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Abstract

This paper deals with the fundamental mathematical toalgf@massociated com-
putational aspects for constructing the stochastic mazfelsndom matrices that
appear in the nonparametric method of uncertainties anderrdandom consti-

tutive equations for multiscale stochastic modeling ofehegeneous materials.
The explicit construction of ensembles of random matribasalso the presenta-
tion of numerical tools for constructing general ensembfeandom matrices are
presented and can be used for high stochastic dimensiond&ustopments pre-

sented are illustrated for the nonparametric method fotiswalle stochastic mod-
eling of heterogeneous linear elastic materials and fontmarametric stochas-
tic models of uncertainties in computational structuralamwics.

Key words: Random matrix, Symmetric random matrix, Positive-definite
random matrix, Nonparametric uncertainty, Nonparametethod for
uncertainty quantification, Random vector, Maximum engrppnciple,
Non-Gaussian, Generator, Random elastic medium, Unogrtguantification in
linear structural dynamics, Uncertainty quantificatiomanlinear structural
dynamics, Parametric-nonparametric uncertainties tifiation, Inverse
problem, Statistical inverse problem

1. Introduction

It is well known that the parametric method for uncertainiagtification con-
sists in constructing stochastic models of the uncertaiysighl parameters of
a computational model that results from the discretizatba boundary value
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problem. The parametric method is efficient for taking intoaunt the variabil-
ities of physical parameters, but has not the capabilityake tinto account the
model uncertainties induced by modeling errors that an@duiced during the
construction of the computational model. The nonparametethod for the un-
certainty quantification is a way for constructing a stoticanodel of the model
uncertainties induced by the modeling errors. It is alsomr@ach for construct-
ing stochastic models of constitutive equations of malera/olving some non-
Gaussian tensor-valued random fields, such as in the frark@#elasticity, ther-
moelasticity, electromagnetism, etc. The random matmot is a fundamental
tool that is really efficient for performing stochastic mbdg of matrices that
appear in the nonparametric method of uncertainties andenmandom consti-
tutive equations for multiscale stochastic modeling ofehegeneous materials.
The applications of the nonparametric stochastic modedingncertainties and
of the random matrix theory presented in this paper, have begeloped and
validated for many fields of computational sciences andrezgging, in particu-
lar for dynamical systems encountered in aeronautics amp&ce engineering
[7; 20; 89; 79; 92; 95], in biomechanics [30; 31], in enviroemh [32], in nu-
clear engineering [9; 13; 12; 29], in soil-structure intgi@n and for the wave
propagations in soils [4; 5; 26; 27], in rotor dynamics [8Q; 83] and vibra-
tion of turbomachines [18; 19; 22; 71], in vibroacousticaaafomotive vehicles
[3; 38; 39; 40; 62], but also, in continuum mechanics for msglle stochastic
modeling of heterogenous materials [48; 49; 51; 52; 53]lierheat transfer in
complex composites and for their nonlinear thermomechamatyses [98; 99].
The paper is organized as follows:
m Notions on random matrices and on the nonparametric metiraghcertainty
quantification: what is a random matrix and what is the nospetric method for
uncertainty quantification?
m Brief history concerning the random matrix theory and thepayametric method
for UQ and its connection with the random matrix theory.
m Overview and mathematical notations used in the paper.
m Maximum entropy principle (MaxEnt) for constructing ramadonatrices.
m Fundamental ensemble for the symmetric real random matmgth a unit
mean value.
m Fundamental ensembles for positive-definite symmetricasmlom matrices.
m Ensembles of random matrices for the nonparametric methashcertainty
guantification.
m The MaxEnt as a numerical tool for constructing ensemblegrafom matrices.
m The MaxEnt for constructing the pdf of a random vector.
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m Nonparametric stochastic model for constitutive equatidmear elasticity.

m Nonparametric stochastic model of uncertainties in compartal linear struc-
tural dynamics.

m Parametric-nonparametric uncertainties in computatiooalinear structural
dynamics.

m Some key research findings, and applications.

2. Notions on Random Matrices and on the Nonparametric Methd for Un-
certainty Quantification

What is a random matrix?

A real (or complex)matrixis a rectangular or a square array of real (or complex)
numbers, arranged in rows and columns. The individual itemes matrix are
called its elements or its entries.

A real (or complexyandom matrixs a matrix-valued random variable, which
means that its entries are real (or complex) random vasabléerandom ma-
trix theoryis related to the fundamental mathematical methods redjitrecon-
structing the probability distribution of such a random mxatfor constructing a
generator of independent realizations, for analyzing salgeebraic properties and
some spectral properties, etc.

Let us give an example for illustrating the types of problewated to the
random matrix theory. Let us consider a random mdti) defined on a prob-
ability space(O, T, P), with values in a sef,, of matrices, which is a subset of
the setM (R) all the symmetridn x n) real matrices. Thus, fatin ©, the re-
alization[A(6)] is a deterministic matrix i§, C M>(R). Fundamental questions
are related to the definition and to the construction of tlubdability distribution
Py of such a random matrifA]. If this probability distribution is defined by a
probability density function (pdf) with respect a volumemlentd®A, which is a
mapping[A] — pia([4]) from MS (R) into R = [0, +o0|, for which its support
is S,, (which implies thatps ([A]) = 0if [A] ¢ S,), then, how must be defined
the volume element®4, how is defined the integration ovkf’ (R), what are the
methods and tools for constructing peif; and its generator of independent real-
izations? For instance, such a pdf cannot simply be defingiving the pdf of
every entry[A];; for many reasons among the following ones. As random matrix
[A] is symmetric, all the entries are not algebraically indejgen, and therefore,
only then(n + 1)/2 random variable§[A],<;<;<,} must be considered. In addi-
tion, if S, is the subsedL (R) of all the positive-definite symmetria. x n) real
matrices, then there is an algebraic constraint that elde random variables
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{[Ali<j<k<n} in order that[A] be with values inVL; (R), and such an algebraic
constraint implies that all the random variab{ga],<,;<x<,} are statistically de-
pendent.

What is the nonparametric method for uncertainty quantification?

The parametric methodor uncertainty quantification consists in constructing
stochastic models of the uncertain physical parametems{gey, boundary con-
ditions, material properties, etc) of a computational nhadet results from the
discretization of a boundary value problem. The parameatethod, which intro-
duces prior and posterior stochastic models of the uncepiaysical parameters
of the computational model, has not the capability to take atcountnodel un-
certaintiesnduced bymodeling errorghat are introduced during the construction
of the computational model.

Thenonparametric methofibr uncertainty quantification consists in construct-
ing a stochastic model of both the uncertain physical pararmend the model
uncertainties induced by the modeling errors, without sspay the effects of
the two types of uncertainties. Such an approach consistsestly construct-
ing stochastic models of matrices representing operafaitsegproblem consid-
ered, and not in using the parametric method for the uncepiaysical parame-
ters whose matrices depend. Initially developed for uaneiy quantification in
computational structural dynamics, the use of the nonpetiamethod has been
extended for constructing stochastic models of matricesofputational models,
such as, for instance, the nonparametric stochastic modebhstitutive equation
in linear elasticity.

The parametric-nonparametric methddr uncertainty quantification consists
in using simultaneously in a computational model, the patammethod for con-
structing stochastic models of certain of its uncertaingitsl parameters, and the
nonparametric method for constructing a stochastic modebth, the other un-
certain physical parameters and the model uncertainttkged by the modeling
errors, in separating the effects of the two types of unoerés.

Consequently, the nonparametric method for uncertaingntiication uses
the random matrix theory.

3. A Brief History

Random Matrix Theory (RMT)
Therandom matrix theorfRMT) were introduced and developed in mathemat-
ical statistics by Wishart and others in the 1930s and wansgnely studied by
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physicists and mathematicians in the context of nucleasiobBy These works be-
gan with Wigner [126] in the 1950s and received an importéottan the 1960s
by Dyson, Mehta, Wigner [36; 37; 127], and others. In 1965¢P®3] published
a volume of important papers in this field, followed, in 196/tbe first edition
of the Mehta book [73] whose second edition [74] publishetldA1 gives a syn-
thesis of the random matrix theory. For applications in jdg/san important en-
semble of the random matrix theory, is the Gaussian Orthalgamsemble (GOE)
for which the elements are constituted of real symmetricloam matrices with
statistically independent entries and which are invanarter orthogonal linear
transformations (this ensemble can be viewed as a geraraiizof a Gaussian
real-valued random variable to a symmetric real squarearandatrix).

For an introduction to multivariate statistical analysi® refer the reader to
[2], for an overview on explicit probability distributiorsf ensembles of random
matrices and their properties, to [55], and for analyticaltmematical methods
devoted to the random matrix theory, to [75].

RMT has been used in other domains than nuclear physics.8khda®d 1986,
Bohigaset al[14; 15] found that the level fluctuations of the quantum &irtl-
lard were able to predict with the GOE of random matrices. 989, Weaver [125]
showed that the higher frequencies of an elastodynamictateiconstituted of a
small aluminium block had the behavior of the eigenvalues wiatrix belonging
to the GOE. Then, Bohigas, Legrand, Schmidt, and Sorne@gd@; 67; 100]
studied the high-frequency spectral statistics with theEG@r elastodynamics
and vibration problems in the high-frequency range. Lan{i&] showed that, in
the high-frequency range, the system of natural frequsrafiBnear uncertain dy-
namic systems is a non-Poisson point-process. Theseg&swie been validated
for the high-frequency range in elastodynamics. A synthektheses aspects re-
lated to quantum chaos and random matrix theory, devotedear acoustics and
vibration, can be found in the book edited by Wright and We§i/28].

Nonparametric method for UQ and its connection with the RMT

The nonparametric method was initially be introduced byz&diL07; 108] in
1999-2000, for uncertainty quantification in computatidiveear structural dy-
namics in order to take into account the model uncertaimidsced by the mod-
eling errors that could not be addressed by the paramettiicade The concept
of the nonparametric method then consisted in modeling éinealized matrices
of the reduced-order model of the computational model bgoanmatrices. It
should be noted that the terminology "nonparametric” is atadll connected to
the "nonparametric statistics”, but was introduced to strendifferences between
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the well known parametric method consisting in constrgctirstochastic model
of uncertain physical parameters of the computational e the new pro-
posed nonparametric method that consisted in modelingaherglized matrices
of the reduced-order model by random matrices, relateddagerators of the
problem. Later, the parametric-nonparametric method bas mtroduced [114].

Early in the development of the concept of the nonparametethod, a prob-
lem has occurred in the choice of ensembles of random msitrindeed the en-
sembles of random matrices coming from the RMT, were nottedip stochastic
modeling required by the nonparametric method. For ingtatihee GOE of ran-
dom matrices could not be used for the generalized massxatrich must be
positive definite, what is not the case for a random matriggihg to GOE. Con-
sequently, new ensembles of random matrices have had twblded [108; 109;
111; 77; 116], using the maximum entropy (MaxEnt) princjpée implementing
the concept of the nonparametric method for various contipmizl models in
mechanics, for which the matrices must verify various algibproperties. In
addition, parameterizations of the new ensembles of randainices have been
introduced in the different constructions in order to be apability to quantify
simply the level of uncertainties. These ensembles of nanhatrices have been
constructed with a parameterization exhibiting a small benof hyperparame-
ters, what allows for identifying the hyperparameters imgexperimental data,
solving a statistical inverse problems for random matrtbes are, in general, in
very high dimension. In these constructions, for certapesyof available infor-
mation, an explicit solution of the MaxEnt principle has bebtained, giving an
explicit description of the ensembles of random matricesadrthe corresponding
generators of realizations. Nevertheless, for other casagailable information
coming from computational models there is no explicit Solubf the MaxEnt and
therefore, a numerical tool adapted to the high dimensisrhld to be developed
[113].

Finally, during these last fifteen years the nonparametethod has exten-
sively been used and extended, with experimental validafito many problems
in linear and nonlinear structural dynamics, in fluid-stae interaction and in
vibroacoustics, in unsteady aeroelasticity, in soil-&ne interaction, in contin-
uum mechanics of solids for the nonparametric stochastaetng of the consti-
tutive equations in linear and nonlinear elasticity, inrtheelasticity, etc. A brief
overview on all the experimental validations and applaagiin different fields is
given in the last section entitled "Key Research Findingsl, Applications”.



4. Overview

The "Random Matrix Models and Nonparametric Method for Uteiaty
Quantification” is constituted of two main parts.

m The first one is devoted to the presentation of ensemblesndbra matri-
ces that are explicitly described and also deals with aneficoumerical tool for
constructing ensembles of random matrices when an explcistruction can-
not be obtained. The presentation is focussed to the funotamesults and to
the fundamental tools related to ensembles of random reattitat are useful
for constructing nonparametric stochastic models for ttaggy quantification in
computational mechanics and in computational science agisheering. In such
a framework, for the construction of nonparametric stotbasodels of the ran-
dom tensors or the tensor-valued random fields, and alsdwéononparametric
stochastic models of uncertainties in linear and nonlisgactural dynamics.

All the ensembles of random matrices, which have been dpedidor the
nonparametric method of uncertainties in computatioriahees and engineering,
are given hereinafter using a unified presentation baseldeouge of the MaxEnt
principle, what allow us, not only to learn about the usefidembles of random
matrices for which the probability distributions and the@sated generators of
independent realizations are explicitly known, but alspresent a general tool
for constructing any ensemble of random matrices, possiilyg computation in
high dimension.

m The second part deals with the nonparametric method forrtaioty quan-
tification, which uses the new ensembles of random matricdiave been con-
structed in the context of the development of the nonpanacneethod, and that
are detailed in the first part. The presentation is limitedh® nonparametric
stochastic model for constitutive equation in linear etatst to the nonparamet-
ric stochastic model of uncertainties in computationagdinstructural dynam-
ics for damped elastic structures but also for viscoelastiectures, and to the
parametric-nonparametric uncertainties in computatiooalinear structural dy-
namics. In the last section entitled "Key Research Findilagsl Applications”,
brief bibliographical analysis is given concerning thegagation of uncertainties
using nonparametric or parametric-nonparametric staichasdels of uncertain-
ties, some additional ingredients useful for the nonpatamstochastic model-
ing of uncertainties, some experimental validations ofrtbeparametric method
of uncertainties, and finally, some applications of the ravametric stochastic
modeling of uncertainties in different fields of computaabsciences and engi-
neering.



5. Notations

The following algebraic notations are used through all teeetbpments de-
voted to "Random Matrix Models and Nonparametric Method Worcertainty
Quantification”.

Euclidean and Hermitian spaces

Letx = (x1,...,2,) be a vector irK™ with K = R (the set of all the real num-
bers) orK = C (the set of all the complex humbers). The Euclidean sjiice
(or the Hermitian spac€™) is equipped with the usual inner producix ,y >=
>_i_, x;5; and the associated norjf|| =< x,x>!/? in which7; is the complex
conjugate of the complex numbegrand wherej; = y; wheny; is a real number.

Sets of matrices

M, .»(R) be the set of all thén x m) real matrices,

M, (R) = M,, ,(R) the square matrices,

ML, (C) be the set of all thén x m) complex matrices,

M5 (R) be the set of all the symmetrie x n) real matrices,

M°(R) be the set of all the semipositive-definite symmefricx n) real
matrices,

M (R) be the set of all the positive-definite symmetpicx n) real matrices.
The ensembles of real matrices are such that

MH(R) € M%(R) ¢ MS(R) C M, (R).

Kronecker symbol, unit matrix, and indicator function .

The Kronecker symbol is denoted &g and is such that;;, = 0if ;7 # k£ and
d;; = 1. The unit (or identity) matrix inVL,,(R) is denoted a$/,,| and is such
that[Z,];, = J;,. LetS be any subset of any skf, possibly withS = M. The
indicator functionM +— 1s(M) defined on seM is such thatis(M) = 1 if

M eScM,andis(M) =0if M ¢S.

Norms and usual operators

(i) The determinant of a matri)] in M,,(R) is denoted adet[G], and its trace is
denoted ag[G] = >7_, Gjj.

(i) The transpose of a matri)G] in M, ,,(R) is denoted a$G]”, which is in
M,,..»(R).

