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CNRS, 5 bd Descartes, 77454 Marne-la-Vallée, France

Abstract

This paper deals with the fundamental mathematical tools and the associated com-
putational aspects for constructing the stochastic modelsof random matrices that
appear in the nonparametric method of uncertainties and in the random consti-
tutive equations for multiscale stochastic modeling of heterogeneous materials.
The explicit construction of ensembles of random matrices,but also the presenta-
tion of numerical tools for constructing general ensemblesof random matrices are
presented and can be used for high stochastic dimension. Thedevelopments pre-
sented are illustrated for the nonparametric method for multiscale stochastic mod-
eling of heterogeneous linear elastic materials and for thenonparametric stochas-
tic models of uncertainties in computational structural dynamics.
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linear structural dynamics, Uncertainty quantification innonlinear structural
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1. Introduction

It is well known that the parametric method for uncertainty quantification con-
sists in constructing stochastic models of the uncertain physical parameters of
a computational model that results from the discretizationof a boundary value
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problem. The parametric method is efficient for taking into account the variabil-
ities of physical parameters, but has not the capability to take into account the
model uncertainties induced by modeling errors that are introduced during the
construction of the computational model. The nonparametric method for the un-
certainty quantification is a way for constructing a stochastic model of the model
uncertainties induced by the modeling errors. It is also an approach for construct-
ing stochastic models of constitutive equations of materials involving some non-
Gaussian tensor-valued random fields, such as in the framework of elasticity, ther-
moelasticity, electromagnetism, etc. The random matrix theory is a fundamental
tool that is really efficient for performing stochastic modeling of matrices that
appear in the nonparametric method of uncertainties and in the random consti-
tutive equations for multiscale stochastic modeling of heterogeneous materials.
The applications of the nonparametric stochastic modelingof uncertainties and
of the random matrix theory presented in this paper, have been developed and
validated for many fields of computational sciences and engineering, in particu-
lar for dynamical systems encountered in aeronautics and aerospace engineering
[7; 20; 89; 79; 92; 95], in biomechanics [30; 31], in environment [32], in nu-
clear engineering [9; 13; 12; 29], in soil-structure interaction and for the wave
propagations in soils [4; 5; 26; 27], in rotor dynamics [80; 81; 83] and vibra-
tion of turbomachines [18; 19; 22; 71], in vibroacoustics ofautomotive vehicles
[3; 38; 39; 40; 62], but also, in continuum mechanics for multiscale stochastic
modeling of heterogenous materials [48; 49; 51; 52; 53], forthe heat transfer in
complex composites and for their nonlinear thermomechanicanalyses [98; 99].

The paper is organized as follows:
� Notions on random matrices and on the nonparametric method for uncertainty
quantification: what is a random matrix and what is the nonparametric method for
uncertainty quantification?
� Brief history concerning the random matrix theory and the nonparametric method
for UQ and its connection with the random matrix theory.
� Overview and mathematical notations used in the paper.
� Maximum entropy principle (MaxEnt) for constructing random matrices.
� Fundamental ensemble for the symmetric real random matrices with a unit
mean value.
� Fundamental ensembles for positive-definite symmetric real random matrices.
� Ensembles of random matrices for the nonparametric method in uncertainty
quantification.
� The MaxEnt as a numerical tool for constructing ensembles ofrandom matrices.
� The MaxEnt for constructing the pdf of a random vector.
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� Nonparametric stochastic model for constitutive equationin linear elasticity.
� Nonparametric stochastic model of uncertainties in computational linear struc-
tural dynamics.
� Parametric-nonparametric uncertainties in computational nonlinear structural
dynamics.
� Some key research findings, and applications.

2. Notions on Random Matrices and on the Nonparametric Method for Un-
certainty Quantification

What is a random matrix?
A real (or complex)matrix is a rectangular or a square array of real (or complex)
numbers, arranged in rows and columns. The individual itemsin a matrix are
called its elements or its entries.

A real (or complex)random matrixis a matrix-valued random variable, which
means that its entries are real (or complex) random variables. Therandom ma-
trix theory is related to the fundamental mathematical methods required for con-
structing the probability distribution of such a random matrix, for constructing a
generator of independent realizations, for analyzing somealgebraic properties and
some spectral properties, etc.

Let us give an example for illustrating the types of problemsrelated to the
random matrix theory. Let us consider a random matrix[A], defined on a prob-
ability space(Θ, T ,P), with values in a setSn of matrices, which is a subset of
the setMS

n(R) all the symmetric(n × n) real matrices. Thus, forθ in Θ, the re-
alization[A(θ)] is a deterministic matrix inSn ⊂ M

S
n(R). Fundamental questions

are related to the definition and to the construction of the probability distribution
P[A] of such a random matrix[A]. If this probability distribution is defined by a
probability density function (pdf) with respect a volume elementdSA, which is a
mapping[A] 7→ p[A]([A]) from MS

n(R) into R+ = [0 ,+∞[, for which its support
is Sn (which implies thatp[A]([A]) = 0 if [A] /∈ Sn), then, how must be defined
the volume elementdSA, how is defined the integration overMS

n(R), what are the
methods and tools for constructing pdfp[A] and its generator of independent real-
izations? For instance, such a pdf cannot simply be defined ingiving the pdf of
every entry[A]jk for many reasons among the following ones. As random matrix
[A] is symmetric, all the entries are not algebraically independent, and therefore,
only then(n+ 1)/2 random variables{[A]1≤j≤k≤n} must be considered. In addi-
tion, if Sn is the subsetM+

n (R) of all the positive-definite symmetric(n× n) real
matrices, then there is an algebraic constraint that relates the random variables
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{[A]1≤j≤k≤n} in order that[A] be with values inM+
n (R), and such an algebraic

constraint implies that all the random variables{[A]1≤j≤k≤n} are statistically de-
pendent.

What is the nonparametric method for uncertainty quantification?
The parametric methodfor uncertainty quantification consists in constructing
stochastic models of the uncertain physical parameters (geometry, boundary con-
ditions, material properties, etc) of a computational model that results from the
discretization of a boundary value problem. The parametricmethod, which intro-
duces prior and posterior stochastic models of the uncertain physical parameters
of the computational model, has not the capability to take into accountmodel un-
certaintiesinduced bymodeling errorsthat are introduced during the construction
of the computational model.

Thenonparametric methodfor uncertainty quantification consists in construct-
ing a stochastic model of both the uncertain physical parameters and the model
uncertainties induced by the modeling errors, without separating the effects of
the two types of uncertainties. Such an approach consists indirectly construct-
ing stochastic models of matrices representing operators of the problem consid-
ered, and not in using the parametric method for the uncertain physical parame-
ters whose matrices depend. Initially developed for uncertainty quantification in
computational structural dynamics, the use of the nonparametric method has been
extended for constructing stochastic models of matrices ofcomputational models,
such as, for instance, the nonparametric stochastic model for constitutive equation
in linear elasticity.

Theparametric-nonparametric methodfor uncertainty quantification consists
in using simultaneously in a computational model, the parametric method for con-
structing stochastic models of certain of its uncertain physical parameters, and the
nonparametric method for constructing a stochastic model of both, the other un-
certain physical parameters and the model uncertainties induced by the modeling
errors, in separating the effects of the two types of uncertainties.

Consequently, the nonparametric method for uncertainty quantification uses
the random matrix theory.

3. A Brief History

Random Matrix Theory (RMT)
The random matrix theory(RMT) were introduced and developed in mathemat-
ical statistics by Wishart and others in the 1930s and was intensively studied by
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physicists and mathematicians in the context of nuclear physics. These works be-
gan with Wigner [126] in the 1950s and received an important effort in the 1960s
by Dyson, Mehta, Wigner [36; 37; 127], and others. In 1965, Poter [93] published
a volume of important papers in this field, followed, in 1967 by the first edition
of the Mehta book [73] whose second edition [74] published in1991 gives a syn-
thesis of the random matrix theory. For applications in physics, an important en-
semble of the random matrix theory, is the Gaussian Orthogonal Ensemble (GOE)
for which the elements are constituted of real symmetric random matrices with
statistically independent entries and which are invariantunder orthogonal linear
transformations (this ensemble can be viewed as a generalization of a Gaussian
real-valued random variable to a symmetric real square random matrix).

For an introduction to multivariate statistical analysis,we refer the reader to
[2], for an overview on explicit probability distributionsof ensembles of random
matrices and their properties, to [55], and for analytical mathematical methods
devoted to the random matrix theory, to [75].

RMT has been used in other domains than nuclear physics. In 1984 and 1986,
Bohigaset al [14; 15] found that the level fluctuations of the quantum Sinais bil-
lard were able to predict with the GOE of random matrices. In 1989, Weaver [125]
showed that the higher frequencies of an elastodynamic structure constituted of a
small aluminium block had the behavior of the eigenvalues ofa matrix belonging
to the GOE. Then, Bohigas, Legrand, Schmidt, and Sornette [16; 66; 67; 100]
studied the high-frequency spectral statistics with the GOE for elastodynamics
and vibration problems in the high-frequency range. Langley [65] showed that, in
the high-frequency range, the system of natural frequencies of linear uncertain dy-
namic systems is a non-Poisson point-process. These results have been validated
for the high-frequency range in elastodynamics. A synthesis of theses aspects re-
lated to quantum chaos and random matrix theory, devoted to linear acoustics and
vibration, can be found in the book edited by Wright and Weaver [128].

Nonparametric method for UQ and its connection with the RMT
The nonparametric method was initially be introduced by Soize [107; 108] in
1999-2000, for uncertainty quantification in computational linear structural dy-
namics in order to take into account the model uncertaintiesinduced by the mod-
eling errors that could not be addressed by the parametric method. The concept
of the nonparametric method then consisted in modeling the generalized matrices
of the reduced-order model of the computational model by random matrices. It
should be noted that the terminology ”nonparametric” is notat all connected to
the ”nonparametric statistics”, but was introduced to showthe differences between
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the well known parametric method consisting in constructing a stochastic model
of uncertain physical parameters of the computational model, and the new pro-
posed nonparametric method that consisted in modeling the generalized matrices
of the reduced-order model by random matrices, related to the operators of the
problem. Later, the parametric-nonparametric method has been introduced [114].

Early in the development of the concept of the nonparametricmethod, a prob-
lem has occurred in the choice of ensembles of random matrices. Indeed the en-
sembles of random matrices coming from the RMT, were not adapted to stochastic
modeling required by the nonparametric method. For instance, the GOE of ran-
dom matrices could not be used for the generalized mass matrix, which must be
positive definite, what is not the case for a random matrix belonging to GOE. Con-
sequently, new ensembles of random matrices have had to be developed [108; 109;
111; 77; 116], using the maximum entropy (MaxEnt) principle, for implementing
the concept of the nonparametric method for various computational models in
mechanics, for which the matrices must verify various algebraic properties. In
addition, parameterizations of the new ensembles of randommatrices have been
introduced in the different constructions in order to be in capability to quantify
simply the level of uncertainties. These ensembles of random matrices have been
constructed with a parameterization exhibiting a small number of hyperparame-
ters, what allows for identifying the hyperparameters in using experimental data,
solving a statistical inverse problems for random matricesthat are, in general, in
very high dimension. In these constructions, for certain types of available infor-
mation, an explicit solution of the MaxEnt principle has been obtained, giving an
explicit description of the ensembles of random matrices and of the corresponding
generators of realizations. Nevertheless, for other casesof available information
coming from computational models there is no explicit solution of the MaxEnt and
therefore, a numerical tool adapted to the high dimension has had to be developed
[113].

Finally, during these last fifteen years the nonparametric method has exten-
sively been used and extended, with experimental validations, to many problems
in linear and nonlinear structural dynamics, in fluid-structure interaction and in
vibroacoustics, in unsteady aeroelasticity, in soil-structure interaction, in contin-
uum mechanics of solids for the nonparametric stochastic modeling of the consti-
tutive equations in linear and nonlinear elasticity, in thermoelasticity, etc. A brief
overview on all the experimental validations and applications in different fields is
given in the last section entitled ”Key Research Findings, and Applications”.
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4. Overview

The ”Random Matrix Models and Nonparametric Method for Uncertainty
Quantification” is constituted of two main parts.

� The first one is devoted to the presentation of ensembles of random matri-
ces that are explicitly described and also deals with an efficient numerical tool for
constructing ensembles of random matrices when an explicitconstruction can-
not be obtained. The presentation is focussed to the fundamental results and to
the fundamental tools related to ensembles of random matrices that are useful
for constructing nonparametric stochastic models for uncertainty quantification in
computational mechanics and in computational science and engineering. In such
a framework, for the construction of nonparametric stochastic models of the ran-
dom tensors or the tensor-valued random fields, and also for the nonparametric
stochastic models of uncertainties in linear and nonlinearstructural dynamics.

All the ensembles of random matrices, which have been developed for the
nonparametric method of uncertainties in computational sciences and engineering,
are given hereinafter using a unified presentation based on the use of the MaxEnt
principle, what allow us, not only to learn about the useful ensembles of random
matrices for which the probability distributions and the associated generators of
independent realizations are explicitly known, but also topresent a general tool
for constructing any ensemble of random matrices, possiblyusing computation in
high dimension.

� The second part deals with the nonparametric method for uncertainty quan-
tification, which uses the new ensembles of random matrices that have been con-
structed in the context of the development of the nonparametric method, and that
are detailed in the first part. The presentation is limited tothe nonparametric
stochastic model for constitutive equation in linear elasticity, to the nonparamet-
ric stochastic model of uncertainties in computational linear structural dynam-
ics for damped elastic structures but also for viscoelasticstructures, and to the
parametric-nonparametric uncertainties in computational nonlinear structural dy-
namics. In the last section entitled ”Key Research Findings, and Applications”,
brief bibliographical analysis is given concerning the propagation of uncertainties
using nonparametric or parametric-nonparametric stochastic models of uncertain-
ties, some additional ingredients useful for the nonparametric stochastic model-
ing of uncertainties, some experimental validations of thenonparametric method
of uncertainties, and finally, some applications of the nonparametric stochastic
modeling of uncertainties in different fields of computational sciences and engi-
neering.
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5. Notations

The following algebraic notations are used through all the developments de-
voted to ”Random Matrix Models and Nonparametric Method forUncertainty
Quantification”.

Euclidean and Hermitian spaces.
Let x = (x1, . . . , xn) be a vector inKn with K = R (the set of all the real num-
bers) orK = C (the set of all the complex numbers). The Euclidean spaceRn

(or the Hermitian spaceCn) is equipped with the usual inner product< x , y>=∑n
j=1 xjyj and the associated norm‖x‖ =<x , x>1/2 in which yj is the complex

conjugate of the complex numberyj and whereyj = yj whenyj is a real number.

Sets of matrices.
Mn,m(R) be the set of all the(n×m) real matrices,
Mn(R) = Mn,n(R) the square matrices,
Mn(C) be the set of all the(n×m) complex matrices,
MS

n(R) be the set of all the symmetric(n× n) real matrices,
M+0

n (R) be the set of all the semipositive-definite symmetric(n × n) real
matrices,

M+
n (R) be the set of all the positive-definite symmetric(n× n) real matrices.

The ensembles of real matrices are such that
M+

n (R) ⊂ M+0
n (R) ⊂ MS

n(R) ⊂ Mn(R).

Kronecker symbol, unit matrix, and indicator function .
The Kronecker symbol is denoted asδjk and is such thatδjk = 0 if j 6= k and
δjj = 1. The unit (or identity) matrix inMn(R) is denoted as[In] and is such
that [In]jk = δjk. Let S be any subset of any setM, possibly withS = M. The
indicator functionM 7→ 1S(M) defined on setM is such that1S(M) = 1 if
M ∈ S ⊂ M, and1S(M) = 0 if M 6∈ S.

Norms and usual operators.
(i) The determinant of a matrix[G] in Mn(R) is denoted asdet[G], and its trace is
denoted astr[G] =

∑n
j=1Gjj.

(ii) The transpose of a matrix[G] in Mn,m(R) is denoted as[G]T , which is in
Mm,n(R).
(iii) The operator norm of a matrix[G] in Mn,m(R) is denoted as‖G‖ = sup‖x‖≤1

‖ [G] x ‖ for all x in Rm, which is such that‖ [G] x ‖ ≤ ‖G‖ ‖x‖ for all x in Rm.
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(iv) For [G] and[H ] in Mn,m(R), we denote≪[G] , [H ]≫= tr{[G]T [H ]}and the
Frobenius norm (or Hilbert-Schmidt norm)‖G‖F of [G] is such that‖G‖2F =≪
[G] , [G]≫= tr{[G]T [G]} =

∑n
j=1

∑m
k=1G

2
jk, which is such that‖G‖ ≤ ‖G‖F ≤√

n ‖G‖.

Order relation in the set of all the positive-definite real matrices.
Let [G] and[H ] be two matrices inM+

n (R). The notation[G] > [H ] means that
the matrix[G]− [H ] belongs toM+

n (R).

Probability space, mathematical expectation, space of second-order random
vectors.
The mathematical expectation relative to a probability space(Θ, T , P ) is denoted
asE. The space of all the second-order random variables, definedon (Θ, T , P ),
with values inRn, equipped with the inner product((X,Y)) = E{< X ,Y >}
and with the associated norm|||X||| = ((X,X))1/2, is a Hilbert space denoted as
L2

n.

