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Random vectors and random fields in high dimension.
Parametric model-based representation, identification

from data, and inverse problems

C. Soize1

Universit́e Paris-Est, Laboratoire Mod́elisation et Simulation Multi-Echelle, MSME UMR 8208
CNRS, 5 bd Descartes, 77454 Marne-la-Vallée, France

Abstract

The statistical inverse problem for the experimental identification of a non-Gauss-
ian matrix-valued random field that is the model parameter ofa boundary value
problem, using some partial and limited experimental data related to a model
observation, is a very difficult and challenging problem. A complete advanced
methodology and the associated tools are presented for solving such a problem
in the following framework: the random field that must be identified is a non-
Gaussian matrix-valued random field and is not simply a real-valued random field;
this non-Gaussian random field is in high stochastic dimension and is identified
in a general class of random fields; some fundamental algebraic properties of
this non-Gaussian random field must be satisfied such as symmetry, positiveness,
invertibility in mean square, boundedness, symmetry class, spatial-correlation
lengths, etc; the available experimental data sets correspond only to partial and
limited data for a model observation of the boundary value problem.
The developments presented are mainly related to the elasticity framework, but
the methodology is general and can be used in many areas of computational sci-
ences and engineering. The developments are organized as follows. The first
part is devoted to the definition of the statistical inverse problem that has to be
solved in high stochastic dimension, and is focussed on stochastic elliptic oper-
ators such that the ones that are encountered in the boundaryvalue problems of
the linear elasticity. The second one deals with the construction of two possible
parameterized representations for a non-Gaussian positive-definite matrix-valued
random field that models the model parameter of a boundary value problem. A
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parametric model-based representation is then constructed in introducing a statis-
tical reduced model and a polynomial chaos expansion, first with deterministic
coefficients and after with random coefficients. This parametric model-based rep-
resentation is directly used for solving the statistical inverse problem. The third
part is devoted to the description of all the steps of the methodology allowing the
statistical inverse problem to be solved in high stochasticdimension. These steps
are based on the identification of a prior stochastic model ofthe Non-Gaussian
random field by using the maximum likelihood method and then,on the identifi-
cation of a posterior stochastic model of the Non-Gaussian random field by using
the Bayes method.The fourth part presents the constructionof an algebraic prior
stochastic model of the model parameter of the boundary value problem, for a
non-Gaussian matrix-valued random field. The generator of realizations for such
an algebraic prior stochastic model for a non-Gaussian matrix-valued random field
is presented.

Key words: Random vector, Random field, Random Matrix, High dimension,
High stochastic dimension, Non-Gaussian, Non-gaussian random field,
Representation of random fields, Polynomial chaos expansion, Generator,
Maximum entropy principle, Prior model, Maximum likelihood method,
Bayesian method, Identification, Inverse problem, Statistical inverse problem,
Random media, Heterogeneous microstructure, Composite materials, Porous
media.

1. Introduction

The statistical inverse problem for the experimental identification of a non-
Gaussian matrix-valued random field that is the model parameter of a boundary
value problem, using some partial and limited experimentaldata related to a model
observation, is a very difficult and challenging problem. The classical methodolo-
gies that are very efficient for Gaussian random fields, cannot be used for non-
Gaussian matrix-valued random fields in high stochastic dimension, in particular
under the assumption that only partial and limited experimental data are available
for the statistical inverse problem that has to be solved foridentifying the non-
Gaussian random field through a boundary value problem. Thismeans that exper-
imental data must be enriched in introducing adapted informative prior stochastic
models for the non-Gaussian matrix-valued random fields in order to take into
account fundamental algebraic properties such as symmetry, positiveness, invert-
ibility in mean square, boundedness, symmetry class, spatial-correlation lengths,
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etc. The objective is then to present a complete advanced methodology and the
associated tools for solving such a statistical inverse problem in high stochastic
dimension and related to non-Gaussian matrix-valued random fields.

2. Notions on the High Stochastic Dimension and on the Parametric Model-
Based Representations for Random Fields

What is a random vector or a random field with a high stochasticdimension?
The stochastic dimensionof a random vector or a random field is an important
notion that allows for evaluating the level of complexity ofa statistical inverse
problem related to the identification of a random model parameter (random vec-
tor, random field) of a stochastic boundary value problem (for instance, the co-
efficients of a partial differential equation) using experimental data related to a
random model observation (random variable, random vector,random field) of this
boundary value problem.

Let us consider a random vectorU with values inRNU in whichNU is an inte-
ger. The stochastic dimension ofU is not, in general, the value of integerNU . For
instance, ifU is written asU = η b, in whichη is a real-valued random variable
and whereb is a deterministic vector given inRNU , then the stochastic dimension
of U is 1 for any value of integerNU . If U is written asU =

∑m
i=1 ηi bi with

m ≤ NU , in which η1, . . . , ηm arem independent real-valued random variables
and whereb1, . . . , bm arem algebraically independent vectors given inRNU , then
the stochastic dimension ofU is m, andU is in high stochastic dimension ifm is
large. If U is a second-order random vector whose covariance matrix is known,
then the use of the principal component analysis allows the reduced representa-
tion U(m) =

∑m
i=1 ηi

√
λi bi of U to be constructed withm < NU , and where

m is calculated in order that the mean-square error ofU − U(m) is sufficiently
small. It can thus be writtenU ∼ U(m) (in mean square). In such a reduced rep-
resentation,λ1 ≥ . . . > λm > 0 are the dominant eigenvalues of the covariance
matrix of U andb1, . . . , bm are the associated orthonormal eigenvectors inRNU .
The componentsη1, . . . , ηm arem centered and uncorrelated real-valued random
variables. If random vectorU is a Gaussian random vector, thenη1, . . . , ηm arem
independent Gaussian real-valued random variables, and, for this particular Gaus-
sian case, the stochastic dimension ofU is m. However, for the general case,U
is a non-Gaussian random vector, and consequently, the real-valued random vari-
ablesη1, . . . , ηm (that are centered and uncorrelated) are not independent but are
statistically dependent. In such a case,m is not the stochastic dimension ofU, but
clearly the stochastic dimension is less or equal tom (the equality is obtained for

3



the Gaussian case). Let us assume that there exists a deterministic nonlinear map-
pingY from RNg into Rm such that the random vectorη = (η1, . . . , ηm) can be
written asη = Y(Ξ1, . . . ,ΞNg

) in whichNg < m and whereΞ1, . . . ,ΞNg
areNg

independent real-valued random variables (for instance,Y can be constructed us-
ing the polynomial chaos expansion of the second-order random vectorη). In such
a case, the stochastic dimension ofU is less or equal toNg. If among all the pos-
sible nonlinear mappings and all the possible integersNg such that1 ≤ Ng < m,
the mappingY and the integerNg correspond to the smallest possible value ofNg

such asη = Y(Ξ1, . . . ,ΞNg
), thenNg is the stochastic dimension ofU, andU has

a high stochastic dimension ifNg is large.
If {u(x), x ∈ Ω} is a second-order random field indexed byΩ ⊂ Rd with val-

ues inRNu, for which its cross-covariance function is square integrableΩ×Ω, then
a reduced representationu(m)(x) =

∑m
i=1 ηi

√
λi bi(x) of u can be constructed us-

ing the Karhunen-Loève expansion ofu, in whichm is calculated in order that the
mean-square error ofu − u(m) is sufficiently small. Therefore, the explanations
given before can be applied to the random vectorη = (η1, . . . , ηm) in order to
estimate the stochastic dimension of random fieldu.

What is a parametric model-based representation for the statistical identifi-
cation of a random model parameter from experimental data?
In order to simply explain what is a parametric model-based representation for the
statistical identification of a random model parameter fromexperimental data, let
us consider the stochastic elliptic boundary value problemformulated for a real-
valued random fieldu(x) indexed byx = (x1, . . . , xd) belonging to a subsetΩ
of Rd, and which is assumed to have a unique second-order stochastic solution
u. The stochastic elliptic operator of the boundary value problem is written as
−∑d

j=1
∂

∂xj
{K(x) ∂

∂xj
u(x)} in which the random fieldK = {K(x), x ∈ Ω}, in-

dexed byΩ, with values inR+ = [0,+∞[ is defined as themodel parameterof the
boundary value problem. LetU be a randommodel observationthat is assumed to
be a random vector with values inRNU , which is deduced from random fieldu by
a deterministic observation operatorO, such thatU = O(u). Consequently, ran-
dom model observationU can be written asU = H(K) in whichH is a determin-
istic nonlinear functional ofK. For all x in Ω, a representation ofK is assumed
to be written asK(x) = G(G(x)) with G(x) = G0(x) +

∑m
i=1 ηi

√
λiGi(x). The

deterministic nonlinear mappingG is independent ofx and is assumed to be from
R into R+. With the introduction of such a deterministic mappingG, for all x
fixed inΩ, the support of the probability distribution of the random variableG(x)
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is R instead ofR+ for K(x). In the reduced representation of the random field
G indexed byΩ, with values inR, the quantitiesG0(x), λi, andGi(x) are some
real numbers. The random vectorη = (η1, . . . , ηm) is written asη = Y(Ξ; [z])
in whichΞ = (Ξ1, . . . ,ΞNg

) is a given vector-valued random variable, whereY

is a deterministic nonlinear mapping representing the truncated polynomial chaos
expansion ofη with respect toΞ, and where[z] is the real matrix of theRm-
valued coefficients of the truncated polynomial chaos expansion ofη. It can then
be deduced that random model observationU can be rewritten asU = B(Ξ, [z])
in whichB is a deterministic nonlinear mapping depending onH, G andY . This
last representation is defined as aparametric model-based representationof the
random model observationU in which the real matrix[z] is the hyperparameter of
the representation. Let us assume that some experimental data uexp,1, . . . , uexp,νexp

related to random model observationU are available. Theidentification of the
model parameterK using theexperimental dataconsists in identifying the real
matrix [z] using the parametric model-based representationU = B(Ξ, [z]) of the
random model observation and the corresponding experimental data.

3. Brief History

Classical methods for statistical inverse problems.
The problem related to the identification of a model parameter (scalar, vector,
field) of a boundary value problem (BVP) (for instance, the coefficients of a par-
tial differential equation) using experimental data related to a model observation
(scalar, vector, field) of this BVP, is a problem for which there exists a rich liter-
ature, including numerous textbooks. In general and in the deterministic context,
there is not a unique solution because the function, which maps the model param-
eter (that belongs to an admissible set) to the model observation (that belongs to
another admissible set) is not a one-to-one mapping, and consequently, cannot be
inverted. It is an ill-posed problem. However, such a problem can be reformulated
in terms of an optimization problem consisting in calculating an optimal value of
the model parameter, which minimizes a certain distance between the observed ex-
perimental data and the model observation that is computed with the BVP and that
depends on the model parameter (see for instance [76] for an overview concerning
the general methodologies, and [36] for some mathematical aspects related to the
inverse problems for partial differential equations). In many cases, the analysis of
such an inverse problem can have a unique solution in the framework of statistics,
that is to say when the model parameter is modeled by a random quantity, with
or without external noise on the model observation (observed output). In such a
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case, the random model observation is completely defined by its probability dis-
tribution (in finite or in infinite dimension) that is the unique transformation of
the probability distribution of the random model parameter. This transformation
is defined by the functional that maps the model parameter to the model observa-
tion. Such a formulation is constructed for obtaining a well-posed problem that
has a unique solution in the probability theory framework. We refer the reader to
[38] and [72] for an overview concerning the general methodologies for statistical
and computational inverse problems, including general least-square inversion and
the maximum likelihood method [54; 67], and including the Bayesian approach
[67; 9; 8; 68].

Case of a Gaussian random model parameter.
A Gaussian second-order random vector is completely definedby its second-order
moments, that is to say, by its mean vector and by its covariance matrix. Similarly,
a Gaussian second-order random field is completely defined byits mean function
and by its cross-covariance function or, if the random field is homogeneous (sta-
tionary) and mean-square continuous, by its spectral measure [17]. If the model
parameter is Gaussian (random vector or random field), then the statistical inverse
problem (identification of the system parameter using experimental data related
to the model observation of the system) consists in identifying the second-order
moments, which is relatively easy for a low or a high stochastic dimension. Con-
cerning the description of the Gaussian random fields, we refer the reader to the
abundant existing literature (see for instance [41; 53; 74]).

Case for which the model parameter is a non-Gaussian second-order random
field.
A non-Gaussian second-order random field is completely defined by its system of
marginal probability distributions, which is an uncountable family of probability
distributions on sets of finite dimension, and not only by itsmean function and
its covariance function as for a Gaussian random field. The experimental iden-
tification of such a non-Gaussian random field then requires the introduction of
an adapted representation in order to be in capability to solve the statistical in-
verse problem. For any non-Gaussian second-order random field, an important
type of representation is based on the use of the polynomial chaos expansion [7],
for which the development and the use in computational sciences and engineering
have been pioneered by Roger Ghanem in 1990-1991 [21]. An efficient construc-
tion is proposed, which consists in combining a Karhunen-Loève expansion (that
allows using a statistical reduced model) with a polynomialchaos expansion of
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the statistical reduced model. This type of construction has then been re-analyzed
and used for solving boundary value problems using the spectral approach (see for
instance [52; 13; 18; 24; 25; 46; 43; 47]. The polynomial chaos expansion as also
been extended for an arbitrary probability measure [78; 42;44; 57; 77; 20] and
for sparse representation [5]. New algorithms have been proposed for obtaining
a robust computation of realizations of high degrees polynomial chaos [63; 49].
This type of representation has also been extended for the case of the polynomial
chaos expansion with random coefficients [61], for the construction of a basis
adaptation in homogeneous chaos spaces [73], and for an arbitrary multimodal
multidimensional probability distribution [66].

Finite-dimension approximation of the BVP and finite-dimension parameter-
ization of the random field.
A finite-dimension parameterized representation of the non-Gaussian random field
must be constructed in order to be able to solve the statistical inverse problem. In
addition and in general, an explicit solution of the BVP cannot be obtained and
consequently, a finite-dimension approximation of the solution of the BVP must
also be constructed (using for instance the finite element method), accompanied
by a convergence analysis. The combination of these two approximations leads
us to introduce a non-Gaussian second-order random vectorη with values inRm,
which is the finite-dimension parameterized representation of the random model
parameter of the system. Consequently, the statistical inverse problem consists
in identifying the non-Gaussian second-order random vector η that is completely
defined by its probability distribution onRm. Nevertheless, asη corresponds to a
finite-dimension parameterization of the finite discretization of a random field, it
is necessary to construct, first, a good mathematical representation of the random
field and of its finite-dimension parameterization, before performing its spatial
discretization.

Parameterization of the non-Gaussian second-order randomvector η.
Since it is assumed that the experimental data that are available for the statisti-
cal inverse problem are partial and limited, the parametricstatistics must be used
instead of the nonparametric statistics that cannot be used. This implies that a
parameterized representation of the non-Gaussian second-order random vectorη
must be constructed. There are two main methods for constructing such a param-
eterization.