(iii) The operator norm of a matri)G] in M, ,,(R) is denoted a§G|| = sup <

| [G] x| for all xin R™, which is such thal [G] x || < ||G]| ||x]| for all x in R™.
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(iv) For [G] and[H] in M, ,,(R), we denote<|[G], [H]|>>= tr{|G]"[H]} and the
Frobenius norm (or Hilbert-Schmidt normi§7|| » of [G] is such thal| G||%2 =<
(G, [GP>=t{[G]"[G]} = >25-, D25ty Gy which is such thall G| < |G| r <
V|G

Order relation in the set of all the positive-definite real marices.
Let [G] and[H] be two matrices iV} (R). The notationG] > [H] means that
the matrix[G] — [H] belongs tdV[} (R).

Probability space, mathematical expectation, space of seied-order random
vectors

The mathematical expectation relative to a probabilitycsp®, 7, P) is denoted
asE. The space of all the second-order random variables, defin¢é, 7, P),
with values inR", equipped with the inner produ¢tX,Y)) = E{< X,Y >}
and with the associated noriX||| = ((X,X))!/2, is a Hilbert space denoted as
L2

6. The MaxEnt for Constructing Random Matrices

The measure of uncertainties using the entropy of inforonatias been in-
troduced by Shannon [104] in the framework of the develogroémformation
Theory. The Maximum Entropy (MaxEnt) principle (that is soygshe maximiza-
tion of the level of uncertainties) has been introduced lyyda [59], and allows
a prior probability model of any random variables to be carded, under the
constraints defined by the available information. This @ple appears as a ma-
jor tool to construct the prior probability models. All thesembles of random
matrices presented hereinafter (including the well knovaussian Orthogonal
Ensemble) are constructed in the framework of a unified ptasen using the
MaxEnt. This means that the probability distributions o landom matrices
belonging to these ensembles are constructed using theMlaxE

6.1. Volume Element and Probability Density Function (PDF)

This section deals with the definition of a probability déypsunction (pdf)
of a random matrixG] with values in the Euclidean spabé’ (R) (set of all the
symmetric(n x n) real matrices, equipped with the inner prodediz] , [H|>>=
tr{[{G]*[H]}). In order to correctly defined the integration on Euclidepace
M5 (R), it is necessary to define the volume element on this space.



Volume element on the Euclidean space of symmetric real matres

In order to well understand the principle of the construttbthe volume element
on Euclidean spadel? (R), the construction of the volume element on Euclidean
spaceR™ andM,,(R) are first introduced.

(i) Volume element on Euclidean spdke. Let{ey,...,e,} be the orthonormal
basis ofR™ such thate; = (0,...,1,...,0) is the null vector withl in position
j. Consequently< e;, €, >= §;;,. Any vectorx = (zi,...,z,) in R™ can then
be written ax = > 7, x; €;. This Euclidean structure dR" defines the volume
elementix onR" such thatix = [[_, dx;.

(i) Volume element on Euclidean spalg,(R). Similarly, let {[b;;]};; be the
orthonormal basis oM, (R) such that[b;;] = e;ef. Consequently, we have
L [bji] s [bjier] > = 0, 0kk. Any matrix [G] in M,,(R) can be written a§G| =
> ik—1 Gik [bjx] in which G, = [G];;. This Euclidean structure dil, (R) de-
fines the volume elemert; on M, (R) such thalG = an L dG .

(iii) Volume element on Euclidean spabg’ (R) Let{ 1< j<k<n}
be the orthonormal basis & (R) such thafb?; e7J and 05, = (ejef +

el)/V2if j < k. We have< [b3], [b5,,] >= 5Jj/<5kk/ fOf'j <k andj < K.
Any symmetric matriXG| in M (R) can be written afi] = >, ..., G5, (05,
in which G¥, = G;; and G5, = v2Gj,, if j < k. This Euclidean struc-
ture onMS( ) deflnes the volume elemedfG on M5 (R) such thatd°G =

[1i<;<k<n dG5;- The volume element is then defined by

d°G=2"""01 T dGye. (1)
1<j<k<n
Probability density function of a symmetric real random matrix .
Let [G] be a random matrix, defined on a probability spgeeT , P), with values
in M(R) whose probability distributios; = pig([G]) d°G is defined by a pdf
[G] — pg([G]) from MS(R) into RT = [0, 4+o0o[ with respect to the volume
elementd®G on M (R). This pdf verifies the normalization condition,

| . palleh ac-1. @
M5 (R)

in which the volume element®G is defined by Eq. (1).

Support of the probability density function.

The support of pdp ), denoted asuppp(g) is any subsef,, of M (R), possibly
with S,, = M?(R). For instance, we can ha$g = M (R) ¢ M?(R), which
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means thafG] is a random matrix with values in the positive-definite syrmmne
(n x n) real matrices. Thugyg([G]) = 0 for [G] notinS,, and Eq. (2) can be
rewritten as

| waic ¢ 1. @3)

n

It should be noted that, in the context of the constructiotiefunknown pdp;g),
it is assumed that suppdi}, is a given (known) set.

6.2. The Shannon Entropy as a Measure of Uncertainties

The Shannon measure [104] of uncertainties of random miiixs defined by
the entropy of informationghannon’s entrogy& (pic)), of pdfpg) whose support
isS, ¢ M?(R), such that

E(pg)) = —/S e ([G)) log(pg ([G))) d°G, (4)

which can be rewritten a8(pjg)) = —E{log(pig)([G])). For any pdfpg) defined
onM (R) and with suppor§,,, entropy&(pjg)) is a real number. The uncertainty
increases when the Shannon entropy increases. More tha@hantropy is small
and more the level of uncertainties is smallE(fpig) goes to—oo, then the level
of uncertainties goes to zero, and random ma@ipgoes to a deterministic matrix
for the convergence in probability distribution (in prodaip law).

6.3. The MaxEnt Principle

As explained before, the use of the MaxEnt principle requicecorrectly de-
fined the available information related to random mafé@ for which pdf pg
(that is unknown with a given suppd}t) has to be constructed.

Available information .
It is assumed that the available information related to oamchatrix[G]| is repre-
sented by the following equation &, wherey is a finite positive integer,

in which e — h(p[G}) = (hl (p[G]), e h#(p[G})) is a given functional Of?[G},
with values inR*. For instance, if the mean valué{[G]} = [G] of [G], is a
given matrix inS,,, and if this mean valug=| corresponds to the only available
information, therh., (pg)) = J5 Gk pe)([G]) d°G =Gy, inwhicha =1,...,

is associated with the couple of indicgsk) such asl < j < k < n, and where
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w=mn(n-+1)/2.

The admissible sets for the pdf

The following admissible setSyee and Cyq are introduced for defining the op-
timization problem resulting from the use of the MaxEnt pijte in order to
construct the pdf of random matr{G]. The setCe is made up of all the pdf
p: [G] = p([G]), defined orM? (R), with supportS,, € M?(R),

Cree = {[G] = p([G]) : M3 (R) — R™ ,suppp = S, / p([G]) d°G =1} . (6)

The seC,qis the subset of;.. for which all the pdip in Cyee Satisfy the constraint
defined by

Cad = {p € Chree, h(p) = 0} . (7)

Optimization problem for constructing the pdf.
The use of the MaxEnt principle for constructing the pgj of random matrix
[G] yields the following optimization problem,

ple) = arg ffé%jf,g (p) . (8)
The optimization problem defined by Eq. (8) on 8gtis transformed in an opti-
mization problem ot in introducing the Lagrange multipliers associated with
the constraints defined by Eqs. (5) [59; 61; 108]. This typeooistruction and the
analysis of the existence and the uniqueness of a solutite @iptimization prob-
lem defined by Eq. (8) is detailed in the section entitled: Xat as a Numerical
Tool for Constructing Ensembles of Random Matrices”.

7. A Fundamental Ensemble for the Symmetric Real Random Matices With
a Unit Mean Value

A fundamental ensemble for the symmetric real random negtiicthe Gaus-
sian Orthogonal Ensemble (GOE) that is an ensemble of ramdatrices|G],
defined on a probability spa¢®, 7, P), with values inM? (R), defined by a pdf
pie) ON M (R) with respect to the volume elemefitG, for which the suppor$,,
of pg is M?(R), and satisfying the additional properties defined herénaf
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Classical definition [75]

The additional properties of a random matff®] belonging to GOE are: (i)
invariance under any real orthogonal transformation, thabd say, for any or-
thogonal(n x n) real matrix[R] such thafR|"[R] = [R][R]T = [I..], the pdf

(with respect tal°G) of the random matrix])” [G] [R] is equal to pdfg of ran-

dom matrix[G], and (ii) statistical independence of all the real randonialdes

{Gjr,1 < j <k <n}.

Definition by the MaxEnt and calculation of the pdf.
Alternatively to the properties introduced in the claskiteinition, the additional
properties of a random matri%| belonging to GOE are the following. For all
1<j<k<n,

52
in which§ > 0 is a given positive-valued hyperparameter whose intespicet is
given after. The GOE is then defined using the MaxEnt priredipt the available
information given by Eqg. (9), which defines mappingsee Eq. (5)). The corre-
sponding ensemble is written @&OE;. In Eq. (9), the first equation means that
the symmetric random matrixs] is centered, and the second one means that its
fourth-order covariance tensor is diagonal. Using the MaxEinciple for ran-
dom matrix|G] yields the following unique explicit expression for the pdfwith
respect to the volume elemenitG,

n+1 )
pe(G]) = cq exp(=— 5 tr{[G)*}) ., Gij=Gi, 1<j<k<n, (10)

in which ¢¢ is the constant of normalization such that Eq. (2) is verifigctan
then be deduced thgG;;, 1 < j < k < n} are Gaussian independent real ran-
dom variables such that Eq. (9) is verified. Consequenthalldl < j < k < n,
the pdf (with respect talg on R) of the Gaussian real random varialikg;, is
pe,.(9) = (V2r0j,)~" exp{—g?/(20%,)} in which the variance of random vari-
ableij is U?k: = (1 + 5_]k> (52/(’& + 1)

Decentering and interpretation of hyperparameterJ.

Let [G®°F be the random matrix with values M? (R) such thafG®°"| = [I,,] +
[G] in which [G] is a random matrix belonging to tl@&OE; defined before. There-
fore [G®°% is not centered and its mean valu&i§|G°®°f} = [I,,]. The coefficient
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of variation of the random matrifG®°f is defined [110] by

B{||G® - B{G™ 3] "* 1. .o 7 2y
Jeos = =1,EUGT -1 11
GOE { || E{GGOE} ||%‘ n {H n HF} s ( )

anddgoe = 0. The paramete2o//n + 1 can be used to specify a scale.

Generator of realizations

Ford € ©, any realizatiorfG®°%(#)] is given by[G®°%(9)] = [I..] + [G(#)] with,
for1 < j < k < n, we haveG;;(0) = G;;(0) andG;(0) = 0,,U;x(6), In
which {U;x(9) }1<j<k<n is the realization ofi(n + 1)/2 independent copies of a
normalized (centered and unit variance) Gaussian reabranariable.

Use of the GOE ensemble in uncertainty quantification

The GOE can then be viewed as a generalization of the Gaussaamandom
variables to the Gaussian symmetric real random matricdesan be seen that
[G®°F] is with values inM (R) but is not positive. In addition, for all fixed,

E{[[[G** 7"} = +o0. (12)

() It has been proved by Weaver [125] and others (see [128]iacluded ref-
erences), that the GOE is well adapted for describing usaldtuctuations of
the eigenfrequencies for generic elastodynamical, amalisind elastoacoustical
systems, in the high frequency range corresponding to gha@stic behavior of
the largest eigenfrequencies.

(ii) On the other hand, random matrig“°5 cannot be used for stochastic mod-
eling of a symmetric real matrix for which a positivenessgay and an integra-
bility of its inverse are required. Such a situation is sanito the following one
that is well known for the scalar case. Let us consider theaseguation inu:
(G + G)u =wvinwhichv is a given real numbe¢; a given positive number, and
G is a positive parameter. This equation has a unique solutienG + G)~'v.
Let us assume théat is uncertain and is modeled by a centered random var@ble
We then obtain the random equatiorlin (G + G)U = v. If the random solution
U must have finite statistical fluctuations, that is to $aynust be a second-order
random variable (this is generally required due to physicalsiderations), then
G cannot be chosen as a Gaussian second-order centeredn@araariable,
because with such a Gaussian stochastic modeling, théssolit= (G + G) v

is not a second-order random variable, becati$&?} = +oco due to the non
integrability of the functiorG — (G + G)~? at pointG = —G.
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8. Fundamental Ensembles for Positive-Definite Symmetric &l Random
Matrices

In this section, we present fundamental ensembles of pesiefinite sym-
metric real random matrices, $GSG', SG', and SG, which have been de-
veloped and analyzed for constructing other ensembleshabra matrices used
for the nonparametric stochastic modeling of matrices entmed in uncertainty
guantification.

m The ensemble SEGis a subset of all the positive-definite symmetric reak
n) random matrices for which the mean value is the unit matnig, far which the
lower bound is the zero matrix. This ensemble has been intediand analyzed
in [108; 109] in the context of the development of the nonpetic method of
model uncertainties induced my modeling errors in comjputat dynamics. This
ensemble has later been used for constructing other ensgwitndom matrices
encountered in the nonparametric stochastic modeling cén@inties [111].

m The ensemble SGis a subset of all the positive-definite symmetric real
(n x n) random matrices for which the mean value is the unit matnid #or
which there is an arbitrary lower bound that is a positivérilie matrix controlled
by an arbitrary positive numberthat can be chosen as small as is desired [115].
In such an ensemble, the lower bound does not correspondiveramatrix that
results from a physical model, but allows for assuring aamif ellipticity for the
stochastic modeling of elliptic operators encounterechicentainty quantification
of boundary value problems. The construction of this endemslalirectly derived
from ensemble S5

m The ensemble SGis a subset of all the positive-definite random matrices
for which the mean value is either non given or is equal to thi¢ matrix [28;
50], and for which a lower bound and an upper bound are givsitipe-definite
matrices. In this ensemble, the lower bound and the uppeardare not arbitrary
positive-definite matrices, but are given matrices thatltéom a physical model.
The ensemble is interesting for the nonparametric stocchastdeling of tensors
and tensor-valued random fields for describing uncertaysiohl properties in
elasticity, poroelasticity, thermics, etc.

m The ensemble S@G introduced in [77], is a subset of all the positive-definite
random matrices for which the mean value is the unit matoxwich the lower
bound is the zero matrix, and for which the second-order nmvsnef diagonal
entries are imposed. In the context of the nonparametrahasiic modeling of
uncertainties, this ensemble allows for imposing the vaes of certain random
eigenvalues of stochastic generalized eigenvalue prahleuch as the eigenfre-
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guency problem in structural dynamics.

8.1. Ensemble S(of Positive-Definite Random Matrices With a Unit Mean Value

Definition of SG; using the MaxEnt and expression of the pdf

The ensemble SGof random matrice$Gy|, defined on the probability space
(©,T,P), with values in the seM}(R) c M?(R), is constructed using the
MaxEnt with the following available information, which deéis mappindy (see

Eg. (5)),
E{[Gol} = [In] »  E{log(det[Go])} =va, , |va|<+oo. — (13)

The support of the pdf is the subsgt = M, (R) of M (R). This pdfp;g,) (with
respect to the volume elemehtG on the sefM?(R)) verifies the normalization
condition, and is written as

Pie(1G) = 15, (1G)) ey (det [G]) " i eXp(_nzjiLz1

tr[G]) . (24)

The positive paramete¥is a such that < § < (n + 1)"/2(n + 5)~'/2, which
allows the level of statistical fluctuations of random maif,| to be controlled,
and which is defined by

_[EUG— B{Go} (1 e
5_{ I E{Go} II% } _{nE{H[Go] [In]HF}} . (5)

The normalization positive constant, is such that

n(n+1)(262) -1
nne1y/a (M1 n—l—l J
= (2m) "=/ ( 55 ) {Hr o5 T)} , (16)

where, for allz > 0, I'(z) = [, t*~1 e~* dt. Note that{[Gy);s, 1 < j < k < n}
are dependent random variables(rf+ 1)/(52 is an integer, then this pdf coincides
with the Wishart probability distribution [2; 108]. [f» + 1)/6? is not an integer,
then this probability density function can be viewed as dipaar case of the
Wishart distribution, in infinite dimension, for stochagprocesses [105].