6. The MaxEnt for Constructing Random Matrices

The measure of uncertainties using the entropy of information has been in-
troduced by Shannon [104] in the framework of the development of Information
Theory. The Maximum Entropy (MaxEnt) principle (that is to say the maximiza-
tion of the level of uncertainties) has been introduced by Jaynes [59], and allows
a prior probability model of any random variables to be constructed, under the
constraints defined by the available information. This principle appears as a ma-
jor tool to construct the prior probability models. All the ensembles of random
matrices presented hereinafter (including the well known Gaussian Orthogonal
Ensemble) are constructed in the framework of a unified presentation using the
MaxEnt. This means that the probability distributions of the random matrices
belonging to these ensembles are constructed using the MaxEnt.

6.1. Volume Element and Probability Density Function (PDF)

This section deals with the definition of a probability density function (pdf)
of a random matrix[G] with values in the Euclidean spaceMS

n(R) (set of all the
symmetric(n× n) real matrices, equipped with the inner product≪[G] , [H ]≫=
tr{[G]T [H ]}). In order to correctly defined the integration on Euclideanspace
MS

n(R), it is necessary to define the volume element on this space.
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Volume element on the Euclidean space of symmetric real matrices.
In order to well understand the principle of the construction of the volume element
on Euclidean spaceMS

n(R), the construction of the volume element on Euclidean
spacesRn andMn(R) are first introduced.
(i) Volume element on Euclidean spaceRn. Let {e1, . . . , en} be the orthonormal
basis ofRn such thatej = (0, . . . , 1, . . . , 0) is the null vector with1 in position
j. Consequently,< ej, ek >= δjk. Any vectorx = (x1, . . . , xn) in Rn can then
be written asx =

∑n
j=1 xj ej. This Euclidean structure onRn defines the volume

elementdx onRn such thatdx =
∏n

j=1 dxj .
(ii) Volume element on Euclidean spaceMn(R). Similarly, let {[bjk]}jk be the

orthonormal basis ofMn(R) such that[bjk] = ej eTk . Consequently, we have
≪ [bjk] , [bj′k′ ]≫= δjj′δkk′. Any matrix [G] in Mn(R) can be written as[G] =∑n

j,k=1Gjk [bjk] in which Gjk = [G]jk. This Euclidean structure onMn(R) de-
fines the volume elementdG onMn(R) such thatdG =

∏n
j,k=1 dGjk.

(iii) Volume element on Euclidean spaceMS
n(R). Let {[bSjk] , 1 ≤ j ≤ k ≤ n}

be the orthonormal basis ofMS
n(R) such that[bSjj] = ej eTj and[bSjk] = (ej eTk +

ek eTj )/
√
2 if j < k. We have≪ [bSjk] , [b

S
j′k′]≫= δjj′δkk′ for j ≤ k andj′ ≤ k′.

Any symmetric matrix[G] in MS
n(R) can be written as[G] =

∑
1≤j≤k≤nG

S
jk [b

S
jk]

in which GS
jj = Gjj and GS

jk =
√
2Gjk if j < k. This Euclidean struc-

ture onMS
n(R) defines the volume elementdSG on MS

n(R) such thatdSG =∏
1≤j≤k≤n dGS

jk. The volume element is then defined by

dSG = 2n(n−1)/4
∏

1≤j≤k≤n

dGjk . (1)

Probability density function of a symmetric real random matrix .
Let [G] be a random matrix, defined on a probability space(Θ, T ,P), with values
in MS

n(R) whose probability distributionP[G] = p[G]([G]) dSG is defined by a pdf
[G] 7→ p[G]([G]) from MS

n(R) into R+ = [0 ,+∞[ with respect to the volume
elementdSG onMS

n(R). This pdf verifies the normalization condition,
∫

MS
n(R)

p[G]([G]) dSG = 1 , (2)

in which the volume elementdSG is defined by Eq. (1).

Support of the probability density function .
The support of pdfp[G], denoted assuppp[G] is any subsetSn of MS

n(R), possibly
with Sn = MS

n(R). For instance, we can haveSn = M+
n (R) ⊂ MS

n(R), which
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means that[G] is a random matrix with values in the positive-definite symmetric
(n × n) real matrices. Thus,p[G]([G]) = 0 for [G] not in Sn, and Eq. (2) can be
rewritten as ∫

Sn

p[G]([G]) dSG = 1 . (3)

It should be noted that, in the context of the construction ofthe unknown pdfp[G],
it is assumed that supportSn is a given (known) set.

6.2. The Shannon Entropy as a Measure of Uncertainties

The Shannon measure [104] of uncertainties of random matrix[G] is defined by
the entropy of information (Shannon’s entropy), E(p[G]), of pdfp[G] whose support
is Sn ⊂ MS

n(R), such that

E(p[G]) = −
∫

Sn

p[G]([G]) log
(
p[G]([G])

)
dSG , (4)

which can be rewritten asE(p[G]) = −E{log
(
p[G]([G])

)
. For any pdfp[G] defined

onMS
n(R) and with supportSn, entropyE(p[G]) is a real number. The uncertainty

increases when the Shannon entropy increases. More the Shannon entropy is small
and more the level of uncertainties is small. IfE(p[G]) goes to−∞, then the level
of uncertainties goes to zero, and random matrix[G] goes to a deterministic matrix
for the convergence in probability distribution (in probability law).

6.3. The MaxEnt Principle

As explained before, the use of the MaxEnt principle requires to correctly de-
fined the available information related to random matrix[G] for which pdf p[G]

(that is unknown with a given supportSn) has to be constructed.

Available information .
It is assumed that the available information related to random matrix[G] is repre-
sented by the following equation onRµ, whereµ is a finite positive integer,

h(p[G]) = 0 , (5)

in which p[G] 7→ h(p[G]) = (h1(p[G]), . . . , hµ(p[G])) is a given functional ofp[G],
with values inRµ. For instance, if the mean valueE{[G]} = [G] of [G], is a
given matrix inSn, and if this mean value[G] corresponds to the only available
information, thenhα(p[G]) =

∫
Sn

Gjk p[G]([G]) dSG−Gjk, in whichα = 1, . . . , µ
is associated with the couple of indices(j, k) such as1 ≤ j ≤ k ≤ n, and where
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µ = n(n+ 1)/2.

The admissible sets for the pdf.
The following admissible setsCfree and Cad are introduced for defining the op-
timization problem resulting from the use of the MaxEnt principle in order to
construct the pdf of random matrix[G]. The setCfree is made up of all the pdf
p : [G] 7→ p([G]), defined onMS

n(R), with supportSn ⊂ MS
n(R),

Cfree = {[G] 7→ p([G]) : MS
n(R) → R

+ , suppp = Sn ,

∫

Sn

p([G]) dSG = 1} . (6)

The setCad is the subset ofCfree for which all the pdfp in Cfree satisfy the constraint
defined by

Cad = {p ∈ Cfree , h(p) = 0} . (7)

Optimization problem for constructing the pdf .
The use of the MaxEnt principle for constructing the pdfp[G] of random matrix
[G] yields the following optimization problem,

p[G] = arg max
p∈Cad

E(p) . (8)

The optimization problem defined by Eq. (8) on setCad is transformed in an opti-
mization problem onCfree in introducing the Lagrange multipliers associated with
the constraints defined by Eqs. (5) [59; 61; 108]. This type ofconstruction and the
analysis of the existence and the uniqueness of a solution ofthe optimization prob-
lem defined by Eq. (8) is detailed in the section entitled: ”MaxEnt as a Numerical
Tool for Constructing Ensembles of Random Matrices”.

7. A Fundamental Ensemble for the Symmetric Real Random Matrices With
a Unit Mean Value

A fundamental ensemble for the symmetric real random matrices is the Gaus-
sian Orthogonal Ensemble (GOE) that is an ensemble of randommatrices[G],
defined on a probability space(Θ, T ,P), with values inMS

n(R), defined by a pdf
p[G] onMS

n(R) with respect to the volume elementdSG, for which the supportSn

of pG is MS
n(R), and satisfying the additional properties defined hereinafter.
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Classical definition [75].
The additional properties of a random matrix[G] belonging to GOE are: (i)
invariance under any real orthogonal transformation, thatis to say, for any or-
thogonal(n × n) real matrix[R] such that[R]T [R] = [R] [R]T = [In], the pdf
(with respect todSG) of the random matrix[R]T [G] [R] is equal to pdfpG of ran-
dom matrix[G], and (ii) statistical independence of all the real random variables
{Gjk, 1 ≤ j ≤ k ≤ n}.

Definition by the MaxEnt and calculation of the pdf.
Alternatively to the properties introduced in the classical definition, the additional
properties of a random matrix[G] belonging to GOE are the following. For all
1 ≤ j ≤ k ≤ n,

E{Gjk} = 0 , E{GjkGj′k′} = δjj′δkk′ (1 + δjk)
δ2

n+ 1
. (9)

in which δ > 0 is a given positive-valued hyperparameter whose interpretation is
given after. The GOE is then defined using the MaxEnt principle for the available
information given by Eq. (9), which defines mappingh (see Eq. (5)). The corre-
sponding ensemble is written asGOEδ. In Eq. (9), the first equation means that
the symmetric random matrix[G] is centered, and the second one means that its
fourth-order covariance tensor is diagonal. Using the MaxEnt principle for ran-
dom matrix[G] yields the following unique explicit expression for the pdfpG with
respect to the volume elementdSG,

p[G]([G]) = cG exp(−n+1

4δ2
tr{[G]2}) , Gkj = Gjk , 1 ≤ j ≤ k ≤ n , (10)

in which cG is the constant of normalization such that Eq. (2) is verified. It can
then be deduced that{Gjk, 1 ≤ j ≤ k ≤ n} are Gaussian independent real ran-
dom variables such that Eq. (9) is verified. Consequently, for all 1 ≤ j ≤ k ≤ n,
the pdf (with respect todg on R) of the Gaussian real random variableGjk is
pGjk

(g) = (
√
2πσjk)

−1 exp{−g2/(2σ2
jk)} in which the variance of random vari-

ableGjk is σ2
jk = (1 + δjk) δ

2/(n+ 1).

Decentering and interpretation of hyperparameterδ.
Let [GGOE] be the random matrix with values inMS

n(R) such that[GGOE] = [In] +
[G] in which [G] is a random matrix belonging to theGOEδ defined before. There-
fore [GGOE] is not centered and its mean value isE{[GGOE]} = [In]. The coefficient
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of variation of the random matrix[GGOE] is defined [110] by

δGOE =

{
E{‖GGOE− E{GGOE} ‖2F}

‖E{GGOE} ‖2F

}1/2

=

{
1

n
E{‖GGOE − In ‖2F}

}1/2

, (11)

andδGOE = δ. The parameter2δ/
√
n+ 1 can be used to specify a scale.

Generator of realizations.
For θ ∈ Θ, any realization[GGOE(θ)] is given by[GGOE(θ)] = [In] + [G(θ)] with,
for 1 ≤ j ≤ k ≤ n, we haveGkj(θ) = Gjk(θ) andGjk(θ) = σjkUjk(θ), in
which {Ujk(θ)}1≤j≤k≤n is the realization ofn(n + 1)/2 independent copies of a
normalized (centered and unit variance) Gaussian real random variable.

Use of the GOE ensemble in uncertainty quantification.
The GOE can then be viewed as a generalization of the Gaussianreal random
variables to the Gaussian symmetric real random matrices. It can be seen that
[GGOE] is with values inMS

n(R) but is not positive. In addition, for all fixedn,

E{‖[GGOE]−1‖2} = +∞ . (12)

(i) It has been proved by Weaver [125] and others (see [128] and included ref-
erences), that the GOE is well adapted for describing universal fluctuations of
the eigenfrequencies for generic elastodynamical, acoustical, and elastoacoustical
systems, in the high frequency range corresponding to the asymptotic behavior of
the largest eigenfrequencies.
(ii) On the other hand, random matrix[GGOE] cannot be used for stochastic mod-
eling of a symmetric real matrix for which a positiveness property and an integra-
bility of its inverse are required. Such a situation is similar to the following one
that is well known for the scalar case. Let us consider the scalar equation inu:
(G+G) u = v in whichv is a given real number,G a given positive number, and
G is a positive parameter. This equation has a unique solutionu = (G + G)−1v.
Let us assume thatG is uncertain and is modeled by a centered random variableG.
We then obtain the random equation inU : (G+G)U = v. If the random solution
U must have finite statistical fluctuations, that is to say,U must be a second-order
random variable (this is generally required due to physicalconsiderations), then
G cannot be chosen as a Gaussian second-order centered real random variable,
because with such a Gaussian stochastic modeling, the solutionU = (G+G)−1v
is not a second-order random variable, becauseE{U2} = +∞ due to the non
integrability of the functionG 7→ (G+G)−2 at pointG = −G.
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8. Fundamental Ensembles for Positive-Definite Symmetric Real Random
Matrices

In this section, we present fundamental ensembles of positive-definite sym-
metric real random matrices, SG+0 , SG+

ε , SG+
b , and SG+λ , which have been de-

veloped and analyzed for constructing other ensembles of random matrices used
for the nonparametric stochastic modeling of matrices encountered in uncertainty
quantification.

� The ensemble SG+0 is a subset of all the positive-definite symmetric real(n×
n) random matrices for which the mean value is the unit matrix, and for which the
lower bound is the zero matrix. This ensemble has been introduced and analyzed
in [108; 109] in the context of the development of the nonparametric method of
model uncertainties induced my modeling errors in computational dynamics. This
ensemble has later been used for constructing other ensembles of random matrices
encountered in the nonparametric stochastic modeling of uncertainties [111].

� The ensemble SG+ε is a subset of all the positive-definite symmetric real
(n × n) random matrices for which the mean value is the unit matrix, and for
which there is an arbitrary lower bound that is a positive-definite matrix controlled
by an arbitrary positive numberε that can be chosen as small as is desired [115].
In such an ensemble, the lower bound does not correspond to a given matrix that
results from a physical model, but allows for assuring a uniform ellipticity for the
stochastic modeling of elliptic operators encountered in uncertainty quantification
of boundary value problems. The construction of this ensemble is directly derived
from ensemble SG+0 ,

� The ensemble SG+b is a subset of all the positive-definite random matrices
for which the mean value is either non given or is equal to the unit matrix [28;
50], and for which a lower bound and an upper bound are given positive-definite
matrices. In this ensemble, the lower bound and the upper bound are not arbitrary
positive-definite matrices, but are given matrices that result from a physical model.
The ensemble is interesting for the nonparametric stochastic modeling of tensors
and tensor-valued random fields for describing uncertain physical properties in
elasticity, poroelasticity, thermics, etc.

� The ensemble SG+λ , introduced in [77], is a subset of all the positive-definite
random matrices for which the mean value is the unit matrix, for which the lower
bound is the zero matrix, and for which the second-order moments of diagonal
entries are imposed. In the context of the nonparametric stochastic modeling of
uncertainties, this ensemble allows for imposing the variances of certain random
eigenvalues of stochastic generalized eigenvalue problems, such as the eigenfre-
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quency problem in structural dynamics.

8.1. Ensemble SG+0 of Positive-Definite Random Matrices With a Unit Mean Value

Definition of SG+
0 using the MaxEnt and expression of the pdf.

The ensemble SG+0 of random matrices[G0], defined on the probability space
(Θ, T ,P), with values in the setM+

n (R) ⊂ M
S
n(R), is constructed using the

MaxEnt with the following available information, which defines mappingh (see
Eq. (5)),

E{[G0]} = [In] , E{log(det[G0])} = νG0 , |νG0| < +∞ . (13)

The support of the pdf is the subsetSn = M+
n (R) of MS

n(R). This pdfp[G0] (with
respect to the volume elementdSG on the setMS

n(R)) verifies the normalization
condition, and is written as

p[G0]([G]) = 1Sn([G]) cG0

(
det [G]

)(n+1)
(1−δ2)

2δ2 exp(−n + 1

2δ2
tr[G]) . (14)

The positive parameterδ is a such that0 < δ < (n + 1)1/2(n + 5)−1/2, which
allows the level of statistical fluctuations of random matrix [G0] to be controlled,
and which is defined by

δ =

{
E{‖G0 − E{G0} ‖2F}

‖E{G0} ‖2F

}1/2

=

{
1

n
E{‖ [G0]− [In] ‖2F}

}1/2

. (15)

The normalization positive constantcG0 is such that

cG0 =(2π)−n(n−1)/4

(
n + 1

2δ2

)n(n+1)(2δ2)−1
{

n∏

j=1

Γ
(n+1

2δ2
+

1−j

2

)
}−1

, (16)

where, for allz > 0, Γ(z) =
∫ +∞

0
tz−1 e−t dt. Note that{[G0]jk, 1 ≤ j ≤ k ≤ n}

are dependent random variables. If(n+1)/δ2 is an integer, then this pdf coincides
with the Wishart probability distribution [2; 108]. If(n + 1)/δ2 is not an integer,
then this probability density function can be viewed as a particular case of the
Wishart distribution, in infinite dimension, for stochastic processes [105].

Second-order moments.
Random matrix[G0] is such thatE{‖G0‖2} ≤ E{‖G0‖2F} < +∞, which proves
that [G0] is a second-order random variable. The mean value of random matrix
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[G0] is unit matrix[In]. The covarianceCjk,j′k′ = E{[G0]jk − [In]jk) ([G0]j′k′ −
[In]j′k′)} of the real-valued random variables[G0]jk and [G0]j′k′ is Cjk,j′k′ =
δ2(n+1)−1

{
δj′k δjk′ + δjj′ δkk′

}
. The variance of real-valued random variable

[G0]jk is σ2
jk = Cjk,jk = δ2(n+1)−1(1 + δjk).

