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1. Introduction 1.1. Piecewise cubic reconstruction for finite volume schemes. In [START_REF] Haider | Efficient implementation of high order reconstruction in finite volume methods[END_REF][START_REF] Haider | Parallel implementation of k-exact finite volume reconstruction on unstructured grids[END_REF], a high order reconstruction method for finite volume approximations was introduced for the purpose of gas dynamics simulations. This paper is the sequel of this study. Our goal is to give a detailed account on our computational procedure regarding recontruction in the restricted context of one dimensional problems. Consider a one-dimensional conservation law (1.1)

∂ t u + ∂ x f (u) = 0.
Our starting point is the semi-discrete finite volume scheme, which is expressed by the method of lines as:

(1.2)

dv α (t) dt = - 1 |T α | f α+1/2 (t) -f α-1/2 (t) .
In (1.2) the function t → v α (t) approximates the average ūα (t) over the cell T α of the solution u(x, t) of (1.1). For any numerical flux (u L , u R ) → F (u L , u R ), the function t → f α+1/2 in (1.2) is:

(1.3) f α+1/2 (t) = F w α [V (t)](x - α+1/2
), w α+1 [V (t)](x + α+1/2 ) . In (1.3), x ∈ T α → w α [V ](x) is a local reconstructed polynomial in T α . The notation w α [V ] is used to make explicit the dependence of w α on the vector V = [v α ].

For any regular function u(x) defined on T α , we define the values u α , σ α , θ α and ψ α by (1.4)

                 u α u(x α ), σ α u (x α ), θ α u (x α ),
ψ α u (x α ).
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Let U = [u α ] be the vector of averages of u(x) over the cells T α Our basic object is a piecewise cubic reconstruction of the function u(x) based on U . This is a cubic polynomial defined by:

(1.5) w α [U ](x) = ũα + σα (x -x α ) + 1 2 θα (x -x α )2 + 1 6 ψα (x -x α ) 3 , where ũα u α , σα σ α , θα θ α , and ψα ψ α . The main idea [START_REF] Haider | Parallel implementation of k-exact finite volume reconstruction on unstructured grids[END_REF] is to define in (1.5) the values ũα , σα , θα by an iterative procedure where all discrete derivative calculations are based at run time on data located in a compact stencil around the cell T α .

The following principles are retained for calculating the polynomial w α [U ](x). First the reconstructed polynomial w α [U ](x) is calculated from one single data u β in each cell T β . In particular it can be applied to any cell-centered finite volume code whith one unknown per cell. Therefore it can be considered to enhance any existing second order finite volume code. Second, it is designed to handle general polyhedral grids, and not only meshes made of simplices. Third, the reconstruction algorithm is linear. In particular, no flow based parameters are used in the reconstruction. This last property is important for practionners dealing with complex fluid modelling (e.g. turbulent, multiphasic, reactive, spherical flows, etc). Consequently, the reconstruction is fully decoupled from the nonlinear treatments such as slope limiting and monotonicity preserving procedures. Of course, these treatments are mandatory for realistic simulations, but we do not address them in this paper and they are not part of our interpolation procedure 1 .

Specifically we focus here on the following points to define the polynomial w α [U ](x).

• Show that is is possible to obtain a dependence on a wide data stencil around cell T α by iteratively accessing data in the direct neighborhood of T α only 2 . This iterative procedure is the essential part of this paper. It is developped in Section 3 and Section 4.

• Show numerically that it is possible to define fully centered approximate derivatives σα , θα and ψα in the cubic reconstruction (1.5) giving rise to a linearly stable semidiscrete system (1.2) even on very irregular grids. Our analysis is mainly based on the numerical computation of discrete spectra. This methodology is in contrast with other approaches for reconstruction such as ENO or WENO schemes [START_REF] Jiang | Efficient implementation of weighted ENO schemes[END_REF][START_REF] Shu | High order ENO and WENO schemes[END_REF]. For example, in ENO schemes local high order reconstruction functions are based on stencils which vary according to local patterns of the solution, e.g. the Total Variation. We refer to [START_REF] Chakravarthy | ENO schemes for general geometries[END_REF][START_REF] Abgrall | On Essentially Non-Oscillatory schemes on unstructured meshes: Analysis and implementation[END_REF][START_REF] Abgrall | On the use of Mühlbach expansions in the recovery step of ENO methods[END_REF][START_REF] Barth | Numerical methods for conservation laws on structured and unstructured meshes[END_REF] for the extension to irregular grids of the ENO approach to irregular grids. Further developments on ENO and WENO schemes using modern functional theory of approximation can be found e.g. in [START_REF] Harten | ENO Schemes with subcell resolution[END_REF][START_REF] Sonar | On families of pointwise optimal finite volume ENO approximations[END_REF][START_REF] Sonar | On the construction of essentially non-oscillatory finite volume approximations to hyperbolic conservation laws on general triangulations: polynomial recovery, accuracy and stencil selection[END_REF].

The outline of the paper is as follows. In the sequel of Section 1 we give the notation and the general setting of our semi-discrete method. In Section 2 we show how the reconstruction procedure influences the linear stability of the scheme and therefore why this reconstruction is essential for the scheme design. In Section 3 we explain the principle of the compact reconstruction algorithm. In Section 4 the detail of the algorithm to calculate the piecewise cubic reconstruction is summarized (algorithm 1). The resulting numerical method is described in Section 5. In Section 6.1 we show numerical results illustrating our approach.

This paper is related to the works [START_REF] Haider | Discrétisation en maillage non structuré général -Applications à la LES[END_REF][START_REF] Haider | Stability analysis of the cell centered finite-volume MUSCL method on unstructured grids[END_REF][START_REF] Haider | Stability of the MUSCL method on general unstructured grids for applications to compressible fluid flows[END_REF][START_REF] Haider | Parallel implementation of k-exact finite volume reconstruction on unstructured grids[END_REF] and was initiated in the context of the package CEDRE 3 . We also refer to [START_REF] Ollivier-Gooch | A high-order accurate unstructured mesh finite-volume scheme for the advection-diffusion equation[END_REF][START_REF] Barth | Finite Volume Methods: Foundation and Analysis[END_REF][START_REF] Mavriplis | Revisiting the least-squares procedure for gradient reconstruction on unstructured meshes[END_REF][START_REF] Khosla | Using fourth order spatial integration on unstructured meshes to reduce LES run time[END_REF][START_REF] Winkler | The effect of unstructured grid topology and resolution on simulations of decaying turbulence[END_REF][START_REF] Ullrich | High order finite-volume methods for the shallow-water equations on the sphere[END_REF] for recent works based on similar ideas. (1.6)

T α-1 T α T α+1 x α-1 x α+1 x α h α-1,α h α,α+1
∂ t u(x, t) + ∂ x f (u(x, t)) = 0, x ∈ Ω = [0, 1] t > 0.
The geometric notation for the finite volume setting is the one in [START_REF] Haider | Stability analysis of the cell centered finite-volume MUSCL method on unstructured grids[END_REF]. The one dimensional grid is periodic made of cells T α , so that Ω = N α=1 T α . The barycenter of the cell