Second-order moments
Random matriXGo] is such that{ |G |*} < E{||Go||%} < -+oo, which proves
that [Gy] is a second-order random variable. The mean value of randatrixm
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(Go] is unit matrix[7,]. The covarianc€';, ;4 = E{[Gol;x — [In]x) ([Go)jw —
[I.];)} of the real-valued random variabléS,|;, and [Go); i iS Cj i =
6% (n+1)~ {(5 e O + 6” drw - The variance of real-valued random variable
[GO]Jk is o2 ik = Cjk,jk = )2 (n+1)_1(1 -+ 5_]k>

Invariance of ensemble SG under real orthogonal transformations.
Ensemble S is invariant under real orthogonal transformations. Thieans
that the pdf (with respect té°G) of the random matriXxR]” [G,] [R] is equal to
the pdf (with respect td°G) of random matriXG] for any real orthogonal ma-
trix [R] belonging taVL,,(R).

Invertibility and convergence property when dimension gos to infinity.
Since[Gy] is a positive-definite random matri}G,| is invertible almost surely,
which means that faP-almostd in ©, the inverséG,(0)]~* of the matrix[Gy ()]
exists. This last property does not guarantee[Bglt ' is a second-order random
variable, that is to say, tha{||[Go|'||I7} = [ II[Go(0)] 7|7 dP(6) is finite.
However, it is proved [109] that

E{]I[Go] "I} < E{|[[Gol " [I7} < +o0, (17)
and that the following fundamental property holds,
vn>2 , E{|[Go] '*} < Cs < +o0, (18)

in which C is a positive finite constant that is independent dfut that depends
ond. This means that — E{||[Go]!||?} is a bounded function fronin > 2}
intoR+.

It should be noted that the invertibility property definediys. (17) and (18)
are due to the constraii{log(det[Go))} = vg, With |vg,| < +oo. This is the
reason why the truncated Gaussian distribution restrict®d " (R) does not sat-
isfy this invertibility condition that is required for stbastic modeling in many
cases.

Probability density function of the random eigenvalues

Let A = (A4,...,A,) be the positive-valued random eigenvalues of the random
matrix [G,] belonging to ensemble $G such thafG,| ®/ = A; ®7 in which

®J is the random eigenvector associated with the random eidigawk;. The
joint probability density functioma (A) = pa,...a, (A1, ..., Ay) With respect to

.....
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dX=d\...d\, Of A = (Ayq,..., An) is written [108] as

PAN) = Lp o cA{HA“‘“ I oAl et~ Zxk}

a<f
(19)
inwhichc, is a constant of normalization defined by the equafbéiﬁo. . f0+°°pA()\)
dX = 1. All the random eigenvalues; of random matriXG,| in SG| are positive
almost surely, while this assertion is not true for the randngenvalues\ $°° of
the random matri¥G®°| = [I,] + [G] in which [G] is a random matrix belonging
to theGOE; ensemble.

Algebraic representation and generator of realizations

The generator of realizations of random mati®,] whose pdf is defined by
Eqg. (14), is directly deduced from the following algebragpresentation oiG|

in SG. Random matriXG] is written agGy] = [L]” [L]in which[L]is an upper
triangular realn x n) random matrix such that:

(i) the random variable§[L |, j < k} are independent;

(ii) for j < k, the real-valued random varialjle] ;. is written agL | ;. = 0,,Ujx in
whicho,, = §(n+1)~/2 and wherdJ;, is a real-valued Gaussian random variable
with zero mean and variance equallto

(iii) for j = k, the positive-valued random variable];; is written as[L];; =
0,+/2V; in which o, is defined before and whet§ is a positive-valued gamma
random variable whose pdf jg, (v) = Lg+ (v)#@j) v~ e, in whicha; =
ntl | 1-j

252

It should be noted that the s€{Uj;;}1<;j<k<n ., {V}}1<j<n } Of random vari-
ables are statistically independent, and the pdf of eadjoda elemenilL |;; of
random matriXL ] depends on the rankof the entry.

Ford € ©, any realizationG,(0)] is then deduced from the algebraic rep-
resentation given before, using the realizati@fn;(0)}1<;j<k<, Of n(n — 1)/2
independent copies of a normalized (zero mean and unitnegg)aGaussian real
random variable, and using the realizatipvi;(¢) },<;<, of the n independent
positive-valued gamma random variablgwith parametet;.

8.2. Ensemble SGof Positive-Definite Random Matrices With a Unit Mean Value
and an Arbitrary Positive-Definite Lower Bound

The ensemble SGis a subset of all the positive-definite random matrices for

which the mean value is the unit matrix and for which therenisgbitrary lower
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bound that is a positive-definite matrix controlled by anitaalby positive number
¢ that can be chosen as small as is desired. In this ensembleytar bound does
not correspond to a given matrix that results from a physicadel.

Ensemble SG is the set of the random matric&S] with values inM! (R),
which are written as

6] = - —{[Go] +<[L]}. (20)

in which [Gy] is a random matrix in S5, with mean valueZ{[G,]} = [I,] and
for which the level of statistical fluctuations is contrallby the hyperparameter
o defined by Eq. (15), and wheteis any positive number (note that fer= 0,
SG' = SG and then|G] = [Gy]). This definition shows that, almost surely,

1
1+4+¢

in which the lower bound is the positive-definite matiix| = c.[I,,] with c. =
e/(1+¢). For alle > 0, we have

E{[Gl} =[] , E{log(det([G] - [G/]))} =va.  |va.

with ve. = vg, — nlog(l + ). The coefficient of variatiod of random matrix
[G], defined by

CEUG-EGHEN [ e el
o= IEGH bo-{ete-mm) . @

[G] - [Gi] =

[Go] >0, (22)

< 400, (22)

is such that 5

1+¢’
whered is the hyperparameter defined by Eq. (15).

5 = (24)

Generator of realizations
Forf € ©, any realizatioG(6)] of [G] is given by[G(0)] = 11-{[Go(0)]+¢ [I.]}
in which [G((#)] is a realization of random matriG,] constructed as explained

before.

Lower bound and invertibility .

For alle > 0, the bilinear formb(X,Y) = (([G] X,Y)) on L2 x L2 is such that,
b(X,X) = c.[[|X][|*. (25)

Random matriXG] is invertible almost surely and its inver8]~! is a second-

order random variabley{||[G] ||} < +cc.
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8.3. Ensemble SGof Positive-Definite Random Matrices With Given Lower and
Upper Bounds, and With or Without Given Mean Value

The ensemble SGis a subset of all the positive-definite random matrices for
which the mean value is either the unit matrix or is not givand for which
a lower bound and an upper bound are given positive-defingtigices. In this
ensemble, the lower bound and the upper bound are not ayhiwaitive-definite
matrices, but are given matrices that result from a physnalel.

The ensemble SGis constituted of random matrice6,], defined on the
probability spacé®, T, P), with values in the sé¥l (R) c M?>(R), such that

0] <G/ < [Gy] < [Gu], (26)

in which the lower boundG,| and the upper bounfd~,| are given matrices in
M (R) such that{G,] < [G,]. The support of the pdbs,; (with respect to
the volume element®G on M?(R)) of random matriXG,), is the subse§,, of
MF(R) ¢ M?(R) such that

Su={I[GleM;(R) | [G]<[G]<IGd}. (27)

The available information associated with the presencéeflatwer and upper
bounds, is defined by

E{log(det([Gy] — [Ge]))} = e, E{log(det([Gu] — [Gu]))} = v, (28)

in which v, andv,, are two constants such that| < +oo and|v,| < +oo. The
mean valugG,| = E{[G,]} is given by

[Qazjﬁ@p@MGDfG. (29)

The positive parametéy, which allows the level of statistical fluctuations of ran-
dom matrix[G,] to be controlled, is defined by

@:{Ew@—gﬂ%}“.
1G,E

(30)

Definition of SG; for a non given mean value using the MaxEnt

The mean valuéG,| of random matriXG,] is not given and therefore, does not
constitute an available information. In this case, the eride SG' is constructed
using the MaxEnt with the available information given by E28) (that defines
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mappingh introduced in Eq. (5) and rewritten fgrg,)). The pdfp;, is the
generalized matrix-variate Beta type | pdf [55],

piey([G]) = 15, ([G)) eq, (det [G—G)* "2 (det [G,—G)) "V (31)

in which ¢, is the normalization constant, and where> (n — 1)/2 ands >

(n — 1)/2 are two real parameters that are unknown and that dependedwath
unknown constants, andv,. The mean valuéG,] must be calculated using
Egs. (29) and (31), and the hyperparamétemwhich characterizes the level of
statistical fluctuations, must be calculated using Eq9.484d (31). Consequently,
|G,] andd, depend ony and 5. It can be seen that, for > 2, the two scalar pa-
rametersy and 8 are not sufficient for identifying the mean vali@,] that is in
S, and the hyperparametéy. An efficient algorithm for generating realizations
of [G,] can be found in [28].

Definition of SG; for a given mean value using the MaxEnt

The mean valugs,| of random matriXG,] is given such thaiG,] < [G,] < [G.].

In this case, the ensemble S@ constructed using the MaxEnt with the available
information given by Egs. (28) and (29) that defines mapgingtroduced in
Eq. (5). Following the construction proposed in [50], thédwing change of
variable is introduced,

Ao = ([Gy] — [Gd)) " =[G, (G = [Gu] — [G) e M(R).  (32)

This equation shows that the random mafAx] is with values inM' (R). Intro-
ducing the mean valugl,] = E{[Ao]} that belongs t&\L} (R), and is Cholesky
factorization[A,] = [Ly)* [L,] in which [L,] is an upper triangular regh x n)
matrix, random matrixA,] can be written afA,] = [L,]” [Go] [L,] with [G,] be-
longs to ensemble SGdepending on the hyperparametedefined by Eq. (15).
The inversion of Eq. (32) yields

1

(Ge] = [Ge] + ([Lo]" [Go] [Lo] + [Geul ™) -

It can then be seen that for any arbitrary smaglt> 0 (for instances, = 1079),
we have

(33)

IE{(Ad] + (Gl )} + G =[Gl lr < &0 llG,lr- (34)

For ¢ and[L,] fixed, for @ in ©, the realizationG,(¢)] of random matrix/Gy|
in SG; is constructed using the generator[6%], which has been detailed be-
fore. The mean valu&{[G,]} and the hyperparametéy defined by Eq. (30) are
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estimated with the corresponding realization

(Go(0)] = [Gd] + ([Lo)" [Go(0)] [Ly) + [Geu] ™)™

of random matriXG,]. Letl, be the set of all the upper triangular réal x n)
matrices L] with positive diagonal entries. For a fixed valuedpfind for a given
target value ofG, ), the valug Lo™] of [L,] is calculated in solving the optimization
problem

[LgP] = arg min F([L)), (35)

o [LoleUr,

in which the cost functiotF is deduced from Eq. (34) and is written as

F((Lo]) = I E{([Lo]" [Go] [Lo] + [Geu] ™)'} + (Gl = [Go) I#/ 1G]l - (36)

8.4. Ensemble SGof Positive-Definite Random Matrices With a Unit Mean Value
and Imposed Second-Order Moments

The ensemble SGis a subset of all the positive-definite random matrices for
which the mean value is the unit matrix, for which the loweubd is the zero
matrix, and for which the second-order moments of diagon@ies are imposed.

In the context of nonparametric stochastic modeling of waagies, this ensem-
ble allows for imposing the variances of certain randommrgkies of stochastic
generalized eigenvalue problems.

Definition of SG} using the MaxEnt and expression of the pdf

The ensemble SGof random matrice$G, ], defined on the probability space
(©,T,P), with values in the seM(R) c M?(R), is constructed using the
MaxEnt with the following available information, which deéis mappindy (see

Eq. (5)).

B{[G\]} = [I] , E{log(det[Ga])} = vo, » E{[G\}} =57, j=1,...m,
(37)
in which |vg,| < +o0, with m < n, and wheresi, ..., s? arem given posi-
tive constants. The pdf,; (with respect to the volume elemeiitG on the set
M?(R) has a support that i, = M} (R) C M2 (R) of M (R). The pdf verifies
the normalization condition and is written [77] as

Py ([G]) = 1s, ([G]) x Ca, x (det [G])*" x exp{—tr{[y] ZTJ
(38)
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inwhichC¢, is the normalization constant,is a parameter such that-2a—1 >
0, where[y] is a diagonal rea{n x n) matrix such thag;; = (n 4+ 2a —1)/2
for j > m, and whereu1, . . ., tm @andr, ..., 7, are2m positive parameters,
which are expressed as a functioncofind s?, ..., s2. The level of statistical

fluctuations of random matri)z, ] is controlled by the positive hyperparameter
that is defined by

_[E{IG\ - E{G} 3" (1 I
5_{ I E{G:} 1% } ‘{nE{IHGA] [In]HF}} . (39)

and where) is such that

1 — n+1—(m/n)(n+2a—1)
2—_§ 2
5_n, 5t n+2a—1 ' (40)

J=1

Generator of realizations
For givenm < n, §, ands?, ..., s2, the explicit generator of realizations of ran-

) m)

dom matrix[G,] whose pdf is defined by Eqg. (38), is detailed in [77].

9. Ensembles of Random Matrices for the Nonparametric Methd in Uncer-
tainty Quantification

In this section, we present the ensembles SEE", SE™, SE™ and SE',
of random matrices which result from some transformationthe fundamen-
tal ensembles introduced before. These ensembles of rantintes are use-
ful for performing the nonparametric stochastic modelifigratrices encoun-
tered in uncertainty quantification of computational medel structural dynam-
ics, acoustics, vibroacoustics, fluid-structure intacagtunsteady aeroelasticity,
soil-structure interaction, etc, but also, in: solid meths (elasticity tensors of
random elastic continuous media, matrix-valued randordditdr heterogeneous
microstructures of materials), thermic (thermal condustitensor), electromag-
netism (dielectric tensor), etc.

The ensembles of random matrices, devoted to the constnuatinonpara-
metric stochastic models of matrices encountered in uaicgyt quantification,
are briefly summarized below, and then are mathematicatbildd.

m The ensemble SEis a subset of all the positive-definite random matrices
for which the mean values are given and differ from the unitrméunlike to en-
semble SG), and for which the lower bound is the zero matrix. This ersiers

23



constructed as a transformation of ensemblg 8Gkeeping all the mathematical
properties of ensemble §Guch as the positiveness.

m The ensemble SEis a subset of all the positive-definite random matrices for
which the mean value is a given positive-definite matrix, fmavhich there is an
arbitrary lower bound that is a positive-definite matrix twotled by an arbitrary
positive numbet that can be chosen as small as is desired. In this ensemble, th
lower bound does not correspond to a given matrix that re$tdin a physical
model. This ensemble is constructed as a transformationsg#rable SG and
has the same area of use than ensembjef8Estochastic modeling in uncertainty
quantification, but for which a lower bound is required in shechastic modeling
for mathematical reasons.

m The ensemble S¥ is similar to ensemble S{Gbut is constituted of semipositive-
definite (m x m) real random matrices for which the mean value is a given
semipositive-definite matrix. This ensemble is constrdi@s a transformation
of positive-definite(n x n) real random matrices belonging to ensemble} SG
with n < m, in which the dimension of the null spacenis—n. Such an ensemble
is useful for the nonparametric stochastic modeling of uaa&ies such as those
encountered in structural dynamics in presence of rigid/lehspblacements.

m The ensemble SEis an ensemble of rectangular random matrices for which
the mean value is a given rectangular matrix, and which isttoated using en-
semble SE. This ensemble is useful for the nonparametric stochastideiing
of some uncertain coupling operators encountered, foames, in fluid-structure
interaction and in vibroacoustics.

m The ensemble SE is a set of random functions with values in the set of
the complex matrices such that the real part and the imagpeat are positive-
definite random matrices that are constrained by an underliiilbert trans-
form induced by a causality property. This ensemble alloovsaf nonparamet-
ric stochastic modeling in uncertainty quantification angered, for instance in
linear viscoelasticity.