(i) The first one is a direct approach that consists in constructing a algebraic
prior representation of the non-Gaussian probability distribution ofη in using the
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maximum entropy principle (MaxEnt) [37; 65] under the constraints defined by
the available information. A general computational methodology, for the prob-
lems in high stochastic dimension, is proposed in [59; 4] andis synthesized in
Section ”MaxEnt for Constructing the pdf of a Random Vector” of ” Random Ma-
trix Models and Nonparametric Method for Uncertainty Quantification” in part II
of the presentHandbook on Uncertainty Quantification. Such a construction al-
lows a low-dimension hyperparameterization to be obtainedfor the non-Gaussian
probability distribution onRm. Therefore, the parametric statistics [76; 54; 67]
can be used for solving the statistical inverse problem consisting in identifying
the vector-valued hyperparameter of the probability distribution constructed with
the MaxEnt. In counter part, the ”distance” between the observed experimental
data and the random model observation cannot be, in general,reduced to zero. A
residual error exists. If there are a sufficient amount of experimental data, this
error can be reduced by identifying a posterior probabilitydistribution ofη using
the Bayesian approach [67; 9; 8].

(ii) The second method is an indirect approach which consists in introduc-
ing a representationη = Y(Ξ) in whichY is an unknown deterministic nonlin-
ear (measurable) mapping fromRNg into Rm (which has to be constructed) and
whereΞ is a given random vector with values inRNg , for which its probability
distribution is known (for instance a normalized Gaussian random vector). The
statistical inverse problem then consists in identifying the nonlinear mappingY .
Consequently, a parameterization of mappingY must be introduced in order to
use parametric statistics, and there are two main approaches.
(ii.1) The first one corresponds to the truncated polynomialchaos expansion of
second-order random vectorη with respect to the normalized Gaussian measure.
In this case,Ξ is a normalized Gaussian random vector and the orthogonal poly-
nomials are the normalized Hermite polynomials [21]). If anarbitrary probability
measure is used instead of the normalized Gaussian measure,thenΞ is a normal-
ized random vector with this arbitrary probability distribution, and the orthogonal
polynomials are constructed with respect to this arbitraryprobability distribution
[78; 57; 77; 49; 66]. Such a polynomial expansion defines a parameterization,
noted asY(Ξ, [z]), of mappingY , in which the real matrix[z]T represents the
Rm-valued coefficients of the polynomial chaos expansion ofη, and the identifi-
cation ofY is replaced by the identification of the hyperparameter[z].
(ii.2) The second approach consists in introducing an algebraic prior representa-
tion η = Y(Ξ, s) in which s is a vector-valued hyperparameter that has a small
dimension, and which must be identified using parametric statistics [76; 54; 67].
Similarly to the method (i) presented before, if there is a sufficient amount of ex-
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perimental data, the prior model can be updated in constructing a posterior prob-
ability distribution using the Bayesian approach [23; 45].

Statistical inverse problem for identifying a non-Gaussian random field as a
model parameter of a BVP, using polynomial chaos expansion.
The use of the polynomial chaos expansion for constructing aparameterized rep-
resentation of a non-Gaussian random field that models the model parameter of a
boundary value problem, in order to identify it using a statistical inverse method
has been initialized in [14; 15], used in [26], and revisitedin [12]. In [10], the
construction of the probability model of the random coefficients of the polyno-
mial chaos expansion is proposed by using the asymptotic sampling Gaussian
distribution constructed with the Fisher information matrix, and used for model
validation [24]. This work has been developed for statistical inverse problems
that are rather in low stochastic dimension, and new ingredients have been intro-
duced in [62; 49; 65] for statistical inverse problems in high stochastic dimension.
In using the reduced chaos decomposition with random coefficients of random
fields [61], a Bayesian approach for identifying the posterior probability model of
the random coefficients of the polynomial chaos expansion ofthe model parame-
ter of the BVP has been proposed in [2] for the low stochastic dimension and in
[64] for the high stochastic dimension. The experimental identification of a non-
Gaussian positive matrix-valued random field in high stochastic dimension, using
partial and limited experimental data for a model observation related to the ran-
dom solution of a stochastic BVP, is a difficult problem that requires both adapted
representations and methodologies [62; 64; 65; 48].

Algebraic prior stochastic models of the model parameters of BVP.
In the methodology devoted to the identification of a non-Gaussian random field
in high stochastic dimension, an important step is the construction of a parameter-
ized representation for which the number of hyperparameters (in the parameter-
ized representation) is generally very large due to the highstochastic dimension.
In the framework of hypotheses for which only partial and limited data are avail-
able, such an identification is difficult if there is no information concerning the
region of the admissible set (in high dimension), in which the optimal values of
these hyperparameters must be searched. The optimization process, related to the
statistical inverse problem, requires to localize the region in which the algorithms
must search for an optimal value. The method consists in previously identifying
the ”center” of such a region, which corresponds to the valueof the hyperparame-
ters of the parameterized representation using a set of realizations generated with
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an algebraic prior stochastic model (APSM) that is specifically constructed on the
basis of the available information associated with all the mathematical properties
of the non-Gaussian random field that has to be identified. This APSM allows
for enriching the information in order to overcome the lack of experimental data
(since only partial experimental data are assumed to be available). This is par-
ticularly crucial for the identification of the non-Gaussian matrix-valued random
field encountered, for instance, in three-dimensional linear elasticity, for which
some works have been performed in order to introduce the symmetry, the pos-
itiveness and invertibility properties [56; 58; 60], the boundedness [28; 30], a
capability of the prior stochastic model to exhibit a capability to generate simul-
taneously anisotropic statistical fluctuations and some statistical fluctuations in a
symmetry class such as isotropic, cubic, transversely isotropic, orthotropic, etc.
[69; 29; 31; 32; 34], and to develop the corresponding generators of realizations
[58; 62; 29; 32; 34].

4. Overview

A complete methodology and the associated tools are presented for the ex-
perimental identification of a non-Gaussian matrix-valuedrandom field that is the
model parameter of a boundary value problem, using some experimental data re-
lated to a model observation. The difficulties of the statistical inverse problem
that are presented are due to the following chosen frameworkthat corresponds to
many practical situations in computational sciences and engineering:

• A non-Gaussian matrix-valued random field must be identified, not simply a
real-valued random field.

• The non-Gaussian random field that has to be identified is in high stochastic
dimension and must be identified in a general class of random fields.

• Some fundamental algebraic properties of the non-Gaussianrandom field
must be satisfied such as symmetry, positiveness, invertibility in mean square,
boundedness, symmetry class, spatial-correlation lengths, etc.

• The available experimental data sets correspond only to partial and limited
data for a model observation of the boundary value problem.

For such a statistical inverse problem, the above frameworkimplies the use of
an adapted and advanced methodology. The developments presented hereinafter
are mainly related to the elasticity framework, but the methodology is general
and can be used in many areas of computational sciences and engineering. The
developments are organized as follows.
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• The first one is devoted to the definition of the statistical inverse problem that
has to be solved in high stochastic dimension, and is focussed on stochastic elliptic
operators such as the ones that are encountered in the boundary value problems of
the linear elasticity.

• The second one deals with the construction of two possible parameterized
representations for a non-Gaussian positive-definite matrix-valued random field
that models the model parameter of a boundary value problem.A parametric
model-based representation is then constructed in introducing a statistical reduced
model and a polynomial chaos expansion, first with deterministic coefficients and
after with random coefficients. This parametric model-based representation is
directly used for solving the statistical inverse problem.

• The third part is devoted to the description of all the steps of the methodology
allowing the statistical inverse problem to be solved in high stochastic dimension.
This methodology corresponds to the work initialized in [62], extended in [64]
for constructing a posterior stochastic model using the Bayesian approach, and
revisited in [49; 48].

• The fourth part presents the construction of an algebraic prior stochastic
model of the model parameter of the boundary value problem, for a non-Gaussian
matrix-valued random field. This construction is based on the works [58; 60;
30; 32], and reuses the formalism and the results introducedin the developments
presented in Section ”Nonparametric Stochastic Model For Constitutive Equa-
tion in Linear Elasticity” of ” Random Matrix Models and Nonparametric Method
for Uncertainty Quantification” in part II of the presentHandbook on Uncertainty
Quantification. The generator of realizations for such an algebraic prior stochastic
model for a non-Gaussian matrix-valued random field is presented [58; 62; 32].

5. Notations

The following algebraic notations are used.

Euclidean space.
Let x = (x1, . . . , xn) be a vector inRn. The Euclidean spaceRn is equipped with
the usual inner product< x , y >=

∑n
j=1 xjyj and the associated norm‖x‖ =<

x , x>1/2.

Sets of matrices.
Mn,m(R) be the set of all the(n×m) real matrices,
Mn(R) = Mn,n(R) the square matrices,
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MS
n(R) be the set of all the symmetric(n× n) real matrices,

MU
n (R) be the set of all the upper triangular(n×n) real matrices with positive

diagonal entries,
M+

n (R) be the set of all the positive-definite symmetric(n× n) real matrices.
The ensembles of real matrices are such that

M+
n (R) ⊂ MS

n(R) ⊂ Mn(R).

Kronecker symbol, unit matrix, and indicator function .
The Kronecker symbol is denoted byδjk and is such thatδjk = 0 if j 6= k and
δjj = 1. The unit (or identity) matrix inMn(R) is denoted by[In] and is such
that [In]jk = δjk. Let S be any subset of any setM, possibly withS = M. The
indicator functionM 7→ 1S(M) defined on setM is such that1S(M) = 1 if
M ∈ S ⊂ M, and1S(M) = 0 if M 6∈ S.

Norms and usual operators.
(i) The determinant of a matrix[G] in Mn(R) is denoted bydet[G], and its trace
is denoted bytr[G] =

∑n
j=1Gjj.

(ii) The transpose of a matrix[G] in Mn,m(R) is denoted by[G]T , which is in
Mm,n(R).
(iii) The operator norm of a matrix[G] in Mn,m(R) is denoted by‖G‖ = sup‖x‖≤1

‖ [G] x ‖ for all x in Rm, which is such that‖ [G] x ‖ ≤ ‖G‖ ‖x‖ for all x in Rm.
(iv) For [G] and[H ] in Mn,m(R), we denote≪[G] , [H ]≫= tr{[G]T [H ]}and the
Frobenius norm (or Hilbert-Schmidt norm)‖G‖F of [G] is such that‖G‖2F =≪
[G] , [G]≫= tr{[G]T [G]} =

∑n
j=1

∑m
k=1G

2
jk, which is such that‖G‖ ≤ ‖G‖F ≤√

n ‖G‖.
(v) The gradient∇xu(x) at pointx in Rn of the real-valued functionx 7→ u(x),
is the vector inRn such that{∇xu(x)}j = ∂u(x)/∂xj for j = 1, . . . , n. The
divergencedivx(u(x)) at pointx in Rn of theRn-valued functionx 7→ u(x) =
(u1(x), . . . , un(x)), is the real number such thatdivx(u(x)) =

∑n
j=1 ∂uj(x)/∂xj .

Order relation in the set of all the positive-definite real matrices.
Let [G] and[H ] be two matrices inM+

n (R). The notation[G] > [H ] means that
the matrix[G]− [H ] belongs toM+

n (R).

Probability space, mathematical expectation, space of second-order random
vectors.
The mathematical expectation relative to a probability space(Θ, T , P ) is denoted
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by E. The space of all the second-order random variables, definedon (Θ, T , P ),
with values inRn, equipped with the inner product((X,Y)) = E{< X ,Y >}
and with the associated norm|||X||| = ((X,X))1/2, is a Hilbert space denoted by
L2

n.

6. Setting the Statistical Inverse Problem to Be Solved in High Stochastic
Dimension

Let d be an integer such that1 ≤ d ≤ 3. Let n be another finite integer such
thatn ≥ 1, and letNu be an integer such that1 ≤ Nu ≤ n. LetΩ be a bounded
open domain ofRd, with generic pointx = (x1, . . . , xd), with boundary∂Ω, and
let beΩ = Ω ∪ ∂Ω.

Stochastic elliptic operator and boundary value problem.
Let [K ] = {[K(x)], x ∈ Ω} be a non-Gaussian random field, in high stochastic
dimension, defined on a probability space(Θ, T ,P), indexed byΩ, with values
in M+

n (R). It should be noted that random field[K ] being with values inM+
n (R),

random field[K ] cannot be a Gaussian field. Such a random field[K ] allows for
constructing the coefficients of a given stochastic elliptic operatoru 7→ Dx(u)
that applies to the random fieldu(x) = (u1(x), . . . , uNu

(x)), indexed byΩ, with
values inRNu.

The boundary value problem that is formulated inu, involves the stochastic
elliptic operatorDx, and some Dirichlet and Neumann boundary conditions are
given on∂Ω that is written as the union of three parts,∂Ω = Γ0 ∪ Γ ∪ Γ1. On
the partΓ0, a Dirichlet condition is given. The partΓ corresponds to the part of
the boundary on which there is a zero Neumann condition and onwhich exper-
imental data are available foru. On the partΓ1, a Neumann condition is given.
The boundary value problems, involving such a stochastic elliptic operatorDx, are
encountered in many problems of computational sciences andengineering.

� Examples of stochastic elliptic operators.
(i) For a three-dimensional anisotropic diffusion problem, the stochastic ellip-

tic differential operatorDx relative to the densityu of the diffusing medium, is
written as

{Dx(u)}(x) = −divx([K (x)]∇xu(x)) , x ∈ Ω , (1)

in whichd = n = 3 andNu = 1, and where{[K(x)], x ∈ Ω} is theM+
n (R)-valued

random field of the medium.
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(ii) For the wave propagation inside a three-dimensional random heteroge-
neous anisotropic linear elastic medium, we haved = 3, n = 6, Nu = 3, and the
stochastic elliptic differential operatorDx relative to the displacement fieldu is
written as

{Dx(u)}(x) = −[Dx]
T [K (x)][Dx] u(x) , x ∈ Ω , (2)

in which {[K(x)], x ∈ Ω} is theM+
n (R)-valued elasticity random field of the

medium deduced from the fourth-order tensor-valued elasticity field{Cijkh(x), x ∈
Ω} by the following equation,

[K ] =




C1111 C1122 C1133

√
2C1112

√
2C1113

√
2C1123

C2211 C2222 C2233

√
2C2212

√
2C2213

√
2C2223

C3311 C3322 C3333

√
2C3312

√
2C3313

√
2C3323√

2C1211

√
2C1222

√
2C1233 2C1212 2C1213 2C1223√

2C1311

√
2C1322

√
2C1333 2C1312 2C1313 2C1323√

2C2311

√
2C2322

√
2C2333 2C2312 2C2313 2C2323




,

(3)
in which [Dx] is the differential operator,

[Dx] = [M (1)]
∂

∂x1
+ [M (2)]

∂

∂x2
+ [M (3)]

∂

∂x3
, (4)

where[M (1)], [M (2)] and[M (3)] are the(n×Nu) real matrices defined by

[M (1)] =




1 0 0
0 0 0
0 0 0
0 1√

2
0

0 0 1√
2

0 0 0




, [M (2)] =




0 0 0
0 1 0
0 0 0
1√
2

0 0

0 0 0
0 0 1√

2




, [M (3)] =




0 0 0
0 0 0
0 0 1
0 0 0
1√
2

0 0

0 1√
2

0



.