T α is x α . The length of the cell T α is |T α | = O(h).
The double subscript αβ is used for the interface A αβ of cells T α and T β . In one dimension, we assume an increasing numbering of the cells from the left to the right. Thus T α-1 and T α+1 are the two neighboor cells of T α . The interface A α,α±1 consists only of the point x α,α±1 , (Fig. 1.1). The length h αβ is defined by: (1.7)

h αβ = x β -x α , β = α ± 1.
Our numerical scheme is semi-discrete in space. It evolves v α (t), which approximates the exact average ūα (t) of x → u(x, t), solution of (1.6). The scheme is expressed as

(1.8)            dv α (t) dt = -1 |Tα| F w α [V (t)](x - α+1/2 ), w α+1 [V (t)](x + α+1/2 ) -F w α-1 [V (t)](x - α-1/2 ), w α [V (t)](x + α-1/2 ) .
where

• The vector V (t) = [v 1 (t), v 2 (t), • • • , v N (t)] T ∈ R N has components v α (t) defined by: (1.9) v α (t) ūα (t) 1 |T α | Tα u(x, t)dx, 1 ≤ α ≤ N,
where u(x, t) is the solution of (1.6).

• The reconstruction x → w α [V ](x) is an interpolation function based on the values V = [v 1 , v 2 , . . . , v N ] T . • The numerical flux function is denoted (u L , u R ) → F (u L , u R ) denotes the numerical flux func- tion.
The numerical flux involves some suitable upwinding which is usually based on the function u → f (u).

In the case of the linear equation

(1.10) ∂ t u + c∂ x u = 0, c > 0, the numerical flux F (u L , u R ) reduces to (1.11) F (u L , u R ) = cu L .
In vector form, (1.8) becomes

(1.12) d dt V (t) = JV (t),
where J is a N × N matrix. For example, when a piecewise linear reconstruction is used, the component

(JV ) α is (1.13) (JV ) α = - c |T α | v α + h α 2 σ α [V ] -v α-1 + h α-1 2 σ α-1 [V ] .
A typical choice for the value of the reconstructed slope σ α is the least squares value [START_REF] Haider | Discrétisation en maillage non structuré général -Applications à la LES[END_REF][START_REF] Haider | Stability analysis of the cell centered finite-volume MUSCL method on unstructured grids[END_REF]. It is given by:

(1.14)

σ α = h α,α+1 h 2 α,α-1 + h 2 α,α+1 (v α+1 -v α ) + h α,α-1 h 2 α,α-1 + h 2 α,α+1 (v α-1 -v α ).
2. Influence of the reconstruction on the stability of the semidiscrete scheme 2.1. Fourth Order Finite Volume Scheme. In [START_REF] Haider | Stability analysis of the cell centered finite-volume MUSCL method on unstructured grids[END_REF], the second order finite volume scheme with piecewise linear reconstruction was considered on general grids. It was observed that the choice of the reconstructed slope V → σ α [V ] in (1.13) can drastically impact the linear stability properties of Equation (1.12). Specifically it was shown that the piecewise linear least squares reconstruction leads to an instable dynamical system (1.12) on a general tetrahedral grid.

In this section, we stress this point again on two one dimensional examples. We consider schemes based on cubic reconstruction on a one dimensional regular grid. The cells are T α with h = 1/N = |T α |, 1 ≤ α ≤ N . We consider reconstructed values ũα , σα , θα , ψα satisfying the consistency relations (2.1)

                 ψα = u (x α ) + O(h), θα = u (x α ) + O(h 2 ), σα = u (x α ) + O(h 3 ), ũα = u(x α ) + O(h 4 ).
We associate to the reconstruction (2.1) the semi-discrete scheme

d dt v α (t) = - c h ũα (t) + h 2 σα (t) + h 2 8 θα (t) + h 3 48 ψα (t) (2.2) -ũα-1 (t) + h 2 σα-1 (t) + h 2 8 θα-1 (t) + h 3 48 ψα-1 (t) .
The notation ũα (t), σα (t), θα (t) and ψα (t) stands for reconstructed values of u α (t), σ α (t), θ α (t) and ψ α (t) respectively. These approximations are solely based on the unknown

V (t) = [v 1 (t), v 2 (t), . . . , v N (t)] T ∈ R N .
This scheme approximates equation (1.10). The reason for considering the relations (2.1) is that we expect fourth order accurate approximation in space for (2.2). In matrix form, (2.2) is expressed as

(2.3) d dt V (t) = JV (t), J ∈ M N (R).
We now show that two different choices of ũα , σα , θα and ψα in (2.1) can lead to stability in (2.3) in one the first and to instability in the second case.

Example 1. A stable cubic reconstruction .

We consider the case where the slope σα in (2.1) is defined by the fourth order Hermitian derivative, [START_REF] Collatz | The Numerical Treatment of Differential Equations[END_REF][START_REF] Ben-Artzi | Navier-Stokes equations in planar domains[END_REF] This means that it satisfies (2.4)

1 6 σα-1 + 2 3 σα + 1 6 σα-1 = δ x ũα .
Furthermore we assume that the value ũα , θα and v α are related by the relation

(2.5) v α = ũα + h 2 24 θα .
where v α ūα . The relations (2.4) and (2.5) are supplemented by the two relations for the second and third order derivatives θα and ψα :

(2.6)

   θα = δ x σα , ψα = δ x θα .
The system (2.4), (2.5) and (2.6) is a coupled linear system with unknowns ũα , σα , θα and ψα . It is easily shown that the following consistency relations hold (assuming v α = ūα in (2.5)):

(2.7)

                 ũα = u(x α ) + O(h 4 ), σα = u (x α ) + O(h 4 ), θα = u (x α ) + O(h 2 ), ψα = u (x α ) + O(h 2 ),
and therefore the consistency relations (2.1) also hold. Substituting in (2.2) the values of ũα , σα , θα , ψα given in (2.4) (2.5) and (2.6) yields a system of the form (2.3) where the matrix J has eigenvalues λ k ,

-N 2 < k ≤ N 2 .
Due to the periodic setting, the corresponding eigenfunctions are the vectors z k ∈ R N defined by (2.8)

   z k = [z k 1 , z k 2 , • • • , z k N ], z k α = exp 2ikαπ N , -N/2 < k ≤ N/2, 1 ≤ α ≤ N.
The vectors z k form an orthogonal basis of C N . Fig. 2.1 shows that the normalized spectrum of (2.2) (with c = 1, h = 1) (plotted with the symbol *) is on the left of the imaginary axis. This demonstrates the stability of (2.2) when the cubic reconstruction given by (2.5), (2.4), (2.6) is used.

Example 2. An instable cubic reconstruction

Supose now that instead of (2.6) the two relations (2.4) and (2.5) are supplemented by the Hermitian relations for θα , ψα :

(2.9)    In this case, the truncation errors are (2.10)

                 ũα = u(x α ) + O(h 4 ), σα = u (x α ) + O(h 4 ), θα = u (x α ) + O(h 2) , ψα = u (x α ) + O(h 4 ).
The normalized spectrum is plotted with the symbol o on Fig. 2.1. This time, the spectrum is located on the right of the imaginary axis and therefore the scheme (2.2) is instable.