Invariance of ensemble SG+0 under real orthogonal transformations.
Ensemble SG+0 is invariant under real orthogonal transformations. This means
that the pdf (with respect todSG) of the random matrix[R]T [G0] [R] is equal to
the pdf (with respect todSG) of random matrix[G0] for any real orthogonal ma-
trix [R] belonging toMn(R).

Invertibility and convergence property when dimension goes to infinity .
Since[G0] is a positive-definite random matrix,[G0] is invertible almost surely,
which means that forP-almostθ in Θ, the inverse[G0(θ)]

−1 of the matrix[G0(θ)]
exists. This last property does not guarantee that[G0]

−1 is a second-order random
variable, that is to say, thatE{‖[G0]

−1‖2F} =
∫
Θ
‖[G0(θ)]

−1‖2F dP(θ) is finite.
However, it is proved [109] that

E{‖[G0]
−1‖2} ≤ E{‖[G0]

−1‖2F} < +∞ , (17)

and that the following fundamental property holds,

∀n ≥ 2 , E{‖[G0]
−1‖2} ≤ Cδ < +∞ , (18)

in whichCδ is a positive finite constant that is independent ofn but that depends
on δ. This means thatn 7→ E{‖[G0]

−1‖2} is a bounded function from{n ≥ 2}
intoR+.

It should be noted that the invertibility property defined byEqs. (17) and (18)
are due to the constraintE{log(det[G0])} = νG0 with |νG0 | < +∞. This is the
reason why the truncated Gaussian distribution restrictedto M+

n (R) does not sat-
isfy this invertibility condition that is required for stochastic modeling in many
cases.

Probability density function of the random eigenvalues.
Let Λ = (Λ1, . . . ,Λn) be the positive-valued random eigenvalues of the random
matrix [G0] belonging to ensemble SG+0 , such that[G0]Φ

j = Λj Φ
j in which

Φ
j is the random eigenvector associated with the random eigenvalueΛj. The

joint probability density functionpΛ(λ) = pΛ1,...,Λn(λ1, . . . , λn) with respect to
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dλ = dλ1 . . . dλn of Λ = (Λ1, . . . ,Λn) is written [108] as

pΛ(λ) = 1[0,+∞[n(λ) cΛ {
n∏

j=1

λ
(n+1) (1−δ2)

2δ2

j }{
∏

α<β

|λβ−λα|} exp{−
(n+ 1)

2δ2

n∑

k=1

λk} ,

(19)
in whichcΛ is a constant of normalization defined by the equation

∫ +∞

0
. . .

∫ +∞

0
pΛ(λ)

dλ = 1. All the random eigenvaluesΛj of random matrix[G0] in SG+
0 are positive

almost surely, while this assertion is not true for the random eigenvaluesΛGOE
j of

the random matrix[GGOE] = [In] + [G] in which [G] is a random matrix belonging
to theGOEδ ensemble.

Algebraic representation and generator of realizations.
The generator of realizations of random matrix[G0] whose pdf is defined by
Eq. (14), is directly deduced from the following algebraic representation of[G0]
in SG+

0 . Random matrix[G0] is written as[G0] = [L ]T [L ] in which [L ] is an upper
triangular real(n× n) random matrix such that:
(i) the random variables{[L ]jk, j ≤ k} are independent;
(ii) for j < k, the real-valued random variable[L ]jk is written as[L ]jk = σnUjk in
whichσn = δ(n+1)−1/2 and whereUjk is a real-valued Gaussian random variable
with zero mean and variance equal to1;
(iii) for j = k, the positive-valued random variable[L ]jj is written as[L ]jj =
σn

√
2Vj in whichσn is defined before and whereVj is a positive-valued gamma

random variable whose pdf ispVj
(v) = 1R+(v) 1

Γ(aj)
vaj−1 e−v, in which aj =

n+1
2δ2

+ 1−j
2

.
It should be noted that the set{ {Ujk}1≤j<k≤n , {Vj}1≤j≤n } of random vari-

ables are statistically independent, and the pdf of each diagonal element[L ]jj of
random matrix[L ] depends on the rankj of the entry.

For θ ∈ Θ, any realization[G0(θ)] is then deduced from the algebraic rep-
resentation given before, using the realization{Ujk(θ)}1≤j<k≤n of n(n − 1)/2
independent copies of a normalized (zero mean and unit variance) Gaussian real
random variable, and using the realization{Vj(θ)}1≤j≤n of the n independent
positive-valued gamma random variableVj with parameteraj .

8.2. Ensemble SG+ε of Positive-Definite Random Matrices With a Unit Mean Value
and an Arbitrary Positive-Definite Lower Bound

The ensemble SG+ε is a subset of all the positive-definite random matrices for
which the mean value is the unit matrix and for which there is an arbitrary lower
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bound that is a positive-definite matrix controlled by an arbitrary positive number
ε that can be chosen as small as is desired. In this ensemble, the lower bound does
not correspond to a given matrix that results from a physicalmodel.

Ensemble SG+ε is the set of the random matrices[G] with values inM+
n (R),

which are written as

[G] =
1

1 + ε
{[G0] + ε [In]} , (20)

in which [G0] is a random matrix in SG+0 , with mean valueE{[G0]} = [In] and
for which the level of statistical fluctuations is controlled by the hyperparameter
δ defined by Eq. (15), and whereε is any positive number (note that forε = 0,
SG+

ε = SG+
0 and then,[G] = [G0]). This definition shows that, almost surely,

[G]− [Gℓ] =
1

1 + ε
[G0] > 0 , (21)

in which the lower bound is the positive-definite matrix[Gℓ] = cε[In] with cε =
ε/(1 + ε). For allε > 0, we have

E{[G]} = [In] , E{log(det([G]− [Gℓ]))} = νGε , |νGε| < +∞ , (22)

with νGε = νG0 − n log(1 + ε). The coefficient of variationδG of random matrix
[G], defined by

δG =

{
E{‖G −E{G} ‖2F}

‖E{G} ‖2F

}1/2

=

{
1

n
E{‖ [G]− [In] ‖2F}

}1/2

, (23)

is such that

δG =
δ

1 + ε
, (24)

whereδ is the hyperparameter defined by Eq. (15).

Generator of realizations.
Forθ ∈ Θ, any realization[G(θ)] of [G] is given by[G(θ)] = 1

1+ε
{[G0(θ)]+ε [In]}

in which [G0(θ)] is a realization of random matrix[G0] constructed as explained
before.

Lower bound and invertibility .
For allε > 0, the bilinear formb(X,Y) = (([G]X ,Y)) onL2

n ×L2
n is such that,

b(X,X) ≥ cε|||X|||2 . (25)

Random matrix[G] is invertible almost surely and its inverse[G]−1 is a second-
order random variable,E{‖[G]−1‖2F} < +∞.
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8.3. Ensemble SG+b of Positive-Definite Random Matrices With Given Lower and
Upper Bounds, and With or Without Given Mean Value

The ensemble SG+b is a subset of all the positive-definite random matrices for
which the mean value is either the unit matrix or is not given,and for which
a lower bound and an upper bound are given positive-definite matrices. In this
ensemble, the lower bound and the upper bound are not arbitrary positive-definite
matrices, but are given matrices that result from a physicalmodel.

The ensemble SG+b is constituted of random matrices[Gb], defined on the
probability space(Θ, T ,P), with values in the setM+

n (R) ⊂ MS
n(R), such that

[0] < [Gℓ] < [Gb] < [Gu] , (26)

in which the lower bound[Gℓ] and the upper bound[Gu] are given matrices in
M+

n (R) such that[Gℓ] < [Gu]. The support of the pdfp[Gb] (with respect to
the volume elementdSG on MS

n(R)) of random matrix[Gb], is the subsetSn of
M+

n (R) ⊂ MS
n(R) such that

Sn = { [G] ∈ M
+
n (R) | [Gℓ] < [G] < [Gu] } . (27)

The available information associated with the presence of the lower and upper
bounds, is defined by

E{log(det([Gb]− [Gℓ]))} = νℓ , E{log(det([Gu]− [Gb]))} = νℓ , (28)

in which νℓ andνu are two constants such that|νℓ| < +∞ and|νu| < +∞. The
mean value[Gb] = E{[Gb]} is given by

[Gb] =

∫

Sn

[G] p[Gb]([G]) dSG . (29)

The positive parameterδb, which allows the level of statistical fluctuations of ran-
dom matrix[Gb] to be controlled, is defined by

δb =

{
E{‖Gb −Gb ‖2F}

‖Gb ‖2F

}1/2

. (30)

Definition of SG+
b for a non given mean value using the MaxEnt.

The mean value[Gb] of random matrix[Gb] is not given and therefore, does not
constitute an available information. In this case, the ensemble SG+b is constructed
using the MaxEnt with the available information given by Eq.(28) (that defines
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mappingh introduced in Eq. (5) and rewritten forp[Gb]). The pdfp[Gb] is the
generalized matrix-variate Beta type I pdf [55],

p[Gb]([G]) = 1Sn([G]) cGb

(
det [G−Gℓ]

)α−(n+1)/2 (
det [Gu−G]

)β−(n+1)/2
, (31)

in which cGb
is the normalization constant, and whereα > (n − 1)/2 andβ >

(n − 1)/2 are two real parameters that are unknown and that depend on the two
unknown constantsνℓ and νu. The mean value[Gb] must be calculated using
Eqs. (29) and (31), and the hyperparameterδb, which characterizes the level of
statistical fluctuations, must be calculated using Eqs. (30) and (31). Consequently,
[Gb] andδb depend onα andβ. It can be seen that, forn ≥ 2, the two scalar pa-
rametersα andβ are not sufficient for identifying the mean value[Gb] that is in
Sn and the hyperparameterδb. An efficient algorithm for generating realizations
of [Gb] can be found in [28].

Definition of SG+
b for a given mean value using the MaxEnt.

The mean value[Gb] of random matrix[Gb] is given such that[Gℓ] < [Gb] < [Gu].
In this case, the ensemble SG+

b is constructed using the MaxEnt with the available
information given by Eqs. (28) and (29) that defines mappingh introduced in
Eq. (5). Following the construction proposed in [50], the following change of
variable is introduced,

[A0] = ([Gb]− [Gℓ])
−1 − [Gℓu]

−1 , [Gℓu] = [Gu]− [Gℓ] ∈ M
+
n (R) . (32)

This equation shows that the random matrix[A0] is with values inM+
n (R). Intro-

ducing the mean value[A0] = E{[A0]} that belongs toM+
n (R), and is Cholesky

factorization[A0] = [L0]
T [L0] in which [L0] is an upper triangular real(n × n)

matrix, random matrix[A0] can be written as[A0] = [L0]
T [G0] [L0] with [G0] be-

longs to ensemble SG+0 depending on the hyperparameterδ defined by Eq. (15).
The inversion of Eq. (32) yields

[Gb] = [Gℓ] +
(
[L0]

T [G0] [L0] + [Gℓu]
−1
)−1

. (33)

It can then be seen that for any arbitrary smallε0 > 0 (for instanceε0 = 10−6),
we have

‖E{([A0] + [Gℓu]
−1)−1}+ [Gℓ]− [Gb] ‖F ≤ ε0 ‖Gb‖F . (34)

For δ and [L0] fixed, for θ in Θ, the realization[G0(θ)] of random matrix[G0]
in SG+

0 is constructed using the generator of[G0], which has been detailed be-
fore. The mean valueE{[Gb]} and the hyperparameterδb defined by Eq. (30) are
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estimated with the corresponding realization

[Gb(θ)] = [Gℓ] +
(
[L0]

T [G0(θ)] [L0] + [Gℓu]
−1
)−1

of random matrix[Gb]. Let UL be the set of all the upper triangular real(n × n)
matrices[L0] with positive diagonal entries. For a fixed value ofδ, and for a given
target value of[Gb], the value[Lopt

0 ] of [L0] is calculated in solving the optimization
problem

[Lopt
0 ] = arg min

[L0]∈UL

F([L0]) , (35)

in which the cost functionF is deduced from Eq. (34) and is written as

F([L0]) = ‖E{([L0]
T [G0] [L0] + [Gℓu]

−1)−1}+ [Gℓ]− [Gb] ‖F/‖Gb‖F . (36)

8.4. Ensemble SG+λ of Positive-Definite Random Matrices With a Unit Mean Value
and Imposed Second-Order Moments

The ensemble SG+λ is a subset of all the positive-definite random matrices for
which the mean value is the unit matrix, for which the lower bound is the zero
matrix, and for which the second-order moments of diagonal entries are imposed.
In the context of nonparametric stochastic modeling of uncertainties, this ensem-
ble allows for imposing the variances of certain random eigenvalues of stochastic
generalized eigenvalue problems.

Definition of SG+
λ using the MaxEnt and expression of the pdf.

The ensemble SG+λ of random matrices[Gλ], defined on the probability space
(Θ, T ,P), with values in the setM+

n (R) ⊂ MS
n(R), is constructed using the

MaxEnt with the following available information, which defines mappingh (see
Eq. (5)),

E{[Gλ]} = [In] , E{log(det[Gλ])} = νGλ
, E{[Gλ]

2
jj} = s2j , j = 1, . . .m ,

(37)
in which |νGλ

| < +∞, with m < n, and wheres21, . . . , s
2
m arem given posi-

tive constants. The pdfp[Gλ] (with respect to the volume elementdSG on the set
MS

n(R) has a support that isSn = M+
n (R) ⊂ MS

n(R) of MS
n(R). The pdf verifies

the normalization condition and is written [77] as

p[Gλ]([G]) = 1Sn([G])× CGλ
×
(
det [G]

)α−1 × exp{−tr{[µ]T [G]} −
m∑

j=1

τjG
2
jj} ,

(38)
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in whichCGλ
is the normalization constant,α is a parameter such thatn+2α−1 >

0, where[µ] is a diagonal real(n × n) matrix such thatµjj = (n + 2α − 1)/2
for j > m, and whereµ11, . . . , µmm andτ1, . . . , τm are2m positive parameters,
which are expressed as a function ofα and s21, . . . , s

2
m. The level of statistical

fluctuations of random matrix[Gλ] is controlled by the positive hyperparameterδ
that is defined by

δ =

{
E{‖Gλ − E{Gλ} ‖2F}

‖E{Gλ} ‖2F

}1/2

=

{
1

n
E{‖ [Gλ]− [In] ‖2F}

}1/2

, (39)

and whereδ is such that

δ2 =
1

n

m∑

j=1

s2j +
n + 1− (m/n)(n + 2α− 1)

n+ 2α− 1
. (40)

Generator of realizations.
For givenm < n, δ, ands21, . . . , s

2
m, the explicit generator of realizations of ran-

dom matrix[Gλ] whose pdf is defined by Eq. (38), is detailed in [77].

9. Ensembles of Random Matrices for the Nonparametric Method in Uncer-
tainty Quantification

In this section, we present the ensembles SE+
0 , SE+ε , SE+0, SErect, and SEHT,

of random matrices which result from some transformations of the fundamen-
tal ensembles introduced before. These ensembles of randommatrices are use-
ful for performing the nonparametric stochastic modeling of matrices encoun-
tered in uncertainty quantification of computational models in: structural dynam-
ics, acoustics, vibroacoustics, fluid-structure interaction, unsteady aeroelasticity,
soil-structure interaction, etc, but also, in: solid mechanics (elasticity tensors of
random elastic continuous media, matrix-valued random fields for heterogeneous
microstructures of materials), thermic (thermal conductivity tensor), electromag-
netism (dielectric tensor), etc.

The ensembles of random matrices, devoted to the construction of nonpara-
metric stochastic models of matrices encountered in uncertainty quantification,
are briefly summarized below, and then are mathematically detailed.

� The ensemble SE+0 is a subset of all the positive-definite random matrices
for which the mean values are given and differ from the unit matrix (unlike to en-
semble SG+0 ), and for which the lower bound is the zero matrix. This ensemble is
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constructed as a transformation of ensemble SG+
0 in keeping all the mathematical

properties of ensemble SG+0 such as the positiveness.
� The ensemble SE+ε is a subset of all the positive-definite random matrices for

which the mean value is a given positive-definite matrix, andfor which there is an
arbitrary lower bound that is a positive-definite matrix controlled by an arbitrary
positive numberε that can be chosen as small as is desired. In this ensemble, the
lower bound does not correspond to a given matrix that results from a physical
model. This ensemble is constructed as a transformation of ensemble SG+ε and
has the same area of use than ensemble SE+

0 for stochastic modeling in uncertainty
quantification, but for which a lower bound is required in thestochastic modeling
for mathematical reasons.

� The ensemble SE+0 is similar to ensemble SG+0 but is constituted of semipositive-
definite (m × m) real random matrices for which the mean value is a given
semipositive-definite matrix. This ensemble is constructed as a transformation
of positive-definite(n × n) real random matrices belonging to ensemble SG+

0 ,
with n < m, in which the dimension of the null space ism−n. Such an ensemble
is useful for the nonparametric stochastic modeling of uncertainties such as those
encountered in structural dynamics in presence of rigid body displacements.

� The ensemble SErect is an ensemble of rectangular random matrices for which
the mean value is a given rectangular matrix, and which is constructed using en-
semble SE+ε . This ensemble is useful for the nonparametric stochastic modeling
of some uncertain coupling operators encountered, for instance, in fluid-structure
interaction and in vibroacoustics.

� The ensemble SEHT is a set of random functions with values in the set of
the complex matrices such that the real part and the imaginary part are positive-
definite random matrices that are constrained by an underlying Hilbert trans-
form induced by a causality property. This ensemble allows for a nonparamet-
ric stochastic modeling in uncertainty quantification encountered, for instance in
linear viscoelasticity.