9.1. Ensemble SEof Positive-Definite Random Matrices With a Given Mean
Value
The ensemble SFis a subset of all the positive-definite random matrices for
which the mean values are given and differ from the unit mgtmlike to ensem-
ble SG). This ensemble is constructed as a transformation of elige®G] in
keeping all the mathematical properties of ensemblg S&h as the positiveness
[108].
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Definition of ensemble SE .
Any random matrix|Ao] in ensemble SE is defined on the probability space
(©,T,P), is with values iV} (R) ¢ M?(R), and is such that

E{[Ad} =1A] , E{log(det/Aod)} = va, , [va,| < +oo, (41)

in which the mean valupd] is a given matrix iV (R).

Expression of[A,] as a transformation of [Gy] and generator of realizations
Positive-definite mean matrixl] is factorized (Cholesky) as

[A] = [La]" [La], (42)

inwhich[L 4] is an upper triangular matrix i, (R). Taking into account Eq. (41)
and the definition of ensemble $Gany random matrixA,] in ensemble SEis
written as

[Ao) = [La]"[Go] [Lal, (43)
in which the random matriXG,] belongs to ensemble §Gwith mean value
E{[Gy]} = [1,,] and for which the level of statistical fluctuations is coli&d by
the hyperparameteérdefined by Eq. (15).

Generator of realizations For all ¢ in ©, the realizationG(#)] of [Go] is
constructed as explained before. The realizafarif)] of random matriXA,] is
calculated byA¢(0)] = [La]"[Go(0)] [L 4]

Remark It should be noted that the mean matiti{ could also been written
as[A] = [A]/2[A]Y/2 in which [A]'/? is the square root dfd] in M} (R), and the
random matriXA,] could then been written d8,] = [A]'/? [G,] [A]'/2.

Properties of random matrix [A].
Any random matriXA,] in ensemble SEis a second-order random variable,

E{|lAlI*} < E{llAallz} < +o0, (44)

and its invers¢A,| ! exists almost surely and is a second-order random variable,

E{|I[A0] 117} < E{[I[Ao] " IE} < +oo. (45)
Covariance tensor and coefficient of variation of random matix [Ay].
The covarianc€’j, ;i = E{([Aoljx — Ajr)([Aolji — Ajir) } of random variables
[Aol;x and[Ag] ;4 Is written as

52
Cik iy = n—_l_l{Aj’k;Ajk:’ + Ajjr A } (46)
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and the variance?, = Cj; j; of random variablgA, ;. is

52
o, = n—H{AJQk + Ay g} - (47)

The coefficient of variatioid 4, of random matriXA,|, defined by

E{H“O AH%}}UQ
Ao { H‘l”QF ( )

SinceE{|| Ay — A%} = >0, >4y 07y, We have

B (tr [A])° "2
5A0‘¢—n+1{” IIAH%} ' (49)

9.2. Ensemble SEof Positive-Definite Random Matrices With a Given Mean
Value and an Arbitrary Positive-Definite Lower Bound

The ensemble SEis a set of positive-definite random matrices for which the
mean value is a given positive-definite matrix, and for whiwére is an arbitrary
lower bound that is a positive-definite matrix controlleddiy arbitrary positive
numbere that can be chosen as small as is desired. In this enseméllwiar
bound does not correspond to a given matrix that results &ghysical model.
This ensemble is then constructed as a transformation efhéne SG and has
the same area of use than ensemblg 8# stochastic modeling in uncertainty
quantification, but for which a lower bound is required in shechastic modeling
for mathematical reasons.

Definition of ensemble SE .

For a fixed positive value of parametefgenerally chosen very small, 48-°),
any random matrifA|] in ensemble SEis defined on probability spa¢®, 7, P),
is with values inM\ (R) ¢ MY (R), and is such that

[A] = [La]"[G] [La], (50)

in which [L4] is the upper triangular matrix it¥l,,(R) corresponding by the
Cholesky factorizatiofL 4|7 [L4] = [A] of the positive-definite mean matrix
[A] = E{[A]} of random matriXA], and where the random matri&| belongs to
ensemble SG, with mean valuegZ{[G]} = [I,] and for which the coefficient of
variationd, is defined by Eq. (24) as a function of the hyperparametifined
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by Eq. (15), which allows the level of statistical fluctuaisoto be controlled. It
should be noted that for = 0, [G] = [G,] that yields[A] = [Ao] and conse-
quently, the ensemble Stoincides with SE (if ¢ = 0).

Generator of realizationsFor all ¢ in ©, the realizatiorfG(6)] of [G] is con-
structed as explained before. The realizafia(9)] of random matrixA|] is cal-
culated bylA(0)] = [LA]T[G(0)] [L4].

Properties of random matrix [A].
Almost surely, we have

Al = [4d = 11— A > 0, (51)

in which [A,] is defined by Eq. (43), and where the lower bound is the pesitiv
definite matrix[A,] = c.[A] with ¢. = ¢/(1+¢), and we have the following
properties,

E{[Al} =[A4] , E{log(det([A] = [Ad))} =va , |va] <+oo, (32)

with v4 = v4, — nlog(1 +¢). For alle > 0, random matriA] in ensemble SE
is a second-order random variable,

E{|AI*} < E{|AF} < +o0, (53)
and the bilinear fornb4 (X, Y) = ((JA] X,Y)) on£2 x L2 is such that,
ba(X,X) > e (([A]X, X)) = ce|ll[[La] X][]|*. (54)

Random matri{A] is invertible almost surely and its invers&]~! is a second-
order random variable,

E{IIAI7} < ELIIAT IR} < +oo. (55)

The coefficient of variatioid , of random matriXA|, defined by

B{||A —Au%}}”
o4 = { ) (56)
| A%
is such that )
o4 = ——0 57
A 1+e Apg ( )

in whichd 4, is defined by Eq. (49).

27



9.3. Ensemble S® of Semipositive-Definite Random Matrices With a Given Sesitipe-
Definite Mean Value

The ensemble SE is similar to ensemble S{Gout is constituted of semipositive-
definite (m x m) real random matricef\] for which the mean value is a given
semipositive-definite matrix. This ensemble is constri§id 1] as a transforma-
tion of positive-definitgn x n) real random matrice$s,| belonging to ensemble
SGS, withn < m.

Algebraic structure of the random matrices in SE™.

The ensemble SE is constituted of random matrijd] with values in the set
MF?(R) such that the null space p&], denoted asull([A]), is deterministic and
is a subspace dR™ with a fixed dimension,,; < m. This deterministic null
space is defined as the null space of the mean Jalpe E{[A]} that is given in

M!O(R). We then have

(Al e M°(R) ,  dimnull([A]) = pgor < m , null([A]) = null([A]). (58)
There is a rectangular matrig 4] in M, ,,,(R), with n = m — g, such that
[A] = [Ra]" [Ra]. (59)
Such a factorization is performed using classical algorgd7].

Definition and construction of ensemble SE°.

The ensemble SE is then defined as the subset of all the second-order ran-
dom matricegA], defined on probability spad®, 7, P), with values in the set
MO(R), which are written as

[A] = [Ra]" [G] [Ra], (60)

in which[G] is a positive-definite symmetria x n) real random matrix belonging
to ensemble SE, with mean valueéZ{[G]} = [I,,] and for which the coefficient of
variationd is defined by Eq. (24) as a function of the hyperparamgtiafined
by Eq. (15), which allows the level of statistical fluctuaisoto be controlled.

Generator of realizationsFor all ¢ in ©, the realizatiorfG(6)] of [G] is con-
structed as explained before. The realizafid(¥)] of random matrixA] is cal-
culated by[A(0)] = [Ra]T[G(0)] [R ]
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9.4. Ensembl8E™* of Rectangular Random Matrices With a Given Mean Value

The ensemble SE'is an ensemble of rectangular random matrices for which
the mean value is a given rectangular matrix, and which istroated with the
MaxEnt. Such an ensemble depends on the available infamatd conse-
guently, is not unique. We present hereinafter the construproposed in [111],
which is based on the use of a fundamental algebraic profmrtgctangular real
matrices, which allows ensemble Sk be used.

Decomposition of a rectangular matrix
Let [A] be a rectangular real matrix M,,, ,,(R) for which its null space is reduced
to {0} ([A] x = Oyieldsx = 0). Such a rectangular matrj¥] can be written as

[A] = [U1[TT, (61)
in which the square matri)’| and the rectangular matrjk’] are such that
[T] € M} (R) and [U] € M,,,(R) suchthat [U)"[U]=[L]. (62)

The construction of the decomposition defined by Eq. (61)bmaperformed, for
instance, by using the singular value decompositiofiaf

Definition of ensemble SE*,
Let [4] be a given rectangular real matrixv,, ,,(R) with a null space reduced
to {0} and whose decomposition is given by Egs. (61) and (62). Siyiecenetric
real matrix [T] is positive definite, there is an upper triangular matix| in
M., (R) such thatT'] = [Ly]* [L] that corresponds to the Cholesky factorization
of matrix [T].
A random rectangular matripd] belonging to ensemble S¥, is a second-order
random matrix defined on probability spa@e, 7, P), with values inM,, ,,(R),
whose mean value is the rectangular matdx = E{[A]}, and which is written
as

[A] = [U]IT], (63)

in which the randon{n x n) matrix [T] belongs to ensemble SEand is then
written as
[T] = [Lz]" [G] [Lx] - (64)

The random matri¥G] belongs to ensemble SGin which [G] is a positive-
definite symmetri¢n x n) real random matrix belonging to ensemble'S&ith
mean valuegZ{[G]} = [I,,] and for which the coefficient of variatiof, is defined
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by Eg. (24) as a function of hyperparameiatefined by Eq. (15), which allows
the level of statistical fluctuations to be controlled.

Generator of realizationsFor all ¢ in ©, the realizatiorfG(6)] of [G] is con-
structed as explained before. The realizafia(9)] of random matrixA|] is cal-
culated by{A(0)] = [U][Lr]"[G(6)] [Lz].

9.5. Ensembl8EHT of a Pair of Positive-Definite Matrix-Valued Random Func-
tions Related by a Hilbert Transform

The ensemble SE is a set of random functions — [Z(w)] = [K(w)] +
iw [D(w)] indexed byR with values in a subset of all the: x n) complex ma-
trices such thalK (w)] and[D(w)] are positive-definite random matrices that are
constrained by an underlying Hilbert transform induced byaasality property
[116].

Defining the deterministic matrix problem.

We consider a family of compleba x n) matriceZ(w)] depending on a param-
eterw in R, such thafZ(w)] = iw [D(w)] + [K (w)] wherei is the pure imaginary
complex numberi(= \/—1), and where, for alb in R,

(i) [D(w)] and[K (w)] belong toM} (R).

(i) [D(~w)] = [D(w)] and[K (~w)] = [K (w))-

(iii) Matrices [D(w)] and[K (w)] are such that

w[DW)] = [N'(w)] , [Kw)] = [Ko] + [N*(w)]. (65)

The real matrice$N % (w)] and[N/(w)] are the real part and the imaginary part
of the (n x n) complex matrix|N (w)] = Jp e '[N (t)] dt that is the Fourier
transform of an integrable function — [N (¢)] from R into M, (R) such that
[N(t)] = [0] for t < 0 (causal function). Consequently, — [JVR(w)] and

w — [N!(w)] are continuous functions dR, which goes td0] as|w| — oo,
and which are related by the Hilbert transform [91],

=ty [ A, (66)

/
T o W—Ww

in which p.v denotes the Cauchy principal value. The realimak’,| belongs to
M (R) and can be written as

1K) = [K(0)] + = / D) de = Tim [K ()], (67)

T |w]—~+o00
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and consequently, we have the following equation,

+oo 1

(K@) = KO+ Zp (D)) de (69)

Construction of a nonparametric stochastic model

The construction of a nonparametric stochastic model tbesists in modeling,
for all realw, the positive-definite symmetrig: x n) real matrice§ D(w)] and
[K (w)] by random matricefd(w)] and[K (w)] such that,

E{DW)]} = [D(w)], E{[K(W)]} = [K(w)], (69)

D(=w)] = D),  [K(=w)] = [K(w)]. (70)

Forw > 0, the construction of the stochastic model of the family afdam
matricesD(w)] and[K (w)] is carried out as follows.

(i) Constructing the familyD(w)] of random matrices such that, for fixed
w, [D(w)] = [Lp(w)]" [Gp] [Lp(w)], where[Lp(w)] is the upper triangular real
(n x n) matrix resulting from the Cholesky decomposition of theifios-definite
symmetric real matrixD(w)] = [Lp(w)] [Lp(w)], and wherdGp] is a(n x n)
random matrix that belongs to ensemble!S@r which the hyperparametér
is rewritten asép. Hyperparameted allows the level of uncertainties to be
controlled for random matrifD(w)].

(i) Constructing the random matriK (0)] = [Lx0)|” [Grk(0)] [Lx(0)] in Which
[Lk(0)] is the upper triangular regh x n) matrix resulting from the Cholesky de-
composition of the positive-definite symmetric real matfiX0)] = [Lx o))" [Lk (o)),
and wherdG )| is a(n x n) random matrix that belongs to ensembleS@r
which the hyperparametéris rewritten asix. Hyperparameted, allows the
level of uncertainties to be controlled for random magkx0)].

(iii) For fixed w > 0, constructing the random matriK (w)] using the equa-
tion,

K@)l = KO+ Zpy [ D)) dv, (71)
or equivalently,
K@) = KO+ Z5py [ D). (72
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The last equation can also be rewritten as the following gguaecommended
for computation (because the singularityuir= 1 is independent af),

w —+o00
Kw) = [K(O)]+2—pV/ !

= KO+ 717%/ /1:0} (73)

(iv) For fixedw < 0, [K(w)] is calculated using the even propelit§,(w)] =
[K(—w)]. With such a construction, it can be verified that, foralk 0, [K(w)]
is a positive-definite random matrix. The following sufficieondition is proved
in [116]. If for all real vectory = (v, ..., y»), and if almost surely, the random
functionw —< [D(w)]y,y > is decreasing i for w > 0, then, for allw > 0,
[K(w)] is a positive-definite random matrix.