In conclusion, these two examples show that the property of the system (2.3) to be linearly stable or instable is directly related to the choice of the reconstruction procedure. This property will hold true in the context of irregular grids.

Compact Least-Squares Coupled Reconstruction

In Section 2, it was shown that the linear stability of the approximation (2.3) is directly related to the specific choice of the reconstruction. Some choice can lead to stability while some other choice can result in an instable system. We stress that this is a purely linear property [START_REF] Haider | Stability analysis of the cell centered finite-volume MUSCL method on unstructured grids[END_REF]. In this section, we further analyze this property in the case of an irregular grid.

Let u(x) be a periodic function on Ω = [0, 1], we consider the averaged values data ūα

(3.1) ūα = 1 |T α | Tα u(x)dx.
The values u α , σ α , θ α and ψ α are defined by

(3.2)                  u α u(x α ), σ α u (x α ), θ α u (x α ), ψ α u (x α ).
Let V α be a fixed stencil of cells surrounding T α . We introduce approximations of σ α , θ α and ψ α accessing data located in V α only. The compact stencil V α of the cell T α consists of the three cells:

(3.3) V α = {T α-1 , T α , T α+1 }.
We call three-point compact reconstruction a reconstruction accessing at run time data located in the stencil V α only. Consider first approximating the derivative σ α by the linear relation:

(3.4) σ α β∈Vα c αβ (ū β -ūα ),
where the coefficients c αβ have to be defined. The consistency of the right-hand-side in (3.4) with σ α translates to the identity [START_REF] Haider | Stability analysis of the cell centered finite-volume MUSCL method on unstructured grids[END_REF]:

(3.5) β∈Vα c αβ h αβ = 1.
A standard choice of c αβ in (3.5) is given by the least-squares slope operator where

(3.6) c LS αβ = h αβ / β∈Vα h 2 αβ .
The least-squares value σLS α is defined by (3.7) σLS

α β∈Vα c LS αβ (ū β -ūα ).
We also introduce the pointwise least-squares values σ LS α , θ LS α , ψ LS α defined by the relations:

4 (3.8)          σ LS α = β∈Vα c αβ (u β -u α ), (a) θ LS α = β∈Vα c αβ (σ β -σ α ), (b) ψ LS α = β∈Vα c αβ (θ β -θ α ). (c) Lemma 3.1. The approximate derivatives σ LS α , θ LS α , ψ LS α in (3.8) satisfy the consistency relations (3.9)          σ α + a α θ α + b α ψ α = σ LS α + O(h 3 ), (a) θ α + a α ψ α = θ LS α + O(h 2 ), (b) 
ψ α = ψ LS α + O(h), (c) where σ α = u (x α ), θ α = u (x α ) and ψ α = u (x α ).
Defining the l-momentum H (l)

α by

(3.10) H (l) α β∈Vα h l αβ ,
then the coefficients a α , b α in (3.8) are expressed as

(3.11) a α = 1 2 H (3) α H (2) α , b α = 1 6 H (4) α H (2) α .
Furthermore, when replacing in the first line of (3.9) the pointwise least-square value σ LS α by σLS α , given in (3.7), then the relation (3.9) (a) is replaced by:

(3.12) σ α + āα θ α + bα ψ α = σLS α + O(h 3
), with the modified coefficients āα and bα given by:

(3.13) āα = a α + 1 24 β∈Vα c αβ |T β | 2 -|T α | 2 and bα = b α + 1 24 β∈Vα c αβ |T β | 2 h αβ .
Proof. For all cells

T β ∈ V α , the Taylor expansion of u(x β ) -u(x α ) is (3.14) u β -u α = σ α h αβ + 1 2 θ α h 2 αβ + 1 6 ψ α h 3 αβ + O(h 4 ). The gradient σ LS α in (3.8) (a) satisfies (3.15) σ LS α = β∈Vα c αβ σ α h αβ + 1 2 θ α h 2 αβ + 1 6 ψ α h 3 αβ + O(h 3 ).
Using (3.6) and (3.5), (3.15) becomes (3.9) (a) . The two relations (3.9) (b,c) are obtained in the same way. We now prove (3.12). Consider the Taylor expansion of the average ūα ,

)

ūα = u α + 1 24 θ α |T α | 2 + O(h 4 ),
where

|T α | 2 = O(h 2 ). We deduce from (3.8) that σ LS α = β∈Vα c αβ (ū β -ūα ) - 1 24 β∈Vα c αβ (|T β | 2 θ β -|T α |θ 2 α ) + O(h 4 ) = σLS α - 1 24 β∈Vα c αβ |T β | 2 (θ α + h αβ ψ α ) -|T α | 2 θ α + O(h 4 ) = σLS α - θ α 24 β∈Vα c αβ |T β | 2 -|T α | 2 - ψ α 24 β∈Vα c αβ |T β | 2 h αβ + O(h 4 ).
Inserting the last line in (3.9) (a) gives

σ α + θ α a α + 1 24 β∈Vα c αβ |T β | 2 -|T α | 2 + ψ α b α + 1 24 β∈Vα c αβ |T β | 2 h αβ = σLS α + O(h 3
). Therefore we obtain (3.12) where āα , bα are given in (3.13).

Remark 3. We stress the fact that the dependence stencil of the reconstruction does not coincide with the stencil accessed at run-time. The later is the compact stencil V α = {T α-1 , T α , T α+1 }. The former is wider.

Cubic reconstruction solution procedure

The relations (3.12) and (3.9) (bc) for the approximate derivatives σLS α , θ LS α and ψ LS α are:

(4.1)          σ α + āα θ α + bα ψ α = σLS α + O(h 3 ), (a) θ α + a α ψ α = θ LS α + O(h 2 ), (b) ψ α = ψ LS α + O(h). (c)
Recall that in (4.1) the values σ α , θ α and ψ α are the exact values u (x α ), u (x α ) and u (x α ), respectively. However, consider for the moment (4.1) as a linear system with σ α , θ α and ψ α as "unknowns". A forwardbackward "resolution", analog to a LU factorization results in Taylor expansions of σ α , θ α and ψ α in terms of the value σLS β . This is expressed in the following Proposition 4.1. The exact derivatives u (x α ) = σ α , u (x α ) = θ α , u (x α ) = ψ α satisfy the relations:

(4.2)              ψ α = β∈Vα c * αβ γ∈V β cβγ σLS γ -σLS β -δ∈Vα cαδ (σ LS δ -σLS α ) + O(h), (a) 
θ α = -ã α ψ α + β cαβ σLS β -σLS α + O(h 2 ), (b) σ α = -ā α θ α -bα ψ α + σLS α + O(h 3 ), (c) where
• The coefficients āα and bα are given in (3.13),

• The coefficients ãα and cαβ are

(4.3) ãα = a α + β∈Vα c αβ ( bβ -bα + āβ h αβ ) 1 + β∈Vα c αβ (ā β -āα ) , and 
(4.4) cαβ = c αβ 1 + β∈Vα c αβ (ā β -āα )
.