9.1. Ensemble SE+0 of Positive-Definite Random Matrices With a Given Mean
Value

The ensemble SE+0 is a subset of all the positive-definite random matrices for
which the mean values are given and differ from the unit matrix (unlike to ensem-
ble SG+

0 ). This ensemble is constructed as a transformation of ensemble SG+
0 in

keeping all the mathematical properties of ensemble SG+
0 such as the positiveness

[108].
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Definition of ensemble SE+0 .
Any random matrix[A0] in ensemble SE+0 is defined on the probability space
(Θ, T ,P), is with values inM+

n (R) ⊂ MS
n(R), and is such that

E{[A0]} = [A] , E{log(det[A0])} = νA0 , |νA0| < +∞ , (41)

in which the mean value[A] is a given matrix inM+
n (R).

Expression of[A0] as a transformation of [G0] and generator of realizations.
Positive-definite mean matrix[A] is factorized (Cholesky) as

[A] = [LA]
T [LA] , (42)

in which[LA] is an upper triangular matrix inMn(R). Taking into account Eq. (41)
and the definition of ensemble SG+

0 , any random matrix[A0] in ensemble SE+0 is
written as

[A0] = [LA]
T [G0] [LA] , (43)

in which the random matrix[G0] belongs to ensemble SG+0 , with mean value
E{[G0]} = [In] and for which the level of statistical fluctuations is controlled by
the hyperparameterδ defined by Eq. (15).

Generator of realizations. For all θ in Θ, the realization[G0(θ)] of [G0] is
constructed as explained before. The realization[A0(θ)] of random matrix[A0] is
calculated by[A0(θ)] = [LA]

T [G0(θ)] [LA].
Remark. It should be noted that the mean matrix[A] could also been written

as[A] = [A]1/2 [A]1/2 in which [A]1/2 is the square root of[A] in M+
n (R), and the

random matrix[A0] could then been written as[A0] = [A]1/2 [G0] [A]
1/2.

Properties of random matrix [A0].
Any random matrix[A0] in ensemble SE+0 is a second-order random variable,

E{‖A0‖2} ≤ E{‖A0‖2F} < +∞ , (44)

and its inverse[A0]
−1 exists almost surely and is a second-order random variable,

E{‖[A0]
−1‖2} ≤ E{‖[A0]

−1‖2F} < +∞ . (45)

Covariance tensor and coefficient of variation of random matrix [A0].
The covarianceCjk,j′k′ = E{([A0]jk−Ajk)([A0]j′k′−Aj′k′)} of random variables
[A0]jk and[A0]j′k′ is written as

Cjk,j′k′ =
δ2

n+ 1

{
Aj′kAjk′ + Ajj′Akk′

}
, (46)
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and the varianceσ2
jk = Cjk,jk of random variable[A0]jk is

σ2
jk =

δ2

n+ 1

{
A2

jk + AjjAkk

}
. (47)

The coefficient of variationδA0 of random matrix[A0], defined by

δA0 =

{
E{‖A0 −A ‖2F}

‖A ‖2F

}1/2

. (48)

SinceE{‖A0 −A ‖2F} =
∑n

j=1

∑n
k=1 σ

2
jk, we have

δA0 =
δ√
n+ 1

{
1 +

(tr [A])2

‖A‖2F

}1/2

. (49)

9.2. Ensemble SE+ε of Positive-Definite Random Matrices With a Given Mean
Value and an Arbitrary Positive-Definite Lower Bound

The ensemble SE+ε is a set of positive-definite random matrices for which the
mean value is a given positive-definite matrix, and for whichthere is an arbitrary
lower bound that is a positive-definite matrix controlled byan arbitrary positive
numberε that can be chosen as small as is desired. In this ensemble, the lower
bound does not correspond to a given matrix that results froma physical model.
This ensemble is then constructed as a transformation of ensemble SG+ε and has
the same area of use than ensemble SE+

0 for stochastic modeling in uncertainty
quantification, but for which a lower bound is required in thestochastic modeling
for mathematical reasons.

Definition of ensemble SE+ε .
For a fixed positive value of parameterε (generally chosen very small, as10−6),
any random matrix[A] in ensemble SE+ε is defined on probability space(Θ, T ,P),
is with values inM+

n (R) ⊂ M
S
n(R), and is such that

[A] = [LA]
T [G] [LA] , (50)

in which [LA] is the upper triangular matrix inMn(R) corresponding by the
Cholesky factorization[LA]

T [LA] = [A] of the positive-definite mean matrix
[A] = E{[A]} of random matrix[A], and where the random matrix[G] belongs to
ensemble SG+ε , with mean valueE{[G]} = [In] and for which the coefficient of
variationδG is defined by Eq. (24) as a function of the hyperparameterδ defined
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by Eq. (15), which allows the level of statistical fluctuations to be controlled. It
should be noted that forε = 0, [G] = [G0] that yields[A] = [A0] and conse-
quently, the ensemble SE+ε coincides with SE+0 (if ε = 0).

Generator of realizations. For allθ in Θ, the realization[G(θ)] of [G] is con-
structed as explained before. The realization[A(θ)] of random matrix[A] is cal-
culated by[A(θ)] = [LA]

T [G(θ)] [LA].

Properties of random matrix [A].
Almost surely, we have

[A]− [Aℓ] =
1

1 + ε
[A0] > 0 , (51)

in which [A0] is defined by Eq. (43), and where the lower bound is the positive-
definite matrix[Aℓ] = cε[A] with cε = ε/(1 + ε), and we have the following
properties,

E{[A]} = [A] , E{log(det([A]− [Aℓ]))} = νA , |νA| < +∞ , (52)

with νA = νA0 − n log(1 + ε). For allε > 0, random matrix[A] in ensemble SE+ε
is a second-order random variable,

E{‖A‖2} ≤ E{‖A‖2F} < +∞ , (53)

and the bilinear formbA(X,Y) = (([A]X ,Y)) onL2
n × L2

n is such that,

bA(X,X) ≥ cε (([A]X ,X)) = cε|||[LA]X|||2 . (54)

Random matrix[A] is invertible almost surely and its inverse[A]−1 is a second-
order random variable,

E{‖[A]−1‖2} ≤ E{‖[A]−1‖2F} < +∞ . (55)

The coefficient of variationδA of random matrix[A], defined by

δA =

{
E{‖A −A ‖2F}

‖A ‖2F

}1/2

. (56)

is such that

δA =
1

1 + ε
δA0 , (57)

in which δA0 is defined by Eq. (49).
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9.3. Ensemble SE+0 of Semipositive-Definite Random Matrices With a Given Semipositive-
Definite Mean Value

The ensemble SE+0 is similar to ensemble SG+0 but is constituted of semipositive-
definite(m × m) real random matrices[A] for which the mean value is a given
semipositive-definite matrix. This ensemble is constructed [111] as a transforma-
tion of positive-definite(n× n) real random matrices[G0] belonging to ensemble
SG+

0 , with n < m.

Algebraic structure of the random matrices in SE+0.
The ensemble SE+0 is constituted of random matrix[A] with values in the set
M+0

m (R) such that the null space of[A], denoted asnull([A]), is deterministic and
is a subspace ofRm with a fixed dimensionµnull < m. This deterministic null
space is defined as the null space of the mean value[A] = E{[A]} that is given in
M+0

m (R). We then have

[A] ∈ M
+0
m (R) , dim null([A]) = µnull < m , null([A]) = null([A]) . (58)

There is a rectangular matrix[RA] in Mn,m(R), with n = m− µnull, such that

[A] = [RA]
T [RA] . (59)

Such a factorization is performed using classical algorithms [47].

Definition and construction of ensemble SE+0.
The ensemble SE+0 is then defined as the subset of all the second-order ran-
dom matrices[A], defined on probability space(Θ, T ,P), with values in the set
M+0

m (R), which are written as

[A] = [RA]
T [G] [RA] , (60)

in which [G] is a positive-definite symmetric(n×n) real random matrix belonging
to ensemble SE+ε , with mean valueE{[G]} = [In] and for which the coefficient of
variationδG is defined by Eq. (24) as a function of the hyperparameterδ defined
by Eq. (15), which allows the level of statistical fluctuations to be controlled.

Generator of realizations. For allθ in Θ, the realization[G(θ)] of [G] is con-
structed as explained before. The realization[A(θ)] of random matrix[A] is cal-
culated by[A(θ)] = [RA]

T [G(θ)] [RA].
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9.4. EnsembleSE rect of Rectangular Random Matrices With a Given Mean Value

The ensemble SErect is an ensemble of rectangular random matrices for which
the mean value is a given rectangular matrix, and which is constructed with the
MaxEnt. Such an ensemble depends on the available information and conse-
quently, is not unique. We present hereinafter the construction proposed in [111],
which is based on the use of a fundamental algebraic propertyfor rectangular real
matrices, which allows ensemble SE+

ε to be used.

Decomposition of a rectangular matrix.
Let [A] be a rectangular real matrix inMm,n(R) for which its null space is reduced
to {0} ([A] x = 0 yieldsx = 0). Such a rectangular matrix[A] can be written as

[A] = [U ] [T ] , (61)

in which the square matrix[T ] and the rectangular matrix[U ] are such that

[T ] ∈ M
+
n (R) and [U ] ∈ Mm,n(R) such that [U ]T [U ] = [In] . (62)

The construction of the decomposition defined by Eq. (61) canbe performed, for
instance, by using the singular value decomposition of[A].

Definition of ensemble SErect.
Let [A] be a given rectangular real matrix inMm,n(R) with a null space reduced
to {0} and whose decomposition is given by Eqs. (61) and (62). Sincesymmetric
real matrix [T ] is positive definite, there is an upper triangular matrix[LT ] in
Mn(R) such that[T ] = [LT ]

T [LT ] that corresponds to the Cholesky factorization
of matrix [T ].
A random rectangular matrix[A] belonging to ensemble SErect, is a second-order
random matrix defined on probability space(Θ, T ,P), with values inMm,n(R),
whose mean value is the rectangular matrix[A] = E{[A]}, and which is written
as

[A] = [U ] [T] , (63)

in which the random(n × n) matrix [T] belongs to ensemble SE+
ε and is then

written as
[T] = [LT ]

T [G] [LT ] . (64)

The random matrix[G] belongs to ensemble SG+ε in which [G] is a positive-
definite symmetric(n× n) real random matrix belonging to ensemble SE+

ε , with
mean valueE{[G]} = [In] and for which the coefficient of variationδG is defined
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by Eq. (24) as a function of hyperparameterδ defined by Eq. (15), which allows
the level of statistical fluctuations to be controlled.

Generator of realizations. For allθ in Θ, the realization[G(θ)] of [G] is con-
structed as explained before. The realization[A(θ)] of random matrix[A] is cal-
culated by[A(θ)] = [U ][LT ]

T [G(θ)] [LT ].

9.5. EnsembleSEHT of a Pair of Positive-Definite Matrix-Valued Random Func-
tions Related by a Hilbert Transform

The ensemble SEHT is a set of random functionsω 7→ [Z(ω)] = [K (ω)] +
iω [D(ω)] indexed byR with values in a subset of all the(n × n) complex ma-
trices such that[K(ω)] and[D(ω)] are positive-definite random matrices that are
constrained by an underlying Hilbert transform induced by acausality property
[116].

Defining the deterministic matrix problem.
We consider a family of complex(n× n) matrices[Z(ω)] depending on a param-
eterω in R, such that[Z(ω)] = iω [D(ω)] + [K(ω)] wherei is the pure imaginary
complex number (i =

√
−1), and where, for allω in R,

(i) [D(ω)] and[K(ω)] belong toM+
n (R).

(ii) [D(−ω)] = [D(ω)] and[K(−ω)] = [K(ω)].
(iii) Matrices [D(ω)] and[K(ω)] are such that

ω [D(ω)] = [N̂ I(ω)] , [K(ω)] = [K0] + [N̂R(ω)] . (65)

The real matrices[N̂R(ω)] and [N̂ I(ω)] are the real part and the imaginary part
of the (n × n) complex matrix[N̂(ω)] =

∫
R
e−iωt[N(t)] dt that is the Fourier

transform of an integrable functiont 7→ [N(t)] from R into Mn(R) such that
[N(t)] = [0] for t < 0 (causal function). Consequently,ω 7→ [N̂R(ω)] and
ω 7→ [N̂ I(ω)] are continuous functions onR, which goes to[0] as |ω| → +∞,
and which are related by the Hilbert transform [91],

[N̂R(ω)] =
1

π
p.v

∫ +∞

−∞

1

ω − ω′
[N̂ I(ω′)] dω′ , (66)

in which p.v denotes the Cauchy principal value. The real matrix [K0] belongs to
M+

n (R) and can be written as

[K0] = [K(0)] +
2

π

∫ +∞

0

[D(ω)] dω = lim
|ω|→+∞

[K(ω)] , (67)
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and consequently, we have the following equation,

[K(ω)] = [K(0)] +
ω

π
p.v

∫ +∞

−∞

1

ω − ω′
[D(ω′)] dω′ . (68)

Construction of a nonparametric stochastic model.
The construction of a nonparametric stochastic model then consists in modeling,
for all realω, the positive-definite symmetric(n × n) real matrices[D(ω)] and
[K(ω)] by random matrices[D(ω)] and[K (ω)] such that,

E{[D(ω)]} = [D(ω)] , E{[K (ω)]} = [K(ω)] , (69)

[D(−ω)] = [D(ω)] , [K(−ω)] = [K (ω)] . (70)

For ω ≥ 0, the construction of the stochastic model of the family of random
matrices[D(ω)] and[K (ω)] is carried out as follows.

(i) Constructing the family[D(ω)] of random matrices such that, for fixed
ω, [D(ω)] = [LD(ω)]

T [GD] [LD(ω)], where[LD(ω)] is the upper triangular real
(n×n) matrix resulting from the Cholesky decomposition of the positive-definite
symmetric real matrix[D(ω)] = [LD(ω)]

T [LD(ω)], and where[GD] is a(n × n)
random matrix that belongs to ensemble SG+

ε , for which the hyperparameterδ
is rewritten asδD. HyperparameterδD allows the level of uncertainties to be
controlled for random matrix[D(ω)].

(ii) Constructing the random matrix[K (0)] = [LK(0)]
T [GK(0)] [LK(0)] in which

[LK(0)] is the upper triangular real(n×n) matrix resulting from the Cholesky de-
composition of the positive-definite symmetric real matrix[K(0)] = [LK(0)]

T [LK(0)],
and where[GK(0)] is a(n× n) random matrix that belongs to ensemble SG+

ε , for
which the hyperparameterδ is rewritten asδK . HyperparameterδK allows the
level of uncertainties to be controlled for random matrix[K(0)].

(iii) For fixed ω ≥ 0, constructing the random matrix[K (ω)] using the equa-
tion,

[K(ω)] = [K(0)] +
ω

π
p.v

∫ +∞

−∞

1

ω − ω′
[D(ω′)] dω′ , (71)

or equivalently,

[K (ω)] = [K (0)] +
2ω2

π
p.v

∫ +∞

0

1

ω2 − ω′2
[D(ω′)] dω′ . (72)

31



The last equation can also be rewritten as the following equation recommended
for computation (because the singularity inu = 1 is independent ofω),

[K (ω)] = [K (0)] +
2ω

π
p.v

∫ +∞

0

1

1− u2
[D(ωu)] du ,

= [K (0)] +
2ω

π
lim
η→0

{
∫ 1−η

0

+

∫ +∞

1+η

} . (73)

(iv) For fixedω < 0, [K(ω)] is calculated using the even property,[K(ω)] =
[K(−ω)]. With such a construction, it can be verified that, for allω ≥ 0, [K(ω)]
is a positive-definite random matrix. The following sufficient condition is proved
in [116]. If for all real vectory = (y1, . . . , yn), and if almost surely, the random
functionω 7→< [D(ω)] y , y> is decreasing inω for ω ≥ 0, then, for allω ≥ 0,
[K(ω)] is a positive-definite random matrix.

10. MaxEnt as a Numerical Tool for Constructing Ensembles ofRandom
Matrices

In the previous sections, we have presented fundamental ensembles of random
matrices constructed with the MaxEnt principle. For these fundamental ensembles
the optimization problem defined by Eq. (8) has been solved exactly, what has al-
lowed us to explicitly construct the fundamental ensemblesof random matrices,
and also to explicitly describe the generators of realizations. This was possible
thanks to the type of the available information that was usedto define the admis-
sible set (see Eq. (7)). In many cases, the available information does not allow
the Lagrange multipliers to be explicitly calculated, and thus, does not allow for
solving explicitly the optimization problem defined by Eq. (8).