—— [D(wu)] du,

10. MaxEnt as a Numerical Tool for Constructing Ensembles oRandom
Matrices

In the previous sections, we have presented fundamentidries of random
matrices constructed with the MaxEnt principle. For theselamental ensembles
the optimization problem defined by Eq. (8) has been solvedtéx what has al-
lowed us to explicitly construct the fundamental ensembfesindom matrices,
and also to explicitly describe the generators of realreti This was possible
thanks to the type of the available information that was usetkfine the admis-
sible set (see Eg. (7)). In many cases, the available infiomaoes not allow
the Lagrange multipliers to be explicitly calculated, ahdg, does not allow for
solving explicitly the optimization problem defined by E).(

In this framework of the non existence of an explicit solatfor constructing
the pdf of random matrices using the MaxEnt principle unterdonstraints de-
fined by the available information, the first difficulty costs of the computation
of the Lagrange multipliers with an adapted algorithm thashbe robust for the
high dimension. In addition, the computation of the LageNultipliers requires
the calculation of integrals in high dimension, which carebgmated only by the
Monte Carlo Method. Therefore a generator of realizatidnhe pdf, which is
parameterized by the unknown Lagrange multipliers thatareently being cal-
culated, must be constructed. This problem is particuldifycult for the high
dimension. An advanced and efficient methodology is presehereinafter for
the case of the high dimension [113] (thus allows also fating the cases of the
small dimension, and then for any dimension).
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10.1. Available Information and Parameterization

Let [A] be a random matrix defined on the probability spéee7, P), with
values in any subsé&, of M”(R), possibly withS,, = M?(R). For instances,,
can beM! (R). Letpjs be the pdf of A] with respect to the volume elemenitA
on M (R) (see Eq. (1). The support, denotedsapppi of pdf [A] is S,.. Thus,
pa)([A]) = 0 for [A] notinS,,, and the normalization condition is written as

/S p[A]([A]) d%‘l =1. (74)

The available information is defined by the following eqaatonRR*,
E{G([AD} =T, (75)
in whichf = (f1,..., f,) is a given vector irR* with ;o > 1, where[A] —

G([4]) = (G1([A)), ..., G.([4])) is a given mapping frorS,, into R*, and where
E is the mathematical expectation. For instance, map@ingn be defined by the
mean valueZ[A] = [4] in which [4] is a given matrix irS,,, and by the condition
E{log(det[A])} = ca inwhich |cs| < +oo. A parameterization of ensemlifig
is introduced such that any matfi®] in S, is written as

[A] = [AY)], (76)

in whichy = (y1,...,yy) is a vector inRY and wherey — [A(y)] is a given
mapping fromR" into S,,. Lety — g(y) = (¢:1(y),-..,g.(y)) be the mapping
from RY into R* such that

aly) = G([A(Y)]), (77)

LetY = (Y1,...,Yy) be aR"-valued second-order random variable for which
the probability distribution ofR" is represented by the pgifi— py(y) from RY
intoR*™ = [0, +oo[ with respect taly = dy; ... dyy. The support of functiopy
isRY. Functionpy satisfies the normalization condition,

[ mnay=1. (78)

For random vectoY, the available information is deduced from Egs. (75) to (77)
and is written as

E{g(Y)} =t. (79)
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Example of parameterization

If S, = M} (R), then the parameterizatiopd] = [A(y)], of [A] can be con-
structed in several ways. In order to obtain good propeftiethe random matrix
[A] = [A(Y)] in which Y is aR"-valued second-order random variable, deter-
ministic matrix[A] is written as

[A] = [La]" (e[1n] + [Ao]) [La]

with ¢ > 0, where[A,] belongs tdVIf (R), and wherdL 4] is the upper triangular
(n x n) real matrix corresponding to the Cholesky factorizatjon|” [L4] =
[A] of the mean matrix4] = E{[A]} that is given inM} (R). Positive-definite
matrix[Ay] can be written in two different forms (inducing differenpperties for
random matriXA]):

(i) Exponential-type representation [54; 87]. Matfi®,] is written as[A,] =
expy([G]) in which the matrix/G] belongs toM? (R) and whereexp,; denotes
the exponential of the symmetric real matrices.

(ii) Square-type representation [112; 87]. Matiik| is written ag 4] = [L]* [L]
in which [L] belongs to the sét;, of all the upper triangulafn x n) real matrices
with positive diagonal entries, and whellgl = L£([G]) in which £ is a given
mapping fromM> (R) into Uy,

For this two representations, the parameterization istoacted in taking fory,
the N = n(n + 1)/2 independent entrie§G]J,, 1 < j < k < n} of symmetric
real matrix[G]. Then for ally in RY, [A] = [A(y)] is in S, that is to say, is a
positive-definite matrix.

10.2. Construction of the pdf of Random Vectarsing the MaxEnt

The unknown pdpy with supporfR”, whose normalization condition is given
by Eq. (78) is constructed using the MaxEnt principle for ethihe available
information is defined by Eq. (79). This construction is dethin the next section
entitled "MaxEnt for Constructing the pdf of a Random Vettor

11. MaxEnt for Constructing the pdf of a Random Vector

LetY = (Y1,...,Yy) be aR"-valued second-order random variable for
which the probability distributior, (dy) on R is represented by the pgfi—
py(y) fromRY intoR* = [0, +-o0[ with respect taly = dy; . .. dyy. The support
of functionpy is R"V. Functionpy satisfies the normalization condition,

|,y =1, (80)
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The unknown pdfpy is constructed using the MaxEnt principle for which the
available information is

E{g(Y)} =f, (81)

in whichy — g(y) = (g1(y), .-, g.(y)) is a given mapping fronR" into R*.
Equation (81) is rewritten as

[ sy =£. 82)

Let C, be the set of all the integrable positive-valued functigns p(y) on R”,
whose support i®”. LetC be the set of all the functionsbelonging toC, and
satisfying the constraints defined by Egs. (80) and (82),

c=(ec,, [ smdy=1. [ ansmdy=1. @)

The maximum entropy principle [59] consists in construgpin in C such that

py = argmax &£(p), (84)
peC
in which the Shannon entro@(p) of p is defined [104] by

&) =~ [ o) s(r(y) dy. (85)

wherelog is the Neperian logarithm. In order to solve the optimizawooblem
defined by Eq. (84), a Lagrange multipliey € R* (associated with the constraint
defined by Eq. (80)), and a Lagrange multipllere C, C R* (associated with
the constraint defined by Eq. (82)) are introduced, in whithadmissible seft,

is defined by

Cx={AeR", / exp(— < A, g(y) >)dy < +oo}. (86)
RN
The solution of Eq. (84) can be written (see the proof in thd section) as
pr(y) = exp(— < X, g(y) >) , WeRY, (87)

in which the normalization constaef is written ase5® = exp(—A$®), and where
the method for calculating\$®, As®) € R*x C, is presented in the next two
sections.
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11.1. Existence and Uniqueness of a Solution to the MaxEnt

The introduction of the Lagrange multipliers and A, and the analysis of
existence and uniqueness of the solution of the MaxEnt sporeding to the so-
lution of the optimization problem defined by Eq. (84) is gmeted hereafter [53].

m The first step of the proof consists in assuming that therst®xd unique
solution (denoted agy) to the optimization problem defined by Eq. (84). The
functionals

pr | ply)dy—1 and p— [ g(y)p(y)dy—f, (88)
RN RN
are continuously differentiable ofi, and are assumed to be such thatis a
regular point (see p. 187 of [69]). The constraints appeanrsetC are taken into
account by using the Lagrange multiplier method. Using thgrange multipliers
Ao € RT andX € C, defined by Eq. (86), the Lagrangi@hcan be written, for all
pinC,, as

L0 X) =)~ Qo= ([ sy~ D)= <X, [ aply)dy—f>

R R (89)
From Theorem 2, p. 188, of [69], it can be deduced that theiss 3%, A%
such that the functionalp, Ao, A\) — L(p; Ao, A) IS stationary apy (given by
Eq. (87)) for\y = A$% andX = A%,

m The second step deals with the explicit construction of alfadh, of pdf
indexed by(\g, A), which render® — L(p; Ao, A) extremum. Itis further proved
that this extremum is unique and turns out to be a maximum. aRgr A\, )
fixed inR* x C,, it can first be deduced from the calculus of variations (Teep
3.11.16, p. 341, in [102]) that the aforementioned extrepggnoted by, i, IS
written as

DoY) =exp(=Xo— < X,gly) >) , WyeRY. (90)

For any fixed value o\, in Rt and X in C,, the uniqueness of this extremum
directly follows from the uniqueness of the solution for thaler equation that is
derived from the calculus of variations. Upon calculating $econd-order deriva-
tive with respect tg, at pointp,, », of the Lagrangian, it can be shown that this
extremum is, indeed, a maximum.

m In a third step, using Eq. (90), it is proved that if there &x{33%, A% in
R* x Cy such that the solution of the constraint equatignsp, (y) dy = 1 and
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Jen 9OY) Proa(y) dy = f,in (Ao, A), then(AS®, A59) is unique. These constraints
are rewritten as
exp(—Ao— < A, g(y) >)dy =1. (91)

RN

a(y) exp(—Xo— < A, g(y) >)dy =f. (92)

RN
Introducing the notations,
A = (Mo, A) andAs? = (230 A% that belong t&€y = R x Cy C R*#,
F = (1,f) andG(y) = (1, 9(y)) that belong tdR'**,
these constraint equations are written as

/RN G(y) exp(— < A,G(y) >)dy =F. (93)

It is assumed that the optimization problem stated by EQ.i84ell-posed in the
sense that the constraints are algebraically indepentiexttis to say, that there
exists a bounded subsgbf RY, with fS dy > 0, such that for any nonzero vector
vin R+,

/ <v,G(y)>*dy > 0. (94)
S
Let A — H(A) be the function defined by
H(A) :<A,F>+/ exp(— <A ,G(y)>)dy. (95)
RN

The gradientV H(A) of H(A) with respect to\ is written as
VH(A)=F - [ Gly) (- < A,6)>)dy. (96)
RN

so that any solution oW H(A) = 0 satisfies Eq. (93) (and conversely). It is
assumed thall admits at least one critical point. The Hessian mgtiiX(A)] is
written as

H'A) = [ G @6y en(- <A.GY) Hdy. (@)
RN
SinceS c RY, it turns out that, for any nonzero vectoin R+,

< [H"(A)]v,v> > /<V,G(y)>2 exp(— <A,G(y)>)dy > 0, (98)
s
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Therefore, functiol\ — H(A) is strictly convex that ensures the uniqueness of
the critical point ofH (should it exist). Under the aforementioned assumption of
algebraic independence for the constraints, it follows, tfiaAs®' (such that the
constraint defined by Eq. (93) is fulfilled) exists, thaf®' is unique and corre-
sponds to the solution of the following optimization prahle

sol __ :

AN = arg AHélélA H(A), (99)
whereH is the strictly convex function defined by Eqg. (95). The usigolution
py Of the optimization problem defined by Eq. (84) is the giverBuoy (87) with
(/\SOI )‘sol) — ASOI.

11.2. Numerical Calculation of the Lagrange Multipliers

When there is no explicit solutigiA$®, As°') = As?of Eq. (93) inA, A5 must
be numerically calculated and the numerical method used beusobust for the
high dimension. The numerical method could be based on ttiaization prob-
lem defined by Eq. (99). Unfortunately, with such a formwatithe constant of
normalizationgy, = exp(—2Xg), is directly involved in the numerical calculations,
what is not robust in high dimension. The numerical methagppsed hereinafter
[11] is based on the minimization of the convex objectivection introduced in
[1]. Using Egs. (80) and (87), pdf can be rewritten as

py(y) = co(X°%) exp(— < A%, g(y) >) , WyeRY, (100)

in which ¢y(A) is defined by

() = { /R (- <A, gy) >) dy}l . (101)

Sinceexp(—\g) = ¢o(\g), and taking into account Eq. (101), the constraint equa-
tion defined by Eq. (92) can be rewritten as

[ g exp(= < A.qly) >)dy = (102

The optimization problem defined by Eq. (99), which allowsdalculating(AS®',
Asoh = As is replaced by the more convenient optimization problean atiows
A% to be computed,

X% =arg min T'(\), (103)

AECACRH
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in which the objective functiofr is defined by
LA) =< A f > —log(co(A)) . (104)

OnceX* is calculated¢s is given bycs®! = ¢y (AS%). Let{Yx, A € Cx} be the
family of random variables with values iR", for which pdfpy, is defined, for
all Ain Cy, by

pya(y) = co(A) exp(— < A, g(y) >) , VyeRY. (105)

The gradient vectoWI'(A) and the Hessian matriX” ()] of function A — I'(\)
can be written as
VI(A) =f— E{g(Ya)}. (106)

[C"(N)] = E{9(Yx) 9(Y2)"} — E{a(Ya)} E{a(Y)}". (107)

Matrix [T”(\)] is thus the covariance matrix of the random vedo¥ ), and is
positive definite (the constraints have been assumed togeéraically indepen-
dent). Consequently, functioh — I'(\) is strictly convex and reaches its mini-
mum for A5 which is such thaWT'(A%?) = 0. The optimization problem defined
by Eq. (103) can be solved using any minimization algorittf8mce function’

is strictly convex, the Newton iterative method can be aupto the increasing
function X — VT'(X) for searching\® such thatVT'(As°) = 0. This iterative
method is not unconditionally convergent. Consequentiyuader-relaxation is
introduced and the iterative algorithm is written as

A=A — o [T"(AH] P VTN, (108)

in which o belongs td0, 1] in order to ensure the convergence. At each iteration
¢, the error is calculated by

_ = B{g(Ya}l _ IVT(A)]

MO="w — (109)

in order to control the convergence. The performance oflti@i#hm depends on
the choice of the initial condition that can be found in [1Epr high dimension
problem, the mathematical expectations appearing in EQ6)( (107) and (109),
are calculated using a Markov Chain Monte Carlo (MCMC) méttiat does not
require the calculation of the normalization constasi\) in the pdf defined by
Eqg. (105).
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11.3. Generator for Random Vect® and Estimation of the Mathematical Ex-
pectations in High Dimension

For A fixed inCy C R*, the pdfpy, onR” of theR"-valued random variable
Y, is defined by Eqg. (105). Let be a given mapping froR” into an Euclidean
space such thab{w(Yx)} = [o~v w(y) py, dy is finite. For instancev can be
such thatw(Yy) = g(Ya) orw(Ys) = g(Ya) g(Ya)T. These two choices allow
for calculating the mathematical expectation in high disien, E{g(Y)} and
E{g(Yx)g(Ya)T}, which are required for computing the gradient and the Hessi
defined by Egs. (106) and (107).

The estimation ofE{w(Y )} requires a generator of realizations of random
vector Y, which is constructed using the Markov Chain Monte Carlohuodt
(MCMC) [60; 96; 118]. With the MCMC method, the transitionrkel of the
homogeneous Markov chain can be constructed using the MeiseHastings
algorithm [57; 76] (that requires the definition of a goodgwsal distribution),
the Gibbs sampling [42] (that requires the knowledge of tedational distribu-
tion) or the slice sampling [84] (that can exhibit difficeli related to the general
shape of the probability distribution, in particular for timnodal distributions).
In general, these algorithms are efficient, but can also befficient if there exist
attraction regions which do not correspond to the invama@asure under consid-
eration and tricky even in high dimension. These cases ¢aasily be detected
and are time consuming.

We refer the reader to the references given hereinbefortaéonsual MCMC
methods, and we present after a more advanced method thatyigobust in
high dimension, which have been introduced in [113] and uB®dnstance, in
[11; 51]. The method presented looks like to the Gibbs apgrdat corresponds
to a more direct construction of a random generator of raatins for random
variableY 5 whose probability distribution igy, dy. The difference between the
Gibbs algorithm and the proposed algorithm is that the cg®rece in the pro-
posed method can be studied with all the mathematical sesolicerning the
existence and uniqueness of Itd stochastic differengjabgon (ISDE). In addi-
tion, a parameter is introduced which allows the transiant @f the response to
be killed in order to get more rapidly the stationary solnto@rresponding to the
invariant measure. Thus, the construction of the transkernel by using the de-
tailed balance equation is replaced by the constructiomd&®E, which admits
py, dy (defined by Eqg. (105)) as a unique invariant measure. Thelgrgeethod
or the Monte Carlo method is used for estimatimguw(Y »)}.
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Random generator and estimation of mathematical expectabns
It is assumed thah is fixed inC, C R*, and for simplifying the notation) is
omitted. Letu — ®(u) be the function fronR”" into R defined by

O(u) =< A, g(u)>, (110)

Let{(U(r),V(r)),r € R"} be the Markov stochastic process defined on the prob-
ability space(©, 7, P), indexed byR™ = [0, +oo[, with values inRY x RY,
satisfying, for all- > 0, the following ISDE with initial conditions,

dU(r) = V(r)dr, (111)

dV(r) = =V ®(U(r)) dr — %fOV(r) dr +/fo dW(r) (112)
U(O) =Uy , V(O) =Vy a.s., (113)

in which uy andv, are given vectors ifR" (that will be taken as zero in the
application presented later), and whé&ke = (1//,..., Wy) is the normalized
Wiener process defined di®, 7,P) indexed byR* with values inRY. The
matrix-valued autocorrelation functidiy (r,7')] = E{W(r) W (")} of W is
then written agRw(r,7’)] = min(r,7’)[L,]. In Eq. (112), the free parameter
fo > 0 allows a dissipation term to be introduced in the nonlinesosd-order
dynamical system (formulated in the Hamiltonian form withadditional dissi-
pative term) in order to kill the transient part of the resp@and consequently, to
get more rapidly the stationary solution correspondindpéoitvariant measure. It
is assumed that functiogis such that functiom — ®(u): (i) is continuous on
RY, (i) is such thau — || V,®(u)| is a locally bounded function oR” (i.e. is
bounded on all compact setRt¥, and (iii) is such that,

inf ®(u) - +oo If R— 400, (114)
flull>F
inf &(u) = &y, with o € R (115)
ucR™
V@ ()| e Y du < 400. (116)
Rn

Under hypotheses (i) to (iii), and using Theorems 4 to 7 irggétfL 1 to 216 of Ref.
[106], in which the Hamiltonian is taken &&u, v) = ||v||*/2 + ®(u), and using
[33; 63] for the ergodic property, it can be deduced that ttublem defined by
Egs. (111) to (113) admits a unique solution. This solutsomsecond-order diffu-
sion stochastic procegsU(r), V(r)), r € R*}, which converges to a stationary
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and ergodic diffusion stochastic proceS¥J«(rst), Vai(rst)), 7t > 0}, whenr
goes to infinity, associated with the invariant probabititgasurePy(du, dv) =
pst(U, V) du dv. The probability density functiofu, v) — pg(u,v) onRY x RY
is the unique solution of the steady-state Fokker-Planciaggn associated with
Egs. (111)-(112), and is written (see pp. 120 to 123 in [108)

pal¥) = ex exp{— VI — B(W)} (117)

in which ¢y is the constant of normalization. Equations (105), (1163 €.17)
yield

pa(y) = / by V)dv . Wy eRY. (118)
RN

Random variablé’ 5 (for which the pdfpy, is defined by Eq. (105)) can then be
written, for all fixed positive value ofy, as

Y= Ug(rs) = lir+n U(r) in probability distribution (119)

The free parametef, > 0 introduced in Eq. (112), allows a dissipation term to
be introduced in the nonlinear dynamical system for obtgjmore rapidly the
asymptotic behavior corresponding to the stationary agddic solution asso-
ciated with the invariant measure. Using Eq. (119) and tgedic property of
stationary stochastic proceds; yield

1 (R
E{w(YA)}:REIEOOE/O w(U(r, 0))dr, (120)

in which, forf € ©, U(-, 0) is any realization ob.