• The coefficients c * αβ is given by

(4.5) c * αβ = c αβ 1 + δ∈Vα c αδ (ã δ -ãα ) .
Proof. First note that (4.2) (c) is identical to (4.1) (a) . Now consider the proof of (4.2) (b) . We perform the resolution of (4.1) using a Gauss elimination for a triangular linear system. For all cells T β close to T α , we have 

θ β = θ α + h αβ ψ α + O(h 2 ), (a) ψ β = ψ α + O(h). (b) (4.6) Equation (3.12) considered in cell T β is rewritten as (4.7) σ β + āβ θ β + bβ ψ β = σLS β + O(h 3 ). Replacing in (4.
σ β + āβ (θ α + h αβ ψ α ) + bβ ψ α = σLS β + O(h 3 ), or equivalently (4.9) σ β = σLS β -āβ θ α -(ā β h αβ + bβ )ψ α + O(h 3 ).
Using (4.9) in (4.1) (b) gives

θ α + a α ψ α = β∈Vα c αβ σLS α -āβ θ α -(ā β h αβ + bβ )ψ α -σ α + O(h 2 ) = β∈Vα c αβ σLS β -āβ θ α -(ā β h αβ + bβ )ψ α -σLS α + āα θ α + bα ψ α + O(h 2 ).
Collecting the terms in θ α and ψ α in the left-hand-side gives

1 + c αβ (ā β -āα ) θ α + a α + β c αβ ( bβ -bα + āβ h αβ ) ψ α = β∈Vα c αβ σLS β -σLS α + O(h 2 ).
This can be rewritten as (4.10)

θ α + ãα ψ α = β∈Vα cαβ σLS β -σLS α + O(h 2 ),
where ãα , cαβ are given in (4.4). This is (4.2) (b) . Finally we prove (4.2) (c) . Using (4.10 ) at the point β and the relation

ψ β = ψ α + O(h) gives the following expression for θ β (4.11) θ β = -ã β ψ α + γ∈V β cβγ σLS γ -σLS β + O(h 2 ).
Starting from (4.1) (c) and using (4.11), (4.10) and (4.6) (b) we obtain

ψ α = β∈Vα c αβ (θ β -θ α ) = β∈Vα c αβ -ãβ ψ β + γ∈V β cβγ σLS γ -σLS β -θ α + O(h) = β∈Vα c αβ ãα ψ α -ãβ ψ β + γ∈V β cβγ σLS γ -σLS β - δ∈Vα cαδ (σ LS δ -σLS α ) + O(h) = ψ α - β∈Vα c αβ (ã β -ãα ) + β∈Vα c αβ γ∈V β cβγ σLS γ -σ LS β - δ∈Vα cαδ (σ LS δ -σLS α ) + O(h)
Collecting in the left-hand-side the terms in ψ α gives:

1 + δ c αδ (ã δ -ãα ) ψ α = β∈Vα c αβ γ∈V β cβγ σLS γ -σLS β - δ∈Vα cαδ (σ LS δ -σLS α ) + O(h)
This is the identity (4.2) (a) where c * αβ is given in (4.5) and the proof is complete.

We now use the identities (4.2) to define approximations ψα , θα and σα as follows.

Corollary 4.1. The values ψα , θα and σα defined by

(4.12)              ψα = β∈Vα c * αβ γ∈V β cβγ σLS γ -σLS β -δ∈Vα cαδ (σ LS δ -σLS α ) , (a) θα = -ã α ψα + β∈Vα cαβ (σ LS β -σLS α ), (b) σα = -ā α θα -bα ψα + σLS α , (c) 
approximate ψ α , θ α and σ α with the following accuracy:

(4.13)          ψα = ψ α + O(h), (a) θα 
= θ α + O(h 2 ), (b) σα 
= σ α + O(h 3 ). (c)
Proof. The relations (4.13) result from comparing (4.12) and (4.2). We also use in the proof the fact that

a α = O(h), ãα = O(h), āα = O(h) and bα = O(h).
At this point, we stress that the computation of the approximations σα , θα , ψα is performed using at run time data located in the stencil V α only. This is obtained as follows. Suppose given a function u(x) and U = [u 1 , u 2 , . . . , u N ], the averages of u(x) over each cell T α . Translating the relations (4.12) into a computational procedure suggests the following Algorithm: Algorithm 1.

(1) Compute σLS α in all cells T α using (3.7) (2) Compute β∈Vα cαβ (σ LS β -σLS α ) in all cells T α using (4.4) (3) Compute the third order derivative ψα by (4.12) (a) (4) Compute the second order derivative θα by (4.12) (b) [START_REF] Barth | Numerical methods for conservation laws on structured and unstructured meshes[END_REF] Compute the first order derivative σα by (4.12) (c)

The Taylor expansion of u(x) at x α is

(4.14) u(x) = u α + σ α (x -x α ) + 1 2 θ α (x -x α ) 2 + 1 6 ψ α (x -x α ) 3 + O(h 4 ).
Therefore the average u α of u(x) over T α is

(4.15) ūα = u α + |T α | 24 θ α + O(h 4 ),
Using (4.13) and (4.15) gives the expansion of u(x) around the cell T α :

(4.16) u(x) = ūα + σα (x -x α ) + θα 1 2 (x -x α ) 2 - 1 24 |T α | 2 + 1 6 ψα (x -x α ) 3 + O(h 4 ).

Consequently we have

Lemma 4.1. Let U = [u 1 , u 2 , . . . , u N ] be the vector of the averages of a given function u(x) over the cells T α of the grid. Then the cubic reconstruction polynomial defined by

(4.17) w[U ] α (x) = ūα + σα (x -x α ) + θα 1 2 (x -x α ) 2 - 1 24 |T α | 2 + 1 6 ψα (x -x α ) 3 .
is a fourth order accurate reconstruction of u(x) near T α .

5.

A Fourth Order Finite Volume method 5.1. Definition of the scheme. Consider the conservation law (5.1)

∂ t u + ∂ x f (u) = 0.
Our basic finite volume scheme on the grid T α is:

(5.2) dv α (t) dt = - 1 |T α | f α+1/2 (t) -f α-1/2 (t) , 1 ≤ α ≤ N where (5.3) f α+1/2 (t) = F w α [V (t)](x - α+1/2 ), w α+1 [V (t)](x + α+1/2
) . In (5.3), t → v α (t) approximates t → ūα (t), the average of u(x, t) over cell T α . Moreover:

• (u L , u R ) → F (u L , u R ) is a numerical flux. • The reconstruction operator V = [v 1 , v 2 , . . . , v N ] → w[V ] α (x)
is given by (4.17). We now consider some properties of the semi-discrete scheme (5.2) in the case of the linear convection equation (5.4)

∂ t u + c∂ x u = 0, c > 0, x ∈ [0, 1],
with periodic boundary conditions. In this particular case, the function t → ūα (t) satisfies the equation:

(5.5)

dū α (t) dt = - c |T α | u(x α,α+1 , t) -u(x α-1,α , t) ,
and the semi-discrete scheme (5.2-5.3) becomes (5.6)

dv α dt = - c |T α | w α [V (t)](x α,α+1 ) -w α-1 [V (t)](x α-1,α ) .
In (5.6), the notation w α [V ] express the fact that the coefficients of the reconstructued polynomial x → w α [V ](x, t) depend on the values v β (t) only. Each polynomial w α is calculated by the Algorithm 1 of Section 4. In matrix form (5.6) is expressed as

(5.7) d dt V (t) = JV (t), J ∈ M N (R), with V (t) = [v 1 (t), v 2 (t) • • • , v N (t)] T ∈ R N .
Let us mention that proving the fourth order accuracy in space of the scheme (5.6) is by no way straightforward on a general grid. The following proposition is limitated to the case of a regular grid. Proposition 5.1. On a regular grid of stepsize h, the scheme (5.6) is fourth order accurate with respect to the equation

(5.8) dū α (t) dt = - c h u(x α,α+1 , t) -u(x α-1,α , t) .
. Proof. We refer to the Appendix for a proof as well as for further comments for the case of an irregular grid. 5.2. Statistical analysis for linear stability. In Section 2, the matrix stability analysis [START_REF] Hirsch | Numerical Computation Internal and External Flows[END_REF], of two variants of the scheme (2.2) was performed. The spectrum of the matrix J in (5.7) was represented on Fig. 2.1 for each of the two variants. Here we consider the scheme (5.6) on an irregular grid. Due to the irregularity of the grid, the spectrum of J is not accessible analytically and therefore we must rely on some numerical evaluation of the eigenvalues. Consider a periodic grid with cells of length |T α | = κ α h. The factor κ α is a measurement of the irregularity of the grid. It satisfies α κ α = 1. We now evaluate the spectral abscissa of J defined by [START_REF] Haider | Stability analysis of the cell centered finite-volume MUSCL method on unstructured grids[END_REF]:

(5.9) Λ = max 1≤k≤N Re(λ k ).

The dynamical system (5.7) is stable under the condition Λ ≤ 0. In order to perform some simple statistical analysis on a large number of grids, we consider the following setup. The grid has N cells and the irregularity factor κ α , 1 ≤ α ≤ N , is randomly selected such that (5.10)

κ α ∼ 1 + Cr α > 0,
where C ∈ [0, 1) is a constant and r = [r α ] ∈ [-1, 1] N is a random array of size N . The magnitude of the constant C determines the irregularity level of the grid. Testing a large series of such grids provides a statistical evaluation of the value of Λ. Using this procedure, no instability was observed, within computer accuracy. On Fig. 5.1 (left panel), we display the spectral abscissa a function of the index k of 5000 randomly selected grids of size N = 64. This was also performed (not shown) using a sample of 1000 grids of size N = 32. In both cases, the irregularity constant in (5.10) was choosen as C = 0.99, which corresponds to highly irregular grids. As can be observed, Λ 0 within computer accuracy. On Fig. 5.1 (right panel) the distribution of Λ is represented, which appears to be Gaussian. Furthermore a T-test at the confidence level α = 0.05 with null hypothesis on the mean value Λ = 0 (vs Λ = 0) provides a non-rejection and a confidence interval of [Λ min , Λ max ] = [-0.0085(-14), 0.14(-14)] (for Λ). This clearly indicates that the eigenvalues of the matrix J are located in the left complex half-plane and therefore, that the linear dynamical system (5.6) is stable. Note that due to the irregularity of the grid, a theoretical localization of Λ seems a difficult problem in spectral analysis, [START_REF] Haider | Stability analysis of the cell centered finite-volume MUSCL method on unstructured grids[END_REF].

Dissipation and dispersion.

In the particular case of a regular grid with step-size h, the approximation (5.6) can be analytically derived. The coefficients H

α , H

α and H

α in (3.10) are

H (2) α = 2h 2 , H (3) α = 0, H (4) α = 2h 4 . The coefficients a α , ãα , āα , b α , bα in (3.11) are a α = ãα = āα = 0, b α = h 2 6 , bα = 5 24 h 2 .
The coefficients c α,α+1 , c α,α-1 , c * α,α+1 , c * α,α-1 in (3.8) and (4.5) are

c α,α+1 = 1 2h , c α,α-1 = - 1 2h , c * α,α+1 = 1 2h , c * α,α-1 = - 1 2h .
The least square slope is

(5.11) σLS α = ūα+1 -ūα-1 2h .
The values of ψα , θα , ψα in (4.12) are (5.12)

               ψα = 1 (2h) 2 σLS α+2 + σLS α-2 -2σ LS α , θα = 1 2h σLS α+1 -σLS α-1 , σα = 53 48 σLS α -5 96 σLS α+2 -5 96 σLS α-2 . In (5.6), w α [V ](x α,α+1
) is given by:

w α [V ](x α,α+1 ) = w[V ] α (x α + h/2) (5.13) = ūα + 1 2 hσ α + 1 12 h 2 θα + 1 48 h 3 ψα .
The scheme (5.6) is therefore

dv α dt = - c h v α (t) + h 2 σα (t) + h 2 12 θα (t) + h 3 48 ψα (t) (5.14) - v α-1 (t) + h 2 σα-1 (t) + h 2 12 θα-1 (t) + h 3 48 ψα-1 (t) .
The dissipation and dispersion analysis of the system (5.14) proceeds in a classical way. For each given wavenumber k, -N/1 + 1 ≤ k ≤ N/2, we consider the periodic initial function u k 0 (x):

(5.15) u k 0 (x) = exp(2ikπx). The discrete initial data at x α = αh is (5.16) u k 0,α = exp(iαφ k ) where φ k = 2πkh ∈] -π, π].
The solution of the system (5.7) is:

(5.17 u k α (t) = exp(2ikπ(x α -ĉk t)), where the numerical velocity ĉk , which depends on k, is decomposed into real and imaginary parts as (5.18) ĉk = ĉk,R + iĉ k,I .

Definition 5.1. The dissipation and the dispersion functions are defined by

(5.19)    φ k ∈ [0, π[ → D 1 (φ k ) = ĉk,I c , (a) φ k ∈ [0, π[ → D 2 (φ k ) = ĉk,R c , (b).
• The dissipation function D 1 (φ k ) is positive when the sinusoidal gridfunction function z k α = exp(iαφ k ) is amplified for the wave number k. This corresponds to an unstable scheme. In the contrary, if D 1 (φ k ) ≤ 0 for all k, then the scheme is stable.

• The dispersive function D 2 (φ k ) ≥ 1 for a propagation at a velocity ĉk,R > c and D 2 (θ) ≤ 1 for a propagation at a velocity ĉk,R < c. In both cases, there is a dispersive behaviour of the scheme.