(5)
� Example of a time-independent stochastic boundary value problem in linear

elasticity.
Let be d = 3, n = 6, andNu = 3. Let us consider the boundary value

problem related to the linear elastostatic deformation of athree-dimensional ran-
dom heterogeneous anisotropic linear elastic medium occupying domainΩ, for
which an experimental displacement fielduexp,ℓ is measured onΓ. Let n(x) =
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(n1(x), n2(x), n3(x)) be the unit normal to∂Ω, exterior toΩ. The stochastic
boundary value problem is written as

Dx(u) = 0 in Ω , (6)

in which the stochastic operatorDx is defined by Eq. (2), where the Dirichlet
condition is

u = 0 on Γ0 , (7)

and where the Neumann condition is written as

[Mn(x)]T [K (x)][Dx] u(x) = 0 on Γ , and = fΓ1 on Γ1 , (8)

in which [Mn(x)] = [M (1)]n1(x) + [M (2)]n2(x) + [M (3)]n3(x), and wherefΓ1 is
a given surface force field applied toΓ1. The boundary value problem defined by
Eqs. (6) to (8) is typically the one for which the random field{[K(x), x ∈ Ω} has to
be identified by solving a statistical inverse problem in high stochastic dimension
with the partial and limited experimental data{uexp,ℓ, ℓ = 1, . . . , νexp}.

Stochastic finite element approximation of the stochastic boundary value prob-
lem.
Let us assume that the weak formulation of the stochastic boundary value problem
involving stochastic elliptic operatorDx, is discretized by using the finite element
method. LetI = {x1, . . . , xNp} ⊂ Ω be the finite subset ofΩ made up of all the
integrating points in the numerical integration formulae for the finite elements [79]
used in the mesh ofΩ. Let U = (U1, . . . , UNU

) be the random model observation
with values inRNU , constituted of theNU observed degrees of freedom for which
there are available experimental data (corresponding to some degrees of freedom
of the nodal values ofu at all the nodes inΓ). The random observation vectorU
is the unique deterministic nonlinear transformation of the finite family of theNp

dependent random matrices[K(x1)], . . . , [K (xNp)] such that

U = h([K(x1)], . . . , [K (xNp)]) , (9)

in which

([K1], . . . , [KNp)]) 7→ h([K1], . . . , [KNp)) : M
+
n (R)×. . .×M

+
n (R) −→ R

NU ,
(10)

is a deterministic nonlinear transformation that is constructed by solving the dis-
cretized boundary value problem.
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Experimental data sets.
It is assumed thatνexp experimental data sets are available for the random obser-
vation vectorU. Each experimental data set corresponds to partial experimental
data (only some degrees of freedom of the nodal values of the displacement field
on Γ are observed) with a limited length (νexp is relatively small). Theseνexp

experimental data sets correspond to measurements ofνexp experimental config-
urations associated with the same boundary value problem. For configurationℓ,
with ℓ = 1, . . . , νexp, the observation vector (corresponding toU for the compu-
tational model) is denoted byuexp,ℓ and belongs toRNU . Therefore, the available
data are made up of theνexp vectorsuexp,1, . . . , uexp,νexp in RNU . It is assumed that
uexp,1, . . . , uexp,νexp correspond toνexp independent realizations of a random vector
Uexp defined on a probability space(Θexp, T exp,Pexp) and corresponding to ran-
dom observation vectorU of the stochastic computational model (random vectors
Uexp andU are not defined on the same probability space). It should be noted that
the experimental data do not correspond to a field measurement in Ω, but only to
a field measurement on the partΓ of the boundary∂Ω of domainΩ. This is the
reason why the experimental data are called ”partial”.

Statistical inverse problem to be solved.
The problem that must be solved is the identification of non-Gaussian matrix-
valued random field[K ], using the partial and limited experimental datauexp,1,
. . . , uexp,νexp relative to the random observation vectorU of the stochastic compu-
tational model and defined by Eq. (9).

7. Parametric Model-Based Representation for the Model Parameters and
Model Observations

As explained in the previous paragraph entitled ”What is a parametric model-
based representation for the statistical identification ofa random model parame-
ter from experimental data?, a parametric model-based representationU = B(Ξ,
[z]) must be constructed in order to be able to solve the statistical inverse problem
allowing random model parameter[K ] to be identified using the experimental data
sets. For that, it is needed to introduce

• a representation of the non-Gaussian positive-definite matrix-valued random
field [K ] that is expressed as a transformationG of a non-Gaussian second-order
symmetric matrix-valued random field[G], such that for allx in Ω, [K(x)] =
G([G(x)]), whereG is independent ofx (in fact, two types of representation are
proposed),
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• a truncated reduced representation of random field[G],
• a parameterized representation for non-Gaussian random field [K ],
• the parametric model-based representationU = B(Ξ, [z]).

Introduction a class of lower-bounded random fields for[K ] and normaliza-
tion.
In order to normalize random field[K ], a deterministic functionx 7→ [K(x)]
from Ω into M+

n (R) is introduced such that, for allx in Ω and for allz in Rn,
< [K(x)] z , z > ≥ k 0‖z‖2 and< [K(x)] z , z > ≤ k 1‖z‖2 in which k 0 andk 1

are positive real constants, independent ofx, such that0 < k 0 < k 1 < +∞.
These two technical inequalities correspond to the mathematical hypotheses that
are required for obtaining a uniform deterministic elliptic operator whose coeffi-
cient is[K].

We introduce the following class of non-Gaussian positive-definite matrix-
valued random fields[K ], which admit a positive-definite matrix-valued lower
bound, defined by

[K (x)] =
1

1 + ε
[L(x)]T {ε[In] + [K 0(x)]} [L(x)] , ∀ x ∈ Ω , (11)

in which ε > 0 is any fixed positive real number, where[L(x)] is the upper
triangular (n × n) real matrix such that[K(x)] = [L(x)]T [L(x)], and where
[K0] = {[K 0(x)], x ∈ Ω} is any random field indexed byΩ, with values inM+

n (R).
Equation (11) can be inverted,

[K 0(x)] = (1 + ε)[L(x)]−T [K(x)] [L(x)]−1 − ε [In] , ∀ x ∈ Ω . (12)

We have the following important properties for the class defined.
• Random field[K ] is effectively with values inM+

n (R). For all x fixed in
Ω, the lower bound is the matrix belonging toM+

n (R) defined by[Kε(x)] =
ε

1+ε
[K(x)], and for all random matrix[K0(x)] with values inM+

n (R), [K (x)] de-
fined by Eq. (12), is a random matrix with values in a subset ofM+

n (R) such that
[K(x)] ≥ [Kε(x)] almost surely.

• For all integerp ≥ 1, {[K(x)]−1, x ∈ Ω} is a p-order random field with
values inM+

n (R), i.e., for all x in Ω, E{‖[K(x)]−1‖pF} < +∞ and, in particular,
is a second-order random field.

• If [K 0] is a second-order random field,i.e., for all x in Ω, E{‖K 0(x)‖2F} <
+∞, then[K ] is a second-order random field,i.e., for all x in Ω, E{‖K(x)‖2F} <
+∞.
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• If function [K] is chosen as the mean function of random field[K ], i.e.
[K(x)] = E{[K(x)]} for all x, thenE{[K0(x)]} is equal to[In], what shows that
random field[K 0] is normalized.

• The class of random fields defined by Eq. (11) yields a uniform stochastic
elliptic operatorDx that allows for studying the existence and uniqueness of a
second-order random solution of a stochastic boundary value problem involving
Dx.

Construction of the nonlinear transformation G.
Two types of representation of random field[K 0] is proposed hereinafter: An
”exponential-type representation” and a ”square-type representation”.

� Exponential-type representation of random field[K0].
For all second-order random field[G] = {[G(x)], x ∈ Ω} with values inMS

n(R),
which is not assumed to be Gaussian, the random field[K 0] defined by

[K 0(x)] = expM([G(x)]) , ∀x ∈ Ω , (13)

in which expM denotes the exponential of symmetric square real matrices,is a
random field with values inM+

n (R). If [K 0] is any random field with values in
M+

n (R), then there exists a unique random field[G] with values inMS
n(R) such

that
[G(x)] = logM([K 0(x)]) , ∀x ∈ Ω , (14)

in which logM is the reciprocity mapping ofexpM, which is defined onM+
n (R)

with values inMS
n(R), but in general, random field[G] is not a second-order ran-

dom field. If [G] is any second-order random field with values inM+
n (R), in

general, the random field[K 0] = expM([G]) is not a second-order random field.
Nevertheless, it can be proved that, if[K 0] and [K 0]

−1 are second-order random
fields with values inM+

n (R), then there exists a second-order random field[G]
with values inMS

n(R) such that[K0] = expM([G]).

� Square-type representation of random field[K0].
Let g 7→ h(g; a) be a given function fromR in R

+, depending on one positive real
parametera. For all fixeda, it is assumed that:

(i) h(.; a) is a strictly monotonically increasing function onR, which means
thath(g; a) <

h(g′; a) if −∞ < g < g′ < +∞;
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(ii) there are real numbers0 < ch < +∞ and0 < ca < +∞, such that, for all
g in R, we

haveh(g; a) ≤ ca + ch g
2.

The introduced hypotheses imply that, for alla > 0, g 7→ h(g; a) is a one-to-
one mapping fromR ontoR+ and consequently, the reciprocity mapping,v 7→
h−1(v; a), is a strictly monotonically increasing function fromR+ ontoR. The
square type representation of random field[K 0], indexed byΩ, with values in
M

+
n (R), is defined by

[K0(x)] = L([G(x)]) , ∀x ∈ Ω , (15)

in which [G] = {[G(x)], x ∈ Ω} is a second-order random field with values in
MS

n(R) and where[G] 7→ L([G]) is a measurable mapping fromMS
n(R) into

M+
n (R) which is defined as follows. The matrix[K0] = L([G]) ∈ M+

n (R) is
written as[K0] = [L]T [L] in which [L] belongs toMU

n (R), which is written as
[L] = L([G]) where[G] 7→ L([G]) is the measurable mapping fromMS

n(R) into
MU

n (R) defined by

[L([G])]jk = [G]jk , 1 ≤ j < k ≤ n , [L([G])]jj =
√

h([G]jj; aj) , 1 ≤ j ≤ n ,

(16)
in whicha1, . . . , an are positive real numbers. If[K0] is any random field indexed
by Ω with values inM+

n (R), then there exists a unique random field[G] with
values inMS

n(R) such that

[G(x)] = L
−1([K 0(x)]) , ∀x ∈ Ω , (17)

in whichL−1 is the reciprocity function ofL, fromM+
n (R) into MS

n(R), which is
explicitly defined as follows. For all1 ≤ j ≤ k ≤ n,

[G(x)]jk = [L−1([L (x)])]jk , [G(x)]kj = [G(x)]jk , (18)

in which [L] 7→ L−1([L]) is the unique reciprocity mapping ofL (due to the
existence ofv 7→ h−1(v; a)) defined onMU

n (R), and where[L (x)] follows from the
Cholesky factorization of random matrix[K 0(x)] = [L (x)]T [L (x)] (see Eq. (15)).
Example of functionh. An example of such a function is given in ”An alge-
braic prior stochastic model[KAPSM] for the case of anisotropic statistical fluc-
tuations” of the present Section. Nevertheless, for the sake of clarity, we de-
tail it hereinafter. Leth = hAPSM be the functionhAPSM defined in [58] as fol-
lows. Let bes = δ/

√
n + 1 in which δ is a parameter such that0 < δ <
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√
(n + 1)/(n− 1) and which allows the statistical fluctuations level to be con-

trolled. Let beaj = 1/(2 s2)+(1−j)/2 > 0 andhAPSM(g; a) = 2 s2 F−1
Γa

(FW (g/s))

with FW (w̃) =
∫ w̃

−∞
1√
2π

exp(−1
2
w2) dw andF−1

Γa
(u) = γ the reciprocal function

such thatFΓa
(γ) = u with FΓa

(γ) =
∫ γ

0
1

Γ(a)
ta−1 e−t dt andΓ(a) =

∫ +∞
0

ta−1 e−t

dt. Then, for allj = 1, . . . , n, it can be proved thatg 7→ hAPSM(g; aj) is a strictly
monotonically increasing function fromR intoR+ and there are positive real num-
bersch andcaj such that, for allg in R, we havehAPSM(g; aj) ≤ caj +ch g

2. In addi-
tion, it can easily be seen that the reciprocity function is written ashAPSM−1(v; a) =
s F−1

W (FΓa
(v/(2s2)).

� Construction of the transformationG and its inverseG−1.
For theexponential-type representation, the transformationG is defined by Eq. (11)
with Eq. (13), and its inverseG−1 is defined by Eq. (14) with Eq. (12), and are such
that, for allx in Ω,

[K(x)] = G([G(x)]) :=
1

1 + ε
[L(x)]T {ε[ In] + expM([G(x)])} [L(x)] , (19)

[G(x)] = G−1([K(x)]) := logM{ (1+ε)[L(x)]−T [K (x)] [L(x)]−1−ε [In] } . (20)

For thesquare-type representation, the transformationG is defined by Eq. (11)
with Eq. (15), and its inverseG−1 is defined by Eq. (17) with Eq. (12), and are
such that, for allx in Ω,

[K (x)] = G([G(x)]) :=
1

1 + ε
[L(x)]T {ε[ In] + [L([G(x)])]T [L([G(x)])]} [L(x)] ,

(21)
[G(x)] = G−1([K(x)]) := L

−1{ (1 + ε)[L(x)]−T [K (x)] [L(x)]−1 − ε [In] } . (22)

Let M+b
n (R) be the subset ofM+

n (R), constituted of all the positive-definite ma-
trices[K] such that, for allx in Ω, the matrix[K]− [Kε(x)] > 0. Transformation
G mapsMS

n(R) intoM+b
n (R) ⊂ M+

n (R), andG−1 mapsM+b
n (R) intoMS

n(R).