In this framework of the non existence of an explicit solution for constructing
the pdf of random matrices using the MaxEnt principle under the constraints de-
fined by the available information, the first difficulty consists of the computation
of the Lagrange multipliers with an adapted algorithm that must be robust for the
high dimension. In addition, the computation of the Lagrange Multipliers requires
the calculation of integrals in high dimension, which can beestimated only by the
Monte Carlo Method. Therefore a generator of realizations of the pdf, which is
parameterized by the unknown Lagrange multipliers that arecurrently being cal-
culated, must be constructed. This problem is particularlydifficult for the high
dimension. An advanced and efficient methodology is presented hereinafter for
the case of the high dimension [113] (thus allows also for treating the cases of the
small dimension, and then for any dimension).
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10.1. Available Information and Parameterization

Let [A] be a random matrix defined on the probability space(Θ, T ,P), with
values in any subsetSn of MS

n(R), possibly withSn = MS
n(R). For instanceSn

can beM+
n (R). Let p[A] be the pdf of[A] with respect to the volume elementdSA

onMS
n(R) (see Eq. (1). The support, denoted assuppp[A] of pdf [A] is Sn. Thus,

p[A]([A]) = 0 for [A] not inSn, and the normalization condition is written as

∫

Sn

p[A]([A]) d
SA = 1 . (74)

The available information is defined by the following equation onRµ,

E{G([A])} = f , (75)

in which f = (f1, . . . , fµ) is a given vector inRµ with µ ≥ 1, where[A] 7→
G([A]) = (G1([A]), . . . ,Gµ([A])) is a given mapping fromSn into R

µ, and where
E is the mathematical expectation. For instance, mappingG can be defined by the
mean valueE[A] = [A] in which [A] is a given matrix inSn, and by the condition
E{log(det[A])} = cA in which |cA| < +∞. A parameterization of ensembleSn

is introduced such that any matrix[A] in Sn is written as

[A] = [A(y)] , (76)

in which y = (y1, . . . , yN) is a vector inRN and wherey 7→ [A(y)] is a given
mapping fromRN into Sn. Let y 7→ g(y) = (g1(y), . . . , gµ(y)) be the mapping
fromRN intoRµ such that

g(y) = G([A(y)]) , (77)

Let Y = (Y1, . . . , YN) be aRN -valued second-order random variable for which
the probability distribution onRN is represented by the pdfy 7→ pY(y) from RN

intoR+ = [0 ,+∞[ with respect tody = dy1 . . . dyN . The support of functionpY

isRN . FunctionpY satisfies the normalization condition,
∫

RN

pY(y) dy = 1 . (78)

For random vectorY, the available information is deduced from Eqs. (75) to (77),
and is written as

E{g(Y)} = f . (79)
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Example of parameterization.
If Sn = M+

n (R), then the parameterization,[A] = [A(y)], of [A] can be con-
structed in several ways. In order to obtain good propertiesfor the random matrix
[A] = [A(Y)] in which Y is aRN -valued second-order random variable, deter-
ministic matrix[A] is written as

[A] = [LA]
T (ε[In] + [A0]) [LA] ,

with ε > 0, where[A0] belongs toM+
n (R), and where[LA] is the upper triangular

(n × n) real matrix corresponding to the Cholesky factorization[LA]
T [LA] =

[A] of the mean matrix[A] = E{[A]} that is given inM+
n (R). Positive-definite

matrix [A0] can be written in two different forms (inducing different properties for
random matrix[A]):
(i) Exponential-type representation [54; 87]. Matrix[A0] is written as[A0] =
expM([G]) in which the matrix[G] belongs toMS

n(R) and whereexpM denotes
the exponential of the symmetric real matrices.
(ii) Square-type representation [112; 87]. Matrix[A0] is written as[A0] = [L]T [L]
in which [L] belongs to the setUL of all the upper triangular(n× n) real matrices
with positive diagonal entries, and where[L] = L([G]) in which L is a given
mapping fromMS

n(R) intoUL.
For this two representations, the parameterization is constructed in taking fory,
theN = n(n + 1)/2 independent entries{[G]jk, 1 ≤ j ≤ k ≤ n} of symmetric
real matrix[G]. Then for ally in RN , [A] = [A(y)] is in Sn, that is to say, is a
positive-definite matrix.

10.2. Construction of the pdf of Random VectorY using the MaxEnt
The unknown pdfpY with supportRN , whose normalization condition is given

by Eq. (78) is constructed using the MaxEnt principle for which the available
information is defined by Eq. (79). This construction is detailed in the next section
entitled ”MaxEnt for Constructing the pdf of a Random Vector”.

11. MaxEnt for Constructing the pdf of a Random Vector

Let Y = (Y1, . . . , YN) be aRN -valued second-order random variable for
which the probability distributionPY(dy) on R

N is represented by the pdfy 7→
pY(y) fromRN intoR+ = [0 ,+∞[ with respect tody = dy1 . . . dyN . The support
of functionpY isRN . FunctionpY satisfies the normalization condition,

∫

RN

pY(y) dy = 1 . (80)
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The unknown pdfpY is constructed using the MaxEnt principle for which the
available information is

E{g(Y)} = f , (81)

in which y 7→ g(y) = (g1(y), . . . , gµ(y)) is a given mapping fromRN into Rµ.
Equation (81) is rewritten as

∫

RN

g(y) pY(y) dy = f . (82)

Let Cp be the set of all the integrable positive-valued functionsy 7→ p(y) onRN ,
whose support isRN . Let C be the set of all the functionsp belonging toCp and
satisfying the constraints defined by Eqs. (80) and (82),

C = {p ∈ Cp ,

∫

RN

p(y) dy = 1 ,

∫

RN

g(y) p(y) dy = f} . (83)

The maximum entropy principle [59] consists in constructing pY in C such that

pY = argmax
p∈C

E(p) , (84)

in which the Shannon entropyE(p) of p is defined [104] by

E(p) = −
∫

RN

p(y) log(p(y)) dy , (85)

wherelog is the Neperian logarithm. In order to solve the optimization problem
defined by Eq. (84), a Lagrange multiplierλ0 ∈ R+ (associated with the constraint
defined by Eq. (80)), and a Lagrange multiplierλ ∈ Cλ ⊂ Rµ (associated with
the constraint defined by Eq. (82)) are introduced, in which the admissible setCλ
is defined by

Cλ = {λ ∈ R
µ ,

∫

RN

exp(− < λ , g(y) >) dy < +∞} . (86)

The solution of Eq. (84) can be written (see the proof in the next section) as

pY(y) = csol
0 exp(− < λsol, g(y) >) , ∀y ∈ R

N , (87)

in which the normalization constantcsol
0 is written ascsol

0 = exp(−λsol
0 ), and where

the method for calculating(λsol
0 ,λsol) ∈ R+× Cλ is presented in the next two

sections.
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11.1. Existence and Uniqueness of a Solution to the MaxEnt

The introduction of the Lagrange multipliersλ0 andλ, and the analysis of
existence and uniqueness of the solution of the MaxEnt corresponding to the so-
lution of the optimization problem defined by Eq. (84) is presented hereafter [53].

� The first step of the proof consists in assuming that there exists a unique
solution (denoted aspY) to the optimization problem defined by Eq. (84). The
functionals

p 7→
∫

RN

p(y) dy − 1 and p 7→
∫

RN

g(y) p(y) dy − f , (88)

are continuously differentiable onCp and are assumed to be such thatpY is a
regular point (see p. 187 of [69]). The constraints appearing in setC are taken into
account by using the Lagrange multiplier method. Using the Lagrange multipliers
λ0 ∈ R+ andλ ∈ Cλ defined by Eq. (86), the LagrangianL can be written, for all
p in Cp, as

L(p;λ0,λ) = E(p)− (λ0 − 1)(

∫

RN

p(y) dy − 1)− <λ ,

∫

RN

g(y)p(y) dy − f> .

(89)
From Theorem 2, p. 188, of [69], it can be deduced that there exists (λsol

0 ,λsol)
such that the functional(p, λ0,λ) 7→ L(p;λ0,λ) is stationary atpY (given by
Eq. (87)) forλ0 = λsol

0 andλ = λsol.
� The second step deals with the explicit construction of a family Fp of pdf

indexed by(λ0,λ), which rendersp 7→ L(p;λ0,λ) extremum. It is further proved
that this extremum is unique and turns out to be a maximum. Forany (λ0,λ)
fixed inR+ ×Cλ, it can first be deduced from the calculus of variations (Theorem
3.11.16, p. 341, in [102]) that the aforementioned extremum, denoted bypλ0,λ, is
written as

pλ0,λ(y) = exp(−λ0− < λ , g(y) >) , ∀y ∈ R
N . (90)

For any fixed value ofλ0 in R+ andλ in Cλ, the uniqueness of this extremum
directly follows from the uniqueness of the solution for theEuler equation that is
derived from the calculus of variations. Upon calculating the second-order deriva-
tive with respect top, at pointpλ0,λ, of the Lagrangian, it can be shown that this
extremum is, indeed, a maximum.

� In a third step, using Eq. (90), it is proved that if there exists (λsol
0 ,λsol) in

R
+×Cλ such that the solution of the constraint equations

∫
RN pλ0,λ(y) dy = 1 and
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∫
RN g(y) pλ0,λ(y) dy = f, in (λ0,λ), then(λsol

0 ,λsol) is unique. These constraints
are rewritten as ∫

RN

exp(−λ0− < λ , g(y) >) dy = 1 . (91)

∫

RN

g(y) exp(−λ0− < λ , g(y) >) dy = f . (92)

Introducing the notations,
Λ = (λ0,λ) andΛsol = (λsol

0 ,λsol) that belong toCΛ = R+ × Cλ ⊂ R1+µ,
F = (1, f) andG(y) = (1, g(y)) that belong toR1+µ,

these constraint equations are written as
∫

RN

G(y) exp(− < Λ ,G(y) >) dy = F . (93)

It is assumed that the optimization problem stated by Eq. (84) is well-posed in the
sense that the constraints are algebraically independent,that is to say, that there
exists a bounded subsetS of RN , with

∫
S
dy > 0, such that for any nonzero vector

v in R1+µ, ∫

S

<v ,G(y)>2 dy > 0 . (94)

LetΛ 7→ H(Λ) be the function defined by

H(Λ) =<Λ ,F > +

∫

RN

exp(− <Λ ,G(y)>) dy . (95)

The gradient∇H(Λ) of H(Λ) with respect toΛ is written as

∇H(Λ) = F −
∫

RN

G(y) exp(− < Λ ,G(y) >) dy , (96)

so that any solution of∇H(Λ) = 0 satisfies Eq. (93) (and conversely). It is
assumed thatH admits at least one critical point. The Hessian matrix[H ′′(Λ)] is
written as

[H ′′(Λ)] =

∫

RN

G(y)⊗ G(y) exp(− < Λ ,G(y) >) dy . (97)

SinceS ⊂ R
N , it turns out that, for any nonzero vectorv in R

1+µ,

< [H ′′(Λ)]v , v > ≥
∫

S

<v ,G(y)>2 exp(− <Λ ,G(y)>) dy > 0 , (98)
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Therefore, functionΛ 7→ H(Λ) is strictly convex that ensures the uniqueness of
the critical point ofH (should it exist). Under the aforementioned assumption of
algebraic independence for the constraints, it follows that, if Λsol (such that the
constraint defined by Eq. (93) is fulfilled) exists, thenΛsol is unique and corre-
sponds to the solution of the following optimization problem,

Λ
sol = arg min

Λ∈CΛ
H(Λ) , (99)

whereH is the strictly convex function defined by Eq. (95). The unique solution
pY of the optimization problem defined by Eq. (84) is the given byEq. (87) with
(λsol

0 ,λsol) = Λ
sol.

11.2. Numerical Calculation of the Lagrange Multipliers

When there is no explicit solution(λsol
0 ,λsol) = Λ

sol of Eq. (93) inΛ,Λsol must
be numerically calculated and the numerical method used must be robust for the
high dimension. The numerical method could be based on the optimization prob-
lem defined by Eq. (99). Unfortunately, with such a formulation, the constant of
normalization,c0 = exp(−λ0), is directly involved in the numerical calculations,
what is not robust in high dimension. The numerical method proposed hereinafter
[11] is based on the minimization of the convex objective function introduced in
[1]. Using Eqs. (80) and (87), pdfpY can be rewritten as

pY(y) = c0(λ
sol) exp(− < λsol, g(y) >) , ∀y ∈ R

N , (100)

in which c0(λ) is defined by

c0(λ) =

{∫

RN

exp(− < λ, g(y) >) dy
}−1

. (101)

Sinceexp(−λ0) = c0(λ0), and taking into account Eq. (101), the constraint equa-
tion defined by Eq. (92) can be rewritten as

∫

RN

g(y) c0(λ) exp(− < λ , g(y) >) dy = f . (102)

The optimization problem defined by Eq. (99), which allows for calculating(λsol
0 ,

λsol) = Λ
sol, is replaced by the more convenient optimization problem that allows

λsol to be computed,
λsol = arg min

λ∈Cλ⊂Rµ
Γ(λ) , (103)
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in which the objective functionΓ is defined by

Γ(λ) =< λ , f > − log(c0(λ)) . (104)

Onceλsol is calculated,csol
0 is given bycsol

0 = c0(λ
sol). Let {Yλ,λ ∈ Cλ} be the

family of random variables with values inRN , for which pdfpYλ
is defined, for

all λ in Cλ, by

pYλ
(y) = c0(λ) exp(− < λ, g(y) >) , ∀y ∈ R

N . (105)

The gradient vector∇Γ(λ) and the Hessian matrix[Γ′′(λ)] of functionλ 7→ Γ(λ)
can be written as

∇Γ(λ) = f − E{g(Yλ)} , (106)

[Γ′′(λ)] = E{g(Yλ) g(Yλ)
T} − E{g(Yλ)}E{g(Yλ)}T . (107)

Matrix [Γ′′(λ)] is thus the covariance matrix of the random vectorg(Yλ), and is
positive definite (the constraints have been assumed to be algebraically indepen-
dent). Consequently, functionλ 7→ Γ(λ) is strictly convex and reaches its mini-
mum forλsol which is such that∇Γ(λsol) = 0. The optimization problem defined
by Eq. (103) can be solved using any minimization algorithm.Since functionΓ
is strictly convex, the Newton iterative method can be applied to the increasing
functionλ 7→ ∇Γ(λ) for searchingλsol such that∇Γ(λsol) = 0. This iterative
method is not unconditionally convergent. Consequently, an under-relaxation is
introduced and the iterative algorithm is written as

λℓ+1 = λℓ − α [Γ′′(λℓ)]−1∇Γ(λℓ) , (108)

in whichα belongs to]0 , 1[ in order to ensure the convergence. At each iteration
ℓ, the error is calculated by

err(ℓ) =
‖f − E{g(Yλℓ)}‖

‖f‖ =
‖∇Γ(λℓ)‖

‖f‖ , (109)

in order to control the convergence. The performance of the algorithm depends on
the choice of the initial condition that can be found in [11].For high dimension
problem, the mathematical expectations appearing in Eqs. (106), (107) and (109),
are calculated using a Markov Chain Monte Carlo (MCMC) method that does not
require the calculation of the normalization constantc0(λ) in the pdf defined by
Eq. (105).
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11.3. Generator for Random VectorYλ and Estimation of the Mathematical Ex-
pectations in High Dimension

Forλ fixed inCλ ⊂ R
µ, the pdfpYλ

onRN of theRN -valued random variable
Yλ is defined by Eq. (105). Letw be a given mapping fromRN into an Euclidean
space such thatE{w(Yλ)} =

∫
RN w(y) pYλ

dy is finite. For instancew can be
such thatw(Yλ) = g(Yλ) or w(Yλ) = g(Yλ) g(Yλ)

T . These two choices allow
for calculating the mathematical expectation in high dimension,E{g(Yλ)} and
E{g(Yλ) g(Yλ)

T}, which are required for computing the gradient and the Hessian
defined by Eqs. (106) and (107).

The estimation ofE{w(Yλ)} requires a generator of realizations of random
vectorYλ, which is constructed using the Markov Chain Monte Carlo method
(MCMC) [60; 96; 118]. With the MCMC method, the transition kernel of the
homogeneous Markov chain can be constructed using the Metropolis-Hastings
algorithm [57; 76] (that requires the definition of a good proposal distribution),
the Gibbs sampling [42] (that requires the knowledge of the conditional distribu-
tion) or the slice sampling [84] (that can exhibit difficulties related to the general
shape of the probability distribution, in particular for multimodal distributions).
In general, these algorithms are efficient, but can also be not efficient if there exist
attraction regions which do not correspond to the invariantmeasure under consid-
eration and tricky even in high dimension. These cases cannot easily be detected
and are time consuming.