In practice, we expand the normalized eigenvalue s k = cλ k /h in powers of h when h → 0. This yields (recall that the symbol iξ corresponds to the operator ∂ x ):

(5.20)

s k = -c iξ + 17 384 iξ 5 h 4 + 229 3840 ξ 6 h 5 + O(h 6 ).
This is equivalent to claim that the modified equation of the scheme (5.14) is

(5.21) 5) x u(x, t) -

∂ t u + c∂ x u = -c 17 384 h 4 ∂ (
229 3840 h 5 ∂ (6) x u(x, t) + O(h 6 ).
The relation (5.21) indicates a fourth order accurate scheme. The leading term in the right-hand side represents a fourth order dispersive error. Furthermore the first dissipative term is of order 5. The real part of λ k behaves as, (see (5.16)):

(5. 22)

Re(λ k ) ∼ - 229 3840 φ 6 k ≤ 0.
This suggests a stable behaviour. Actually the normalized full spectrum, numerically reported on bottom of Fig. 5.2, confirms the stability of the scheme (5.14). The dissipation curve φ k ∈ [0, π) → D 1 (φ k ) and the dispersion curve φ k ∈ [0, π) → D 2 (φ k ) (see Definition 5.1) are reported on Fig. 5.2 (top panels).

Numerical results

In this section, we display numerical results obtained with the scheme (5.2). First we give some results on the linear convection equation. In this case, (5.2) reduces to (5.5). Then we give some nonlinear results.

In all the results the RK4 time-stepping scheme is used to approximate in time the system (5.7). The RK4 scheme is written as follows.

If V n V (t n ) is supposed given, then V n+1 is computed by (6.1)                  k 0 = JV n k 1 = J(V n + 1 2 ∆t k 0 ) k 2 = J(V n + 1 2 ∆t k 1 ) k 3 = J(V n + ∆t k 2 ) V n+1 = V n + ∆t 1 6 k 0 + 1 3 k 1 + 1 3 k 2 + 1 6 k 3 .
The resulting fully discrete scheme is separately fourth order in space and time, and therefore it is globally fourth order (assuming a CFL condition for the time step.). ). The spectrum is located in the left half-plane. This indicates stability. The order of accuracy is reflected by the tangency order at the origin along the vertical axis.

6.1. Linear stability analysis on irregular grids. In this section, we present a stability study for the convection equation approximated by the fourth order scheme of the previous section. We start from a mildly irregular grid of Ω = [0, 1], with cells T α , |T α | = κ α h, α κ α = 1 defined by the law (6.2)

κ α ∼ 1 + 1 2 cos(8x α π) 2 .
The grid is refined by randomly splitting each cell in two subcells according to the law

(6.3) κ 2α-1 ∼ κ α (1 -Cr α ), κ 2α ∼ κ α (1 + Cr α ),
where C is a fixed factor. This has the effect of monitoring the random number r α . The grid is refined five times according to (6.3). This results in a highly irregular grid. Table 1 and Table 2 report the max errors and the convergence rate obtained after 1, 5, 10 periods of propagation of the sine wave u 0 (x) = sin(2πx), with initial data ū0,α . Table 1 corresponds to C = 0 in (6.3) (no random effect in the splitting). Table 2 corresponds to C = 0.5. We observe very satisfactory errors and convergence rates matching the expectation of fourth order accuracy. Note that the accuracy loss between the results in Table 1 and Table 2 1.17(-3) 3.37 1.13(-4) 3.80 8.05(-6) 3.73 6.05(-7) 3.04 7.32(-8) 10

2.33(-3) 3.35 2.28(-4) 3.85 1.58(-5) 3.84 1.10(-6) 3.40 1.03(-7)

Table 2. Rate of convergence of the fourth order finite volume scheme (5.6). Irregular coarse grid (6.2). Refinement (6.3) with C = 1/2. No significant degradation of the order of accuracy is observed compared to the regular grid on Table 1.

6.2. Linear convection for irregular initial data. The first initial condition is [START_REF] Balsara | Monotonicity preserving weighted essentially non-oscillatory schemes with increasingly high order of accuracy[END_REF] (6.4)

u 0 (x) =                      1 6 G(x, β, z -δ) + 1 6 G(x, β, z + δ) + 2 3 G(x, β, z), -0.8 ≤ x ≤ -0.6, 1, -0.4 ≤ x ≤ -0.2, 1 -|10(x -0.2)|, 0 ≤ x ≤ 0.2, 1 6 F (x, α, a -δ) + 1 6 F (x, α, a + δ) + 2 3 F (x, α, a), 0.4 ≤ x ≤ 0.6, 0 otherwise. where (6.5) 
G(x, β, z) = e -β(x-z) 2 , F (x, α, a) = max(1 -α 2 (x -a) 2 , 0) a = 0.5, z = -0.7, δ = 0.005, α = 10, β = ln(2) 36δ 2 .
We display on Fig. 6.1 the results obtained with the fourth order scheme (5.6) and the RK4 time scheme after 1000 iterations on N = 400 cells of a regular grid. For this case and in all the cases in the sequel, the spatial approximation described uses a simple slope limiter whose design is as follows. In each cell T α , the reconstructed poynomial

w α [V ](x, t 0 ) is limited such that (6.6) w α [V ](x α±1/2 ) ∈ [ min β∈Vα v β , max β∈Vα v β ]
This is obtained by applying the same scalar coefficient λ α to the three values σ α , θ α and ψ α in (4.17).

In other words, the polynomial w α [V ](x) in (4.17) is replaced by

(6.7) wα (x) = ūα + λ α w[V ] α (x) -ūα
with λ α > 0 such that (6.6) holds in the cell T α . This limitation is part of the semi-discrete approximation. Therefore it is applied at each substep of (6.1). Since this paper is focused on the reconstruction (4.17), we limit ourselves to the limiter (6.6) and we do not elaborate further on this point.

The second test case corresponds to the initial condition given in [START_REF] Harten | ENO Schemes with subcell resolution[END_REF]:

(6.8) u 0 (x + 0.5) =          -x sin( 3 2 πx 2 ), -1 ≤ x ≤ -1/3, | sin(2πx)|, |x| ≤ 1/3, 2x -1 -sin(3πx)/6, 1/3 < x ≤ 1
We display on Fig. 6.2 the results obtained with the fourth order scheme (5.6) and the RK4 time scheme. The CFL number is CFL = 0.4. Again a slope limitation according to (6.6) is used. The results are typical of a fourth order scheme [START_REF] Balaguer | Fourth-order non oscillatory upwind and centtral schemes for hyperbolic conservation laws[END_REF].

6.3. Scalar conservation laws. In this section we present several results for nonlinear equations. The first problem is the Burger's equation with a 2-periodic initial data [START_REF] Liu | Nonoscillatory high order accurate self-similar maximum principle satisfying shock capturing schemes[END_REF]: (6.9)

∂ t u + ∂ x (u 2 /2) = 0, -1 ≤ x ≤ 1, u 0 (x) = 1 + 1 2 sin(πx).
We show on Fig. 6.3 the results at time T = 2/π with N = 120 and N = 240 clles respectively. The grid is regular. The slope limiter (6.6) is used and CFL = 0.2. The combination of the fourth order scheme with the limiter is sufficient to obtain a sharp shock profile in the two cases. Again, no significant difference with the scheme in [START_REF] Balaguer | Fourth-order non oscillatory upwind and centtral schemes for hyperbolic conservation laws[END_REF] is observed. The slope limiter is given in (6.6) 6.4. Gas dynamics. In this section we display several results obtained for the Sod and the Lax shock tubes of gas dynamics. We show the results obtained with order two and order four. In both cases, the limiter (6.6) is used. Note that this limiter does not a priori prevent the apparition of new extrema. It is used for the sole purpose to limit the appearance of nonlinear oscillations. Observe that in such shock tube problems, the physical time of simulation is too short to observe significant differences between the second order and the fourth order schemes. Future work will be devoted to a sharper comparison, including larger physical time of observation. Here a regular grid is used and our purpose is limited to show that the fourth order scheme (1.2) is sufficiently robust to handle classical gas dynamics test cases.