Truncated reduced representation of second-order random field [G] and its
polynomial chaos expansion
Two versions of the nonlinear transformationG from MS

n(R) into M+
n (R) are de-

fined by Eqs. (19) and (21). For the statistical inverse problem, [G] is chosen in
the class of the second-order random field indexed byΩ with values inMS

n(R), is
reduced using its truncated Karhunen-Loève decomposition in which the random
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coordinates are represented using a truncated polynomial Gaussian chaos. Conse-
quently, the approximation[G(m,N,Ng)] of the non-Gaussian second-order random
field [G] is introduced such that

[G(m,N,Ng)(x)] = [G0(x)] +
m∑

i=1

√
λi [Gi(x)] ηi , (23)

ηi =

N∑

j=1

yji Ψj(Ξ) , (24)

in which
• λ1 ≥ . . . ≥ λm > 0 are the dominant eigenvalues and[G1], . . . , [Gm] are

the corresponding orthonormal eigenfunctions of the covariance operator CovG of
random field[G]. The kernel of this covariance operator is the tensor-valued cross-
covariance functionCG(x, x′) of [G], which is assumed to be square integrable on
Ω× Ω,

• {Ψj}Nj=1 only depends on a random vectorΞ = (Ξ1, . . . ,ΞNg
) of Ng ≤

m independent normalized Gaussian random variablesΞ1, . . . ,ΞNg
defined on

probability space(Θ, T ,P),
• {Ψj}Nj=1 are the polynomial Gaussian chaos that are written asΨj(Ξ) =

Φα1(Ξ1)×. . .×ΦαNg
(ΞNg

), in whichj is the index associated with the multi-index
α = (α1, . . . , αNg

) in NNg , the degree ofΨj(Ξ) isα1+ . . .+αNg
≤ Nd and where

Φαk
(Ξk) is the normalized univariate Hermite polynomial onR. Consequently,

{Ψj}Nj=1 are composed of the normalized multivariate Hermite polynomials such
thatE{Ψj(Ξ) Ψj′(Ξ)} = δjj′,

• the constant Hermite polynomialΨ0(Ξ) = 1with indexj = 0 (corresponding
to the zero multi-index(0, . . . , 0)) is not included in Eq. (24). Consequently, the
integerN is such thatN = (Nd +Ng)! /(Nd!Ng!)− 1 whereNd is the maximum
degree of the normalized multivariate Hermite polynomials,

• yji are the coefficients that are supposed to verify
∑N

j=1 y
j
i y

j
i′ = δii′ , which

ensures that the random variables,{ηi}mi=1, are uncorrelated centered random vari-
ables with unit variance, which means thatE{ηiηi′} = δii′. The relation between
the coefficients can be rewritten as

[z]T [z] = [Im] , (25)

in which [z] ∈ MN,m(R) is such that

[z]ji = yji , 1 ≤ i ≤ m , 1 ≤ j ≤ N . (26)
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Introducing the random vectorsη = (η1, . . . , ηm) andΨ(Ξ) = (Ψ1(Ξ), . . . ,
ΨN(Ξ)), Eq. (24) can be rewritten as

η = [z]T Ψ(Ξ) . (27)

Equation (25) means that[z] belongs to the compact Stiefel manifold

Vm(R
N) =

{
[z] ∈ MN,m(R) ; [z]

T [z] = [Im]
}
. (28)

Parameterization of compact Stiefel manifoldVm(R
N)

A parametrization ofVm(R
N) defined by Eq. (28) is given hereinafter. For all[z0]

fixed inVm(R
N), letT[z0] be the tangent vector space toVm(R

N) at [z0]. The ob-
jective is to construct a mapping[w] 7→ [z] = R[z0]([w]) from T[z0] ontoVm(R

N)
such thatR[z0]([0]) = [z0], and such that, if[w] belongs to a subset ofT[z0], this
subset being centered in[w] = [0] and having a sufficiently small diameter, then
[z] = R[z0]([w]) belongs to a subset ofVm(R

N), approximatively centered in
[z] = [z0]. There are several possibilities for constructing such a parameterization
(see for instance [19; 1]). For instance, a parameterization can be constructed as
described in [48] using the geometry of algorithms with orthogonality constraints
[19]. Hereinafter, we present the construction proposed in[1] for which the algo-
rithm has a small complexity with respect to the other possible possibilities. Let
us assume thatN > m that is generally the case. For[z0] fixed inVm(R

N), the
mappingR[z0] is defined by

[z] = R[z0]([w]) := qr([z0] + σ [w]]) , [w] ∈ T[z0] , (29)

in which qr is the mapping that corresponds to the QR economy-size decomposi-
tion of matrix [z0] + σ [w], for which only the firstm columns of matrix[q] such
that [z0] + σ [w] = [q] [r] are computed and such that[z]T [z] = [Im]. In Eq. (29),
σ allows the diameter of the subset ofT[z0] centered in[0] to be controlled.

Parameterized representation for non-gaussian random field [K ]
Let {[G(m,N,Ng)(x)], x ∈ Ω} be defined by Eqs. (23) and (24), and letG be de-
fined by Eq. (19) for theexponential-type representation, and by Eq. (21) for the
square-type representation. The corresponding parameterized representation for
non-Gaussian positive-definite matrix-valued random field{[K(x)], x ∈ Ω} is de-
noted by{[K (m,N,Ng)(x)], x ∈ Ω} and is rewritten, for allx in Ω, as

[K (m,N,Ng)(x)] = K(m,N,Ng)(x,Ξ, [z]) , (30)
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in which (x, ξ, [z]) 7→ K(m,N,Ng)(x, ξ, [z]) is a deterministic mapping defined on
Ω× RNg × Vm(R

N) with values inM+
n (R) such that

K(m,N,Ng)(x, ξ, [z]) = G( [G0(x)] +
m∑

i=1

√
λi [Gi(x)] {[z]T Ψ(ξ)}i ) . (31)

Parametric model-based representation of random observation model U
From Eqs. (9) and (30), the parametric model-based representation of random
model observationU with values inRNU , corresponding to the representation
{[K (m,N,Ng)(x)], x ∈ Ω} of random field{[K(x)], x ∈ Ω}, is denoted byU(m,N,Ng)

and is written as
U(m,N,Ng) = B(m,N,Ng)(Ξ, [z]) , (32)

in which(ξ, [z]) 7→ B(m,N,Ng)(ξ, [z]) is a deterministic mapping defined onRNg ×
Vm(R

N) with values inRNU such that

B(m,N,Ng)(ξ, [z]) = h(K(m,N,Ng)(x1, ξ, [z]) , . . . ,K(m,N,Ng)(xNp, ξ, [z]) ) . (33)

For Np fixed, the sequence{U(m,N,Ng)}m,N,Ng
of RNU -valued random variables

converge toU in L2
NU

.

8. Methodology for Solving the Statistical Inverse Problemin High Stochas-
tic Dimension

A general methodology is presented for solving the statistical inverse problem
defined in the previous section entitled ”Setting the Statistical Inverse Problem to
Be Solved in High Stochastic Dimension”. The steps of the identification proce-
dure are defined hereinafter.

Step 1: Introduction of a family {[K APSM(x; s)], x ∈ Ω} of algebraic prior
stochastic models (APSM) for non-Gaussian random field[K ].
The first step consists in introducing a family{[K APSM(x; s)], x ∈ Ω} of algebraic
prior stochastic models (APSM) for the non-Gaussian second-order random field
[K ], defined on(Θ, T ,P), indexed byΩ, with values inM+

n (R), which has been
introduced in the previous paragraph entitled ”Stochastic elliptic operator and
boundary value problem”. This family depends on an unknown hyperparameters
belonging to an admissible setCs that is a subset ofRNs , for which the dimension,
Ns, is assumed to be relatively small, while the stochastic dimension of[K APSM] is
high. For instance,s can be made up of the mean function, a matrix-valued lower
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bound, some spatial-correlation lengths, some parameterscontrolling the statisti-
cal fluctuations and the shape of the tensor-valued correlation function. Forsfixed
in Cs, the probability distribution (i.e. the system of marginal probability distri-
butions) of random field[K APSM] and the corresponding generator of independent
realizations are assumed to have been constructed and consequently, are assumed
to be known.

An example of such a construction is explicitly given in the next section enti-
tled ”Construction of a Family of Algebraic Prior Stochastic Models”.

As it has been explained in the previous paragraph entitled ”Algebraic prior
stochastic models of the model parameters of BVP” of Section ”Brief History”,
Step 1 is a fundamental step of the methodology. The real capability to correctly
solve the statistical inverse problem in high stochastic dimension is directly re-
lated to the pertinence and to the quality of the constructedAPSM that allows
for enriching the information in order to overcome the lack of experimental data
(only partial experimental data are assumed to be available). Such a construc-
tion must be carried out using the MaxEnt principle of Information Theory, under
the constraints defined by the available information such asthe symmetries, the
positiveness, the invertibility in mean square, the boundedness, the capability of
the APSM to exhibit simultaneously anisotropic statistical fluctuations and some
statistical fluctuations in a given symmetry class such as isotropic, cubic, trans-
versely isotropic, orthotropic, etc. In addition, the corresponding generators of
realizations must be developed. For the MaxEnt principle and the construction of
generators, we refer the reader to Section ”Random Matrix Models and nonpara-
metric Method for Uncertainty Quantification” in part II of the presentHandbook
on Uncertainty Quantification.

Step 2: Identification of an optimal algebraic prior stochastic model (OAPSM)
for non-Gaussian random field[K ].
The second step consists in identifying an optimal valuesopt in Cs of hyperparame-
tersusing experimental data setsuexp,1, . . . , uexp,νexp relative to the random model
observationU of the stochastic computational model, which is written, taking into
account Eq. (9), as

U = h([K APSM(x1; s)], . . . , [K APSM(xNp ; s)]) . , (34)

The calculation ofsopt in Cs can be carried out by using the maximum likelihood
method:

sopt = arg max
s∈Cs

νexp∑

ℓ=1

log pU(uexp,ℓ; s) , (35)
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in whichpU(uexp,ℓ; s) is the value, inu = uexp,ℓ, of the probability density function
pU(u; s) of the random vectorU defined by Eq. (34) and depending ons. The
optimal algebraic prior model{[K OAPSM(x)], x ∈ Ω} := {[K APSM(x; sopt)], x ∈ Ω}
is then obtained. Using the generator of realizations of theoptimal APSM,νKL

independent realizations[K(1)], . . . , [K(νKL )] can be computed such that, forℓ =
1, . . . , νKL andθℓ ∈ Θ, the deterministic field[K(ℓ)] := {[K(ℓ](x)], x ∈ Ω} is such
that

[K(ℓ)] = {[K OAPSM(x; θℓ)], x ∈ Ω} . (36)

These realizations can be generated at pointsx1, . . . , xNp (or at any other points),
with νKL as large as it is desired without inducing a significant computational cost.

Step 3: Choice of an adapted representation for non-Gaussian random field
[K ] and optimal algebraic prior stochastic model for non-Gaussian random
field [G].
For a fixed choice of the type of representation for random field [K ] given by
Eq. (19) (exponential type) or (21) (square type), the corresponding optimal alge-
braic prior model{[GOAPSM(x)], x ∈ Ω} of random field{[G(x)], x ∈ Ω} is written
as

[GOAPSM(x)] = G−1([K OAPSM(x)]) , ∀x ∈ Ω , (37)

in whichG−1 is defined by Eq. (20) (exponential type) or by Eq. (22) (square type).
It is assumed that random field[GOAPSM] is a second-order random field. From
theνKL independent realizations[K(1)], . . . , [K(νKL )] of random field[K OAPSM] (see
Eq. (36)), it can be deduced theνKL independent realizations[G(1)], . . . , [G(νKL )]
of random field[GOAPSM] such that,

[G(ℓ)(x)] = G−1([K(ℓ)(x)]) , ∀x ∈ Ω , ℓ = 1, . . . , νKL . (38)

Step 4: Construction of a truncated reduced representationof second-order
random field [GOAPSM].
TheνKL independent realizations[G(1)], . . . , [G(νKL )] of random field[GOAPSM] (com-
puted with Eq. (38)) are used to calculate, for random field[GOAPSM], an estimation,
[G0], of the mean function and an estimation, CovGOAPSM, of the covariance operator
whose kernel is the tensor-valued cross-covariance functionCGOAPSM(x, x′) that is
assumed to be square integrable onΩ × Ω. The firstm eigenvaluesλ1 ≥ . . . ≥
λm and the corresponding orthonormal eigenfunctions[G1], . . . , [Gm] of covari-
ance operator CovGOAPSM are then computed. For a given convergence tolerance,
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the optimal value ofm is calculated, and the truncated reduced representation
{[GOAPSM(m)(x)], x ∈ Ω} of the second-order random field{[GOAPSM(x)], x ∈ Ω} is
written (see Eq. (23)) as

[GOAPSM(m)(x)] = [G0(x)] +
m∑

i=1

√
λi [Gi(x)] ηOAPSM

i , ∀x ∈ Ω . (39)

Using theνKL independent realizations[G(1)], . . . , [G(νKL )] of random field[GOAPSM]
calculated with Eq. (38),νKL independent realizationsη(1), . . . ,η(νKL ) of the ran-
dom vectorηOAPSM = (ηOAPSM

1 , . . . , ηOAPSM
m ) are calculated, fori = 1, . . . , m and for

ℓ = 1, . . . , νKL , by

η
(ℓ)
i =

1√
λi

∫

Ω

≪ [G(ℓ)(x)]− [G0(x)] , [Gi(x] ≫ dx . (40)

Step 5: Construction of a truncated polynomial chaos expansion of ηOAPSM and
representation of random field [K OAPSM].
Using independent realizationsη(1), . . . ,η(νKL ) of random vectorηOAPSM (see
Eq. (40)), this step consists in constructing the approximation ηchaos(Nd, Ng) =
(ηchaos

1 (Nd, Ng), . . . , η
chaos
m (Nd, Ng)) of ηOAPSM using Eq. (27), for which the matrix

[z] in MN,m(R) of the coefficients verifies[z]T [z] = [Im],

ηOAPSM ≃ ηchaos(Nd, Ng) , ηchaos(Nd, Ng) = [z]T Ψ(Ξ) , (41)

in which the integerN is defined by

N = h(Nd, Ng) := (Nd +Ng)! /(Nd!Ng!)− 1 , (42)

where the integerNd is the maximum degree of the normalized multivariate Her-
mite polynomials andNg the dimension of random vectorΞ. In Eq. (41)), the
symbol ”≃” means that the mean-square convergence is reached forNd andNg

(with Ng ≤ m) sufficiently large.

� Identification of an optimal value[z0(Nd, Ng)] of [z] for a fixed value ofNd

andNg.
For a fixed value ofNd andNg such thatNd ≥ 1 and1 ≤ Ng ≤ m, the identifica-
tion of [z] is performed using the maximum likelihood method. The log-likelihood
function is written as

L([z]) =
νKL∑

ℓ=1

log pηchaos(Nd,Ng)(η
(ℓ) ; [z]) , (43)
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and the optimal value[z0(Nd, Ng)] of [z] is given by

[z0(Nd, Ng)] = arg max
[z]∈Vm(RN )

L([z]) , (44)

in whichVm(R
N) is defined by Eq. (28).

(i) For [z] fixed inVm(R
N), the probability density functione 7→ pηchaos(Nd,Ng)(e; [z])

of random variableηchaos(Nd, Ng) is estimated by the multidimensional kernel
density estimation method usingνchaos independent realizationsηchaos(1), . . . . . . ,
ηchaos(νchaos) of random vectorηchaos(Nd, Ng), which are such thatηchaos(ℓ) =
[z]T Ψ(Ξ(ℓ)) in whichΞ

(1), . . . ,Ξ(νchaos) areνchaosindependent realizations ofΞ.
(ii) For the high-dimension case,i.e. for m × N very large, the optimization
problem defined by Eq. (44) must be solved with adapted and robust algorithms:
• The first one is required for generating the independent realizationsΨj(Ξ

(ℓ)) of
Ψj(Ξ) in preserving the orthogonality condition for any high values ofNg and
Nd. An efficient algorithm is presented hereinafter.
• The second one requires an advanced algorithm to optimize the trials for solv-
ing the high-dimension optimization problem defined by Eq. (44), the constraint
[z]T [z] = [Im] being automatically and exactly satisfied as described in [62].

