Adaptative estimation of a density function using beta kernels - Archive ouverte HAL
Article Dans Une Revue ESAIM: Probability and Statistics Année : 2014

Adaptative estimation of a density function using beta kernels

Résumé

In this paper we are interested in the estimation of a density − defined on a compact interval of R − from n independent and identically distributed observations. In order to avoid boundary effect, beta kernel estimators are used and we propose a procedure (inspired by Lepski's method) in order to select the bandwidth. Our procedure is proved to be adaptive in an asymptotically minimax framework. Our estimator is compared with both the cross-validation algorithm and the oracle estimator using simulated data.

Mots clés

Dates et versions

hal-01284734 , version 1 (08-03-2016)

Identifiants

Citer

Karine Bertin, Nicolas Klutchnikoff. Adaptative estimation of a density function using beta kernels. ESAIM: Probability and Statistics, 2014, ⟨10.1051/ps/2014010⟩. ⟨hal-01284734⟩
131 Consultations
0 Téléchargements

Altmetric

Partager

More