Discretization scheme and estimating the mathematical exgetations
A discretization scheme must be used for numerically sgltdgs. (111) to (113).
For general surveys on discretization schemes for ISDE,efex the reader to
[64; 119; 120] (among others). The present case, relatedHanailtonian dy-
namical system, has also been analyzed using an implio#rEcheme in [121].
Hereinafter, we present the Stormer-Verlet scheme, wisieim efficient scheme
that preserves energy for nondissipative Hamiltonian dyoal systems (see [56]
for reviews about this scheme in the deterministic casesaed17] and the ref-
erences therein for the stochastic case).

Let M > 1 be an integer. The ISDE defined by Egs. (111) to (113) is solved
on the finite intervaR = [0, (M —1) Ar], inwhich Ar is the sampling step of the
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continuous index parameter The integration scheme is based on the use of the
M sampling points;, such that, = (k—1) Arfork =1,..., M. The following
notations are introduceds* = U(ry), V¥ = V (), andW* = W(r})), for k =
1,...,M,withU' = uy, V! = vy, andW' = 0. Let { AW* ! = WrH! _WF | =
1,..., M — 1} be the family of the independent Gaussian second-ordeeiesht
RV -valued random variables such tha{AW* ! (AW*™)T} = Ar[1,]. For
k=1,...,M — 1, the Stormer-Verlet scheme yields

Ukts = UF + % vk, (121)
1—-0 Ar 1 \/%
VR = k Lrra 4 X2 AWKFL 122
1+0b * 1+0b + 1+0b ’ (122)
Ukt = Ukts 4 % Vians (123)

with the initial condition defined by (113), whebe= f, Ar /4, and wherd*+2
is theR~-valued random variable such tHalt'z = —{Vu@(U)} ey

For a given realizatiod in ©, the sequencéU”(0),k = 1,..., M} is con-
structed using Eqgs. (121) to (123). The discretization of @&0) yields the
following estimation of the mathematical expectation,

M
. . . 1
E{w(Y\)} = Mllfiloo Wy, Wp = M= M+ 1 Z w(U0)), (124)

k=Mp

in which, for f, fixed, the integeM/, > 1 is chosen to remove the transient part
of the response induced by the initial condition.

For details concerning the optimal choice of the numerieahmeters, such
asMy, M, fo, A, Ug, andvy, we refer the reader to [11; 51; 54; 113].

12. Nonparametric Stochastic Model For Constitutive Equaion in Linear
Elasticity

This section deals with a nonparametric stochastic modebiodom elastic-
ity matrices in the framework of the three-dimensionaldinelasticity in contin-
uum mechanics, using the methodologies and some of thegdlsat have been
given in the two previous sections: "Fundamental Ensenfbleositive-Definite
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Symmetric Real Random Matrices” and "MaxEnt as a Numericall Tor Con-
structing Ensemble of Random Matrices”. The developmeivisnghereinafter
correspond to a synthesis of works detailed in [51; 53; 54].

From a continuum mechanics point of view, the framework & 3B linear
elasticity of a homogeneous random medium (material) avengscale. LeiC]
be the random elasticity matrix for which the nonparamesiochastic model has
to be derived. Random matric] is defined on the probability spa¢e, 7, P)
and is with values iV} (R) withn = 6. This matrix corresponds to the so-called
Kelvin’s matrix representation of the fourth-order symreetlasticity tensor in
3D linear elasticity [72]. The symmetry classes for a linelastic material, that
is to say the linear elastic symmetries, are [23]: isotropitbic, transversely
isotropic, trigonal, tetragonal, orthotropic, monoatinand anisotropic. From a
stochastic modeling point of view, the random elasticitytnmaC| satisfies the
following properties.

(i) Random matriXC] is assumed to have a mean value that belondy§tGR),
but is, in mean, close to a given symmetry class induced bytarrabsymmetry,
denoted a®I¥™(R) and which is a subset & (R),

C] = E{[C]} e M/ (R). (125)
(i) Random matrix[f:] admits a positive-definite lower bound;| belonging

to Mt (R) B
[C] = [C¢] >0 a.s. (126)

(iii) The statistical fluctuations of random elasticity mat[C| belong mainly
to the symmetry class, but can be more or less anisotroplt iegpect to the
above symmetry. The level of statistical fluctuations inslimmmetry class must
be controlled independently of the level of statisticakatriopic fluctuations.

12.1. Positive-Definite Matrices Having a Symmetry Class

For the positive-definite symmetria x n) real matrices, a given symmetry
class is defined by a subdetY™(R) C M (R) such that, any matrii\/] exhibit-
ing the above symmetry, then belongsMi’™(RR ), and can be written as

N
(M]=>"m; [EP™ . m=(m,....,my) €Cn CRY | [EP" € MJ(R),

j=1

(127)
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inwhich{[E>"],j = 1,..., N} isthe matrix algebraic basis bf’"(R) (Walpole’s
tensor basis [123]), and where the admissible sufysef R" is such that

Cn={meRY | > my[E7 € M (R)}. (128)

J=1

It should be noted that the basis matrigg$""] are symmetric matrices belonging
to M (R), but are not positive definite, that is to say, do not belorg{dR). The
dimensionV for all material symmetry classesdgor isotropic,3 for cubic,5 for
transversely isotropid or 7 for trigonal,6 or 7 for tetragonal9 for orthotropic,
13 for monoclinic, and 21 for anisotropic. The following propes are proved
(see [54; 123)):

(i) If [M] and[M'] belong toM¥™(R), then

[M][M'] e MP™(R) ,  [M]™' e MP™(R) , [M]'? € MY™(R). (129)

(i) Any matrix [N] belonging taM[¥™(R) can be written as

N =) . V= w BT y= (o) €RY,

(130)
in which exp,, is the exponential of symmetric real matrices. It should bed
that matrix[\] is a symmetric real matrix but does not belongMi’™(R) (be-
causey is in RY and thereforej\/] is not a positive-definite matrix).

12.2. Representation Introducing a Positive-Definite LoBeund

Using Eq. (126), the representation of random elasticityrim&] IS written
as

[C] = [Cd +[C], (131)

in which the lower bound is the deterministic matj| belonging toM} (R),
and wherdC| = [C] — [C,] is a random matrix with values M| (R). The mean
value[C] = E{|[C]} of [C] is written as

[C] = [C] - [Ci] € M7 (R), (132)

in which [Q] is defined by Eq. (125). Such a lower bound can be defined in two
ways:
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(1) If some microstructural information is availabl€;,] may be computed, ei-
ther by using some well-known micromechanics-based bo(suith as the Reuss
bound, for heterogeneous materials made up with ordereskephaith determin-

istic properties) or by using a numerical approximationdolasn the realizations
of the stochastic lower bound obtained from computatiooahbgenization and

invoking the Huet partition theorem (see the discussiod&))[

(2) In the absence of such information, a simalpriori expression fofC,| can

be obtained af’,] = ¢[C] with 0 < ¢ < 1, from which it can be deduced that

C]=(1-9[C) > 0.

12.3. Introducing Deterministic Matricgsl] and [S]
Let [A] be the deterministic matrix iR >™(R) defined by

[A] = P([C]), (133)

in which [C] € M (R) is defined by Eg. (132) and whefe®™ is the projection
operator fromM[} (R) on M¥™(R).

(i) For a given symmetry class witN < 21, if there is no anisotropic statistical
fluctuations, then the mean matfix] belongs taV[»™(R) and consequentlyA|

is equal toC].

(ii) If the class of symmetry is anisotropic (thds = 21), thenM»™(R) coincides
with Mt (R) and again|A] is equal to the mean matrig’] that belongs t&/1 7 (R).
(iii) In general, for a given symmetry class witfi < 21, and due to the presence
of anisotropic statistical fluctuations, the mean maj¢ix of random matrixC]
belongs taM ' (R) but does not belong tI*™(R). For this case, an invertible
deterministion x n) real matrix[.S] is introduced such that

€] = [S]" [4][S]. (134)

The construction ofS] is performed as follows. L€iLo] and[L 4] be the upper
triangular real matrices with positive diagonal entriesitBng from the Cholesky
factorization of matricef”| and[A4],

€l =[Lc]" [Le] . [A]=[La]" [La]. (135)
Therefore, the matrikS| is written as
[S] = [La] " [Lc] - (136)
It should be noted that for cases (i) and (ii), Eq. (136) shthas[S] = [I,,].
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12.4. Nonparametric Stochastic Model f@f

In order that the statistical fluctuations of random mag@kbelong mainly to
the symmetry clasbY™(R) and exhibit more or less some anisotropic fluctua-
tions around this symmetry class, and in order that the lefvstatistical fluctua-
tions in the symmetry class is controlled independentlyheflevel of statistical
anisotropic fluctuation, the use of the nonparametric neetbads us to introduce
the following representation.

[C] = [S]T[A]2 [Go] [A]'? [S], (137)

in which:

(1) the deterministi¢n x n) real matrix[S] is defined by Eqg. (136).

(2) [Go] belongs to ensemble $G&f random matrices and models the anisotropic
statistical fluctuations. The mean value of random ma@iy is matrix [7,,] (see
Eqg. (13)). The level of the statistical fluctuations [&f] is controlled by the
hyperparametet defined by Eq. (15).

(3) the random matrijA]'/2 is the square root of a random matji] with values

in M>"(R) ¢ M (R), which models the statistical fluctuations in the given sym-
metry class, and which is statistically independent of candnatrix [G,]. The
mean value of random matrjA| is the matrix 4] defined by Eqg. (133),

E{[A]} =[4] € M?"(R) C M;(R). (138)

The level of the statistical fluctuations g&| is controlled by the coefficient of
variationd 4, defined by

E{HA—AH%}}“
0 = . 139
’ { TALE (139)

Taking into account the statistical independenca ahdG,, and taking the math-
ematical expectation of the two members of Eq. (137), yield(E34).

Remarks concerning the control of the statistical fluctuatons and the limit
cases

(i) For a given symmetry class witN < 21, if the level of anisotropic statistical
fluctuations goes to zero, that is to say i+ 0 what implies tha{G,| goes tq/,,|
(in probability distribution), and implies thatl] goes to[C] and thug.S| goes to
[I,,], then Eq. (137) shows th#E| goes to/A] (in probability distribution), which
is a random matrix with values [ Y™(R).
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(2) If the given symmetry class is anisotropi¥ (= 21) andé, — 0, then[A]
goes to the mean matrix’], [S] goes to[7,,], and[A] goes toA] that goes tdC]
(in probability distribution). TheriC] goes to[C]'/? [G,] [C]'/?, which is the full
anisotropic nonparametric stochastic modelingQjf

12.5. Construction ofA] Using the MaxEnt Principle

In this section, random matr{A] that allows for describing the statistical fluc-
tuations in the class of symmetif¥™(R) with NV < 21, is constructed using the
MaxEnt principle, and in particular, using all the resultslaotations introduced
in Section: "MaxEnt as a Numerical Tool for Constructing &mdbles of Random
Matrices”.

Defining the available information.

Let pa; be the unknown pdf of random matrjA], with respect to volume el-
ementd®A on M?(R) (see Eqg. (1)), with values in the given symmetry class
MY™(R) C M} (R) C M7 (R) with N < 21. The supportsupppja; is the sub-
setS, = MY™R), and the normalization condition is given by Eq. (74). The
available information is defined by

E[Al=[4] , FE{log(det[A])} =ca, |cal < +o0o, (140)

in which [A] is the matrix inS,,, defined by Eq. (133), and where the second avail-
able information is introduced in order that pdf — pja([A]) decreases towards
zero whernj| A||r goes to zero. The constani that has no physical meaning is re-
expressed as a function of the hyperparamgtelefined by Eq. (139). This avail-
able information defines the vectoe= (fi, ..., f,) InR* with 4 = n(n+1)/2+1,

and defines the mappirigl] — G([A]) = (Gi([4)),...,G.([4])) from S, into

R*, such that (see Eq. (75)),

E{G(AD} =f. (141)

Defining the parameterization
The objective is to construct the parameterization of ete), = M>™(R),
such that any matrikA] in M2™(R) is written (see Eg. (76)) as

[A] = [A(Y)], (142)

inwhichy = (y1,...,yn) is a vector inRY and wherey — [A(y)] is a given
mapping fromR" into M»™(R). Let[A]'/? be the square root of matrixl] €
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M®™(R) C M (R) that is defined by Eq. (133). Due to Eq. (129)]'/2 belongs
to M¥™(R). Any matrix[A] in M?™(R) can then be written as

[A] = [A]V2[N] A2, (143)
in which, due to Eqg. (129) and due to the invertibility [ef|'/2, [N] is a unique
matrix belonging tdV[¥™(R). Using Eq. (130), matrix/\V] as the following rep-
resentation

[N] = expu(INY)D) W(y)]zzyj[Efy"? . Y=(y,-- - yn) €RY,

(144)
Consequently, Egs. (143) and (144) define the parameterizat] = [A(y)].

Construction of [A] using the parameterization and generator of realizations
The random matrixA] with values inM[Y™(RR) is then written

[A] = [A]V2[N] [4]'72, (145)

in which [N] is the random matrix with values M ¥™(R), which is written as

N
IN] = expy(IV(Y)]) . V()] =D Y5 [EPT, (146)
j=1
inwhichY = (Y7,...,Yy) is the random vector with values &" whose pdfpy

onRY and the generator of realizations have been detailed indBe¢MaxEnt
as a Numerical Tool for Constructing Ensembles of Randonribts”. SincelN|
can be written afN] = [A]~'/2 [A] [A]~"/2, and sinceF[A] = [4] (see Eq. (140)),
it can be deduced that

E{[N]} = [I.]. (147)

13. Nonparametric Stochastic Model of Uncertainties in Corputational Lin-
ear Structural Dynamics

The nonparametric method for stochastic modeling of uagerés has been
introduced in [107; 108] to take into account both the mqulelameter uncertain-
ties and the model uncertainties induced by modeling emazemputational lin-
ear structural dynamics, without separating the contidloubf each one of these
two types of uncertainties.
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The nonparametric method is presented hereinafter foalin@rations of
fixed linear structures (no rigid body displacement, buyaldformation), formu-
lated in the frequency domain, and for which two cases arsidered:

m the case of damped linear elastic structures for which tihepdey and the
stiffness matrices of the computational model are independf the frequency.

m the case of linear viscoelastic structures for which theglaghand the stiff-
ness matrices of the computational model depend on thedrayu

13.1. Methodology

The methodology of the nonparametric method consists iodnicing:
(i) a mean computational model for the linear dynamics ofstingcture,
(i) a reduced-order model (ROM) of the mean computationadieh,
(i) the nonparametric stochastic modeling of both the eiquhrameter uncer-
tainties and the model uncertainties induced by modelingr&r consisting in
modeling the mass, damping, and stiffness matrices of the Rrandom ma-
trices,
(iv) a prior probability model of the random matrices basedtioe use of the
fundamental ensembles of random matrices introducedqurshyj,
(v) an estimation of the hyperparameters of pi@r probability model of uncer-
tainties if some experimental data are available.