� Efficient algorithm for generating realizations of the multivariate polynomial
chaos in high dimension and for an arbitrary probability measure.
Let Ψ(Ξ) = (Ψ1(Ξ), . . . ,ΨN(Ξ)) be theRN -valued random vector in which
{Ψj(Ξ)}Nj=1 are the normalized multivariate Hermite polynomials. The objective
is to compute the(N × νchaos) real matrix[Ψ] = [Ψ(Ξ(1)) . . .Ψ(Ξ(νchaos))],

[Ψ] =



Ψ1(Ξ

(1)) . . . Ψ1(Ξ
(νchaos))

· . . . ·
ΨN(Ξ

(1)) . . . ΨN(Ξ
(νchaos))


 , (45)

of theνchaos independent realizationsΨ(Ξ(1)), . . . ,Ψ(Ξ(νchaos)), in preserving the
orthogonality properties

lim
νchaos→+∞

1

νchaos

[Ψ] [Ψ]T = [IN ] . (46)

It should be noted that the algorithm, which is used for the Gaussian chaosΨj(Ξ) =
Φα1(Ξ1) × . . . × ΦαNg

(ΞNg
) for j = 1, . . . , N , can also be used for an arbitrary

non separable probability distributionpΞ(ξ) dξ onRNg without any modification,
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but in such a case, the multivariate polynomials{Ψj(Ξ)}Nj=1, which verify the or-
thogonality property,E{Ψj(Ξ) Ψj′(Ξ)} =

∫
R
Ng Ψj(ξ) Ψj′(ξ) pΞ(ξ) dξ = δjj′,

are not written as a tensorial product of univariate polynomials (we have not
Ψj(Ξ) = Φα1(Ξ1) × . . . × ΦαNg

(ΞNg
)). It has been proved in [63] that, for the

usual probability measure, the use of the explicit algebraic formula (constructed
with a symbolic Toolbox) or the use of the computational recurrence relation with
respect to the degree, induces important numerical noise and the orthogonality
property is lost. In addition, if a global orthogonalization was done to correct this
loss of orthogonality, then the independence of the realizations would be lost. A
robust computational method has been proposed in [63; 49] topreserve the or-
thogonality properties and the independence of the realizations. The two main
steps are the following.
(i) Using a generator of independent realizations ofΞ whose probability dis-
tribution is pΞ(ξ) dξ, the realizationsMj(Ξ

(1)), . . . ,Mj(Ξ
(νchaos)) of the mul-

tivariate monomialsMj(Ξ) = Ξj1
1 × . . . × Ξ

jNg

Ng
are computed, in whichj =

1, . . . , N is the index associated with the multi-index(j1, . . . , jNg
). LetM(Ξ) =

(M1(Ξ), . . . ,MN(Ξ)) be theRN -valued random variable and let[M ] be the
(N × νchaos) real matrix such that

[M ] = [M(Ξ(1)) . . .M(Ξ(νchaos))] =



M1(Ξ

(1)) . . . M1(Ξ
(νchaos))

· . . . ·
MN(Ξ

(1)) . . . MN(Ξ
(νchaos))


 .

(47)
(ii) An orthogonalization of the realizations of the multivariate monomials is car-
ried out using an algorithm (that is different from the Gram-Schmidt orthogo-
nalization algorithm, which is not stable in high dimension) based on the fact
that: (a) the matrix[Ψ], defined by Eq. (45), can be written as[Ψ] = [A] [M ]
in which [A] is an invertible(N × N) real matrix and where[M ] is defined by
Eq. (47), and (b) the matrix[R ] = E{M(Ξ)M(Ξ)T} is written as[R ] =
limνchaos→+∞

1
νchaos

[M ] [M ]T = [A]−1[A]−T . The algorithm is summarized as fol-
lows:

• Computing matrix[M ] and then[R ] ≃ 1
νchaos

[M ] [M ]T for νchaossufficiently
high.

• Computing[A]−T that corresponds to the Cholesky decomposition of[R ].
• Computing the lower triangular matrix[A].
• Computing[Ψ] = [A] [M ].

� Identification of truncation parametersNd andNg.
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The quantification of the mean-square convergence ofηchaos(Nd, Ng) = [z0(Nd,
Ng)]

T
Ψ(Ξ) towardsηOAPSM with respect toNd andNg, in which [z0(Nd, Ng)] is

given by Eq. (44), is carried out using theL1-log error function introduced in
[62], which allows for measuring the errors of the small values of the probability
density function (the tails of the pdf).
(i) For a fixed value ofNd ≤ m andNg, and fori = 1, . . . , m:
• Let e 7→ pηOAPSM

i
(e) be the pdf of random variableηOAPSM

i , which is estimated
with the one-dimensional kernel density estimation methodusing the independent
realizationsη(1), . . . ,η(νKL ) of the random vectorηOAPSM.
• Let e 7→ pηchaos

i (Nd,Ng)
(e ; [z0(Nd, Ng)]) be the pdf of random variableηchaos

i (Nd,

Ng), which is estimated with the one-dimensional kernel density estimation method
usingνchaos independent realizations,ηchaos(1)(Nd, Ng), . . . ,η

chaos(νchaos)(Nd, Ng),
of random vectorηchaos(Nd, Ng), which are such thatηchaos(ℓ)(Nd, Ng) = [z0(Nd,
Ng)]

T
Ψ(Ξ(ℓ)) in whichΞ(1), . . . ,Ξ(νchaos) areνchaosindependent realizations ofΞ.

• TheL1-log error is introduced as described in [62]:

erri(Nd, Ng) =

∫

BIi

| log10 pηOAPSM
i

(e)− log10 pηchaos
i (Nd,Ng)

(e ; [z0(Nd, Ng)])| de ,
(48)

in which BIi is a bounded interval of the real line, which is defined as the support
of the one-dimensional kernel density estimator of random variableηOAPSM

i , and
which is then adapted to independent realizationsη(1), . . . ,η(νKL ) of ηOAPSM.
(ii) For random vectorηchaos(Nd, Ng), theL1-log error function is denoted by
err(Nd, Ng) and is defined by

err(Ng, Nd) =
1

m

m∑

i=1

erri(Nd, Ng) . (49)

(iii) The optimal valuesN opt
d andN opt

g of the truncation parametersNd andNg are
determined for minimizing the error function err(Nd, Ng) in taking into account
the admissible set for the values ofNd andNg as described in [49]. LetCNd,Ng

be
the admissible set for the values ofNd andNg, which is defined by

CNd,Ng
= {(Nd, Ng) ∈ N

2 | Ng ≤ m, (Nd +Ng)! /(Nd!Ng!)− 1 ≥ m} .

It should be noted the more the values ofNd andNg are high, the bigger is the
matrix [z0(Nd, Ng)], and thus, the more difficult it is to perform the numerical
identification. Rather than directly minimizing error function err(Nd, Ng), it is
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more accurate to search for the optimal values ofNd andNg that minimize the di-
mension of the projection basis,(Nd+Ng)! /(Nd!Ng!). For a given error threshold
ε, we then introduce the admissible setCε such that

Cε = {(Nd, Ng) ∈ CNd,Ng
| err(Ng, Nd) ≤ ε} ,

and the optimal valuesN opt
d andN opt

g are given as the solution of the optimization
problem,

(N opt
d , N opt

g ) = arg min
(Nd,Ng)∈Cε

(Nd +Ng)! /(Nd!Ng!) , N opt = h(N opt
d , N opt

g ) .

� Changing the notation.
Until the end of Step 5 and in Step 6 and Step 7, in order to simplify the notations,
N opt

d , N opt
g , N opt, and[z0(N

opt
d , N opt

g )] are simply rewritten asNd, Ng, N , and[z0].

� Representation of random field[K OAPSM].
It can then be deduced that the optimal representation{[K OAPSM(m,N,Ng)(x)], x ∈
Ω} of random field{[K OAPSM(x)], x ∈ Ω} is written as

[K OAPSM(m,N,Ng)(x)] = K(m,N,Ng)(x,Ξ, [z0]) , ∀x ∈ Ω , (50)

in whichK(m,N,Ng)(x,Ξ, [z0]) is defined by Eq. (30) withNd = N opt
d , Ng = N opt

g ,
and[z] = [z0(N

opt
d , N opt

g ]).

Step 6: Identification of the prior stochastic model[Kprior] of [K ] in the general
class of the non-Gaussian random fields.
This step consists in identifying the prior stochastic model {[Kprior(x)], x ∈ Ω}
of {[K (x)], x ∈ Ω}, using the maximum likelihood method and the experimental
data setsuexp,1, . . . , uexp,νexp relative to the random model observationU of the
stochastic computational model (see Eq. (9)) and using the parametric model-
based representation of random observation modelU (see Eq. (32)). We thus have
to identify the value[zprior] in Vm(R

Nopt
) of [z] such that

[zprior] = arg max
[z]∈Vm(RN )

νexp∑

ℓ=1

log pU(m,N,Ng)(uexp,ℓ; [z]) , (51)

in whichpU(m,N,Ng)(uexp,ℓ; [z]) is the value, inu = uexp,ℓ, of the pdfpU(m,N,Ng)(u; [z])
of the random vectorU(m,N,Ng) given (see Eq. (32)) by

U(m,N,Ng) = B(m,N,Ng)(Ξ, [z]) , (52)

30



where (ξ, [z]) 7→ B(m,N,Ng)(ξ, [z]) is the deterministic mapping fromRNg ×
Vm(R

N) into RNU defined by Eq. (33) with Eq. (31) in which[G0(x)], λi, and
[Gi(x)], for i = 1, ..., m, are the quantities computed in Step 4.
(i) For [z] fixed inVm(R

N), pdfu 7→ pU(m,N,Ng)(u; [z]) of random variableU(m,N,Ng)

is estimated by the multidimensional kernel density estimation method usingνchaos

independent realizationsΞ(1), . . . ,Ξ(νchaos) of Ξ.
(ii) Let us assume thatN > m is generally the case. The parameterization
[z] = R[z0]([w]) defined by Eq. (29) is used for exploring, with a random search
algorithm, the subset ofVm(R

N), centered in[z0] := [z0(Nd, Ng)] ∈ Vm(R
N)

computed in Step 5. The optimization problem defined by Eq. (51) is replaced by
[zprior] = R[z0]([w

prior]) with

[wprior] = arg max
[w]∈T[z0]

νexp∑

ℓ=1

log pU(m,N,Ng)(uexp,ℓ;R[z0]([w])) . (53)

For solving the high-dimension optimization problem defined by Eq. (53), a ran-
dom search algorithm is used for which[w] is modeled by a random matrix
[W] = ProjT[z0]

([Λ]) with values inT[z0], which is the projection onT[z0] of a ran-
dom matrix[Λ] with values inMN,m(R) whose entries are independent normal-
ized Gaussian real-valued random variables,i.e.E{[Λ]ji} = 0 andE{[Λ]2ji} = 1.
The positive parameterσ introduced in Eq. (29) allows for controlling the ”di-
ameter” of the subset (centered in[z0]) that is explored by the random search
algorithm.
(iii) The representation of the prior stochastic model{[K prior (m,N,Ng)(x)], x ∈ Ω}
of random field{[K(x)], x ∈ Ω} is given by Eqs. (30) and (31) that are rewritten
as

[Kprior (m,N,Ng)(x)] = K(m,N,Ng)(x,Ξ, [zprior]) , ∀x ∈ Ω , (54)

in which [zprior] is given by Eq. (51) and whereK(m,N,Ng)(x, ξ, [zprior]) is defined
by Eq.(31) with[z] = [zprior].

Step 7: Identification of a posterior stochastic model[Kpost] of [K ].
(i) A posterior stochastic model{[K post(x)], x ∈ Ω} of random field{[K (x)], x ∈
Ω} can be constructed using the Bayesian method. In such a framework, the
coefficients[z] of the polynomial chaos expansionηchaos(Nd, Ng) = [z]T Ψ(Ξ)
(see Eq. (41)) are modeled by a random matrix[Z] (see [61]) as proposed in [64]
and consequently,[z] is modeled by aVm(R

N)-valued random variable[Z]. The
prior model[Zprior] of [Z] is chosen as

[Zprior] = R[zprior]([Wprior]) , (55)
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in which R[zprior] is the mapping defined by Eq. (29), where[zprior] has been cal-
culated in Step 6, and where[Wprior] = ProjT[zprior]

([Λprior]) is a random matrix

with values inT[zprior], which is the projection onT[zprior] of a random matrix[Λprior]
with values inMN,m(R) whose entries are independent normalized Gaussian real-
valued random variables,i.e. E{[Λ]ji} = 0 andE{[Λ]2ji} = 1. For a suffi-

ciently small value ofσ, the statistical fluctuations of theVm(R
Nopt

)-valued ran-
dom matrix [Zprior] are approximatively centered around[zprior]. The Bayesian
update allows the posterior distribution of the random matrix [Wpost] with values
in T[zprior] to be estimated using the stochastic solutionU(m,N,Ng) = B(m,N,Ng)(Ξ,
R[zprior]([W

prior])) and the experimental data setuexp,1, . . . , uexp,νexp.
(ii) The representation of the posterior stochastic model{[Kpost(m,N,Ng)(x)], x ∈
Ω} of random field{[K(x)], x ∈ Ω} is given by Eqs. (30) and (31) that are rewrit-
ten as

[K post(m,N,Ng)(x)] = K(m,N,Ng)(x,Ξ,R[zprior]([W
post])) , ∀x ∈ Ω , (56)

in whichK(m,Nopt,N
opt
g ) is defined by Eq. (31).

(iii) Once the probability distribution of[Wpost] has been estimated by Step 7,
νKL independent realizations can be calculated for the random field [Gpost(x)] =
[G0(x)]+

∑m
i=1

√
σi [Gi(x)] η

post
i in whichηpost= [Zpost]T Ψ(Ξ) and where[Zpost] =

R[zprior]([W
post]). The identification procedure can then be restarted from Step 4 re-

placing[GOAPSM] by [Gpost].

9. Construction of a Family of Algebraic Prior Stochastic Models

We present an explicit construction of a family{[K APSM(x; s)], x ∈ Ω} of alge-
braic prior stochastic models for the non-Gaussian second-order random field[K ]
indexed byΩ, with values inM+

n (R), which has been introduced in Step 1 of Sec-
tion ”Methodology for Solving the Statistical Inverse Problem inHigh Stochastic
Dimension”. This family depends on a hyperparameters belonging to the admis-
sible setCs that is a subset ofRNs, for which the dimension,Ns, is assumed to be
relatively small, while the stochastic dimension of[K APSM] is high. Fors fixed in
Cs, we give a construction of the random field[K APSM] and the corresponding gener-
ator of its realizations. In order to simplify the notations, swill be omitted as long
as no confusion is possible. The formalism and the results, presented in Section
”Nonparametric Stochastic Model for Constitutive Equationin Linear Elasticity”
of ”Random Matrix Models and Nonparametric Method for Uncertainty Quan-
tification” in part II of the presentHandbook on Uncertainty Quantification, are
reused. Two prior algebraic stochastic models[K APSM] are presented hereinafter.
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� The first one is the algebraic prior stochastic model[K APSM] for the non-
Gaussian positive-definite matrix-valued random field[K ] that exhibits anisotropic
statistical fluctuations (initially introduced in [56; 58]), and for which there is a
parameterization with a maximum ofd × n(n + 1)/2 spatial-correlation lengths
and for which a positive-definite lower bound is given [60; 65]. An extension of
this model can be found in [28] for the case for which some positive-definite lower
and upper bounds are introduced as constraints.

