
HAL Id: hal-01284636
https://hal.science/hal-01284636v1

Submitted on 7 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Direct Numerical Simulation of a rheology model for
fibre-reinforced composites

Luis Fernando Salazar Betancourt, Patrice Laure, Luisa Silva, Mustafa Sager

To cite this version:
Luis Fernando Salazar Betancourt, Patrice Laure, Luisa Silva, Mustafa Sager. Direct Numerical
Simulation of a rheology model for fibre-reinforced composites. 12 ème Colloque National en Calcul
des Structures, May 2015, Presqu’île de Giens, France. �hal-01284636�

https://hal.science/hal-01284636v1
https://hal.archives-ouvertes.fr


CSMA 2015
12e Colloque National en Calcul des Structures

18-22 Mai 2015, Presqu’île de Giens (Var)

Direct Numerical Simulation of a rheology model for fibre-reinforced
composites

L. Salazar1,2, P. Laure1,3, L. Silva4 and M. Sager2

1 CEMEF, MINES ParisTech, {luis-fernando.salazar_betancourt,patrice.laure}@mines-paristech.fr
2 Plastic Omnium AE Services, {luis-fernand.salazar,mustafa.sager}@plasticomnium.com
3 JAD, Université de Nice, patrice.laure@unice.fr
4 ICI - ECN Ecole Centrale de Nantes, Luisa.Rocha-Da-Silva@EC-Nantes.fr

Résumé — We present a finite element approach assisted with anisotropic mesh adaptation to model
fibre-reinforced composites on compression molding processes. A single mesh embeds all the important
phases (Die tool + composite material + Punching tool), implicitly described by level-set functions. A
viscous transverse isotropic model for molding compression is used to take into account the influence of
the fiber phase on the material response. A friction law is also added in order to described rheology data
coming from the mechanical response of composites material under compression and shear tests.
Mots clés — reinforced-composites, rheology, friction, level set.

1 Introduction

Modeling fibrous materials comes together with the study of anisotropic rheology. These fibers, em-
bedded in a thermoset matrix, enhance the mechanical properties of the composite [1]. Nowadays, glass
fiber composites processed by compression molding are used as semi-structural parts since they exhi-
bits advantageous ratios density/resistance handed with their cost-efficient processing [2]. It is of inter-
est to understand such interaction fiber-matrix when undergoing large deformations, in order to predict
composites behavior for practical applications. For reaching this point, improved models considering
fiber/matrix coupling are needed. Authors in [3] have proposed a more recently viscous and transversely
isotropic model fitting stress levels during experimental tests. In here, we reproduce three mechanical
test : simple compression, plane strain and shear, after implementing such rheology in Rem3D. We com-
pare the prediction of the model with the numerical results to verify its implementation. This enriching of
the software with a more adapted rheology leads the application to industrial cases, where geometries are
more complex. For the study cases, immersed domain are used by the assistance of level set functions.

As second point treated in this work, we present a strategy to study friction in molding compression.
This technique can allow a numerical fitting of stress level, where the fitting parameter is the viscosity of
a thin layer located in between the two bodies in contact.

With these studies we leave open a further investigation in more complex geometries of compression
molding. Also, the availability of taking into account friction phenomena.

2 Governing equations and numerical method

In this work, we use the immerse volume approach to embeds in one mesh all the domains [4]. Air,
Die, Punch and reinforced material are immersed together in an Eulerian mesh. Further, we get assisted
by shapes function denominated level-sets [5], in order to differentiate the domains. These will help us
along the multi-phase Stokes formulation by defining the mechanical parameters (i.e viscosity ) as space
function.

As stated in other works [6], multi-fluid flows can be computed by solving the heterogeneous conser-
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vation equations in Ω× [0,T ] :

ρ

(
∂v
∂t

+ v ·∇v
)
−∇ ·s+∇p = ρg (1a)

∇ · v = 0 (1b)

where v is the velocity field, s the stress tensor, p the pressure, ρ the density and η the viscosity, both
also defined as space dependent.

For Air and mold we have s = 2ηD, where 2D = ∇v+∇vt , and we set ηair = 10−3ηmat
min equal to a

thousand times lower the minimum viscosity in the composite, while the viscosity of the mold is used
as parameter depending on the lubrication condition to be set. The inertial terms are neglected. For the
reinforced material, the extra stress tensor takes into account the fiber phase. In this work, we use the
model developed in [3] which assume a homogeneous phase for fibers and paste. The stress tensor s is
modified (eq.2 ) to take into account the fiber phase. Having,

s= σs+2 ηeqD, (2)

the extra stress tensor will be defined according to eq.3 and 4 :

σs = 2.
α0.K f .Dm−1

eq

2︸ ︷︷ ︸
ηeq

(
α1 (M :D)M +

α2

2
(D ·M +M ·D)