We have considered the Sod case and the Lax case in a physical system of units corresponding to air at the sea level 5 . The thermodynamic data are: (6.10) The observation time is t = 0.003s. The results are plotted against the exact solution. The contact discontinuity is slightly better with order 4 (Fig. 6.5) than with order 2 (Fig. 6.4). However due to the short observation time, there is no essential difference between the second order and the fourth order versions of the scheme. Observe that the limiter (6.6) (applied to the physical quantities ρ, u, p) is sufficient to ensure a good behaviour of the scheme near discontinuities. 6.4.2. Lax test case. The Lax test case initial conditions are given using the physical system of units (6.10): (6.12)

           r = 285.7143J. kg -1 .K -1 constant of perfect gas c v = 714.2857J. kg -1 .K -1 p = rρT
   ρ g = 1.038569 kg . m -3 u g = 191.511 m . s -1 p g = 617800 Pa    ρ d = 1.16667 kg . m -3 u d = 0.0 m . s -1 p d = 100000 Pa
The observation time is t = 0.00575s. Again there is no essential difference between the versions of order 2 (Fig. 6.6) and 4 (Fig. 6.7). We only observe a better resolution of the contact discontinuity with the 4-th order scheme. In this case, the limiter (6.6) is not sufficient to efficiently limit the overshoot near the contact discontinuity. We oberve this behaviour in the case of a temperature transition of the form T before < T after . Note that no overshoot was observed in the opposite case (T after < T before ). Observe nonetheless that the fourth order scheme (5.2-6.1) is stable.

Conclusion

This paper describes the design of a high order finite volume semidiscrete scheme. The study focuses on the design and computational complexity of interpolation on irregular grids. We obtain a high order finite volume scheme which can be extended to complex physical models. The resulting scheme exhibits good stability properties.

As already explained in the introduction, our main interest is to keep the paradigm of one unknown per cell, avoiding to introduce additional degrees of freedom in the cells. Furthermore our reconstruction procedure is fully centered. In particular no solution dependent reconstruction stencils are invoked. Finally the approximation of derivatives in (4.12) is realistic regarding parallellism issues. This is clearly of fundamental importance for practical applications. This property will be further analyzed elsewhere in physically realistic situations.

Appendix: Spatial accuracy analysis

Here we give some comments on the accuracy analysis of the approximation in space developed in this paper. Let u(x, t) be solution of the advection equation ∂ t u = ∂ x u. The exact average over the cell T α gives (see Sec. 5.1):

(8.1) dū α (t) dt = 1 h α u(x α+1/2 , t) -u(x α-1/2 , t) , with h α = |T α |. The approximation t → v α (t) of ūα (t) is solution of: (8.2) dv α (t) dt = 1 h α w α [V (t)](x - α+1/2 ) -w α [V (t)](x - α-1/2 ) .
where V (t) = [v 1 (t), . . . , v N (t)] and w α [V ](x) is the cubic polynomial (4.17 

H α (u) 1 h α u(x α+1/2 ) -u(x α-1/2 ) - 1 h α w α [U ](x - α+1/2 ) -w α [U ](x - α-1/2 ) .
Define the operator L - α+1/2 (u) by

(8.4) L - α+1/2 (u) u(x α+1/2 ) -w α [U ](x - α+1/2 ). Then H α (u) becomes: (8.5) H α (u) = 1 h α L - α+1/2 (u) -L - α-1/2 (u) .
In the particular case of a regular grid (h α = h for all α), the operator L - α+1/2 is given by (see (5.14)):

(8.6) L - α+1/2 (u) = u(x α+1/2 ) -ūα + 1 2 hσ α + 1 12 h 2 θα + 1 48 h 3 ψα ,
where the notation is (see (5.11-5.12)):

(8.7)

                         σLS α = ūα+1 -ūα-1 2h , σα = 53 48 σLS α - 5 96 σLS α+2 - 5 96 σLS α-2 , θα = 1 2h σLS α+1 -σLS α-1 , ψα = 1 (2h) 2 σLS α+2 + σLS α-2 -2σ LS α .
The Taylor expansion of H α (u) at x α is (see (5.20)):

(8.8) H α (u) = - 17 384 h 4 ∂ (5) x u(x α ) + 229 3840 h 5 ∂ (6) x u(x α ) + O(h 6 ).
This proves Prop. 5.1, i.e. the fourth order accuracy in the usual sense. When h α is non constant the evaluation of the order p > such that H α (u) = O(h p ) is more delicate. In particular, it cannot be performed by a Fourier symbol calculation. We show next how the Peano Kernel Theorem ( [START_REF] Powell | Approximation theory and methods[END_REF], chap. 22, p.270) can provide a set of sufficient conditions on the irregularity of the grid in order for (8.2) to keep a high order accuracy. For simplicity of the presentation, the analysis is restricted to the case of the piecewise linear reconstruction (1.13-1.14), but it can be extended to the cubic reconstruction case.

Instead of (8.6) the operator L - α+1/2 (u) is in the case of a linear reconstruction: (8.9) L - α+1/2 (u) = u(x α+1/2 ) -ūα + 1 2 h α σα .

Since L - α+1/2 (p) = 0 when p(x) is a polynomial of degree 1, the Peano Kernel Theorem implies that L - α+1/2 can be expressed as (8.10) L - α+1/2 (u) =

x α+1/2

x α-1/2 K - α+1/2 (θ)u (θ)dθ. .

Consider now that α is a continuous parameter such that α → x(α) describes the variation of the grid size. The grid size h α = h(α) is defined by h(α)h(α + 1/2)h(α + 1) h(α + 1/2) 2 + h(α -1/2) 2 .

Using a change of variable, the value of H α (u) in (8.5) can be expressed as: Therefore ∂ σ A = 0 and A = O(h 2 ). Due to the fact that h (σ) = 0, Prop 8.1 proves the second order accuracy of the scheme (8.2) and therefore we recover (8.8.)