� The second one is the algebraic prior stochastic model[K APSM] described in
[32; 34] for the non-Gaussian positive-definite matrix-valued random field[K ]
that exhibits (i) dominant statistical fluctuations in a symmetry classM sym

n (R) ⊂
M+

n (R) of dimensionN (isotropic, cubic, transversal isotropic, tetragonal, trig-
onal, orthotropic, monoclinic) for which there is a parameterization withdN
spatial-correlation lengths, (ii) anisotropic statistical fluctuations for which there
is a parameterization with a maximum ofd × n(n + 1)/2 spatial-correlation
lengths, and (iii) a positive-definite lower bound.

9.1. General Properties of the non-Gaussian Random Field[K] with a Lower
Bound

Let {[K(x)], x ∈ Ω} be a non-Gaussian random defined on the probability
space(Θ, T ,P), indexed byΩ ⊂ Rd with 1 ≤ d ≤ 3, with values inM+

n (R) with
n = 6, homogeneous onRd, and of second-order,E{‖[K(x)]‖2F} < +∞ for all x
in Ω. Let [K] ∈ M+

n (R) be its mean value that is independent ofx (homogeneous
random field) and let[Cℓ] ∈ M+

n (R) be its positive-definite lower bound that is
also assumed to be independent ofx. For allx in Ω,

[K] = E{[K(x)]} , [K (x)]− [Cℓ] > 0 a.s. (57)

9.2. Algebraic prior stochastic model for the case of anisotropic statistical fluc-
tuations

We consider the case for which the random field exhibits anisotropic statistical
fluctuations.

Introduction of an adapted representation.
The prior stochastic model{[K APSM(x)], x ∈ Ω} of the random field{[K (x)], x ∈
Ω}, is defined on(Θ, T ,P), is indexed byΩ ⊂ Rd, is with values inM+

n (R), is
homogeneous onRd, and is a second-order random field that is written as

[K APSM(x)] = [Cℓ] + [C]1/2 [G0(x)] [C]1/2 , ∀x ∈ Ω , (58)
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where[C]1/2 is the square root of the matrix[C] in M+
n (R), independent ofx,

defined by
[C] = [K]− [Cℓ] ∈ M

+
n (R) . (59)

In Eq. (58),{[G0(x)], x ∈ Rd} is a random field defined on(Θ, T ,P), indexed by
Rd, with values inM+

n (R), homogeneous onRd, second-order such that, for all
x in R

d,
E{[G0(x)]} = [In] , [G0(x)] > 0 a.s. (60)

It can then be deduced that, for allx in Ω,

E{[K APSM(x)]} = [K] , [K APSM(x)]− [Cℓ] > 0 a.s. (61)

Construction of random field [G0] and its generator of realizations.

� Random fieldsUjk as the stochastic germs of the random field[G0].
Random field{[G0(x)], x ∈ Rd} is constructed as a nonlinear transformation of
n(n + 1)/2 independent second-order, centered, homogeneous, Gaussian, and
normalized random fields{Ujk(x), x ∈ Rd}1≤j≤k≤n, defined on probability space
(Θ, T ,P), indexed byRd, with values inR, and named thestochastic germsof
the non-Gaussian random field[G0]. We then have

E{Ujk(x)} = 0 , E{Ujk(x)2} = 1 . (62)

Consequently, the random fields{Ujk(x), x ∈ Rd}1≤j≤k≤n are completely and
uniquely defined by then(n+ 1)/2 autocorrelation functionsζ = (ζ1, . . . , ζd) 7→
RUjk

(ζ) = E{Ujk(x + ζ)Ujk(x)} from Rd into R, such thatRUjk
(0) = 1. The

spatial-correlation lengthsLjk
1 , . . . , Ljk

d of random field{Ujk(x), x ∈ Rd} are de-
fined by

Ljk
α =

∫ +∞

0

|RUjk
(0, . . . , ζα, . . . , 0)| dζα , α = 1, . . . d , (63)

and are generally chosen as parameters for the parameterization.
Example of parameterization for autocorrelation functionRUjk

. The autocorrela-
tion function (corresponding to a minimal parameterization) is written as

RUjk
(ζ) = ρjk1 (ζ1)× . . .× ρjkd (ζd) , (64)

in which, for allα = 1, . . . , d, ρjkα (0) = 1, and for allζα 6= 0,

ρjkα (ζα) = 4(Ljk
α )2/(π2ζ2α) sin2

(
πζα/(2L

jk
α )

)
, (65)
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whereLjk
1 , . . . , Ljk

d are positive real numbers. Each random fieldUjk is mean-
square continuous onRd and its power spectral density function defined onRd

has a compact support,[−π/Ljk
1 , π/Ljk

1 ]× . . .× [−π/Ljk
1 , π/Ljk

d ]. Such a model
hasdn(n+1)/2 real parameters{Ljk

1 , . . . , Ljk
d }1≤j≤k≤n that represent the spatial-

correlation lengths of the stochastic germs{Ujk(x), x ∈ Rd}1≤j≤k≤n, because

∫ +∞

0

|RUjk
(0, . . . , ζα, . . . , 0)| dζα) = Ljk

α . (66)

� Defining an adapted family of functions for the nonlinear transformation.
Let {u 7→ h(u; a)}a>0 be the adapted family of functions fromR into ]0 ,+∞[,
in which a is a positive real number, such thatΓa = h(U ; a) is a gamma ran-
dom variable with parametera whileU is a normalized Gaussian random variable
(E{U} = 0 andE{U2} = 1). Consequently, for allu in R, we have

h(u; a) = F−1
Γa

(FU(u)) , (67)

in which u 7→ FU(u) =
∫ u

−∞
1√
2π
e−v2/2 dv is the cumulative distribution func-

tion of the normalized Gaussian random variableU . The functionp 7→ F−1
Γa

(p),
from ]0 , 1[ into ]0 ,+∞[, is the reciprocal function of the cumulative distribu-
tion functionγ 7→ FΓa

(γ) =
∫ γ

0
1

Γ(a)
ta−1 e−t dt of the gamma random variable

Γa with parametera, in which Γ(a) is the gamma function defined byΓ(a) =∫ +∞
0

ta−1 e−t dt.

� Defining the random field{[G0(x)], x ∈ Rd} and its generator of realiza-
tions.
For all x fixed inRd, the available information is defined by Eq. (60)) and by the
constraint|E{log(det[G0(x)])}| < +∞, which is introduced in order that the zero
matrix be a repulsive value for the random matrix[G0(x)]. The use of the maxi-
mum entropy principle under the constraints defined by this available information
leads to taking the random matrix[G0(x)] in ensemble SG+0 defined in Section
”Ensemble SG+0 of Positive-Definite Random Matrices With a Unit Mean Value”
of ”Random Matrix Models and Nonparametric Method for Uncertainty Quantifi-
cation” in part II of the presentHandbook on Uncertainty Quantification. Taking
into account the algebraic representation of any random matrix belonging to en-
semble SG+0 , the spatial-correlation structure of random field[G0] is then intro-
duced in replacing the Gaussian random variablesUjk by the Gaussian real-valued
random fields{Ujk(x), x ∈ Rd} defined above, for which the spatial-correlation
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structure is defined by the spatial-correlation lengths{Ljk
α }α=1,...,d. Consequently,

the random field{[G0(x)], x ∈ Rd}, defined on probability space(Θ, T ,P), in-
dexed byRd, with values inM+

n (R) is constructed as follows:
(i) Let {Ujk(x), x ∈ Rd}1≤j≤k≤n be then(n + 1)/2 independent random fields
introduced above. Consequently, for allx in Rd,

E{Ujk(x)} = 0 , E{Ujk(x)2} = 1 , 1 ≤ j ≤ k ≤ n . (68)

(ii) Let δ be the real number, independent ofx, such that

0 < δ <
√
(n+ 1)/(n+ 5) < 1 . (69)

The parameterδ allows for controlling the statistical fluctuations (dispersion) of
the random field[G0].
(iii) For all x fixed inRd, the random matrix[G0(x)] is written as

[G0(x)] = [L(x)]T [L(x)] , (70)

in which [L (x)] is the upper(n × n) real triangular random matrix defined as
follows:

• For 1 ≤ j ≤ k ≤ n, then(n + 1)/2 random fields{[L (x)]jk, x ∈ Ω} are
independent.

• For j < k, the real-valued random field{[L (x)]jk, x ∈ Ω} is defined by
[L (x)]jk = σn Ujk(x) in whichσn is such thatσn = δ/

√
n + 1.

• For j = k, the positive-valued random field{[L(x)]jj, x ∈ Ω} is defined by
[L (x)]jj = σn

√
2 h(Ujj(x), aj) in whichaj = (n+ 1)/(2δ2) + (1− j)/2.

(iv) The representation of random field[G0] defined by Eq. (70) allows for com-
puting realizations of the family of dependent random matrices{[G0(x1)], . . . ,
[G0(xNp)]} in which x1, . . . , xNp areNp given points inΩ, which are expressed
using the realizations of{Ujk(x1), . . . ,Ujk(xNp)}1≤j≤k≤n that are simulated using
either the representation adapted to a large value ofNp, or another one adapted to
a small or moderate value ofNp (see [58]).

� A few basic properties of random field[G0].
The random field{[G0(x)], x ∈ Ω}, defined on(Θ, T ,P), indexed byRd, with
values inM+

n (R), is a homogeneous, second-order, and mean-square continuous
random field. For allx in Rd,

E{‖G0(x)‖2F} < +∞ , E{[G0(x)]} = [In] . (71)
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It can be proved that the introduced dispersion parameter corresponds to the fol-
lowing definition

δ =

{
1

n
E{‖ [G0(x)]− [ In] ‖2F}

}1/2

, (72)

which shows that
E{‖G0(x) ‖2F} = n (δ2 + 1) , (73)

in which δ is independent ofx. For all x fixed in Rd, the probability density
function with respect to the measuredSG = 2n(n−1)/4

∏
1≤j≤k≤n dGjk of random

matrix [G0(x)] is independent ofx and is written as

p[G0(x)]([G])= 1
M

+
n (R)([G])×CG0×

(
det [G]

)(n+1) (1−δ2)

2δ2 ×exp

{
−(n + 1)

2δ2
tr [G]

}
,

(74)
whereCG0 is the positive constant of normalization. For allx fixed in Rd, the
random variables{[G0(x)]jk, 1 ≤ j ≤ k ≤ 6} are mutually dependent. In
addition, the system of the marginal probability distributions of random field
{[G0(x)], x ∈ Ω} is completely defined and is not Gaussian. There exists a posi-
tive constantbG independent ofx, but depending onδ, such that for allx in Rd,

E{‖[G0(x)]−1‖2} ≤ bG < +∞ . (75)

Since[G0(x)] is a random matrix with values inM+
n (R), then [G0(x)]−1 exists

(almost surely). However, since almost sure convergence does not imply mean-
square convergence, Eq. (75) cannot simply be deduced. LetΩ = Ω ∪ ∂Ω be the
closure of the bounded setΩ. We then have

E
{
(sup

x∈Ω
‖ [G0(x)]−1‖)2

}
= c2G < +∞ , (76)

in which sup is the supremum and where0 < cG < +∞ is a finite positive
constant.

Definition of the hyperparameter s.
The hyperparameters ∈ Cs ⊂ RNs of the APSM{[K APSM(x; s)], x ∈ Ω} that has
been constructed for the anisotropic statistical fluctuations, is constituted of:

• the reshaping of[Cℓ] ∈ M
+
n (R) (the lower bound) and[K] ∈ M

+
n (R) (the

mean value),
• thed n(n + 1)/2 positive real numbers,{Ljk

1 , . . . , Ljk
d }1≤j≤k≤n (the spatial-

correlation lengths, for the parameterization given in theexample) andδ (the dis-
persion) such that0 < δ <

√
(n+ 1)/(n+ 5).
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9.3. Algebraic prior stochastic model for the case of dominant statistical fluctua-
tions in a symmetry class with some anisotropic statisticalfluctuations

We now consider the case for which the random field exhibits dominant statis-
tical fluctuations in a symmetry class and some anisotropic statistical fluctuations.

Positive-definite matrices belonging to a symmetry class.
A given symmetry class is defined by a subsetM sym

n (R) of M+
n (R) such that any

matrix [M ] belonging toM sym
n (R) is written as

[M ] =

N∑

j=1

mj [E
sym
j ] , m = (m1, . . . , mN) ∈ Cm ⊂ R

N , [E sym
j ] ∈ M

S
n(R) ,

(77)
in which{[E sym

j ], j = 1, . . . , N} is the matrix basis ofM sym
n (R) (Walpole’s tensor

basis [75] in the framework of the elasticity theory), and where the admissible
subsetCm of RN is defined by

Cm = {m ∈ R
N |

N∑

j=1

mj [E
sym
j ] ∈ M

+
n (R)} . (78)

It should be noted that matrices[E sym
1 ], . . . , [E sym

N ] are symmetric but are not pos-
itive definite. For the usual material symmetry classes, thepossible values ofN
are the following:2 for isotropic,3 for cubic,5 for transversely isotropic,6 or 7
for tetragonal,6 or 7 for trigonal,9 for orthotropic,13 for monoclinic, and21 for
anisotropic. The following properties are proved (see [75;33]):
(i) If [M ] and[M ′] belong toM sym

n (R), then for alla andb in R, a [M ] + b [M ′] ∈
M sym

n (R), and

[M ] [M ′] ∈ M
sym
n (R) , [M ]−1 ∈ M

sym
n (R) , [M ]1/2 ∈ M

sym
n (R) . (79)

(ii) Any matrix [N ] belonging toM sym
n (R) can be written as

[N ] = expM([N ]) , [N ] =

N∑

j=1

yj [E
sym
j ] , y = (y1, . . . , yN) ∈ R

N , (80)

in which expM is the exponential of symmetric real matrices. It should be noted
that matrix[N ] is a symmetric real matrix but does not belong toM sym

n (R) (be-
causey is inR

N and not inCm and therefore,[N ] is not positive definite).

38



(iii) From Eqs. (77) and (80), it can be deduced that

expM(

N∑

j=1

yj [E
sym
j ]) =

N∑

j=1

mj(y) [E
sym
j ] , ∀ y ∈ R

N , (81)

in whichm(y) = (m1(y), . . . , mN(y)) belongs toCm(y) that is defined by Eq. (78).
Let [E ] be the matrix inMS

N(R) such that[E ]kj =≪ [E sym
j ], [E sym

k ]) ≫ and let
F(y) = (F1(y), . . . ,FN(y)) be the vector inRN such that

Fk(y) =≪expM(
N∑

j=1

yj [E
sym
j ]), [E sym

k ])≫ .

For ally fixed inRN , m(y) is the unique solution inCm(y) of the linear system,

[E ]m(y) = F(y) . (82)

It should be noted that, in the purely computational framework that is proposed in
the previous section ”Methodology for Solving the Statistical Inverse Problem in
High Stochastic Dimension”, an explicit calculation ofF(y) is not required. For
each numerical value of vectory, vectorm(y) is computed by solving the linear
equation defined by Eq. (82) in whichF(y) is numerically calculated.

