHG mitigation based on this strategy would require 

a large number of tree exemplars and hence, a vast land surface. In the present study, 
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afforestation is proposed as a direct measure from the motorway operator. According 

to this perspective, the outcomes of the assessment allow concluding that the success 

of forestry activities for transport mitigation is restricted to low ADT stretches with 

moderate level of emissions.  

The second measure of encouraging vehicle substitution is not a significant option 

unless it brings a radical change in the road fleet. However, the number of new 

passenger car registrations tends to decrease in EU countries during the last years, as 

the markets of the countries become more saturated (Zervas, 2010b). Therefore, a 

radical change would require an integration of international policies, affecting 

worldwide car manufacturers. Nevertheless, according to the estimated emissions, 

the development of the latest regulation has a relatively slight effect in the total 

emissions and a noticeable reduction would require the generalized adoption of new 

technologies such as hybrid models instead of fossil fuel vehicles. As a result, 

technological improvement policies, such as vehicle taxes dependent on 

environmental criteria or subsidizing new vehicles (West, 2004), have a limited 

repercussion in the near future, though the quantitative potential of drastic changes 

make them more interesting in a long-term perspective. 

Reduced speed limits have been widely proposed as an effective method for GHG 

diminution (André and Hammarström, 2000; Barkenbus, 2010; Michaelis and 

Davidson, 1996; Winkelman et al., 2003). Moreover, changes in speed limits 

according to different types of roads are currently being discussed within the Spanish 

context. According to Greener (2008), for each 5 mph (8 km/h) above 55 mph (88 

km/h), fuel economy decreases by approximately 7%. As CO2 directly depends on 

fuel consumption and it is the main contributor to total emissions, this behavior 

involves an equivalent drop in GHG release. Comparable GHG reductions ranging 
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from 4 to 8% have been found in the present study for a diminution of 5 and 10 km/h 

respectively. As a result, speed limitation seems the most direct measure of the 

analyzed scenarios.  

  

5. Conclusions   

Nowadays, road transport plays a significant role in worldwide GHG emissions, as 

well as within the Spanish context. Particularly, highways and motorways represent 

an important percentage of the total trips and thus a large amount of emissions come 

from these types of road. The aim of this study was to analyze the main factors that 

condition the GHG emissions in Spanish motorways and evaluate feasible measures 

in order to limit global warming. 

GHG emissions from three model stretches during the period 2005-2010 were 

quantified by applying the Tier 3 methodology. According to the results, average 

daily traffic (ADT) was found to be the most significant parameter, although the 

average fleet age and vehicle size also affected the environmental impacts. In 

addition, there was a clear connection between the reduction in European trade 

volume during the financial crisis and the GHG release, despite its temporary effect. 

Subsequently, three improvement scenarios were evaluated. The first one consisted 

of the compensation of GHG emissions through afforestation activities. Despite the 

limitation due to the surface requirements, this is the only measure that can be 

implemented by the company itself. Following this perspective, its effectiveness is 

restricted to those stretches with a low ADT, although the potential of the alternative 

may increase if involving a national mitigation policy.   

Regarding the technological improvement scenario, the substitution of vehicles is a 

slow process and the GHG emission reductions seem rather narrow unless an 
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international drastic change is encouraged. Policies focused in the substitution of 

fossil fuel vehicles by more efficient technologies such as hybrid vehicles would 

strengthen the potential of this option. Thus, the interest of the measure is limited to 

a long-term perspective. 

Reduced speed scenario allows a substantial improvement with a minimal change in 

both fleet and road conditions. Therefore, reinforcement of speed limits proved to be 

the most appealing alternative in the near future. Nevertheless, a combination of 

measures would involve a more robust strategy that will certainly allow achieving 

higher GHG emission reductions. 
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