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SUBMITTED

A LOT OF BENT FUNCTIONS

J.WOLFMANN

Abstract. We introduce an infinite sequence (Fi)i∈N of boolean
functions whose terms all are bent functions. Furhermore we present
a constrution of a lot of distinct bent function.

1. Introduction

F2 is the finite field of order 2 and a m-boolean function is a map
from Fm

2 to F2. As usual, in order to benefit from the properties of a
finite field we identify the F2-vector space Fm

2 with the finite field F2m .

The Fourier transform (or Walsh transform) F̂ of a m-boolean func-
tion F is the map from F2m into Z defined by:
F̂ (v) =

∑
x∈Fm

2
(−1)f(x)+Tr(vx) where Tr is the trace of F2m over F2.

F̂ (v) is called the Fourier coefficient of v.
Notation: If e ∈ F2m then Te(x) = Tr(ex) where Tr is the trace of F2m .
It is easy to prove that:

(1) F̂ (v) = 2m − 2w(F + Tv)
two where w denotes the weight of a boolean function.

F is bent if all its Fourier coefficients are in {−2m/2, 2m/2}.
F is near-bent if all its Fourier coefficients are in {−2(m+1)/2, 0, 2(m+1)/2}
Since the Fourier coefficients are in Z, bent functions exist only when
m is even and near-bent functions exist only when m is odd.
If m = 2t and if F is a bent function then the dual F̃ of F is the
(2t)-boolean function defined by: F̂ (v) = (−1)F̃ (v)2t where F̂ is the
Fourier transform of F . It is well-known and easy to proof that the
dual F̃ of a bent function F is a bent function and that the dual of F̃
is F .

Bent functions were introduced by Rothaus in [6] .They are interesting
for Coding Theory, Cryptology and Sequences and were the topic of a
lot of works. See for instance [2], [5] Chap. 14, [7], [1].

The main results of this work are the introduction of infinite sequences
of bent functions (section 5) and a construction of a set of distinct bent
functions (section 6).

Key words and phrases. Bent Functions, Near-Bent Functions.
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2. special representation of F2t
2

In this paper we describe every (2t)-bent function by means of two
(2t − 1)-near-bent functions. This approach was already used in [4]
[8],[9],[10] and for the construction of the famous Kerdock codes
(see [3] and [5] Chap.15).
We describe every 2t-boolean function F by means of two
(2t− 1)-boolean functions as follows:
we identified the finite field F22t with:

F22t−1 × F2 = {X = (x, ν) | x ∈ F22t−1 , ν ∈ F2}.
In this way a (2t)-boolean function F is now defined by:

(∗) F (x, ν) = (ν + 1)f(x) + νg(x)
We are now able to introduce an infinite sequence of bolean functions
whose terms all are bent functions. where f and g are the two (2t−1)-
boolean functions such that

f(x) = F (x, 0) and g(x) = F (x, 1).
It is easy to check that for every (x, ν) the rigth member of (∗) is equal
to F (x, ν).
Conversely, if f and g are any two (2t− 1)-boolean functions then (∗)
define a (2t)-boolean function F and f and g are the restriction of F
respectively to F22t−1 × {0} and F22t−1 × {1}.
We denote such a function by F = [f, g].

. We now characterize the (2t−1)-boolean functions f and g such that
F = [f, g] is a bent function. The next proposition is a special version
of a well-known result on the hyperplane section of a support of a bent
function. A proof is given in [9].

Proposition 1.
Let f an g be two (2t− 1)-boolean functions and let f̂ and ĝ be respec-
tively their Fourier Transforms. F = [f, g] is a bent function if and
only if:

(a) f and g are near-bent.

(b) ∀a ∈ F22t−1 | f̂(a) | + | ĝ(a) |= 2t.

Proof.
See [9], Proposition 14. �

Remark: (b) means that one of | f̂(a) | and | ĝ(a) | is equal to 2t and
the other one is equal to 0.