Introduction of the matrices [C], [S], and [A] related to the mean value of the
matrix-valued random field.
Let [C] be the matrix inM+

n (R), independent ofx, representing the mean value of
the random matrix[C(x)] = [K(x)]− [Cℓ]. From Eq. (57), it can then be deduced
that

[C] = [K]− [Cℓ] ∈ M
+
n (R) . (83)

Let [A] be the deterministic matrix inM sym
n (R), independent ofx, representing the

projection of the mean matrix[C] on the symmetry classM sym
n (R),

[A] = P sym([C]) ∈ M
sym
n (R) , (84)

in which [C] is defined by Eq. (83) and whereP sym is the projection operator from
M

+
n (R) ontoM sym

n (R).
(i) For a random field with values in a given symmetry class with N < 21 (there
are no anisotropic statistical fluctuations), the matrices[K] and[Cℓ] belong to the
symmetry class and consequently,[C] must belong toM sym

n (R), and thus,[A] is
equal to[C].
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(ii) If the class of symmetry is anisotropic (thusN = 21), thenM sym
n (R) coincides

withM+
n (R) and again,[A] is equal to the mean matrix[C] that belongs toM+

n (R).
(iii) In general, for a given symmetry class withN < 21, and due to the presence
of anisotropic statistical fluctuations, the mean value[C] of the random matrix
[C(x)] = [K (x)] − [Cℓ] belongs toM+

n (R) but does not belong toM sym
n (R). For

this case, an invertible deterministic(n×n) real matrix[S] is introduced such that

[C] = [S]T [A] [S] . (85)

The construction of[S] is performed as follows. Let[LC ] and[LA] be the upper
triangular real matrices with positive diagonal entries resulting from the Cholesky
factorization of matrices[C] and[A],

[C] = [LC ]
T [LC ] , [A] = [LA]

T [LA] . (86)

Therefore, the matrix[S] is defined by

[S] = [LA]
−1 [LC ] . (87)

It should be noted that for cases (i) and (ii) above, Eq. (85) shows that[S] = [In].

Introduction of an adapted representation for the random field.
The prior stochastic model{[K APSM(x)], x ∈ Ω} of the second-order random field
{[K(x)], x ∈ Ω}, indexed byΩ ⊂ Rd, with values inM+

n (R), is written as

[K APSM(x)] = [Cℓ] + [S]T [A(x)]1/2 [G0(x)] [A(x)]1/2 [S] , ∀x ∈ Ω . (88)

in which the deterministic(n × n) real matrix [S] is defined by Eq. (85), and
where{[G0(x)], x ∈ Ω} and{[A(x)], x ∈ Ω} are random fields indexed byRd and
homogeneous onRd. Consequently, the random field{[K APSM(x)], x ∈ Ω} that is
indexed byΩ, is the restriction toΩ ⊂ R

d of a homogeneous random field.

� Anisotropic statistical fluctuations described by{[G0(x)], x ∈ Rd}.
The random field{[G0(x)], x ∈ Rd} models the anisotropic statistical fluctuations.
This random field and its generator of realizations are constructed in the previous
paragraph ”Construction of random field[G0] and its generator of realizations”
of Section ”Algebraic prior stochastic model for the case of anisotropic statistical
fluctuations” (see Eq. (70)). The random field{[G0(x)], x ∈ Ω} is defined on
the probability space(Θ, T ,P), is indexed byRd, with values inM+

n (R), is non-
Gaussian, homogeneous, second-order, and mean-square continuous onRd.
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• For all x in Rd, the mean value of random matrix[G0(x)] is matrix [In] (see
Eq. (71)).

• The level of the anisotropic statistical fluctuations is controlled by the disper-
sion parameterδ (independent ofx) such that0 < δ <

√
(n+ 1)/(n+ 5) (see

Eq. (72)).
• The hyperparametersG0 of random field[G0] is constituted of the dispersion

parameterδ and of the spatial-correlation lengths{Ljk
1 , . . . , Ljk

d }1≤j≤k≤n that are
positive real numbers (see Eq. (63)).

� Statistical fluctuations in the given symmetry class described by{[A(x)], x ∈
Rd}.
The random field{[A(x)], x ∈ Rd} models the statistical fluctuations belonging to
the given symmetry classM sym

n (R). This random field, defined on the probability
space(Θ′, T ′,P ′), is statistically independent of random field{[G0(x)], x ∈ Rd},
is indexed byRd, with values inM sym

n (R) ⊂ M+
n (R), non-Gaussian, homoge-

neous, second-order, and mean-square continuous onRd. In Eq. (88), for allx
fixed in Rd, the random matrix[A(x)]1/2 is the square root of random matrix
[A(x)], and due to Eq. (79), is with values inM sym

n (R) ⊂ M+
n (R).

• For all x in Rd, the mean value of random matrix[A(x)] is the matrix[A]
(independent ofx and defined by Eq. (84)) such that

E{[A(x)]} = [A] ∈ M
sym
n (R) ⊂ M

+
n (R) . (89)

• In order that, for allx in Rd, the zero matrix be a repulsive value for random
matrix [A(x)], the following constraint is introduced,

E{log(det[A(x)])} = cA , |cA| < +∞ , (90)

in which real constantcA is independent ofx.
• The level of the statistical fluctuations belonging to the given symmetry class

is controlled by the dispersion parameterδA (independent ofx) defined by

δA =

√
E{‖A(x)−A ‖2F}

‖A ‖2F
=

√
E{‖A(x) ‖2F}

‖A ‖2F
− 1 . (91)

• Due to the statistical independence of[A(x)] and[G0(x)], taking the mathe-
matical expectation of the two members of Eq. (88), and from Eqs. (83) and (85),
it can be deduced that, for allx in Ω,

E{[K APSM(x)]} = [K] , [K APSM(x)]− [Cℓ] > 0 a.s. (92)
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Remarks concerning the control of the statistical fluctuations and the limit
cases.

� Anisotropic statistical fluctuations going to zero(δ → 0).
For a given symmetry class withN < 21, if the level of anisotropic statistical
fluctuations goes to zero,i.e., if δ → 0, which implies that, for allx in R

d, random
matrix [G0(x)] goes to[In] (in probability distribution), and implies that[A] goes
to [C] and thus[S] goes to[In], then Eq. (86) shows that[K APSM(x)] − [Cℓ] goes
to [A(x)] (in probability distribution), which is a random matrix with values in
M sym

n (R). Consequently, if there are no anisotropic statistical fluctuations (δ = 0),
then Eq. (88) becomes

[K APSM(x)] = [Cℓ] + [A(x)] , ∀ x ∈ Ω , (93)

and{[K APSM(x)], x ∈ Ω} is a random field indexed byΩ with values inM sym
n (R).

� Statistical fluctuations in the symmetry class going to zero(δA → 0).
If the given symmetry class is anisotropic (N = 21) and if δA → 0, then[A] goes
to the mean matrix[C] and[S] goes to[In], and Eq. (88) shows that[K APSM(x)]−
[Cℓ] goes to[C]1/2 [G0(x)] [C]1/2 (in probability distribution), which is a random
matrix with values inM+

n (R). Consequently, if there are no statistical fluctuations
in the symmetry class (δA = 0), then Eq. (86) becomes

[K APSM(x)] = [Cℓ] + [C]1/2 [G0(x)] [C]1/2 , ∀ x ∈ Ω , (94)

which is Eq. (58).

Parameterization of random field{[A(x)], x ∈ Rd}.
Random field{[A(x)], x ∈ Rd}, with values inM sym

n (R) ⊂ M+
n (R), is written as

[A(x)] = [A]1/2 [N(x)] [A]1/2 , ∀ x ∈ R
d , (95)

in which {[N(x)], x ∈ Rd} is the random field indexed byRd with values in
M sym

n (R),

[N(x)] = expM(

N∑

j=1

Yj(x) [E
sym
j ]) , ∀ x ∈ R

d , (96)

42



in which expM denotes the exponential of the symmetric real matrices, where
Y(x) = (Y1(x), . . . , YN(x)), and where{Y(x), x ∈ Rd} is a non-Gaussian random
field defined on(Θ′, T ′,P ′), indexed byRd with values inRN , homogeneous,
second-order, mean-square continuous onRd. Using the change of representation
defined by Eqs. (81) and (82), random matrix[N(x)] defined by Eq. (96) can be
rewritten as

[N(x)] =
N∑

j=1

mj(Y(x)) [E sym
j ] . (97)

� Remark concerning the set of the values of random matrix[A(x)].
For all x fixed in Rd, [N(x)] is a random matrix with values inM sym

n (R) (see
Eq. (96)) and[A] is in M sym

n (R) (see Eq. (89)). From Eqs. (79) and (95), it can be
deduced that random matrix[A(x)] is in M sym

n (R) ⊂ M+
n (R).

� Available information for random matrix[N(x)].
For all x fixed inRd, substituting the representation of[A(x)] defined by Eq. (95)
into Eqs. (89) and (90), yields the following available information for random
matrix [N(x)],

E{[N(x)]} = [In] , (98)

E{log(det[N(x)])} = cN , |cN | < +∞ , (99)

in which real constantcN is independent ofx.

� Available information for random matrixY(x).
Substituting the representation of[N(x)] defined by Eq. (96) into the constraint
defined by Eq. (99) yields the following constraint forY(x),

E{
N∑

j=1

Yj(x) tr[E sym
j ]} = cN , |cN | < +∞ , ∀ x ∈ R

d . (100)

Substituting the representation of[N(x)] defined by Eq. (97) into the constraint
defined by Eq. (98), yieldsE{∑N

j=1mj(Y(x)) [E sym
j ]} = [In]. Performing the

projection of this equation on the basis{[E sym
k ], k = 1, . . . , N} yields (similarly

to Eq. (82)),[E ]E{m(Y(x))} = I in whichI = (I1, . . . , IN) is the vector inRN

such thatIk =≪ [In], [E
sym
k ])≫. The constraint on[N(x)] defined by Eq. (98) is

transferred in the following constraint onY(x),

E{m(Y(x))} = [E ]−1 I on R
N , (101)
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The constraints defined by Eqs. (100) and (101) are globally rewritten as

E{g(Y(x))} = f on R
1+N , (102)

in which
• y 7→ g(y) = (g1(y), . . . , g1+N(y)) is the mapping fromRN into R1+N such

thatg1(y) =
∑N

j=1 yj tr[E sym
j ] andg1+j(y) = mj(y) for j = 1, . . . , N .

• f = (f1, . . . , f1+N) is the vector inR1+N such thatf1 = cN andf1+j =
{[E ]−1 I}j for j = 1, . . . , N .

Construction of the pdf for random vector Y(x) using the MaxEnt principle.
For all x fixed inRd, the probability density functiony 7→ pY(x)(y) from RN into
R+ of the RN -valued random vectorY(x), is independent ofx (Y is homoge-
neous). This pdf is constructed using the maximum entropy principle presented in
Section ”MaxEnt for Constructing the pdf of a Random Vector” of ” Random Ma-
trix Models and Nonparametric Method for Uncertainty Quantification” in part II
of the presentHandbook on Uncertainty Quantification, under the constraints de-
fined by the normalization condition

∫
RN pY(x)(y) dy = 1 and by Eq. (102). For

all y in RN , the pdf is written as

pY(x)(y) = c0(λ
sol) exp(− < λsol, g(y) >) , ∀ y ∈ R

N , (103)

in which c0(λ) is defined by

c0(λ) =

{∫

RN

exp(− < λ, g(y) >) dy
}−1

, λ ∈ R
1+N , (104)

where the Lagrange multiplierλsol = (λsol
1 , . . . , λsol

1+N) belongs to an admissible
setCλ ⊂ R1+N and is calculated for satisfying Eq. (102) by using the efficient
numerical method presented in ”Numerical Calculation of the Lagrange Multipli-
ers” with the MCMC generator presented in ”Generator for Random VectorYλ

and Estimation of the Mathematical Expectations in High Dimension” of ” Ran-
dom Matrix Models and Nonparametric Method for UncertaintyQuantification”
in part II of the presentHandbook on Uncertainty Quantification.
Remark. In pdf pY(x)(y) constructed with Eq. (103), the Lagrange multiplierλsol

depends only on one real parameter that iscN . Such a parameter has no physical
meaning and must be expressed as a function,κ, of the coefficient of variation
δA defined by Eq. (91), such thatcN = κ(δA). This means that the family of the
pdf constructed with Eq. (103) is reparameterized as a function of the dispersion
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parmeterδA usingcN = κ(δA). An explicit expression of functionκ cannot be ob-
tained and is constructed numerically in using Eq. (91) in whichE{‖A(x) ‖2F} =∑N

j=1

∑N
k=1 ≪ [E sym

j ] [A], [A] [E sym
k ])≫

∫
RN mj(y)mk(y) pY(x)(y) dy.

Constructing a spatial-correlation structure for random fi eld {Y(x), x ∈ Rd}
and its generator.
A spatial-correlation structure is introduced as proposedin [32] for the non-Gauss-
ian second-order homogeneous random field{Y(x), x ∈ R

d} with values inRN ,
for which its first-order marginal probability density function y 7→ pY(x)(y) (see
Eq. (103)) is imposed. This pdf is independent ofx and depends on dispersion
parameterδA. Such a spatial-correlation structure for random field{Y(x), x ∈
Rd} is transferred to random field{A(x), x ∈ Rd} thanks to the transformation
defined by Eqs. (95) and (96), which is written, for allx in Rd, as [A(x)] =
[A]1/2 expM(

∑N
j=1 Yj(x) [E

sym
j ]) [A]1/2.

� Introduction of a Gaussian random field{B(x), x ∈ Rd} that defines the
spatial-correlation structure.
(i) Let B = (B1, . . . , BN) be a random field defined on the probability probability
space(Θ′, T ′,P ′), indexed byRd, with values inRN , such that the components
B1, . . . , BN areN independent real-valued second-order random fields that are
Gaussian, homogeneous, centered, normalized and mean-square continuous. The
continuous autocorrelation functionζ 7→ [RB(ζ)] = E{B(x+ζ)B(x)T} fromRd

intoMN(R) is thus diagonal,

[RB(ζ)]jk = δjk Rj(ζ) , [RB(0)] = [IN ] , (105)

in which ζ 7→ Rj(ζ)] = E{Bj(x + ζ)Bj(x)}, from Rd into R, is the autocor-
relation function of the centered random field{Bj(x), x ∈ Rd}. For all fixedj,
since the second-order random field{Bj(x), x ∈ R

d} is Gaussian and centered,
this random field is completely and uniquely defined by its autocorrelation func-
tion Rj(ζ) = E{Bj(x + ζ)Bj(x)} defined for allζ = (ζ1, . . . , ζd) in Rd and
such thatRj(0) = 1. The spatial-correlation lengthsLj

1, . . . ,L
j
d of random field

{Bj(x), x ∈ Rd} are defined by

L
j
α =

∫ +∞

0

|Rj(0, . . . , ζα, . . . , 0)| dζα .