H α (u) = 1 h(α)
Remark 5. The proposition 8.1 only claims that the accuracy is preserved when the grid is a slight perturbation of a regular grid in the sense of (8.21). The magnitude of the perturbation is measured by the variation of the function A(σ, τ ). Therefore the problem of the accuracy analysis of the scheme (8.2) on grids with cells presenting large shape ratio remains an open question.
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 11121 Figure 1.1. The cell T α and the two neighboor cells T α±1 . The barycenters of the cells T α±1 and T α are the points x α±1 and x α , repectively. In addition, h α-1,α = x α -x α-1 and h α,α+1 = x α+1 -x α .
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 21 Figure 2.1. Spectrum of two fourth order finite volume schemes on a regular grid. Example 1 (stable) is plotted with *. Example 2 (instable) is plotted with o. The grid size is N = 64.
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 51 Figure 5.1. Left panel: spectral abscissa Λ (5.9) for the scheme (5.6) for a sample of 5000 random irregular grids of size 64. The scale along y is 10 -13 . Right panel: distribution of the spectral absissa Λ for a sample of 5000 random grids of size 64: a Gaussian distribution around the value 0 is clearly observed. This indicates a stable scheme.
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 52 Figure 5.2. Top left: dissipation of the scheme(5.14). Top right: dispersion of the scheme(5.14). Bottom: spectrum of the matrix J in (5.7). The spectrum is located in the left half-plane. This indicates stability. The order of accuracy is reflected by the tangency order at the origin along the vertical axis.
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 61 Figure 6.1. Linear advection test case with initial data (6.4). The time is T = 4, 1000 iterations, CFL = 0.8. The slope limiter is given in (6.6).
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 62 Figure 6.2. Linear advection test case with initial data (6.8). The time is T = 2.5 and the CFL number is CFL = 0.4. Left: 375 iterations, N = 120. Right: 750 iterations, N = 240. The slope limiter is given in (6.6).

Figure 6 . 3 .

 63 Figure 6.3. Periodic Burgers equation (6.9). The time is T = 2/π and the CFL number is CFL = 0.2. Left: 286 iterations, N = 120. Right: 573 iterations, N = 240.The slope limiter is given in(6.6) 

  and E = c v T pressure and internal energy x 0 = 0.5 m location of the initial discontinuity x l = 5.0 m lenght of the half of the tube

Figure 6 . 4 .

 64 Figure 6.4. Sod shock tube . Second order scheme with standard slope limiter . Left: density . Right: velocity.

Figure 6 . 5 .

 65 Figure 6.5. Sod shock tube . Fourth order scheme with standard slope limiter . Left: density . Right: velocity

Figure 6 . 6 .

 66 Figure 6.6. Lax shock tube . Second order scheme with slope limiter (6.6). Left: density . Right: velocity.

Figure 6 . 7 .

 67 Figure 6.7. Lax shock tube . Fourth order scheme with slope limiter (6.6). Left: density . Right: velocity.

  ). Let u(x) be any regular function and U = [ū 1 , . . . , ūN ]. The accuracy analysis consists in evaluating p > 0 such that H α (u) = O(h p ) where(8.3) 

( 8 .+ 1 / 2 )

 812 [START_REF] Haider | Stability of the MUSCL method on general unstructured grids for applications to compressible fluid flows[END_REF] h(α) x (α) with the additional assumption that h(α) = O(h). -h(α -1/2) h(α + 1/2) 2 + h(α -1/2) )h(α + 1/2) h(α + 1/2) 2 + h(α -1/2) 2 , c(α) = -1 8

1 0aProposition 8 . 1 . 3 Remark 4 .

 18134 (α)h(α) 3 τ 2 + b(α)h(α) 2 τ + c(α)h(α) u x(α + 1/2) -τ h(α) -a(α -1)h(α -1) 3 τ 2 + b(α)h(α -1) 2 τ + c(α)h(α -1) u x(α -1/2) -τ h(α -1) dτ. (8.16) Define (σ, τ ) ∈ [α -1, α] × [0, 1] → A(σ, τ ) by (8.17) A(σ, τ ) = a(σ)h(σ) 3 τ 2 + b(σ)h(σ) 2 τ + c(σ)h(σ),where , for σ ∈ [α -1, α], the values a(σ), b(σ), c(σ) are given in(8.15) when replacing h α by h(σ)m in the right-hand side. Then H α (u) is rewritten as(8.18) H α (u) = 1 h(α) [α-1,α]×[0,1] ∂ ∂σ A(σ, τ )u x(σ + 1/2) -τ h(σ) dσdτ.Therefore by the mean value theorem for intgrals, |H α (u)| is estimated by(8.19) |H α (u)| ≤ 1 h(α) [α-1,α]×[0,1] ∂ ∂σ [A(σ, τ )u x(σ + 1/2) -τ h(σ) ] dτ dσ.Finally we have∂ ∂σ A(σ, τ )u (x(σ + 1/2) -τ h(σ)) = ∂A(σ, τ ) ∂σ u x(σ + 1/2) -τ h(σ) (8.20) + A(σ, τ ) h(σ + 1/2) -τ h (σ) u x(σ + 1/2) -τ h(σ) .This estimate leads to the following result: The scheme (8.2) is second order accurate withy respect to (8.1) under the sufficient condition on the variation of the grid α → x(α), given by the relationsσ,τ | ∂ ∂σ A(σ, τ )| ≤ Ch 3 max σ,τ |A(σ, τ )| |h(σ)| + |h (σ)| ≤ ChIn the case of a regular grid of size h, the function h(α) is the constant h(α) = h. We have (8.22) A(σ, τ ) = h 2

Table 1 .

 1 is small. Rate of convergence of the fourth order finite volume scheme(5.6). Irregular coarse grid (6.2). Refinement (6.3) with C = 0. The convergence rate is close to 4.

	Period N=32 rate N=64 rate N=128 rate N=256 rate N=512
	1	2.62(-4) 3.82 1.80(-5) 3.77 1.32(-6) 3.83 9.23(-8) 3.92 6.06(-9)
	5	1.17(-3) 3.83 8.18(-5) 3.64 6.52(-6) 3.83 4.58(-7) 3.92 3.02(-8)
	10	2.33(-3) 3.84 1.62(-4) 3.63 1.30(-5) 3.83 9.14(-7) 3.92 6.03(-8)
	Period N=32 rate N=64 rate N=128 rate N=256 rate N=512
	1	2.62(-4) 3.39 2.49(-5) 3.61 2.02(-6) 3.02 2.49(-7) 2.73 3.75(-8)
	5	

  (θ) = a α (x α+1/2 -θ) 2 + b α (x α+1/2 -θ) + c α ,with coefficients (we denote h α+1/2 (h α + h α+1 )/2):

	The kernel K -α+1/2 (θ) is			
	(8.11)	K -α+1/2 (θ) =	1 2	L -α+1/2,x {(x -θ) + },
	where the operator L -α+1/2 is applied in the x-variable. A simple calculation shows that K -α+1/2 (θ) is
	expressed as the second order polynomial	
	(8.12) α+1/2 (8.13) K -                	a α = -b α = 1 2 c α = -	1 4h α -1 4 1 h α h α+1/2 h α+1 + 1 8 h α+1/2 -h α-1/2 h 2 α+1/2 + h 2 α-1/2 h α h α+1/2 h 2 , α+1/2 + h 2 α-1/2 8 h 2 α+1/2 + h 2 α-1/2	,

Limiters and monotonicity preserving operators will be addressed separately elsewhere.

The direct neighborhood of the cell Tα is sometines referred as the Von Neumann neighborhood of Tα.

CEDRE is a parallel multisolver CFD code for aerothermochemistry developed at Onera, http://cedre.onera.fr

We note c αβ instead of c LS αβ in the sequel.

Usually the Sod and Lax shock tube initial data are specified using dimensionless values