We refer the reader to the references given hereinbefore forthe usual MCMC
methods, and we present after a more advanced method that is very robust in
high dimension, which have been introduced in [113] and used, for instance, in
[11; 51]. The method presented looks like to the Gibbs approach but corresponds
to a more direct construction of a random generator of realizations for random
variableYλ whose probability distribution ispYλ

dy. The difference between the
Gibbs algorithm and the proposed algorithm is that the convergence in the pro-
posed method can be studied with all the mathematical results concerning the
existence and uniqueness of Itô stochastic differential equation (ISDE). In addi-
tion, a parameter is introduced which allows the transient part of the response to
be killed in order to get more rapidly the stationary solution corresponding to the
invariant measure. Thus, the construction of the transition kernel by using the de-
tailed balance equation is replaced by the construction of an ISDE, which admits
pYλ

dy (defined by Eq. (105)) as a unique invariant measure. The ergodic method
or the Monte Carlo method is used for estimatingE{w(Yλ)}.
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Random generator and estimation of mathematical expectations.
It is assumed thatλ is fixed inCλ ⊂ Rµ, and for simplifying the notation,λ is
omitted. Letu 7→ Φ(u) be the function fromRN intoR defined by

Φ(u) =<λ, g(u)> , (110)

Let{(U(r),V(r)), r ∈ R+} be the Markov stochastic process defined on the prob-
ability space(Θ, T ,P), indexed byR+ = [0 ,+∞[, with values inRN × RN ,
satisfying, for allr > 0, the following ISDE with initial conditions,

dU(r) = V(r) dr , (111)

dV(r) = −∇uΦ(U(r)) dr − 1

2
f0V(r) dr +

√
f0 dW(r) , (112)

U(0) = u0 , V(0) = v0 a.s. , (113)

in which u0 and v0 are given vectors inRN (that will be taken as zero in the
application presented later), and whereW = (W1, . . . ,WN) is the normalized
Wiener process defined on(Θ, T ,P) indexed byR+ with values inRN . The
matrix-valued autocorrelation function[RW(r, r′)] = E{W(r)W(r′)T} of W is
then written as[RW(r, r′)] = min(r, r′) [In]. In Eq. (112), the free parameter
f0 > 0 allows a dissipation term to be introduced in the nonlinear second-order
dynamical system (formulated in the Hamiltonian form with an additional dissi-
pative term) in order to kill the transient part of the response and consequently, to
get more rapidly the stationary solution corresponding to the invariant measure. It
is assumed that functiong is such that functionu 7→ Φ(u): (i) is continuous on
RN , (ii) is such thatu 7→ ‖∇uΦ(u)‖ is a locally bounded function onRN (i.e. is
bounded on all compact set inRN , and (iii) is such that,

inf
‖u‖>R

Φ(u) → +∞ if R → +∞ , (114)

inf
u∈Rn

Φ(u) = Φmin with Φmin ∈ R , (115)
∫

Rn

‖∇uΦ(u)‖ e−Φ(u) du < +∞ . (116)

Under hypotheses (i) to (iii), and using Theorems 4 to 7 in pages 211 to 216 of Ref.
[106], in which the Hamiltonian is taken asH(u, v) = ‖v‖2/2 + Φ(u), and using
[33; 63] for the ergodic property, it can be deduced that the problem defined by
Eqs. (111) to (113) admits a unique solution. This solution is a second-order diffu-
sion stochastic process{(U(r),V(r)), r ∈ R+}, which converges to a stationary
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and ergodic diffusion stochastic process{(Ust(rst), Vst(rst)), rst ≥ 0}, whenr
goes to infinity, associated with the invariant probabilitymeasurePst(du, dv) =
ρst(u, v) du dv. The probability density function(u, v) 7→ ρst(u, v) onRN × RN

is the unique solution of the steady-state Fokker-Planck equation associated with
Eqs. (111)-(112), and is written (see pp. 120 to 123 in [106]), as

ρst(u, v) = cN exp{−1

2
‖v‖2 − Φ(u)} , (117)

in which cN is the constant of normalization. Equations (105), (110), and (117)
yield

pYλ
(y) =

∫

RN

ρst(y, v) dv , ∀ y ∈ R
N . (118)

Random variableYλ (for which the pdfpYλ
is defined by Eq. (105)) can then be

written, for all fixed positive value ofrst, as

Yλ = Ust(rst) = lim
r→+∞

U(r) in probability distribution. (119)

The free parameterf0 > 0 introduced in Eq. (112), allows a dissipation term to
be introduced in the nonlinear dynamical system for obtaining more rapidly the
asymptotic behavior corresponding to the stationary and ergodic solution asso-
ciated with the invariant measure. Using Eq. (119) and the ergodic property of
stationary stochastic processUst yield

E{w(Yλ)} = lim
R→+∞

1

R

∫ R

0

w(U(r, θ)) dr , (120)

in which, forθ ∈ Θ, U(·, θ) is any realization ofU.

Discretization scheme and estimating the mathematical expectations.
A discretization scheme must be used for numerically solving Eqs. (111) to (113).
For general surveys on discretization schemes for ISDE, we refer the reader to
[64; 119; 120] (among others). The present case, related to aHamiltonian dy-
namical system, has also been analyzed using an implicit Euler scheme in [121].
Hereinafter, we present the Störmer-Verlet scheme, whichis an efficient scheme
that preserves energy for nondissipative Hamiltonian dynamical systems (see [56]
for reviews about this scheme in the deterministic case, andsee [17] and the ref-
erences therein for the stochastic case).

Let M ≥ 1 be an integer. The ISDE defined by Eqs. (111) to (113) is solved
on the finite intervalR = [0 , (M−1)∆r], in which∆r is the sampling step of the
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continuous index parameterr. The integration scheme is based on the use of the
M sampling pointsrk such thatrk = (k−1)∆r for k = 1, . . . ,M . The following
notations are introduced:Uk = U(rk), Vk = V(rk), andWk = W(rk)), for k =
1, . . . ,M , with U1 = u0, V1 = v0, andW1 = 0. Let{∆Wk+1 = Wk+1−Wk, k =
1, . . . ,M − 1} be the family of the independent Gaussian second-order centered
RN -valued random variables such thatE{∆Wk+1 (∆Wk+1)T} = ∆r [In]. For
k = 1, . . . ,M − 1, the Störmer-Verlet scheme yields

Uk+ 1
2 = Uk +

∆r

2
Vk , (121)

Vk+1 =
1− b

1 + b
Vk +

∆r

1 + b
L k+ 1

2 +

√
f0

1 + b
∆Wk+1 , (122)

Uk+1 = Uk+ 1
2 +

∆r

2
Vk+1 , (123)

with the initial condition defined by (113), whereb = f0∆r /4, and whereL k+ 1
2

is theRN -valued random variable such thatLk+ 1
2 = −{∇uΦ(u)}u=Uk+1

2
.

For a given realizationθ in Θ, the sequence{Uk(θ), k = 1, . . . ,M} is con-
structed using Eqs. (121) to (123). The discretization of Eq. (120) yields the
following estimation of the mathematical expectation,

E{w(Yλ)} = lim
M→+∞

ŵM , ŵM =
1

M −M0 + 1

M∑

k=M0

w(Uk(θ)) , (124)

in which, for f0 fixed, the integerM0 > 1 is chosen to remove the transient part
of the response induced by the initial condition.

For details concerning the optimal choice of the numerical parameters, such
asM0, M , f0, ∆r, u0, andv0, we refer the reader to [11; 51; 54; 113].

12. Nonparametric Stochastic Model For Constitutive Equation in Linear
Elasticity

This section deals with a nonparametric stochastic model for random elastic-
ity matrices in the framework of the three-dimensional linear elasticity in contin-
uum mechanics, using the methodologies and some of the results that have been
given in the two previous sections: ”Fundamental Ensemblesfor Positive-Definite
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Symmetric Real Random Matrices” and ”MaxEnt as a Numerical Tool for Con-
structing Ensemble of Random Matrices”. The developments given hereinafter
correspond to a synthesis of works detailed in [51; 53; 54].

From a continuum mechanics point of view, the framework is the 3D linear
elasticity of a homogeneous random medium (material) at a given scale. Let[C̃]
be the random elasticity matrix for which the nonparametricstochastic model has
to be derived. Random matrix[C̃] is defined on the probability space(Θ, T ,P)
and is with values inM+

n (R) with n = 6. This matrix corresponds to the so-called
Kelvin’s matrix representation of the fourth-order symmetric elasticity tensor in
3D linear elasticity [72]. The symmetry classes for a linearelastic material, that
is to say the linear elastic symmetries, are [23]: isotropic, cubic, transversely
isotropic, trigonal, tetragonal, orthotropic, monoclinic, and anisotropic. From a
stochastic modeling point of view, the random elasticity matrix [C̃] satisfies the
following properties.

(i) Random matrix[C̃] is assumed to have a mean value that belongs toM+
n (R),

but is, in mean, close to a given symmetry class induced by a material symmetry,
denoted asM sym

n (R) and which is a subset ofM+
n (R),

[C̃] = E{[C̃]} ∈ M
+
n (R) . (125)

(ii) Random matrix[C̃] admits a positive-definite lower bound[Cℓ] belonging
toM

+
n (R)

[C̃]− [Cℓ] > 0 a.s . (126)

(iii) The statistical fluctuations of random elasticity matrix [C̃] belong mainly
to the symmetry class, but can be more or less anisotropic with respect to the
above symmetry. The level of statistical fluctuations in thesymmetry class must
be controlled independently of the level of statistical anisotropic fluctuations.

12.1. Positive-Definite Matrices Having a Symmetry Class

For the positive-definite symmetric(n × n) real matrices, a given symmetry
class is defined by a subsetM sym

n (R) ⊂ M+
n (R) such that, any matrix[M ] exhibit-

ing the above symmetry, then belongs toM sym
n (R), and can be written as

[M ] =
N∑

j=1

mj [E
sym
j ] , m = (m1, . . . , mN) ∈ Cm ⊂ R

N , [E sym
j ] ∈ M

S
n(R) ,

(127)
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in which{[E sym
j ], j = 1, . . . , N} is the matrix algebraic basis ofM sym

n (R) (Walpole’s
tensor basis [123]), and where the admissible subsetCm of RN is such that

Cm = {m ∈ R
N |

N∑

j=1

mj [E
sym
j ] ∈ M

+
n (R)} . (128)

It should be noted that the basis matrices[E sym
j ] are symmetric matrices belonging

toMS
n(R), but are not positive definite, that is to say, do not belong toM+

n (R). The
dimensionN for all material symmetry classes is2 for isotropic,3 for cubic,5 for
transversely isotropic,6 or 7 for trigonal,6 or 7 for tetragonal,9 for orthotropic,
13 for monoclinic, and 21 for anisotropic. The following properties are proved
(see [54; 123]):
(i) If [M ] and[M ′] belong toM sym

n (R), then

[M ] [M ′] ∈ M
sym
n (R) , [M ]−1 ∈ M

sym
n (R) , [M ]1/2 ∈ M

sym
n (R) . (129)

(ii) Any matrix [N ] belonging toM sym
n (R) can be written as

[N ] = expM([N ]) , [N ] =

N∑

j=1

yj [E
sym
j ] , y = (y1, . . . , yN) ∈ R

N ,

(130)
in which expM is the exponential of symmetric real matrices. It should be noted
that matrix[N ] is a symmetric real matrix but does not belong toM sym

n (R) (be-
causey is inRN and therefore,[N ] is not a positive-definite matrix).

12.2. Representation Introducing a Positive-Definite Lower Bound

Using Eq. (126), the representation of random elasticity matrix [C̃] is written
as

[C̃] = [Cℓ] + [C] , (131)

in which the lower bound is the deterministic matrix[Cℓ] belonging toM+
n (R),

and where[C] = [C̃]− [Cℓ] is a random matrix with values inM+
n (R). The mean

value[C] = E{[C]} of [C] is written as

[C] = [C̃]− [Cℓ] ∈ M
+
n (R) , (132)

in which [C̃] is defined by Eq. (125). Such a lower bound can be defined in two
ways:
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(1) If some microstructural information is available,[Cℓ] may be computed, ei-
ther by using some well-known micromechanics-based bounds(such as the Reuss
bound, for heterogeneous materials made up with ordered phases with determin-
istic properties) or by using a numerical approximation based on the realizations
of the stochastic lower bound obtained from computational homogenization and
invoking the Huet partition theorem (see the discussion in [49]).
(2) In the absence of such information, a simplea priori expression for[Cℓ] can
be obtained as[Cℓ] = ǫ[C̃ ] with 0 ≤ ǫ < 1, from which it can be deduced that
[C] = (1− ǫ)[C̃] > 0.

12.3. Introducing Deterministic Matrices[A] and [S]

Let [A] be the deterministic matrix inM sym
n (R) defined by

[A] = P sym([C]) , (133)

in which [C] ∈ M+
n (R) is defined by Eq. (132) and whereP sym is the projection

operator fromM+
n (R) onM sym

n (R).
(i) For a given symmetry class withN < 21, if there is no anisotropic statistical
fluctuations, then the mean matrix[C] belongs toM sym

n (R) and consequently,[A]
is equal to[C].
(ii) If the class of symmetry is anisotropic (thusN = 21), thenM sym

n (R) coincides
withM+

n (R) and again,[A] is equal to the mean matrix[C] that belongs toM+
n (R).

(iii) In general, for a given symmetry class withN < 21, and due to the presence
of anisotropic statistical fluctuations, the mean matrix[C] of random matrix[C]
belongs toM+

n (R) but does not belong toM sym
n (R). For this case, an invertible

deterministic(n× n) real matrix[S] is introduced such that

[C] = [S]T [A] [S] . (134)

The construction of[S] is performed as follows. Let[LC ] and[LA] be the upper
triangular real matrices with positive diagonal entries resulting from the Cholesky
factorization of matrices[C] and[A],

[C] = [LC ]
T [LC ] , [A] = [LA]

T [LA] . (135)

Therefore, the matrix[S] is written as

[S] = [LA]
−1 [LC ] . (136)

It should be noted that for cases (i) and (ii), Eq. (136) showsthat[S] = [In].
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12.4. Nonparametric Stochastic Model for[C]

In order that the statistical fluctuations of random matrix[C] belong mainly to
the symmetry classM sym

n (R) and exhibit more or less some anisotropic fluctua-
tions around this symmetry class, and in order that the levelof statistical fluctua-
tions in the symmetry class is controlled independently of the level of statistical
anisotropic fluctuation, the use of the nonparametric method leads us to introduce
the following representation.

[C] = [S]T [A]1/2 [G0] [A]1/2 [S] , (137)

in which:
(1) the deterministic(n× n) real matrix[S] is defined by Eq. (136).
(2) [G0] belongs to ensemble SG+0 of random matrices and models the anisotropic
statistical fluctuations. The mean value of random matrix[G0] is matrix [In] (see
Eq. (13)). The level of the statistical fluctuations of[G0] is controlled by the
hyperparameterδ defined by Eq. (15).
(3) the random matrix[A]1/2 is the square root of a random matrix[A] with values
in M sym

n (R) ⊂ M+
n (R), which models the statistical fluctuations in the given sym-

metry class, and which is statistically independent of random matrix [G0]. The
mean value of random matrix[A] is the matrix[A] defined by Eq. (133),

E{[A]} = [A] ∈ M
sym
n (R) ⊂ M

+
n (R) . (138)

The level of the statistical fluctuations of[A] is controlled by the coefficient of
variationδA defined by

δA =

{
E{‖A −A ‖2F}

‖A ‖2F

}1/2

. (139)

Taking into account the statistical independence ofA andG0, and taking the math-
ematical expectation of the two members of Eq. (137), yield Eq. (134).

Remarks concerning the control of the statistical fluctuations and the limit
cases.
(i) For a given symmetry class withN < 21, if the level of anisotropic statistical
fluctuations goes to zero, that is to say, ifδ → 0 what implies that[G0] goes to[In]
(in probability distribution), and implies that[A] goes to[C] and thus[S] goes to
[In], then Eq. (137) shows that[C] goes to[A] (in probability distribution), which
is a random matrix with values inM sym

n (R).
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(2) If the given symmetry class is anisotropic (N = 21) andδA → 0, then[A]
goes to the mean matrix[C], [S] goes to[In], and[A] goes to[A] that goes to[C]
(in probability distribution). Then[C] goes to[C]1/2 [G0] [C]1/2, which is the full
anisotropic nonparametric stochastic modeling of[C].

12.5. Construction of[A] Using the MaxEnt Principle

In this section, random matrix[A] that allows for describing the statistical fluc-
tuations in the class of symmetryM sym

n (R) with N < 21, is constructed using the
MaxEnt principle, and in particular, using all the results and notations introduced
in Section: ”MaxEnt as a Numerical Tool for Constructing Ensembles of Random
Matrices”.

Defining the available information.
Let p[A] be the unknown pdf of random matrix[A], with respect to volume el-
ementdSA on MS

n(R) (see Eq. (1)), with values in the given symmetry class
M sym

n (R) ⊂ M+
n (R) ⊂ MS

n(R) with N < 21. The support,suppp[A] is the sub-
setSn = M sym

n (R), and the normalization condition is given by Eq. (74). The
available information is defined by

E[A] = [A] , E{log(det[A])} = cA , |cA| < +∞ , (140)

in which [A] is the matrix inSn, defined by Eq. (133), and where the second avail-
able information is introduced in order that pdf[A] 7→ p[A]([A]) decreases towards
zero when‖A‖F goes to zero. The constantcA that has no physical meaning is re-
expressed as a function of the hyperparameterδA defined by Eq. (139). This avail-
able information defines the vectorf = (f1, . . . , fµ) inRµ with µ = n(n+1)/2+1,
and defines the mapping[A] 7→ G([A]) = (G1([A]), . . . ,Gµ([A])) from Sn into
Rµ, such that (see Eq. (75)),

E{G([A])} = f . (141)

Defining the parameterization.
The objective is to construct the parameterization of ensemble Sn = M sym

n (R),
such that any matrix[A] in M sym

n (R) is written (see Eq. (76)) as

[A] = [A(y)] , (142)

in which y = (y1, . . . , yN) is a vector inRN and wherey 7→ [A(y)] is a given
mapping fromRN into M sym

n (R). Let [A]1/2 be the square root of matrix[A] ∈
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M sym
n (R) ⊂ M+

n (R) that is defined by Eq. (133). Due to Eq. (129),[A]1/2 belongs
toM sym

n (R). Any matrix [A] in M sym
n (R) can then be written as

[A] = [A]1/2 [N ] [A]1/2 , (143)

in which, due to Eq. (129) and due to the invertibility of[A]1/2, [N ] is a unique
matrix belonging toM sym

n (R). Using Eq. (130), matrix[N ] as the following rep-
resentation

[N ] = expM([N (y)]) , [N (y)] =
N∑

j=1

yj [E
sym
j ] , y = (y1, . . . , yN) ∈ R

N ,

(144)
Consequently, Eqs. (143) and (144) define the parameterization [A] = [A(y)].