3. The machinery

Definition 2. If f is a (2t− 1)-boolean function then::

Î0f is the indicator of the set {x ∈ F22t−1 | f̂(x) = 0}
Î−f is the indicator of the set {x ∈ F22t−1 | f̂(x) = −2t}
deduce Î+f is the indicator of the set {x ∈ F22t−1 | f̂(x) = 2t}
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In other words: Î0f (x) = 1 if and only if f̂(x) = 0, Î−f (x) = 1 if and

only if f̂(x) = −2t and Î+f (x) = 1 if and only if f̂(x) = 2t.

Definition 3.
If f is a m-boolean function and if ω ∈ F2m the derivative of f rel-
atively to ω, denoted by Dω(f), is the m-boolean function defined by
Dω(f)(x) = f(x) + f(x+ ω).

Now we need some preliminary results.

Lemma 4.
Let F = [f, g] be a (2t)-bent function and let F̂ be the Fourier transform
of F .

a) F̂ (u, 0) = f̂(u) + ĝ(u).

b) F̂ (u, 1) = f̂(u)− ĝ(u).

c) If f + g = tu then ĝ(a) = f̂(a+ u)

Proof.
See [9], Lemma 13. �

We now introduce a connexion between the dual of a bent function
[f0, f1] and the indicators Î0f , Î−f and Î+f .

Theorem 5.
Let F = [f, g] be a (2t)-bent function and let F̃ = [f̃ , g̃] be its dual
function. Then:

a) f̃ = Î−f + Î−g
b) f̃ + g̃ = Î0f .

c) Î0f + Î0g = 1

d) If f + g = tu then:

f̃(x) = Î−f (x) + Î−f (x+ u) (in other words f̃ = Du(Î−f )).

g̃(x) = Î−f (x) + Î+f (x+ u).

Proof.

Proposition 1 says that one of | f̂(a) | and | ĝ(a) | is equal to 2t and
the other one is equal to 0.
It follows that every a in F22t−1 belongs to one of the following sets:

A1 = {a ∈ F22t−1 | f̂(a) = −2t and ĝ(a) = 0}
A2 = {a ∈ F22t−1 | f̂(a) = 0 and ĝ(a) = −2t}
A3 = {a ∈ F22t−1 | f̂(a) = 2t and ĝ(a) = 0}
A4 = {a ∈ F22t−1 | f̂(a) = 0 and ĝ(a) = 2t}

Remark that A1 is the set of elements a of F22t−1 such that f̂(a) = −2t.

In other words A1 is the support of Î−f .
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Similarly:
A2 is the support of Î−g , A3 is the support of Î+f ,

A4 is the support of Î+g
The distribution of the Fourier coefficients of a near bent function is
well known (see for instance Prop. 4 in [1]). This means that Ai is non
empty for i = 1, 2, 3, 4. Furthermore, obviously:
Ai ∩ Aj = ∅ if i 6= j and only if A1 ∪ A2 ∪ A3 ∪ A4 = F22t−1 .

Proof of a)
The definition of the dual of F induces that (a, η) is in the support of

F̃ if and only if F̂ (a, η) = −2t.

Since F̂ (a, 0) = f̂(a) + ĝ(a) (Theorem 5) then:

F̂ (a, 0) = −2t if a ∈ A1 or a ∈ A2. In other words: f̃(a) = 1 if and

only if a ∈ A1 ∪ A2. Therefore A1 ∪ A2 is the support of f̃ .
Since A1 is the support of Î−f and A2 is the support of Î−g and because

these two sets are disjoint then A1∪A2 is the support of Î−f + Î−f . This

means f̃ = Î−f + Î−f .

Proof of b)

Î0f is the indicator of the set {x ∈ F22t−1 | f̂(x) = 0}.
We know that (a, 0) is in the support of F̃ if and only if a ∈ A1 ∪ A2.
and (a, 1) is in the support of F̃ if and only if a ∈ A1 ∪ A4.

Hence the support of f̃ is A1 ∪ A2 and the support of g̃ is A1 ∪ A4.
Consequently the support of f̃ + g̃ is A2 ∪ A4. This set is also the
support of Î0f , this means f̃ + g̃ = Î0f .