In the parameterization of each autocorrelation functionRj , the parametersLj
1, . . . ,

L
j
d are generally chosen as hyperparameters.
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Example of parameterization for autocorrelation functionRj . A minimal param-
eterization can be defined asRj(ζ) = ρj1(ζ1) × . . . × ρjd(ζd) in which, for all
α = 1, . . . , d, ρjα(0) = 1 and where, forζα 6= 0,

ρjα(ζα) = 4(Lj
α)

2/(π2ζ2α) sin2
(
πζα/(2L

j
α)
)
,

in which L
j
1, . . . ,L

j
d are positive real numbers. Each random fieldBj is mean-

square continuous onRd and its power spectral density function defined onRd

has a compact support,[−π/Lj
1 , π/L

j
1] × . . . × [−π/Lj

1 , π/L
j
d]. The parame-

ters,Lj
1, . . . ,L

j
d, represent the spatial-correlation lengths of the stochastic germ

{Bj(x), x ∈ Rd}.

(ii) For all countable ordered subsets0 ≤ r1 < . . . < rk < rk+1 < . . . of R+, the
sequence of random fields{Brkrk+1(x), x ∈ Rd}k∈N

• are mutually independent random fields,
• are such that,∀ k ∈ N, {Brkrk+1(x), x ∈ R

d} is an independent copy of
{B(x), x ∈ Rd}, which implies thatE{Brkrk+1(x)} = E{B(x)} = 0 and that

E{Brkrk+1(x) (Brkrk+1(x))T} = E{B(x)B(x)T} = [RB(0)] = [IN ] . (106)

� Defining anx-dependent family of normalized Wiener stochastic processes
{Wx(r), r ≥ 0} containing the spatial-correlation structure.
Let {Wx(r), r ≥ 0} be thex-dependent family of stochastic processes defined on
probability space(Θ′, T ′,P ′), indexed byr ≥ 0, with values inRN , such that
Wx(0) = 0 almost surely and, for allx fixedRd and for all0 ≤ s < r < +∞, the
increment∆Wsr

x := Wx(r)− Wx(s) is written as

∆Wsr
x =

√
r − s Bsr(x) . (107)

From the properties of random field{B(x), x ∈ Rd} and of the family of random
fields{Brkrk+1(x), x ∈ Rd}k∈N for all countable ordered subsets0 ≤ r1 < . . . <
rk < rk+1 < . . ., it is deduced that, for allx fixed inRd,
(i) the componentsW (1)

x , . . . ,W
(N)
x of Wx are mutually independent real-valued

stochastic processes,
(ii) {Wx(r), r ≥ 0} is a stochastic process with independent increments,
(iii) For all 0 ≤ s < r < +∞, the increment∆Wsr

x = Wx(r) − Wx(s) is a
RN -valued second-order random variable which is Gaussian, centered, and with
a covariance matrix that is written as[C∆Wsr

x
] = E{∆Wsr

x (∆Wsr
x )T} = (r −

s) [IN ].
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(iv) SinceWx(0) = 0, and from (i), (ii), and (iii), it can be deduced that{Wx(r), r ≥
0} is aRN -valued normalized Wiener process.

� Constructing random field{Y(x), x ∈ Rd} and its generator.
The construction of random field{Y(x), x ∈ Rd} is carried out by introducing a
family (indexed byx in Rd) of Itô stochastic differential equations (ISDE),

• for which the Wiener process is the family{Wx(r), r ≥ 0} that contains the
imposed spatial-correlation structure defined by Eq. (105),

• that admits the same unique invariant measure (independentof x), which is
defined by the pdfpY(x) given by Eqs. (103)-(104).
Taking into account Eq. (103), the potentialu 7→ Φ(u), fromRN intoR, is defined
by

Φ(u) =<λsol, g(u)> . (108)

For allx fixed inRd, let{(Ux(r),Vx(r)), r ≥ 0} be the Markov stochastic process
defined on the probability space(Θ′, T ′,P ′), indexed byr ≥ 0, with values in
R

N × R
N , satisfying, for allr > 0, the following ISDE,

dUx(r) = Vx(r) dr , (109)

dVx(r) = −∇uΦ(Ux(r)) dr−
1

2
f0Vx(r) dr +

√
f0 dWx(r) , (110)

with the initial conditions,

Ux(0) = u0 , Vx(0) = v0 a.s. , (111)

in which u0 andv0 are given vectors inRN (that are generally taken as zero in
the applications) andf0 > 0 is a free parameter whose usefulness is explained
below. From Eqs. (82) and (102), it can be deduced that functionu 7→ Φ(u): (i) is
continuous onRN , (ii) is such thatu 7→ ‖∇uΦ(u)‖ is a locally bounded function
on RN (i.e. is bounded on all compact sets inRN ). In addition the Lagrange
multiplierλsol, which belongs toCλ ⊂ R

1+N , is such that

inf
‖u‖>R

Φ(u) → +∞ if R → +∞ , (112)

inf
u∈Rn

Φ(u) = Φmin with Φmin ∈ R , (113)

∫

Rn

‖∇uΦ(u)‖ e−Φ(u) du < +∞ . (114)
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Taking into account (i), (ii), and Eqs. (112) to (114), usingTheorems 4 to 7 in
pages 211 to 216 of Ref. [55] for which the Hamiltonian is taken asH(u, v) =
‖v‖2/2+Φ(u), and using [17; 39] for the ergodic property, it can be deduced that
the problem defined by Eqs. (109) to (111) admits a unique solution. For allx fixed
in Rd, this solution is a second-order diffusion stochastic process{(Ux(r),Vx(r)),
r ≥ 0}, which converges to a stationary and ergodic diffusion stochastic process
{(Ust

x (rst), Vst
x (rst)), rst ≥ 0}, whenr goes to infinity, associated with the invariant

probability measurePst(du, dv) = ρst(u, v) du dv (that is independent ofx). The
probability density function(u, v) 7→ ρst(u, v) onRN ×RN is the unique solution
of the steady-state Fokker-Planck equation associated with Eqs. (109)-(110), and
is written (see pp. 120 to 123 in [55]), as

ρst(u, v) = cN exp{−1

2
‖v‖2 − Φ(u)} , (115)

in which cN is the constant of normalization. Equations (103), (108), and (115)
yield

pY(x)(y) =
∫

RN

ρst(y, v) dv , ∀ y ∈ R
N . (116)

Random variableY(x) (for which the pdfpY(x) is defined by Eq. (103)) can then
be written, for all fixed positive value ofrst, as

Y(x) = Ust
x (rst) = lim

r→+∞
Ux(r) in probability distribution. (117)

The free parameterf0 > 0 introduced in Eq. (110), allows a dissipation term to
be introduced in the nonlinear second-order dynamical system (formulated in the
Hamiltonian form with an additional dissipative term) for obtaining more rapidly
the asymptotic behavior corresponding to the stationary and ergodic solution as-
sociated with the invariant measure. Using Eq. (117) and theergodic property of
stationary stochastic processUst

x , it should be noted that, ifw is any mapping from
RN into an Euclidean space such thatE{w(Y(x))} =

∫
RN w(y) pY(x) dy is finite,

then

E{w(Y(x))} = lim
R→+∞

1

R

∫ R

0

w(Ux(r, θ
′)) dr , (118)

in which, forθ′ ∈ Θ′, Ux(·, θ′) is any realization ofUx.

Discretization scheme of the family of ISDE.
A discretization scheme must be used for numerically solving Eqs. (109) to (111).
For general surveys on discretization schemes for ISDE, we refer the reader to [40;
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70] (among others). The present case, related to a Hamiltonian dynamical system,
has also been analyzed using an implicit Euler scheme in [71]. Hereinafter, we
present the Störmer-Verlet scheme (see [32; 34]), which isan efficient scheme that
preserves energy for nondissipative Hamiltonian dynamical systems (see [35] for
reviews about this scheme in the deterministic case, and see[6] and the references
therein for the stochastic case).

Let µ ≥ 1 be an integer. For allx in Rd, the ISDE defined by Eqs. (109) to
(111) is solved on the finite interval[0 , (µ− 1)∆r], in which∆r is the sampling
step of the continuous index parameterr. The integration scheme is based on the
use of theµ sampling pointsrk = (k − 1)∆r for k = 1, . . . , µ, and the following
notations are used:Uk

x = Ux(rk), Vk
x = Vx(rk), andWk

x = Wx(rk)), with U1
x =

u0, V1
x = v0, andW1

x = Wx(0) = 0. From Eq. (107) and fork = 1, . . . , µ− 1, the
increment∆Wk+1

x = Wk+1
x − Wk

x is written as

∆Wk+1
x =

√
∆rBk+1(x) , ∀ x ∈ R

d , (119)

in which theµ − 1 random fields{Bk+1(x), x ∈ Rd}k=1,...,µ−1 are independent
copies of random field{B(x), x ∈ Rd}. Fork = 1, . . . , µ − 1, the Störmer-Verlet
scheme is written as

U
k+ 1

2
x = Uk

x +
∆r

2
Vk

x , (120)

Vk+1
x =

1− b

1 + b
Vk

x +
∆r

1 + b
L

k+ 1
2

x +

√
f0

1 + b
∆Wk+1

x , (121)

Uk+1
x = U

k+ 1
2

x +
∆r

2
Vk+1

x , (122)

whereb = f0 ∆r /4, and whereL
k+ 1

2
x is theRN -valued random variable such

thatL
k+ 1

2
x = −{∇uΦ(u)}

u=U
k+1

2
x

. For a given realizationθ′ in Θ′, the sequence

{Uk
x(θ

′), k = 1, . . . , µ} is constructed using Eqs. (120) to (122). The discretiza-
tion of Eq. (118) yields the following estimation of the mathematical expectation,

E{w(Y(x))} = lim
µ→+∞

ŵµ(x) , ŵµ(x) =
1

µ− µ0 + 1

µ∑

k=µ0

w(Uk
x(θ

′)) , (123)

in which, forf0 fixed, the integerµ0 > 1 is chosen to remove the transient part of
the response induced by the initial condition. For details concerning the optimal
choice of the numerical parameters, such asµ0, µ, f0, ∆r, u0, andv0, we refer the
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reader to [59; 33; 34].

Definition of the hyperparameter s.
The hyperparameter parameters ∈ Cs ⊂ RNs of the algebraic prior stochastic
model{[K APSM(x; s)], x ∈ Ω}, which has been constructed for the dominant statis-
tical fluctuations belonging to a given symmetry class of dimensionn, with some
anisotropic statistical fluctuations, are constituted of the quantities summarized
hereinafter:

• the reshaping of[Cℓ] ∈ M+
n (R) (the lower bound) and[K] ∈ M+

n (R) (the
mean value),

• for the control of the anisotropic statistical fluctuations(modeled by random
field [G0]), thed n(n + 1)/2 positive real numbers,{Ljk

1 , . . . , Ljk
d }1≤j≤k≤n (the

spatial-correlation lengths, for the parameterization given in the example), andδ
(the dispersion) such that0 < δ <

√
(n+ 1)/(n+ 5),

• for the control of the statistical fluctuations belonging toa symmetry class
(modeled by random field[A]), thedN positive real numbers,{Lj

1, . . . ,L
j
d}1≤j≤N

(the spatial-correlation lengths, for the parameterization given in the example),
andδA (the dispersion) such that0 < δA.

10. Key Research Findings, and Applications

Additional ingredients for statistical reduced models, symmetry properties
and generators for high-stochastic dimension

� Karhunen-Loève’s expansion revisited for vector-valuedrandom fields and
identification from a set of realizations: scaling [50], a posteriori error and optimal
reduced basis [51].

� Construction of a basis adaptation in homogeneous chaos spaces [73].
� ISDE-based generator for a class of non-gaussian vector-valued random fields

in uncertainty quantification [32; 34].
� Random elasticity tensors of materials exhibiting symmetry properties [29;

30; 32] and stochastic boundedness constraints [11; 28; 30].
� Random fields representations and robust algorithms for theidentification

of polynomial chaos representations in high dimension froma set of realizations
[62; 64; 49; 48; 51; 66].

Tensor-valued random fields and continuum mechanics of heterogenous ma-
terials

� Composites reinforced with fibers with experimental identification [26; 27].
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� Polycrystalline microstructures [28].
� Porous materials with anisotropic permeability tensor random field [31], and

with interphases [33].
� Human cortical bone with mechanical alterations in ultrasonic range [16].

11. Conclusions

A complete advanced methodology and the associated tools have been pre-
sented for solving the challenging statistical inverse problem related to the exper-
imental identification of a non-Gaussian matrix-valued random field that is the
model parameter of a boundary value problem, using some partial and limited ex-
perimental data related to a model observation. Many applications and validation
of this methodology can be found in the given references.
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[34] Guilleminot J, Soize C (2014) Itô SDE-based generatorfor a class of non-
gaussian vector-valued random fields in uncertainty quantification. SIAM J.
Sci. Comput. 36(6): A2763-A2786.

[35] Hairer E, Lubich C, and G. Wanner G (2002) Geometric Numerical Integra-
tion. Structure-Preserving Algorithms for Ordinary Differential Equations.
Springer-Verlag, Heidelberg.

[36] Isakov V (2006) Inverse Problems for Partial Differential Equations.
Springer-Verlag, New York.

[37] Jaynes ET (1957) Information theory and statistical mechanics. Physical Re-
view 106(4): 620–630 and 108(2): 171–190.

[38] Kaipio J, Somersalo E (2005) Statistical ans Computational Inverse Prob-
lems. Springer-Verlag, New York.

[39] Khasminskii R (2012) Stochastic Stability of Differential Equations, 2nd
edition. Heidelberg, Springer.

[40] Kloeden PE, Platen E (1992) Numerical Solution of Stochastic Differentials
Equations. Springer-Verlag, Heidelberg.

[41] Krée P and Soize C (1986) Mathematics of Random Phenomena. Reidel,
Dordrecht.

54



[42] Le Maitre OP, Knio OM, Najm HN (2004) Uncertainty propagation using
Wiener-Haar expansions. J. Comput. Phys. 197(1): 28–57.

[43] Le Maı̂tre OP and Knio OM (2010) Spectral Methods for Uncertainty Quan-
tification with Applications to Computational Fluid Dynamics. Springer,
Heidelberg.

[44] Lucor D, Su CH, and Karniadakis GE (2004) Generalized polynomial chaos
and random oscillators. Int. J. Numer. Methods Eng. 60(3): 571–596.

[45] Marzouk YM, Najm HN (2009) Dimensionality reduction and polynomial
chaos acceleration of Bayesian inference in inverse problems. J. Comput.
Physics 228(6): 1862–1902.

[46] Najm HH (2009) Uncertainty quantification and polynomial chaos tech-
niques in computational fluid dynamics. Annu. Rev. Fluid Mech. 41: 35–52.

[47] Nouy A (2010) Proper Generalized Decomposition and separated represen-
tations for the numerical solution of high dimensional stochastic problems.
Arch. Comput. Methods Eng. 16(3): 403–434.

[48] Nouy A, Soize C (2014) Random fields representations forstochastic ellip-
tic boundary value problems and statistical inverse problems. Euro. Jnl of
Applied Mathematics 25(3): 339–373.

[49] Perrin G, Soize C, Duhamel D, and Funfschilling C (2012)Identification of
polynomial chaos representations in high dimension from a set of realiza-
tions. SIAM J. Sci. Comput. 34(6): A2917-A2945.

[50] Perrin G, Soize C, Duhamel D, and Funfschilling C (2013)Karhunen-Loève
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