)
(3)

D2
eq = α0

(
D :D+α1 (M :D)2 +α2(D ·M :D

)
(4)

σ
2
eq =

1
2

(
(1+2H)s : s+(5+H −6L)(M : s)2 −2(1+2H −3L)(s ·M) : s

)
(5)

Developped in [3], this model assumes plug flow, causing that fibers spread in-plane. The averaging
of the directions modify homogeneously the macroscopic stress leading to plane isotropy. K f states for
the consistency of the matrix with the fiber phase and m states for the power-law exponent of the paste.
The orthogonal direction n states for the normal to the fiber plane, here the vertical direction, and its
effect is presented in the model by means of the tensor M = n⊗n. The parameters α, L, H account for
fiber concentration whose correlations to find them are depicted in [3].

3 Rheological response of composite under compression and shear

The figures 1 schematizes the three rheological tests treated in this section.
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FIGURE 1 – Numerical cases : Simple compression, Plane strain and Shear.

In the case of Simple Compression, the cylinder used in this simulation has as initial values a height
of 7.6 mm, and a radius of 12.5 mm, it is compressed until 4 mm of height (47% compression ). For Plane
Strain, we set a cube of 7.6 mm of height, width of 10 mm and large of 18 mm. it is compressed until 4
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mm. For Shear geometry, we use the same geometry as the plane strain configuration. In the three cases,
an uni-directional velocity v = ḣ has been set, such that the strain rate ḣ/h is kept constant during the
whole deformation, and we have set three different strain rates, 10−4, 10−2, 1 s−1.

The strategy of resolution used in this work for the coupling velocity-pressure-orientation is the
following : firstly, the conservative equation for velocity-pressure is solved ; from these information, the
viscosity of the non-Newtonian fluid is updated ; the new viscosity is assembled in the system and the
velocity and pressure are solved again until convergence ; finally, the transport equation is solved for
moving the level set with the converged velocity profile and the temporal scheme is moved forward.

3.1 Results

The mesh used contains 250k elements adapted to velocity and level set fields. An adaptive time step
has been set to ensure the CFL condition in the flow front. The critical element is found at the boundaries
of the level set. In there, we find the maximum speed in the composite vmax and the minimum mesh size
hmin. Setting a CFL=0.75 we compute the time step by ∆t =CFL×hmin/vmax.
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FIGURE 2 – Comparison Model [3] (straight lines) predictions for Simple Compression, Plain Strain
Compression and shear for fiber volume fraction φ = 3.5% and φ = 14.7% at ambient temperature.
Numerical Implementation in CIMLib - Rem3D.

From the results obtained, we compared the equivalent strain rate Deq and the equivalent stress σeq

of each deformation states, with the ones proposed for the model for the same conditions, and for two
different fiber concentration of 3.5% and 14.7%. The resulting consistency of the composite for both
concentration were K f

3.5% = 0.763MPas and K f
14.7% = 4.886MPas. A total of 16 simulations were perfor-

med and each point of the plot is related to one full simulation under slip boundary conditions. Since the
Cauchy tensor is constant in the domain, a space constant stress tensor defines the stress state.

The results presented in Fig.2 evidence the corresponding results of the software with the aniso-
tropy model presented in previous section. We are able to reproduce the simple rheological test used to
characterize the material and with this match to verified our numerical approach.

3.2 Viscous friction, an strategy for modeling friction

Friction between two bodies are related to a resistance exhibited by a body due to contact with the
other body. This resistance depends on many factors as velocity, temperature, roughness and mostly
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a fitting equation of this phenomena is given to take this into account. In this section, we present a
technique involving the appearance of a thin viscous layer. To do that, we just modified the viscosity in
a small thickness between the mould and the fluid. By changing this viscosity, we can reproduce friction
effect. For our study case, we use a Newtonian material of viscosity 1MPa s. We solve Stokes equations.
We kept the velocity constant to 5 mm/s and we plot the force to squeeze out the material. We take the
two references solutions for the slip and no slip case given in [7].
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FIGURE 3 – Friction mold-Composite by means of viscosity of the contact. ηL is the viscosity of the
film layer Die-Mold in MPas. Simulation performed in simple compression test for a Newtonian paste
of 1MPas

The forces plotted in figures 3 come directly from the integration of the numerical stresses resolution.
We observe how by assigning a viscosity 10−3 times lower than the one of the material, we reproduce
the slip case. However, by increasing the viscosity in the layer ηL, we noticed that the force needed to
squeeze increases. In the case of ηL = 5ηmat we reproduce the same no-slip condition. The intermediate
ranges can be related to friction cases. The velocity profile in the extreme cases perfectly shows that we
reproduce slip and no slip cases by the appearance of XZ plane velocity gradients in Y direction.
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