Proof of c)

Î0f is the indicator of the set {a ∈ F22t−1 | f̂(a) = 0}.
Then A2 ∪ A4 is the support of Î0f ,

Î0g is the indicator of the set {a ∈ F22t−1 | ĝ(a) = 0}. We see that

A1 ∪ A3 is the support of Î0g .
Since A2 ∪A4 and A1 ∪A3 are disjoint then A2 ∪A4 ∪A1 ∪A3 is the
support of Î0f + Î0g . We know that A2 ∪A4 ∪A1 ∪A3 = F22t−1 and this

proves that Î0f + Î0g = 1.

Proof of d)

Î0f is the indicator of the set {x ∈ F22t−1 | f̂(x) = 0}
Now assume f + g = tu. From the descriptions of A1 and A2, if a ∈ A1

then a+ u ∈ A2 and if b ∈ A2 then b = a+ u with a = b+ u ∈ A1.
Hence A2 = {a + u | a ∈ A1}. We know that the support of f̃ is

A1 ∪ A2 and that A1 is the support of Î−f . It follows that:

f̃(x) = Î−f (x) + Î−f (x+ u) = DuÎ
−
f (x) �
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4. Preliminary results

The next results are important tools for the proof of the main The-
orems.

Theorem 6. (McGuire and Leander)
Let f be a near-bent function.
[f, f + te] is a bent-function if and only if De(Î

0
f ) = 1.

Proof.
See [4], Theorem 3. �

Theorem 7. (W)
Let f be a (2t− 1)-near-bent function.
let ω be in F22t−1 and let ε be in F2.

If Dωf = ε then Îf = tω + ε

Remark: According to the definition of Îf this lemma means that if

Dωf = ε then f̂(x) = 0 if and only if tω(x) = 1 + ε.

Proof. f̂(u) =
∑

x∈F22t−1
(−1)f(x)+tr(ux) = 22t−1 − 2w(f + tr(ux).

f̂(u) = 0 if and only if w(f + tu) = 22t−2.

Dωf = ε means that f(x+ ω) = f(x) + ε.
The transform τ : x → x + ω is a permutation of F

22t−1 and then
preserves the weight of every (2t− 1)-Boolean function. Thus:

]{x | f(x) + tr(ux) = 1} = ]{x | f(x+ ω) + tr(u(x+ ω)) = 1}.
(E) ]{x | f(x) + tr(ux) = 1} = ]{x | f(x) + ε+ tr(ux) + tr(uω) = 1}.
If tr(uω) + ε = 1 the right hand member of (E) is:
]{x | f(x) + tr(ux) = 0} = 22t−1 − ]{x | f(x) + tr(ux) = 1}

Hence (E) becomes:
]{x | f(x) + tr(ux) = 1} = 22t−1 − ]{x | f(x) + tr(ux) = 1}

In other words w(f + tu) = 22t−1 − w(f + tu) .

Conclusion:
f̄i is a near-bent function for every i ∈ N.

If tr(uω) + ε = 1 then w(f + tu) = 22t−2 which is equivalent

to f̂(u) = 0.

For every ε the number of u such that tr(uω) + ε = 1 is 22t−2 and

this is also the number of u such that f̂(u) = 0 (see Prop. 4 in [1]).

Then, immediately: f̂(u) = 0 if and only if tr(uω) + ε = 1. This means

Îf = tω + ε �

Theorem 8.
Let F = [f0, f0 + tu] be a bent function with u be in F22t−1 and let

F̃ = [f̃0, f̃1] be its dual. Let r be in in F22t−1.

[f̃0, f̃0 + tr] is a bent function if and only if tr(ur) = 1.
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Proof.
1) Since the dual of F̃ is F then, according to Theorem 5, b):

f0 + f0 + tu = Î0
f̃0

that is Î0
f̃0

= tu

Now we know from McGuire and Leander that [f̃0, f̃0 + tr] is a bent-

function. if and only if Dr(Î
0
f̃0

) = 1.

Dr(Î
0
f̃0

)(x) = Dr(tu)(x) = tu(x) + tu(x+ r) = tr(ux) + tr(u(x+ r))

= tr(ur).