Construction of [A] using the parameterization and generator of realizations.
The random matrix[A] with values inM sym

n (R) is then written

[A] = [A]1/2 [N] [A]1/2 , (145)

in which [N] is the random matrix with values inM sym
n (R), which is written as

[N] = expM([N (Y)]) , [N (Y)] =

N∑

j=1

Yj [E
sym
j ] , (146)

in which Y = (Y1, . . . , YN) is the random vector with values inRN whose pdfpY

onR
N and the generator of realizations have been detailed in Section: ”MaxEnt

as a Numerical Tool for Constructing Ensembles of Random Matrices”. Since[N]
can be written as[N] = [A]−1/2 [A] [A]−1/2, and sinceE[A] = [A] (see Eq. (140)),
it can be deduced that

E{[N]} = [In] . (147)

13. Nonparametric Stochastic Model of Uncertainties in Computational Lin-
ear Structural Dynamics

The nonparametric method for stochastic modeling of uncertainties has been
introduced in [107; 108] to take into account both the model-parameter uncertain-
ties and the model uncertainties induced by modeling errorsin computational lin-
ear structural dynamics, without separating the contribution of each one of these
two types of uncertainties.
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The nonparametric method is presented hereinafter for linear vibrations of
fixed linear structures (no rigid body displacement, but only deformation), formu-
lated in the frequency domain, and for which two cases are considered:

� the case of damped linear elastic structures for which the damping and the
stiffness matrices of the computational model are independent of the frequency.

� the case of linear viscoelastic structures for which the damping and the stiff-
ness matrices of the computational model depend on the frequency.

13.1. Methodology

The methodology of the nonparametric method consists in introducing:
(i) a mean computational model for the linear dynamics of thestructure,
(ii) a reduced-order model (ROM) of the mean computational model,
(iii) the nonparametric stochastic modeling of both the model-parameter uncer-
tainties and the model uncertainties induced by modeling errors, consisting in
modeling the mass, damping, and stiffness matrices of the ROM by random ma-
trices,
(iv) a prior probability model of the random matrices based on the use of the
fundamental ensembles of random matrices introduced previously,
(v) an estimation of the hyperparameters of theprior probability model of uncer-
tainties if some experimental data are available.

The extension to the case of vibrations of free linear structures (presence of
rigid body displacements and of elastic deformations) is straightforward, because
it is sufficient to construct the ROM (which is then devoted only to the prediction
of the structural deformations) in projecting the responseon the elastic structural
modes (without including the rigid body modes) [90].

13.2. Mean Computational Model in Linear Structural Dynamics

The dynamical system is a damped fixed elastic structure for which the vi-
brations are studied around a static equilibrium configuration considered as a nat-
ural state without prestresses, and which is subjected to anexternal load. For
given nominal values of the parameters of the dynamical system, the finite ele-
ment model [129] is called the mean computational model, which is written, in
the time domain, as

[M] ẍ(t) + [D] ẋ(t) + [K] x(t) = f(t) , (148)

in which x(t) is the vector of them degrees of freedom (DOF) (displacements
and/or rotations);̇x(t) andẍ(t) are the velocity and acceleration vectors;f(t) is the
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external load vector of them inputs (forces and/or moments);[M], [D], and[K]
are the mass, damping, and stiffness matrices of the mean computational model,
which belong toM+

m(R).
� The solution{x(t), t > 0} of the time evolution problem is constructed in

solving Eq. (148) fort > 0 with the initial conditionsx(0) = x0 andẋ(0) = v0.
� The forced response{x(t), t ∈ R} is such that, for allt fixed in R, x(t)

verifies Eq. (148), and its Fourier transform̂x(ω) =
∫
R
e−iωt

x(t) dt is such that,
for all ω in R,

(−ω2 [M] + iω[D] + [K]) x̂(ω) = f̂(ω) , (149)

in which f̂ is the Fourier transform off. As [M], [D], and [K] are positive-
definite matrices, theMm(C)-valued frequency response functionω 7→ [ĥ(ω)] =
(−ω2 [M] + iω[D] + [K])−1 is a bounded function onR. From a point of view of
the nonparametric stochastic modeling of uncertainties, it is equivalent of present-
ing the time evolution problem or the forced response problem expressed in the
frequency domain. Nevertheless, for such a linear system, the analysis is mainly
carried out in the frequency domain. In order to limit the developments, the forced
response problem expressed in the frequency domain is presented.

13.3. Reduced-Order Model (ROM) of the Mean Computational Model

The ROM of the mean computational model is constructed for analyzing the
response of the structure over a frequency bandB (bounded symmetric interval of
pulsations in rad/s) such that

B = [−ωmax ,−ωmin] ∪ [ωmin , ωmax] , 0 ≤ ωmin < ωmax < +∞ , (150)

and is obtained in using the method of modal superposition (or modal analysis) [8;
88]. The generalized eigenvalue problem associated with the mass and stiffness
matrices of the mean computational model is written as

[K]φ = λ [M]φ , (151)

for which the eigenvalues0 < λ1 ≤ λ2 ≤ . . . ≤ λm and the associated elastic
structural modes{φ1,φ2, . . . ,φm} are such that

< [M]φα ,φβ>= µα δαβ , (152)

< [K]φα ,φβ>= µα ω
2
α δαβ , (153)

in which ωα =
√
λα is the eigenfrequency of elastic structural modeφα whose

normalization is defined by the generalized massµα. Let Hn be the subspace of
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Rm spanned by{φ1, . . . ,φn} with n ≪ m and letHc
n be its complexified (i.e.

Hc
n = Hn + iHn). Let [Φ] be the(m× n) real matrix whose columns are vectors

{φ1, . . . ,φn}. The ROM of the mean computational model is obtained as the
projectionxn(ω) of x̂(ω) onHc

n, which is written asxn(ω) = [Φ] q(ω) in which
q(ω) is the vector inCn of the generalized coordinates, and is written, for allω in
B, as

xn(ω) = [Φ] q(ω) , (154)

(−ω2[M ] + iω[D] + [K]) q(ω) = f(ω) , (155)

in which [M ], [D], and[K] (generalized mass, damping, and stiffness matrices)
belong toM+

n (R), and are such that

[M ]αβ = µα δαβ , [D]αβ =< [D]φβ ,φα> , [K]αβ = µα ω
2
α δαβ . (156)

In general,[D] is a full matrix. The generalized forcef(ω) is aCn-vector such
that f(ω) = [Φ]T f̂(ω) in which f̂ is the Fourier transform off, which is assumed
to be a bounded function onR.

Convergence of the ROM with respect ton over frequency band of analysis
B.
For the given frequency band of analysisB, and for a fixed value of the relative
errorε0 with 0 < ε0 ≪ 1, letn0 (depending onε0) be the smallest value ofn such
that1 ≤ n0 < m, for which, for allω in B, the convergence of the ROM (with
respect to dimensionn) is reached with relative errorε0 (if n0 was equal tom,
thenε would be equal to0). The value ofn0 is such that,

∀n ≥ n0 ,

∫

B

‖[ĥ(ω)]− [ĥn(ω)]‖2F dω ≤ ε0

∫

B

‖[ĥ(ω)]‖2F dω , (157)

in which [ĥn(ω)] = [Φ] (−ω2[M ] + iω[D] + [K])−1 [Φ]T . In practice, for large
computational model, Eq. (157) is replaced by a convergenceanalysis ofxn to x
onB for a given subset of generalized forcesf.

13.4. Nonparametric stochastic model of both the model-parameter uncertainties
and the model uncertainties (modeling errors)

For the given frequency band of analysisB, and forn fixed to the valuen0

such that Eq. (157) is verified, the nonparametric stochastic model of uncertainties
consists in replacing in Eq. (155), the deterministic matrices[M ], [D] and[K] by
random matrices[M ], [D], and [K ] defined on the probability space(Θ, T ,P),
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with values inM+
n (R). The deterministic ROM defined by Eqs. (154) and (155),

is then replaced by the following stochastic ROM,

Xn(ω) = [Φ]Q(ω) , (158)

(−ω2[M ] + iω[D] + [K ])Q(ω) = f(ω) , (159)

in which, for allω in B, Xn(ω) andQ(ω) areCm- andCn-valued random vectors
defined on probability space(Θ, T ,P).

Available information for constructing a prior probabilit y model of [M ], [D],
and [K ].
The available information for constructing the prior probability model of random
matrices[M ], [D], and[K ] using the MaxEnt principle are the following.
(i) Random matrices[M ], [D], and[K ] are with values inM+

n (R).
(ii) The mean values of these random matrices are chosen as the corresponding
matrices in the ROM of the mean computational model,

E{[M ]} = [M ] , E{[D]} = [D] , E{[K ]} = [K] . (160)

(iii) The prior probability model of these random matrices must be chosen such
that, for allω in B, the solutionQ(ω) of Eq. (159), is a second-orderCn-valued
random variable, that is to say, such that

E{‖(−ω2[M ] + iω[D] + [K ])−1‖2F} < +∞ , ∀ω ∈ B . (161)

Prior probability model of [M ], [D], and [K ], hyperparameters, and generator
of realizations.
The joint pdf of random matrices[M ], [D], and[K ] is constructed using the Max-
Ent principle under the constraints defined by the availableinformation described
before. Taking into account such an available information,it is proved [108] that
these three random matrices are statistically independent. Taking into account
Eqs. (52), (55), (160), and (161), each random matrix[M ], [D], and[K ] is then
chosen in ensemble SE+

ε of the positive-definite random matrices with a given
mean value and an arbitrary positive-definite lower bound. The level of uncertain-
ties, for each type of forces (mass, damping, and stiffness)is controlled by the
three hyperparametersδM , δD, andδK of the pdf of random matrices[M ], [D], and
[K ], which are defined by Eq. (56). The generator of realizationsfor ensemble
SE+

ε has explicitly been described.
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13.5. Case of Linear Viscoelastic Structures

The dynamical system is a fixed viscoelastic structure for which the vibrations
are studied around a static equilibrium configuration considered as a natural state
without prestresses, and which is subjected to an external load. Consequently, in
the frequency domain, the damping and stiffness matrices depend on frequency
ω, instead of to be independent of the frequency as in the previous analyzed case.
Consequently, two aspects must be addressed. The first one isrelative to the
choice of the basis for constructing the ROM, and the second one is the non-
parametric stochastic modeling of the frequency dependentdamping and stiffness
matrices which are related by a Hilbert transform; we then use for such a nonpara-
metric stochastic modeling, ensemble SEHT of a pair of positive-definite matrix-
valued random functions related to a Hilbert transform.

Mean computational model, ROM, and convergence
In such a case, the mean computational model defined by Eq. (149) is replaced by
the following one,

(−ω2 [M] + iω[D(ω)] + [K(ω)]) x̂(ω) = f̂(ω) , (162)

For constructing the ROM, the projection basis is chosen as previously in taking
the stiffness matrix at zero frequency. The generalized eigenvalue problem, de-
fined by Eq. (151), is then rewritten as[K(0)]φ = λ [M]φ. With such a choice
of a basis, Eqs. (154) to (156) that defined the ROM for allω belonging to the
frequency band of analysisB, are replaced by,

xn(ω) = [Φ] q(ω) , (163)

(−ω2[M ] + iω[D(ω)] + [K(ω)]) q(ω) = f(ω) , (164)

in which [M ], [D(ω)], and[K(ω)] belong toM+
n (R), and are such that

[M ]αβ = µα δαβ , [D(ω)]αβ =< [D(ω)]φβ,φα> , [K(ω)]αβ =< [K(ω)]φβ,φα> .
(165)

The matrices[D(ω)] and [K(ω)] are full matrices belonging toM+
n (R), which

verify (see[90]) all the mathematical properties introduced in the construction of
ensemble SEHT, and in particular, verify Eqs. (65) to (68). Forε0 fixed, the value
n0 of the dimensionn of the ROM is such that Eq. (157) holds (equation in which
the frequency dependence of the damping and stiffness matrices is introduced).
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In practice, for large computational model, this criterionis replaced by a conver-
gence analysis ofxn to x onB for a given subset of generalized forcesf.

Nonparametric stochastic model of both the model-parameter uncertainties
and the model uncertainties (modeling errors)
For the given frequency band of analysisB, and forn fixed to the valuen0, the
nonparametric stochastic model of uncertainties consistsin replacing in Eq. (164),
the deterministic matrices[M ], [D(ω)] and[K(ω)] by random matrices[M ], [D(ω)],
and [K (ω)] defined on the probability space(Θ, T ,P), with values inM+

n (R).
The deterministic ROM defined by Eqs. (163) and (164), is thenreplaced by the
following stochastic ROM,

Xn(ω) = [Φ]Q(ω) , (166)

(−ω2[M ] + iω[D(ω)] + [K (ω)])Q(ω) = f(ω) , (167)

in which, for allω in B, Xn(ω) andQ(ω) areCm- andCn-valued random vectors
defined on probability space(Θ, T ,P).

Available information for constructing a prior probabilit y model of[M ], [D(ω)],
and [K (ω)].
The available information for constructing the prior probability model of random
matrices[M ], [D(ω)], and[K (ω)] using the MaxEnt principle are, for allω in B:
(i) Random matrices[M ], [D(ω)], and[K(ω)] are with values inM+

n (R).
(ii) The mean values of these random matrices are chosen as the corresponding
matrices in the ROM of the mean computational model,

E{[M ]} = [M ] , E{[D(ω)]} = [D(ω)] , E{[K (ω)]} = [K(ω)] . (168)

(iii) The random matrices[D(ω)] and[K(ω)] are such that

[D(−ω)] = [D(ω)] , [K (−ω)] = [K (ω)] . (169)

(iv) The prior probability model of these random matrices must be chosen for that,
for all ω in B, the solutionQ(ω) of Eq. (167), is a second-orderCn-valued random
variable, that is to say, for that

E{‖(−ω2[M ] + iω[D(ω)] + [K(ω)])−1‖2F} < +∞ , ∀ω ∈ B . (170)

(v) The algebraic dependence between[D(ω)] and[K (ω)] induced by the causality
must be preserved, which means that random matrix[K(ω)] is given by Eq. (72) as
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a function of random matrix[K (0)] and the family of random matrices{[D(ω)], ω ≥
0},

[K(ω)] = [K(0)] +
2ω2

π
p.v

∫ +∞

0

1

ω2 − ω′2
[D(ω′)] dω′ , ∀ω ≥ 0 . (171)

Prior probability model of [M ], [D(ω)], and [K(0)], hyperparameters, and
generator of realizations.
Taking into account the available information, the use of the MaxEnt principle
yields that random matrices[M ], {[D(ω)], ω ≥ 0}, and [K (0)] are statistically
independent.

� As previously, random matrix[M ] is chosen in ensemble SE+
ε of the positive-

definite random matrices with a given mean value and an arbitrary positive-definite
lower bound. The pdf is explicitly defined and depends on the hyperparameterδM
defined by Eq. (56). The generator of realizations is the generator of the ensemble
SE+

ε , which was explicitly defined.
� For all fixedω, random matrices[D(ω)] and[K (0)] that are statistically in-

dependent are constructed as explained in the section devoted to ensemble SEHT.
The levels of uncertainties of random matrices[D(ω)] and [K(0)] are controlled
by the two frequency-independent hyperparametersδD andδK introduced in para-
graphs (i) and (ii) located after Eq. (70). The generator of realizations is directly
deduced from the generator of realizations of fundamental ensemble SG+ε , which
was explicitly defined.

� With such a nonparametric stochastic modeling, the level ofuncertainties is
controlled by hyperparametersδM , δD, andδK , and the generators of realizations
of random matrices[M ], [D(ω)], and[K (0)] are explicitly described.

13.6. Estimation of the Hyperparameters of the Nonparametric Stochastic Model
of Uncertainties

For the nonparametric stochastic model of uncertainties incomputational lin-
ear structural dynamics, dimensionn of the ROM is fixed to the valuen0 for
which the response of the ROM of the mean computational modelis converged
with respect ton. The prior probability model of uncertainties then dependson
the vector-valued hyperparameterδnpar= (δM , δD, δK) belonging to an admissible
setCnpar.

� If no experimental data are available, thenδnpar must be considered as a
vector-valued parameter for performing a sensitivity analysis of the stochastic so-
lution with respect to the level of uncertainties. Such a nonparametric stochastic
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model of both the model-parameter uncertainties and the model uncertainties then
allows the robustness of the solution to be analyzed as a function of the level of
uncertainties which is controlled byδnpar.

� If experimental data are available, an estimation ofδnpar can be carried out,
for instance, using a least square method or the maximum likelihood method
[103; 118; 124]. LetW be the random real vector which is observed, which is
independent ofω, but which depends on{Xn(ω), ω ∈ B} whereXn(ω) is the
second-order random complex vector given by Eq. (158) or (166). For allδnpar in
Cnpar, the probability density function ofW is denoted asw 7→ pW(w; δnpar). Using
the maximum likelihood method, the optimal valueδ opt

npar of δnpar is estimated by
maximizing the logarithm of the likelihood function,

δ opt
npar = arg max

δnpar∈Cnpar

νexp∑

ℓ=1

log pW(wexp
ℓ ; δnpar) . (172)

in whichwexp
1 , . . . ,wexp

νexp
areνexp independent experimental data corresponding toW.

14. Parametric-Nonparametric Uncertainties in Computational Nonlinear
Structural Dynamics

The last two presented sections have been devoted to the nonparametric stochas-
tic model of both the model-parameter uncertainties and themodel uncertainties
induced by the modeling errors, without separating the contribution of each one
of these two types of uncertainties. Sometimes, there is an interest of separating
the uncertainties for a small number of model parameters that exhibit an important
sensitivity on the responses, from uncertainties induced by the model uncertainties
and the uncertainties on other model parameters.