The extension to the case of vibrations of free linear stimest (presence of
rigid body displacements and of elastic deformations)regitforward, because
it is sufficient to construct the ROM (which is then devotetlydo the prediction
of the structural deformations) in projecting the respams¢he elastic structural
modes (without including the rigid body modes) [90].

13.2. Mean Computational Model in Linear Structural Dynasi

The dynamical system is a damped fixed elastic structure Fachwthe vi-
brations are studied around a static equilibrium configomatonsidered as a nat-
ural state without prestresses, and which is subjected texternal load. For
given nominal values of the parameters of the dynamicaksysthe finite ele-
ment model [129] is called the mean computational modelclvis written, in
the time domain, as

M) (1) + [D] #(t) + [K] () = 6(1), (148)

in which x(t) is the vector of then degrees of freedom (DOF) (displacements
and/or rotations);(t) andx(t) are the velocity and acceleration vectdis) is the
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external load vector of the: inputs (forces and/or moments$)|, [D], and [K]
are the mass, damping, and stiffness matrices of the meaputational model,
which belong taVL}} (R).

m The solution{x(¢),¢ > 0} of the time evolution problem is constructed in
solving Eq. (148) for > 0 with the initial conditionsz(0) = %y, andxz(0) = vy.

m The forced responséx(t),t € R} is such that, for alk fixed in R, x(¢)
verifies Eq. (148), and its Fourier transfoftfw) = [, e “'x(t) dt is such that,
forallwin R, R

(—w® [M] + iw[D] + [K]) %(w) = f(w), (149)

in which T is the Fourier transform of. As M], [D], and [K] are positive-
definite matrices, th®1,,(C)-valued frequency response function- [fh\(w)] =
(—w? [M] + iw[D] + [K])~! is a bounded function oR. From a point of view of
the nonparametric stochastic modeling of uncertaintiés giquivalent of present-
ing the time evolution problem or the forced response proldepressed in the
frequency domain. Nevertheless, for such a linear systeenanalysis is mainly
carried out in the frequency domain. In order to limit theelepments, the forced
response problem expressed in the frequency domain isrpeese

13.3. Reduced-Order Model (ROM) of the Mean Computatioradéfl

The ROM of the mean computational model is constructed faftyaing the
response of the structure over a frequency barfbdounded symmetric interval of
pulsations in rad/s) such that

B = [_WmaXu _Wmin] U [Wmin ) Wmax] ;0 < wmin < Wmax < +00, (150)

and is obtained in using the method of modal superpositiom@aal analysis) [8;
88]. The generalized eigenvalue problem associated withrthss and stiffness
matrices of the mean computational model is written as

Kl¢p=AM]|o, (151)
for which the eigenvalueg < \; < Ay < ... < ), and the associated elastic
structural mode$o+, ¢, . . ., ¢, } are such that

< [M] q,)a ) ¢B >= lq 5015 5 (152)
<[K] ¢o , Pp>= o Wi bap , (153)

in whichw, = v/, is the eigenfrequency of elastic structural masiewhose
normalization is defined by the generalized mags Let H,, be the subspace of
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R™ spanned by ¢y, ..., ¢, } with n < m and letH¢ be its complexifiedi(e.
H¢ = H,, + i H,). Let[®] be the(m x n) real matrix whose columns are vectors
{¢1,...,¢,}. The ROM of the mean computational model is obtained as the
projectionx™(w) of z(w) on H¢, which is written ax™(w) = [®] g(w) in which
g(w) is the vector inC™ of the generalized coordinates, and is written, fot.ith
B, as

X" (w) = [®] q(w), (154)

(—w*[M] +iw[D] + [K]) a(w) = f(w), (155)

in which [M], [D], and[K] (generalized mass, damping, and stiffness matrices)
belong toM} (R), and are such that

[M]aﬂ = Ha 5&6 ) [D]aﬂ =< []D] ¢[3 s Pa> [K]aﬁ = Mo w?x 50<B . (156)

In general,[D] is a full matrix. The generalized fordéw) is a C"-vector such
thatf(w) = [®])T f(w) in which [ is the Fourier transform df, which is assumed
to be a bounded function dR.

Convergence of the ROM with respect ton over frequency band of analysis
B.

For the given frequency band of analygisand for a fixed value of the relative
erroreo With 0 < gy < 1, letng (depending on) be the smallest value afsuch
thatl < ny < m, for which, for allw in B, the convergence of the ROM (with
respect to dimension) is reached with relative errar, (if n, was equal ton,
thene would be equal t®). The value of is such that,

Vn>ny /H WZ|uw<w/n Nidw, — (157)

in which [h"(w)] = [®] (—w?[M] + iw[D] + [K])~* [®]. In practice, for large
computational model, Eq. (157) is replaced by a converganedysis ofx™ to x
on B for a given subset of generalized fordes

13.4. Nonparametric stochastic model of both the modedumater uncertainties
and the model uncertainties (modeling errors)

For the given frequency band of analy&isand forn fixed to the valuen,
such that Eq. (157) is verified, the nonparametric stochasbdel of uncertainties
consists in replacing in Eqg. (155), the deterministic ncasj)/ |, [D] and[K] by
random matricesM], [D], and[K] defined on the probability spac¢®, T, P),
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with values inM} (R). The deterministic ROM defined by Egs. (154) and (155),
is then replaced by the following stochastic ROM,

X"(w) = [®]Q(w), (158)

(—w*M] + iw[D] + [K]) Qw) = f(w), (159)

in which, for allw in B, X" (w) andQ(w) areC™- andC"-valued random vectors
defined on probability spad®, 7, P).

Available information for constructing a prior probabilit y model of [M], [D],
and [K].

The available information for constructing the prior prbitig&y model of random
matricesM ], [D], and[K] using the MaxEnt principle are the following.

(i) Random matricefM|, [D], and[K] are with values i (R).

(i) The mean values of these random matrices are chosereathesponding
matrices in the ROM of the mean computational model,

E{M]} = [M] , E{[D]} = [D] , E{[K]} = [K]. (160)

(iif) The prior probability model of these random matricesshbe chosen such
that, for allw in B, the solutionQ(w) of Eq. (159), is a second-ordéY*-valued
random variable, that is to say, such that

E{|[(=w?*M] +iw[D] + [K)7'%} < +00 , Vw € B. (161)

Prior probability model of [M], [D], and [K], hyperparameters, and generator
of realizations.

The joint pdf of random matrice$/], [D], and[K] is constructed using the Max-
Ent principle under the constraints defined by the availadftemation described
before. Taking into account such an available informatibis, proved [108] that
these three random matrices are statistically independgaking into account
Egs. (52), (55), (160), and (161), each random mdix, [D], and[K] is then
chosen in ensemble SEof the positive-definite random matrices with a given
mean value and an arbitrary positive-definite lower bourt [Evel of uncertain-
ties, for each type of forces (mass, damping, and stiffnissspntrolled by the
three hyperparametefs;, 6 p, andox of the pdf of random matriced], [D], and
[K], which are defined by Eq. (56). The generator of realization®nsemble
SE' has explicitly been described.
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13.5. Case of Linear Viscoelastic Structures

The dynamical system is a fixed viscoelastic structure fackvthe vibrations
are studied around a static equilibrium configuration aer®d as a natural state
without prestresses, and which is subjected to an extesadl IConsequently, in
the frequency domain, the damping and stiffness matricpsraeon frequency
w, instead of to be independent of the frequency as in the que\analyzed case.
Consequently, two aspects must be addressed. The first op&ilive to the
choice of the basis for constructing the ROM, and the secomi® the non-
parametric stochastic modeling of the frequency deperdkanping and stiffness
matrices which are related by a Hilbert transform; we thenfassuch a nonpara-
metric stochastic modeling, ensemble"SBf a pair of positive-definite matrix-
valued random functions related to a Hilbert transform.

Mean computational model, ROM, and convergence
In such a case, the mean computational model defined by E8). iclreplaced by
the following one,

(—w? [M] + iw[D(w)] + [K(w)]) R(w) = Tw), (162)

For constructing the ROM, the projection basis is choserragqusly in taking

the stiffness matrix at zero frequency. The generalizedreiglue problem, de-
fined by Eq. (151), is then rewritten @ (0)] ¢ = A [M] ¢. With such a choice
of a basis, Egs. (154) to (156) that defined the ROM for.alielonging to the
frequency band of analysIs, are replaced by,

X"(w) = [®]q(w), (163)

(—w?*[M] +iw[D(w)] + [K(w)]) a(w) = f(w), (164)
in which [M], [D(w)], and[K (w)] belong toM} (R), and are such that

[Mlag = padag s [D(W)]as =<[D(w)] @00 >, [K(w)]asg =<[K(w)] ¢B=gt>é;)
The matriced D (w)] and [K (w)] are full matrices belonging tdI (R), which
verify (see[90) all the mathematical properties introduced in the comsion of
ensemble SET, and in particular, verify Egs. (65) to (68). Fayfixed, the value
ng of the dimensiom of the ROM is such that Eq. (157) holds (equation in which
the frequency dependence of the damping and stiffnessaasitis introduced).
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In practice, for large computational model, this criterismeplaced by a conver-
gence analysis of” to x on 5 for a given subset of generalized fordes

Nonparametric stochastic model of both the model-parameteuncertainties
and the model uncertainties (modeling errors)

For the given frequency band of analy#isand forn fixed to the valuen,, the
nonparametric stochastic model of uncertainties consiseplacing in Eq. (164),
the deterministic matricdd/], [D(w)] and[K (w)] by random matricegV |, [D(w)],
and [K (w)] defined on the probability spa¢®, 7, P), with values inM (R).
The deterministic ROM defined by Egs. (163) and (164), is tieghaced by the
following stochastic ROM,

X"(w) =[] Q(w), (166)
(—w?[M] + iw[D(w)] + [K (w)]) Q(w) = f(w). (167)
in which, for allw in B, X" (w) andQ(w) areC™- andC"-valued random vectors
defined on probability spad®, 7, P).

Available information for constructing a prior probabilit y model of[M], [D(w)],
and [K (w)].

The available information for constructing the prior prbiti&y model of random
matricesM], [D(w)], and[K (w)] using the MaxEnt principle are, for allin 5:

(i) Random matricefM |, [D(w)], and|K (w)] are with values iML (R).

(i) The mean values of these random matrices are chosereaothesponding
matrices in the ROM of the mean computational model,

E{M]} = [M], E{[DW)]} = [D(W)], E{[K(W)]} = [K(w)].  (168)
(iii) The random matricefD(w)] and[K (w)] are such that
[D(-w)] = DW)] , [K(-w)] = [K(w)]. (169)

(iv) The prior probability model of these random matricessirhe chosen for that,
for all w in B, the solutiorQ(w) of Eq. (167), is a second-ordéf*-valued random
variable, that is to say, for that

E{||(—w*M] + iw[D(w)] + [K(@)]) 7 HE} < +o0 , Vw € B. (170)

(v) The algebraic dependence betw@@fw)] and[K (w)] induced by the causality
must be preserved, which means that random mgrix )] is given by Eq. (72) as
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afunction of random matrij< (0)] and the family of random matric$D(w)], w >

0}, B

K@) = KO+ 2 [ o2

T —w'?

D] dw' , Yw>0. (171)

Prior probability model of [M], [D(w)], and [K(0)], hyperparameters, and
generator of realizations

Taking into account the available information, the use ef MaxEnt principle
yields that random matricd$/|, {[D(w)],w > 0}, and[K(0)] are statistically
independent.

m As previously, random matriM] is chosen in ensemble SBf the positive-
definite random matrices with a given mean value and an arpipositive-definite
lower bound. The pdf is explicitly defined and depends on tfpehparameter,,
defined by Eq. (56). The generator of realizations is the igg¢oeof the ensemble
SE', which was explicitly defined.

m For all fixedw, random matricegD(w)] and[K (0)] that are statistically in-
dependent are constructed as explained in the sectionattimensemble SE.
The levels of uncertainties of random matrigBgw)] and [K(0)] are controlled
by the two frequency-independent hyperparameigi@ndod . introduced in para-
graphs (i) and (ii) located after Eq. (70). The generatorafirations is directly
deduced from the generator of realizations of fundamemts¢mble SG, which
was explicitly defined.

m With such a nonparametric stochastic modeling, the levehakrtainties is
controlled by hyperparametefg;, dp, anddoy, and the generators of realizations
of random matricefM |, [D(w)], and[K (0)] are explicitly described.

13.6. Estimation of the Hyperparameters of the Nonparaim8&tochastic Model
of Uncertainties

For the nonparametric stochastic model of uncertainti€e@mputational lin-
ear structural dynamics, dimensianof the ROM is fixed to the value, for
which the response of the ROM of the mean computational misd=nverged
with respect ta:. The prior probability model of uncertainties then depeods
the vector-valued hyperparamedgg = (dir, 0p, 6 i) belonging to an admissible
setCnpar.

m If no experimental data are available, thé&gp, must be considered as a
vector-valued parameter for performing a sensitivity gsialof the stochastic so-
lution with respect to the level of uncertainties. Such apaametric stochastic
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model of both the model-parameter uncertainties and thehurdtertainties then
allows the robustness of the solution to be analyzed as difumof the level of
uncertainties which is controlled @ypar.

m If experimental data are available, an estimatiod@f, can be carried out,
for instance, using a least square method or the maximurihided method
[103; 118; 124]. LetW be the random real vector which is observed, which is
independent ofv, but which depends ofX"(w),w € B} whereX"(w) is the
second-order random complex vector given by Eq. (158) ds)1or alldnpar in
Cnpan the probability density function o/ is denoted as/ — pw (W; dnpar). Using
the maximum likelihood method, the optimal valﬁg%’;r of dnpar IS estimated by
maximizing the logarithm of the likelihood function,

Vexp

ot — 1 wo®: . 172
6npar arg 5nrglr€ac>§parézl 0g pW( ¢ 75npar) ( )

. : exp . . .
inwhichwi™, ...} W arevey, independent experimental data correspondingy'to

14. Parametric-Nonparametric Uncertainties in Computatonal Nonlinear
Structural Dynamics

The last two presented sections have been devoted to tharamnetric stochas-
tic model of both the model-parameter uncertainties andrtbdel uncertainties
induced by the modeling errors, without separating therdmrtion of each one
of these two types of uncertainties. Sometimes, there istenest of separating
the uncertainties for a small number of model parametet®#iabit an important
sensitivity on the responses, from uncertainties indugegtlddmodel uncertainties
and the uncertainties on other model parameters.

Such an objective requires to use a parametric-nonpararstichastic model
of uncertainties, also called the generalized probalukégiproach of uncertainties
in computational structural dynamics, which has been thteed in [114].

As the nonparametric stochastic model of uncertaintiebbas presented in
the previous sections for linear dynamical systems fortedlan the frequency
domain, in the present section, the parametric-nonparansédchastic model of
uncertainties is presented in computational nonlinearctiral dynamics formu-
lated in the time domain.