It follows that [f̃0, f̃0 + tr] is a bent function if and only if tr(ur) = 1.

2) According to Theorem 5,c),: Î0
f̃0

+ Î0
f̃1

= 1. We deduce that

Dr(Î
0
f̃0

) = Dr(Î
0
f̃1

) whence Dr(Î
0
f̃1

)(x) = tr(ur). As previously it comes:

[f̃1, f̃1 + tr] is a bent function if and only if tr(ur) = 1. �

Corollary 9.
From a bent function F = [f0, f0 + tu] with u in F22t−1,

we obtain 22t−2 distinct bent functions [f̃0, f̃0 + tr] such that tr(ur) = 1
.

5. Sequences of Bent Functions

We are now able to introduce an infinite sequence of bolean functions
whose terms all are bent functions.

Theorem 10.
Define sequences (Fi)i∈N of (2t)-boolean functions by:

1) F0 = [f0, f0 + tr0 ] with f0 a (2t−1)-boolean function and r0 ∈ F22t−1,
and for i ≥ 1:

Fi = [fi, fi + tri ] with fi(x) = Dri−1
Î−fi−1

(x) and tr(ri−1ri) = 1.

If F0 is a bent function then:
Fi is a bent function for every i ∈ N.
fi is a near-bent function for every i ∈ N

Proof. We prove the result by induction.
Step 1. For i = 0 the boolean function F0 is bent by definition.
Step 2. Assume that for j ∈ N: Fj = [fj, fj + trj ] is bent.

Let [f̃j, g̃j] be the dual of Fj. Applying Theorem 8 to Fj it comes that

[f̃j, f̃j + rj+1] is bent if and only if tr(rjrj+1) = 1.
According to Theorem 5, d),we know that:

f̃j = Drj Î
−
fj

(x) and then [f̃j, f̃j + rj+1] is bent. This last function is

nothing but Fj+1 and this proves that Fj+1 is bent.
Proposition 1 implies that fi is a near-bent function for every i ∈ N. �

Examples:
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1) Kerdock

• f0 = Qu Q(x) =
∑t−1

j=1 tr
(
x2

j+1
)
, Qe(x) = Q(ex).

• r0 = u.
This is the initial Kerdock Bent Function (see [3] and [5]).

2) Kasami-Welch
• f0(x) = tr(x4

s−2s+1) with 2t− 1 6≡ 0 mod 3 and
3s ≡ ±1 mod (2t− 1), s < t,

• r0 = 1.
It is proved in [4] that in this case [f0, f0 + t1] is a bent function.

Important Remark:

Of course we whish to find distinct bent functions as terms of F . If
Fi = [fi, fi + tri ] is equal to Fl with l < i we just have to change ri by
any other si such that tr(ri−1si) = 1. We have 22t−2 − 1 possibilities.

In this way we can expect to find a lot of bent functions as member
of F .

Open question:
What is the maximum of distinct bent functions as terms of a

sequence F ?

6. A construction

In the sequence F there are infinitely many terms Fj which are bent
functions but they are not distinct since the number of all bent function
is limited. Corollary 9 gives 22t−2 distinct bent functions. The following
constuction improves this result by a specific choice of the ui’s.

Construction:
Let F0 = [f, f + tu0 ] be a bent function.

Let F̃0 = [f̃0, g̃0] be the dual of F0. Define R0 = {v | tr(u0v) = 1}.
We know from Corollary 9 that B0 = {[f̃0, f̃0 + tu1 ] | tr(u0u1) = 1} is
a set of bent functions.
Now let u1 be in R0 and u1 6= u0.
Define R1 = {v | tr(u1v) = 1, tr(u0v) = 0} and
more generally, if 1 ≤ j ≤ 2t− 2 define
Rj = {v | tr(ujv) = 1, tr(uj−1v) = 0, ..., tr(u0v) = 0}.
with uj in Rj−1 and Bj = {[f̃j, f̃j + tv] | v ∈ Rj}.
Bj is a set of bent functions which are not in Bj−1, Bj−2, ......B1, B0.