Such an objective requires to use a parametric-nonparametric stochastic model
of uncertainties, also called the generalized probabilistic approach of uncertainties
in computational structural dynamics, which has been introduced in [114].

As the nonparametric stochastic model of uncertainties hasbeen presented in
the previous sections for linear dynamical systems formulated in the frequency
domain, in the present section, the parametric-nonparametric stochastic model of
uncertainties is presented in computational nonlinear structural dynamics formu-
lated in the time domain.

14.1. Mean Nonlinear Computational Model in Structural Dynamics
The dynamical system is a damped fixed structure for which thenonlinear vi-

brations are studied in the time domain around a static equilibrium configuration
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considered as a natural state without prestresses, and subjected to an external load.
For given nominal values of the model parameters of the dynamical system, the
basic finite element model is called the mean nonlinear computational model. In
addition, it is assumed that a set of model parameters has been identified as sen-
sitive parameters that are uncertain. These uncertain model parameters are the
components of a vector̃y belonging to an admissible setCpar which is a subset of
RN . It is assumed that a parameterization is constructed such that ỹ = Y(y) in
whichy 7→ Y(y) is a given and known function fromCpar intoR

N . For instance, if
the component̃yj of ỹ must belong to[0,+∞[, thenỹj could be defined asexp(yj)
with yj ∈ R, which yieldsYj(y) = exp(yj). Hereinafter, it is then assumed that
the uncertain model parameters is represented by vectory = (y1, . . . , yN) belong-
ing to RN . The nonlinear mean computational model, depending on uncertain
model parametery, is written as,

[M(y)] ẍ(t) + [D(y)] ẋ(t) + [K(y)] x(t) + fNL(x(t), ẋ(t); y) = f(t; y) , (173)

in which x(t) is the unknown time response vector of them degrees of freedom
(DOF) (displacements and/or rotations);ẋ(t) andẍ(t) are the velocity and acceler-
ation vectors respectively;f(t; y) is the known external load vector of them inputs
(forces and/or moments);[M(y)], [D(y)], and[K(y)] are the mass, damping and
stiffness matrices of the linear part of the mean nonlinear computational model,
which belong toM+

m(R); (x(t), ẋ(t)) 7→ fNL(x(t), ẋ(t); y) is the nonlinear mapping
that models the local nonlinear forces (such as nonlinear elastic barriers).

We are interested in the time evolution problem defined by Eq.(173) fort > 0
with the initial conditionsx(0) = x0 andẋ(0) = v0.

14.2. Reduced-Order Model (ROM) of the Mean Nonlinear Computational Model
For all y fixed in R

N , let {φ1(y), . . . ,φm(y)} be an algebraic basis ofRm

constructed, for instance, either using the elastic structural modes of the linearized
system, either using the elastic structural modes of the underlying linear system,
or using the POD (Proper Orthogonal Decomposition) modes ofthe nonlinear
system). Hereinafter, it is assumed that the elastic structural modes of the un-
derlying linear system are used for constructing the ROM of the mean nonlinear
computational model (such a choice is not intrusive with respect to a black-box
software, but in counterpart, requires a large parallel computation induced by all
the sampling values ofy, which are considered by the stochastic solver.

For each value ofy given inRN , the generalized eigenvalue problem associ-
ated with the mean mass and stiffness matrices is written as

[K(y)]φ(y) = λ(y) [M(y)]φ(y) , (174)
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for which the eigenvalues0 < λ1(y) ≤ λ2(y) ≤ . . . ≤ λm(y) and the associated
elastic structural modes{φ1(y),φ2(y), . . . ,φm(y)} are such that

< [M(y)]φα(y) ,φβ(y)>= µα(y) δαβ , (175)

< [K(y)]φα(y) ,φβ(y)>= µα(y)ωα(y)2 δαβ , (176)

in whichωα(y) =
√

λα(y) is the eigenfrequency of elastic structural modeφα(y)
whose normalization is defined by the generalized massµα(y). Let [φ(y)] be the
(m × n) real matrix whose columns are vectors{φ1(y), . . . ,φn(y)}. Fory fixed
in RN and for all fixedt > 0, the ROM is obtained as the projectionxn(t) of x(t)
on the subspace ofRm spanned by{φ1(y), . . . ,φn(y)} with n ≪ m, which is
written asxn(t) = [φ(y)] q(t) in whichq(t) is the vector inRn of the generalized
coordinates, and is written, for allt > 0, as

xn(t) = [φ(y)] q(t) , (177)

[M(y)] q̈(t) + [D(y)] q̇(t) + [K(y)] q(t) + FNL(q(t), q̇(t); y) = f(t; y) , (178)

in which [M(y)], [D(y)], and[K(y)] (generalized mass, damping, and stiffness
matrices) belong toM+

n (R), and are such that

[M(y)]αβ = µα(y) δαβ , [D(y)]αβ =< [D(y)]φβ(y) ,φα(y)> , (179)

[K(y)]αβ = µα(y)ωα(y)2 δαβ . (180)

In general,[D(y)] is a full matrix. The generalized forcef(t; y) is aRn-vector
such thatf(t; y) = [φ(y)]T f(t; y). The generalized nonlinear force is such that
FNL(q(t), q̇(t); y) = [φ(y)]T fNL([φ(y)] q(t), [φ(y)] q̇(t); y).

Convergence of the ROM with respect ton. Letn0 be the value ofn, for which,
for a given accuracy and for ally in RN , the responsexn is converged tox for all
n > n0.

14.3. Parametric-Nonparametric Stochastic modeling of Uncertainties

In all this section, the value ofn is fixed to the valuen0 defined hereinbefore.

Methodology
� The parametric stochastic modeling of uncertainties consists in modeling un-

certain model parametery by a second-order random variableY = (Y1, . . . , YN),
defined on the probability space(Θ, T ,P), with values inRN . Consequently,
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deterministic matrices[M(y)], [D(y)], and [K(y)] defined by Eqs. (179)-(180),
become the second-order random matrices,[M(Y)], [D(Y)], and[K(Y)], defined
on probability space(Θ, T ,P), with values inM+

n (R). The mean values of these
random matrices are the matrices inM+

n (R) such that

[M ] = E{[M(Y)]} , [D] = E{[D(Y)]} , [K] = E{[K(Y)]} , (181)

� The nonparametric stochastic modeling of uncertainties consists, for ally
fixed in in RN , in modeling matrices[M(y)], [D(y)], and [K(y)] defined by
Eqs. (179)-(180), by the second-order random matrices[M(y)] = {θ′ 7→ [M(θ′; y)]},
[D(y)] = {θ′ 7→ [D(θ′; y)]}, and[K (y)] = {θ′ 7→ [K(θ′; x)]}, defined on another
probability space(Θ′, T ′,P ′) (and thus independent ofY), with values inM+

n (R).
� The parametric-nonparametric stochastic modeling of uncertainties consists,

in Eq. (178)),
(i) in modeling [M(y)], [D(y)], and[K(y)] by random matrices[M(y)], [D(y)],
and[K(y)],
(ii) in modeling uncertain model parametery by theRN -valued random variable
Y.
Consequently, the statistically dependent random matrices [M(Y)] = {(θ, θ′) 7→
[M(θ′;Y(θ))]}, [D(Y)] = {(θ, θ′) 7→ [D(θ′;Y(θ))]} and [K(Y)] = {(θ, θ′) 7→
[K(θ′;Y(θ))]} are measurable mappings fromΘ×Θ′ intoM+

n (R). The determin-
istic ROM defined by Eqs. (177)-(178), is then replaced by thefollowing stochas-
tic ROM,

Xn(t) = [φ(Y)]Q(t) , (182)

[M(Y)] Q̈(t)+[D(Y)] Q̇(t)+[K (Y)]Q(t)+FNL(Q(t), Q̇(t);Y) = f(t;Y) , (183)

in which for all fixedt, Xn(t) = {(θ, θ′) 7→ Xn(θ, θ′; t)} andQ(t) = {(θ, θ′) 7→
Q(θ, θ′; t)} areRm- andRn-valued random vectors defined for(θ, θ′) in Θ×Θ′.

Prior probability model of Y, hyperparameters, and generator of realizations
The prior pdfpY onRN of random vectorY is constructed using the MaxEnt prin-
ciple under the constraints defined by the available information given by Eq. (81),
as explained in Section entitled: ”MaxEnt for Constructingthe pdf of a Random
Vector”, in which a generator of realizations{Y(θ), θ ∈ Θ} has been detailed.
Such a generator depends on the hyperparameters related to the available informa-
tion. In general, the hyperparameters are the mean vectory = E{Y} belonging
to RN and a vector-valued hyperparameterδpar that belongs to an admissible set
Cpar, which allows the level of parametric uncertainties to be controlled.
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Prior probability model of [M(y)], [D(y)], and [K(y)], hyperparameters, and
generator of realizations
Similarly to the construction given in Section entitled: ”Nonparametric Stochastic
Model of Uncertainties in Computational Linear StructuralDynamics”, for ally
fixed in RN , random matrices[M(y)], [D(y)], and[K (y)], are statistically inde-
pendent and written as

[M(y)]=[LM (y)]T [GM ] [LM(y)] , (184)

[D(y)]=[LD(y)]T [GD] [LD(y)] , (185)

[K (y)]=[LK(y)]T [GK ] [LK(y)] , (186)

in which, for all y in RN , [LM (y)], [LD(y)], and [LK(y)] are the upper trian-
gular matrices such that (Cholesky factorization)[M(y)] = [LM(y)]T [LM (y)],
[D(y)] = [LD(y)]T [LD(y)], and [K(y)] = [LK(y)]T [LK(y)]. In Eqs. (184)
to (186), [GM ], [GD], and [GK ] are independent random matrices defined on
probability space(Θ′, T ′,P ′), with values inM+

n (R), independent ofy, and be-
longing to fundamental ensemble SG+

ε of random matrices. The level of non-
parametric uncertainties is controlled by the coefficientsof variationδGM

, δGD

andδGK
defined by Eq. (24), and the vector valued parameterδnpar is defined as

δnpar = (δM , δD, δK) that belongs to an admissible setCnpar. The generator of real-
izations{[GM(θ′)], [GD(θ

′)], [GK(θ
′)] for θ′ in Θ′, are explicitly described in the

section devoted to the construction of ensembles SG+
ε and SG+0 .

Mean values of random matrices[M(Y)], [D(Y)], [K (Z)], and hyperparame-
ters of the parametric-nonparametric stochastic model of uncertainties
Taking into account the construction presented hereinbefore, we have

E{[M(Y)]} = [M ] , , E{[D(Y)]} = [D] , E{[K(Y)]} = [K] , (187)

in which the matrices[M ], [D] and [K] are the deterministic matrices defined
by Eq. (181). The hyperparameters of the parametric-nonparametric stochastic
model of uncertainties are

y ∈ R
N , δpar ∈ Cpar , δnpar = (δM , δD, δK) ∈ Cnpar. (188)

14.4. Estimation of the Hyperparameters of the Parametric-Nonparametric
Stochastic Model of Uncertainties

The value ofn is fixed to the valuen0 that has been defined. The parametric-
nonparametric stochastic model of uncertainties is controlled by the hyperparam-
eters defined by Eq. (188).
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� If no experimental data are available, theny can be fixed to a nominal value
y0 and,δpar andδnpar must be considered as parameters to perform a sensitivity
analysis of the stochastic solution. Such a parametric-nonparametric stochastic
model of uncertainties allows the robustness of the solution to be analyzed as a
function of the level of uncertainties controlled byδpar andδnpar.

� If experimental data are available, an estimation ofy, δpar, andδnpar can be
carried out, for instance, using a least square method or themaximum likelihood
method [103; 118; 124]. LetW be the random real vector which is observed,
which is independent oft, but which depends on{Xn(t), t ≥ 0} whereXn(t)
is the second-order stochastic solution of Eq. (182)-(183)for t > 0 with initial
conditions fort = 0. Let r = (y, δpar, δnpar) be the vector-valued hyperparameter
belonging to the admissible setCr = RN× Cpar× Cnpar. For all r in Cr , the prob-
ability density function ofW is denoted asw 7→ pW(w; r). Using the maximum
likelihood method, the optimal valuesr opt of r is estimated by maximizing the
logarithm of the likelihood function,

r opt = arg max
r∈Cr

νexp∑

ℓ=1

log pW(wexp
ℓ ; r) . (189)

in which wexp
1 , . . . ,wexp

νexp
areνexp independent experimental data corresponding to

W.

15. Key Research Findings, and Applications

Propagation of uncertainties using nonparametric or parametric-nonparametric
stochastic models of uncertainties.

The stochastic modeling introduces some random vectors andsome random
matrices in the stochastic computational models. Consequently, a stochastic solver
is required. Two distinct classes of techniques can be used.

� The first one is constituted of the stochastic spectral methods, pioneered by
Roger Ghanem in 1990-1991 [43; 44], consisting in performing a projection of
the Galerkin type (see [45; 46; 68; 70; 85; 122]), and of separated representations
methods [34; 86]. This class of techniques allows for obtaining a great precision
for the approximated solution that is constructed.

� The second class is composed of methods based on a direct simulation of
which the most popular is the Monte Carlo numerical simulation method (see for
instance [41; 97]). With such a method, the convergence can be controlled during
the computation, and its speed of convergence is independent of the stochastic

62



dimension and can be improved using, either advanced Monte Carlo simulation
procedures [101], or a technique of subset simulation [6], or finally, a method of
local simulation domain [94]. The Monte Carlo simulation method is a stochastic
solver that is particularly well adapted to the high stochastic dimension induced
by the random matrices introduced by the nonparametric method of uncertainties.

Experimental validations of the nonparametric method of uncertainties
The nonparametric stochastic modeling of uncertainties has been experimen-

tally validated through applications in different domainsof computational sci-
ences and engineering, in particular,

� in linear dynamics, for the dynamics of complex structures in the low-frequency
domain [7; 12; 13], for the dynamics of structures with non homogeneous uncer-
tainties, in the low-frequency domain [24] and in transientdynamics [35], and
finally, for the dynamics of composite sandwich panels in low- and medium-
frequency domains [25];

� in nonlinear dynamics, for nonlinear structural dynamics of fuel assemblies
[9], for nonlinear post-buckling static and dynamical analyzes of uncertain cylin-
drical shells [21], and for some nonlinear reduced-order models [82];

� in linear structural acoustics, for the vibroacoustic of complex structures in
low- and medium-frequency domains [38], with sound-insulation layers [39], and
for the wave propagation in multilayer live tissues in the ultrasonic domain [30];

� in continuum mechanics of solids, for the nonlinear thermomechanical anal-
ysis [98] and the heat transfer in complex composite panels [99], and for linear
elasticity of composited reinforced with fibers at mesoscale [48].

Additional ingredients for the nonparametric stochastic modeling of uncer-
tainties

Some important ingredients have been developed for having the tools required
for performing the nonparametric stochastic modeling of uncertainties in linear
and nonlinear dynamics of mechanical systems, in particular,

� the dynamic substructuring with uncertain substructures which allows for the
nonparametric modeling of nonhomogeneous uncertainties in different parts of a
structure [117];

� the nonparametric stochastic modeling of uncertain structures with uncertain
boundary conditions/coupling between substructures [79];

� the nonparametric stochastic modeling of matrices that depend on the fre-
quency and that are related by a Hilbert transform due to the existence of causality
properties, such as those encountered in the linear viscoelasticity theory [90; 116];

63



� the multi-body dynamics for which there are uncertain bodies (mass, center
of mass, inertia tensor), for which the uncertainties in thebodies come from a
lack of knowledge of the distribution of the mass inside the bodies (for instance
the spatial distribution of the passengers inside a high speed train) [10];

� the nonparametric stochastic modeling in vibroacoustics of complex systems
for low- and medium-frequency domains, including the stochastic modeling of the
coupling matrices between the structure and the acoustic cavities [38; 90; 111];

� the formulation of the nonparametric stochastic modeling of the nonlinear
operators occuring in the static and the dynamics of uncertain geometrically non-
linear structures [21; 78; 82].

Applications of the nonparametric stochastic modeling of uncertainties in dif-
ferent fields of computational sciences and engineering

� In dynamics:
Aeronautics and aerospace engineering systems [7; 20; 89; 79; 92]
Biomechanics [30; 31]
Environment for well integrity for geologic CO2 sequestration [32]
Nuclear engineering [9; 13; 12; 29]
Pipe conveying fluid [95]
Rotordynamics [80; 81; 83]
Soil-structure interaction and wave propagation in soils [4; 5; 26; 27]
Vibration of turbomachines [18; 19; 22; 71]
Vibroacoustics of automotive vehicles [3; 38; 39; 40; 62]

� In continuum mechanics of heterogenous materials:
Composites reinforced with fibers [48]
Heat transfer of complex composite panels [99]
Nonlinear thermomechanics in heterogeneous materials [98]
Polycrystalline microstructures [49]
Porous materials [52]
Random elasticity tensors of materials exhibiting symmetry properties [51; 53]

16. Conclusions

In this paper, fundamental mathematical tools have been presented concerning
the random matrix theory, which are useful for many problemsencountered in un-
certainties quantification, in particular for the nonparametric method of the multi-
scale stochastic modeling of heterogeneous elastic materials, and for the nonpara-
metric stochastic models of uncertainties in computational structural dynamics.
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The explicit construction of ensembles of random matrices,but also the presenta-
tion of numerical tools for constructing general ensemblesof random matrices are
presented and can be used in high dimension. Many applications and validations
have already been performed in many fields of computational sciences and engi-
neering, but the methodologies and tools presented can be used and developed for
many other problems for which uncertainties must be quantified.
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