14.1. Mean Nonlinear Computational Model in Structural Rgmcs
The dynamical system is a damped fixed structure for whicimtméinear vi-
brations are studied in the time domain around a static ibguin configuration
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considered as a natural state without prestresses, arettedbio an external load.
For given nominal values of the model parameters of the dycalmystem, the
basic finite element model is called the mean nonlinear coatipmal model. In
addition, it is assumed that a set of model parameters hasithertified as sen-
sitive parameters that are uncertain. These uncertain Inpagdlameters are the
components of a vectgrbelonging to an admissible séf,; which is a subset of
RY. It is assumed that a parameterization is constructed $watly t= Y (y) in
whichy — Y(y) is a given and known function frof),,,into R". For instance, if
the componeng; of y must belong tg0, +oc], theny; could be defined asp(y;)
with y; € R, which yieldsY;(y) = exp(y;). Hereinafter, it is then assumed that
the uncertain model parameters is represented by vgetofy,, . . ., yn) belong-
ing to RY. The nonlinear mean computational model, depending onrtaice
model parametey, is written as,

[MI(y)] %() + [D(y)] () + [K(Y)] =(t) + B ((8), %(2);y) = B(y),  (173)
in which x(t) is the unknown time response vector of thedegrees of freedom
(DOF) (displacements and/or rotations();) andx(t) are the velocity and acceler-
ation vectors respectivel§(t; y) is the known external load vector of theinputs
(forces and/or moments)M(y)], [D(y)], and[K(y)] are the mass, damping and
stiffness matrices of the linear part of the mean nonlineanmutational model,
which belong taVL! (R); (x(t), 2(t)) — Fa(2(2), 2(t); y) is the nonlinear mapping
that models the local nonlinear forces (such as nonlineatielbarriers).

We are interested in the time evolution problem defined by(E4B) fort > 0
with the initial conditions(0) = %y andx(0) = vo.

14.2. Reduced-Order Model (ROM) of the Mean Nonlinear Caatfmunal Model
For ally fixed in RY, let {¢:(y), ..., d.(y)} be an algebraic basis @™
constructed, for instance, either using the elastic stratiodes of the linearized
system, either using the elastic structural modes of thenyidg linear system,
or using the POD (Proper Orthogonal Decomposition) modeth@monlinear
system). Hereinafter, it is assumed that the elastic stractmodes of the un-
derlying linear system are used for constructing the ROMhefrhean nonlinear
computational model (such a choice is not intrusive witlpees to a black-box
software, but in counterpart, requires a large parallelmatation induced by all

the sampling values of, which are considered by the stochastic solver.
For each value of given inR”Y, the generalized eigenvalue problem associ-
ated with the mean mass and stiffness matrices is written as

[K(y)] &(y) = Aly) [M(y)] o(y) , (174)
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for which the eigenvalue < A\;(y) < A (y) < ... < A, (y) and the associated
elastic structural modeisp, (y), ¢2(Y), . .., dn(y)} are such that

< [M(y)] Do (y) ) ¢[3 (y) >= fa (y) 505 ) (175)

<[K(Y)] @a(y), d5(Y) >= pa(y) wal(y)? das , (176)

in whichw, (y) = 1/ A.(Y) is the eigenfrequency of elastic structural maggy)
whose normalization is defined by the generalized mas$g). Let [¢(y)] be the
(m x n) real matrix whose columns are vectdis; (y), . .., ¢.(y)}. Fory fixed
in RY and for all fixedt > 0, the ROM is obtained as the projectirf(t) of x(t)
on the subspace @™ spanned by ¢:(y), ..., ¢.(y)} with n < m, which is
written asx™(t) = [¢(y)] q(t) in whichq(t) is the vector irR™ of the generalized
coordinates, and is written, for all> 0, as

X" (t) = [o(y)]a(t), (177)

[M(y)]4(t) + [D(Y)]4(t) + [K(y)]a(t) + Fa(a(t), a(t);y) = f(t;y), (178)

in which [M(y)], [D(y)], and[K (y)] (generalized mass, damping, and stiffness
matrices) belong td17 (R), and are such that

[M(Y)lap = ta(Y)dap 5 [D(Y)]asg =<[DY)] @5(Y) Paly) >,  (179)

[K(y)]aﬂ = 1a(Y) Wa (Y)Q Oap - (180)

In general,[D(y)] is a full matrix. The generalized fordgt;y) is a R"-vector
such thatf(¢;y) = [¢(y)]T F(t;y). The generalized nonlinear force is such that

)
Fa(a(t), 6(6):y) = [o(W)]" Bw([oW)]a), [e(y)] a(t);y).

Convergence of the ROM with respect taw. Letng be the value of., for which,
for a given accuracy and for allin RY, the responsg” is converged te for all
n > ny.

14.3. Parametric-Nonparametric Stochastic modeling oféftainties
In all this section, the value of is fixed to the valuey, defined hereinbefore.

Methodology
m The parametric stochastic modeling of uncertainties a8 modeling un-
certain model parametgrby a second-order random variaMe= (Y3, ..., Yy),

defined on the probability spa¢®, 7, P), with values inRY. Consequently,
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deterministic matricesM (y)], [D(y)], and[K(y)] defined by Egs. (179)-(180),
become the second-order random matrige&,Y )], [D(Y)], and[K (Y )], defined
on probability spac€®, 7, P), with values inMf (R). The mean values of these
random matrices are the matriceMij (R) such that

(M] = E{[M(Y)]} , [D]=E{[D(Y)]} , [K]=E{[K(Y)]}, (181)

m The nonparametric stochastic modeling of uncertaintiesists, for ally
fixed in in RY, in modeling matricegM (y)], [D(y)], and [K(y)] defined by
Egs. (179)-(180), by the second-order random matfiddy)| = {6’ — [M(6';y)]},
D(y)] = {0 — [D(¢';y)]}, and[K(y)] = {¢ — [K(#';X)]}, defined on another
probability spac€©’, 7', P’) (and thus independent ¥, with values inM' (R).

m The parametric-nonparametric stochastic modeling of iaiceies consists,
in Eq. (178)),

(i) in modeling[M (y)], [D(y)], and[K (y)] by random matricefM (y)], [D(y)],

and[K(y)],
(ii) in modeling uncertain model parametgby the R -valued random variable

Y.

Consequently, the statistically dependent random matfiMdeY )] = {(0,6¢') —
M(@;Y (@)1}, [DY)] = {(0.6) = [D(;Y(6))]} and[K(Y)] = {(0.6) —
[K(#";Y(0))]} are measurable mappings fraénx ©’ into M} (R). The determin-
istic ROM defined by Egs. (177)-(178), is then replaced byfoHlewing stochas-
tic ROM,

X"(t) = [o(Y)]Q(t) (182)

M (Y)] Q(£)+[D(Y)] Q(t)+[K (Y)] Q(t)+Fn(Q(1). Q(1); Y) = f(t;Y) , (183)
in which for all fixedt, X" (t) = {(0,0") — X"(6,60;t)} andQ(t) = {(0,0') —
Q(0,0';t)} areR™- andR"-valued random vectors defined f@k, ¢') in © x ©'.

Prior probability model of Y, hyperparameters, and generator of realizations
The prior pdfpy onRY of random vectol is constructed using the MaxEnt prin-
ciple under the constraints defined by the available inféilonagiven by Eq. (81),
as explained in Section entitled: "MaxEnt for Constructihg pdf of a Random
Vector”, in which a generator of realizatioR¥ (¢),0 € O} has been detailed.
Such a generator depends on the hyperparameters relabedawetlable informa-
tion. In general, the hyperparameters are the mean vgctor{Y } belonging
to RY and a vector-valued hyperparamedgy; that belongs to an admissible set
Cparn Which allows the level of parametric uncertainties to betoalled.
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Prior probability model of [M(y)], [D(y)], and [K(y)], hyperparameters, and
generator of realizations

Similarly to the construction given in Section entitled:dioarametric Stochastic
Model of Uncertainties in Computational Linear Structubginamics”, for ally
fixed in R, random matrice$M (y)], [D(y)], and[K(y)], are statistically inde-
pendent and written as

MW)I=[Lar()]" [Car] [Lar(y)] (184)
DW)=[Loy)]" [Go] [Lp(Y)], (185)
KW =[LxW)]" Gk [Lx¥)], (186)
in which, for ally in RY, [Ly(y)], [Lp(y)], and [Lk(y)] are the upper trian-
gular matrices such that (Cholesky factorizatioh)(y)] = [Las(Y)]" [La(Y)],
I

[D(Y)] = [LoW)]" [Lp(y)], and [K(y)] = [Lk(y)]" [Lk(y)]- In Egs. (184)

to (186), (G|, [Gp], and [Gk] are independent random matrices defined on
probability space®’, 7', P’), with values inM ! (R), independent of, and be-
longing to fundamental ensemble S®f random matrices. The level of non-
parametric uncertainties is controlled by the coefficieftyariationds,,, dc,,
anddq, defined by Eq. (24), and the vector valued paramétgy is defined as
Onpar = (01, Op, 0k ) that belongs to an admissible $i.. The generator of real-
izations{[G(¢)], [Gp(¢')], [Gk(¢)] for & in ©', are explicitly described in the
section devoted to the construction of ensembles 8&l SG .

Mean values of random matricesM (Y)], [D(Y)], [K(Z)], and hyperparame-
ters of the parametric-nonparametric stochastic model of ncertainties
Taking into account the construction presented hereimbgefee have

E{MMY)]} =[M] ,  E{[DV)}} =[D], E{K(YV)]} = [K], (187)

in which the matricesM]|, [D] and[K] are the deterministic matrices defined
by Eq. (181). The hyperparameters of the parametric-nanpatric stochastic
model of uncertainties are

X S RN ) 5par S Cpar ) 5npar = (5M7 5D7 5K) S Cnpar- (188)

14.4. Estimation of the Hyperparameters of the Paramdtiacyparametric
Stochastic Model of Uncertainties
The value ofn is fixed to the valuey, that has been defined. The parametric-
nonparametric stochastic model of uncertainties is ctiattty the hyperparam-
eters defined by Eq. (188).
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m If no experimental data are available, theoan be fixed to a nominal value
Y, and, dpar and dnpar Must be considered as parameters to perform a sensitivity
analysis of the stochastic solution. Such a parametriga@metric stochastic
model of uncertainties allows the robustness of the saiutiobe analyzed as a
function of the level of uncertainties controlled 8y, anddnpar.

m If experimental data are available, an estimatioly,af,a, anddnpar can be
carried out, for instance, using a least square method antbémum likelihood
method [103; 118; 124]. L&V be the random real vector which is observed,
which is independent of, but which depends ofiX"(t),t > 0} whereX"(¢)
is the second-order stochastic solution of Eq. (182)-(1I88} > 0 with initial
conditions fort = 0. Letr = (Y, dpar, Onpar) D€ the vector-valued hyperparameter
belonging to the admissible sé&t = RY x Cparx Cnpar For allr in C;, the prob-
ability density function oW is denoted asv — pw (w;r). Using the maximum
likelihood method, the optimal values® of r is estimated by maximizing the
logarithm of the likelihood function,

Vexp

roPt = 1 wy ). 189
arg rrrgéX; og pw (W™ 1) (189)
in whichwi™®, ..., wi® areve,, independent experimental data corresponding to

W.

15. Key Research Findings, and Applications

Propagation of uncertainties using nonparametric or paranetric-nonparametric
stochastic models of uncertainties

The stochastic modeling introduces some random vectorsame random
matrices in the stochastic computational models. Consdlyua stochastic solver
is required. Two distinct classes of techniques can be used.

m The first one is constituted of the stochastic spectral nusthpioneered by
Roger Ghanem in 1990-1991 [43; 44], consisting in perfogranprojection of
the Galerkin type (see [45; 46; 68; 70; 85; 122]), and of s&jearrepresentations
methods [34; 86]. This class of techniques allows for olmagjm great precision
for the approximated solution that is constructed.

m The second class is composed of methods based on a diredatomuof
which the most popular is the Monte Carlo numerical simafatnethod (see for
instance [41; 97]). With such a method, the convergence eabtrolled during
the computation, and its speed of convergence is indepémdéhe stochastic
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dimension and can be improved using, either advanced Moatti® Gimulation
procedures [101], or a technique of subset simulation [6linally, a method of
local simulation domain [94]. The Monte Carlo simulationthu is a stochastic
solver that is particularly well adapted to the high stoticadgimension induced
by the random matrices introduced by the nonparametricodethuncertainties.

Experimental validations of the nonparametric method of urcertainties

The nonparametric stochastic modeling of uncertaintissbiegn experimen-
tally validated through applications in different domamwiscomputational sci-
ences and engineering, in particular,

m inlinear dynamics, for the dynamics of complex structundte low-frequency
domain [7; 12; 13], for the dynamics of structures with nomlegeneous uncer-
tainties, in the low-frequency domain [24] and in transidghamics [35], and
finally, for the dynamics of composite sandwich panels in-lamd medium-
frequency domains [25];

m in nonlinear dynamics, for nonlinear structural dynamitfuel assemblies
[9], for nonlinear post-buckling static and dynamical gzak of uncertain cylin-
drical shells [21], and for some nonlinear reduced-orded@s[82];

m in linear structural acoustics, for the vibroacoustic ofngdex structures in
low- and medium-frequency domains [38], with sound-insafalayers [39], and
for the wave propagation in multilayer live tissues in thigadonic domain [30];

m in continuum mechanics of solids, for the nonlinear therraohanical anal-
ysis [98] and the heat transfer in complex composite par®sls pnd for linear
elasticity of composited reinforced with fibers at mesos¢48].

Additional ingredients for the nonparametric stochastic modeling of uncer-
tainties
Some important ingredients have been developed for hakintpbls required

for performing the nonparametric stochastic modeling afastainties in linear
and nonlinear dynamics of mechanical systems, in particula

m the dynamic substructuring with uncertain substructureskvallows for the
nonparametric modeling of nonhomogeneous uncertaintidgferent parts of a
structure [117];

m the nonparametric stochastic modeling of uncertain strestwith uncertain
boundary conditions/coupling between substructures [79]

m the nonparametric stochastic modeling of matrices thaen@mn the fre-
guency and that are related by a Hilbert transform due toxistezice of causality
properties, such as those encountered in the linear vestaty theory [90; 116];
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m the multi-body dynamics for which there are uncertain bedieass, center
of mass, inertia tensor), for which the uncertainties in llbdies come from a
lack of knowledge of the distribution of the mass inside tbdibs (for instance
the spatial distribution of the passengers inside a highdpain) [10];

m the nonparametric stochastic modeling in vibroacousficemplex systems
for low- and medium-frequency domains, including the séstit modeling of the
coupling matrices between the structure and the acoustitesa[38; 90; 111];

m the formulation of the nonparametric stochastic modelifithe nonlinear
operators occuring in the static and the dynamics of unicegeometrically non-
linear structures [21; 78; 82].

Applications of the nonparametric stochastic modeling of mcertainties in dif-
ferent fields of computational sciences and engineering
= In dynamics:
Aeronautics and aerospace engineering systems [7; 2098927
Biomechanics [30; 31]
Environment for well integrity for geologic CO2 sequestiat[32]
Nuclear engineering [9; 13; 12; 29]
Pipe conveying fluid [95]
Rotordynamics [80; 81; 83]
Soil-structure interaction and wave propagation in sdijf 26; 27]
Vibration of turbomachines [18; 19; 22; 71]
Vibroacoustics of automotive vehicles [3; 38; 39; 40; 62]
m In continuum mechanics of heterogenous materials:
Composites reinforced with fibers [48]
Heat transfer of complex composite panels [99]
Nonlinear thermomechanics in heterogeneous materials [98
Polycrystalline microstructures [49]
Porous materials [52]
Random elasticity tensors of materials exhibiting symgngtoperties [51; 53]

16. Conclusions

In this paper, fundamental mathematical tools have beesepted concerning
the random matrix theory, which are useful for many problemsountered in un-
certainties quantification, in particular for the nonpaeame method of the multi-
scale stochastic modeling of heterogeneous elastic raltesind for the nonpara-
metric stochastic models of uncertainties in computatistractural dynamics.
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The explicit construction of ensembles of random matribasalso the presenta-
tion of numerical tools for constructing general ensembfeandom matrices are
presented and can be used in high dimension. Many appinsatind validations
have already been performed in many fields of computatiani@hses and engi-
neering, but the methodologies and tools presented careioeamsl developed for
many other problems for which uncertainties must be quantifi
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