Theorem 11.
(
⋃
Bj)

2t−2
j=0 is a set of distinct bent functions. .

Question: what is the cardinality of (
⋃
Bj)

2t−2
j=0 ?

Theorem 12.
If uj ∈ Rj−1 and uj /∈< uj−1, uj−2, ...u1, u0 > (subspace generated by
u0, u1, ..uj−1) then (

⋃
Bj)

2t−2
j=0 is a set of 22t−1−2 distinct bent functions.
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Proof. First remember that ti(x) = tr(uix).
Step 1:
if 0 ≤ j ≤ 2t− 1 the linear forms t0, t1, ..tj are linearly independant.

We prove this result by induction.
t0 and t1 are distinct and non zero since u1 6= u0 and tr(u1u0) = 1.
Thus they are linearly independant.
Now assume t0, t1, ..tj−1 linearly independant. Because of uj /∈< uj−1, uj−2, ...u1, u0 >
and by using the vector space isomorphism ul −→ tl then:
tj /∈< tj−1, tj−2, ...t1, t0 >. Hence tj, tj−1, tj−2, ...t1, t0 are linearly inde-
pendant.

Step 2: Rj contains 22t−2−j elements.

The j+ 1 linear forms t0, t1...tj of Rj are linearly independant then the
rank of the system tr(ujv) = 1, tr(uj−1v) = 0, ..., tr(u0v) = 0 is j + 1
and its kernel has dimension 2t−1−(j+1) = 2t−2−j. Therefore, the
cardinality of Rj which the number of solutions of the previous system
is 22t−2−j.

Step 3: From the definition the cardinality of (
⋃
Bj)

2t−2
j=0 is the car-

dinality of (
⋃
Rj)

2t−2
j=0 which is

∑2t−2
j=0 22t−2−j = 22t−1 − 2. From the

construction of Rj and Bj, al the member of (
⋃
Bj)

2t−2
j=0 are bent func-

tions. �

Remark 13.
The cardinality of the set of the uj used in the construction is almost
the cardinality of F22t−1.

7. Existence Problem

In order to validate Theorem 12 we have to study the existence of
uj ∈ Rj−1 and uj /∈< uj−1, uj−2, ...u1, u0 >.

The following Lemma was proved by Philippe Langevin.

Lemma 14.
Rj is defined as above. If 0 ≤ j < 2t − 2 there exist elements in Rj

which are not in in the subspace generated by u0,u1, . . . , uj.

Proof. In order to prove the Lemma, we count how many elements
v of the space 〈uj, . . . , u1, u0〉 are in Rj. A such element decomposes
v = λjuj + · · ·+λ1u1+λ0u0 where the scalar λi ∈ F2 satisfy the system:

∀k, 0 ≤ k ≤ j, tr(ukv) =

j∑
i=0

λitr(uiuk) =

{
medskip1, j = k;

0, k < j.

Since ui belongs to Ri−1 and uk belongs to Rk−1 then tr(uiuk) vanishes
whenever the integers i and k are not consecutive. The scalar λi satisfy
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the j + 1 equations:

λj−1 = tr(uj)λj + 1;

λk−1 = tr(uk)λk + λk+1 (1 ≤ k < j);

0 = tr(u0)λ0 + λ1.

There are precisely two (j + 1)-tuples that satisfy the first j-equations
(for λ0 = 0 or λ0 = 1) . By searching if these solutions are compatible
with the equation (Ej) : λj−1 + λjtr(uj) = 1. we see that.
the system may have 0, 1 or 2 solutions.
It is easy to see that the cardinaly of Rj greater or equal to 4 thus at
least two of its elements are not in the space 〈uj, . . . , u1, u0〉. �

8. Conclusion

Starting from any bent function of the type [f, f + tr] we have con-
structed a seqence and a set of boolean functions both containing a large
number of bent fuctions. This gives rice to open questions for instance
about the maximum number of distinct bent functions as terms of such
a sequence.
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IMATH(IAA),Université de Toulon, CS 60584,83041 TOULON CEDEX9
E-mail address: wolfmann@univ-tln.fr


