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Introduction

F 2 is the finite field of order 2 and a m-boolean function is a map from F m 2 to F 2 . As usual, in order to benefit from the properties of a finite field we identify the F 2 -vector space F m 2 with the finite field F 2 m . The Fourier transform (or Walsh transform) F of a m-boolean function F is the map from F 2 m into Z defined by: F (v) = x∈F m 2 (-1) f (x)+T r(vx) where T r is the trace of F 2 m over F 2 . F (v) is called the Fourier coefficient of v. Notation: If e ∈ F 2 m then T e (x) = T r(ex) where T r is the trace of F 2 m . It is easy to prove that:

(1) F (v) = 2 m -2w(F + T v ) two where w denotes the weight of a boolean function.

F is bent if all its Fourier coefficients are in {-2 m/2 , 2 m/2 }. F is near-bent if all its Fourier coefficients are in {-2 (m+1)/2 , 0, 2 (m+1)/2 } Since the Fourier coefficients are in Z, bent functions exist only when m is even and near-bent functions exist only when m is odd. If m = 2t and if F is a bent function then the dual F of F is the (2t)-boolean function defined by: F (v) = (-1) F (v) 2 t where F is the Fourier transform of F . It is well-known and easy to proof that the dual F of a bent function F is a bent function and that the dual of F is F . Bent functions were introduced by Rothaus in [START_REF] Rothaus | On Bent Functions[END_REF] .They are interesting for Coding Theory, Cryptology and Sequences and were the topic of a lot of works. See for instance [START_REF] Dillon | Elementary Hadamard Difference Sets[END_REF], [START_REF] Mac Williams | The Theory of Error Correcting Codes[END_REF] Chap. 14, [START_REF] Wolfmann | Bent Functions and Coding Theory[END_REF], [1].

The main results of this work are the introduction of infinite sequences of bent functions (section 5) and a construction of a set of distinct bent functions (section 6).

special representation of F 2t 2

In this paper we describe every (2t)-bent function by means of two (2t -1)-near-bent functions. This approach was already used in [START_REF] Leander | Construction of Bent Functions from Near-Bent Functions[END_REF] [8], [START_REF] Wolfmann | Special Bent and Near-Bent Functions in Advances in Mathematics of Cmmunication[END_REF], [START_REF] Wolfmann | From Near-Bent to Bent: A special Case. In Topics in Finite Fields[END_REF] and for the construction of the famous Kerdock codes (see [START_REF] Kerdock | A class of low-rate non linear codes[END_REF] and [START_REF] Mac Williams | The Theory of Error Correcting Codes[END_REF] Chap.15). We describe every 2t-boolean function F by means of two (2t -1)-boolean functions as follows: we identified the finite field F 2 2t with:

F 2 2t-1 × F 2 = {X = (x, ν) | x ∈ F 2 2t-1 , ν ∈ F 2 }.
In this way a (2t)-boolean function F is now defined by: ( * ) F (x, ν) = (ν + 1)f (x) + νg(x) We are now able to introduce an infinite sequence of bolean functions whose terms all are bent functions. where f and g are the two (2t -1)boolean functions such that f (x) = F (x, 0) and g(x) = F (x, 1). It is easy to check that for every (x, ν) the rigth member of ( * ) is equal to F (x, ν). Conversely, if f and g are any two (2t -1)-boolean functions then ( * ) define a (2t)-boolean function F and f and g are the restriction of F respectively to F 2 2t-1 × {0} and F 2 2t-1 × {1}.

We denote such a function by F = [f, g].

. We now characterize the (2t -1)-boolean functions f and g such that F = [f, g] is a bent function. The next proposition is a special version of a well-known result on the hyperplane section of a support of a bent function. A proof is given in [START_REF] Wolfmann | Special Bent and Near-Bent Functions in Advances in Mathematics of Cmmunication[END_REF].

Proposition 1.

Let f an g be two (2t -1)-boolean functions and let f and ĝ be respectively their Fourier Transforms. F = [f, g] is a bent function if and only if:

(a) f and g are near-bent.

(b) ∀a ∈ F 2 2t-1 | f (a) | + | ĝ(a) |= 2 t .
Proof.

See [START_REF] Wolfmann | Special Bent and Near-Bent Functions in Advances in Mathematics of Cmmunication[END_REF], Proposition 14.

Remark: (b) means that one of | f (a) | and | ĝ(a)
| is equal to 2 t and the other one is equal to 0.

The machinery

Definition 2. If f is a (2t -1)-boolean function then:: Î0 f is the indicator of the set {x ∈ F 2 2t-1 | f (x) = 0} Î- f is the indicator of the set {x ∈ F 2 2t-1 | f (x) = -2 t } deduce Î+ f is the indicator of the set {x ∈ F 2 2t-1 | f (x) = 2 t } In other words: Î0 f (x) = 1 if and only if f (x) = 0, Î- f (x) = 1 if and only if f (x) = -2 t and Î+ f (x) = 1 if and only if f (x) = 2 t . Definition 3. If f is a m-boolean function and if ω ∈ F 2 m the derivative of f rel- atively to ω, denoted by D ω (f ), is the m-boolean function defined by D ω (f )(x) = f (x) + f (x + ω).
Now we need some preliminary results.

Lemma 4. Let F = [f, g] be a (2t)-bent function and let F be the Fourier transform of F . a) F (u, 0) = f (u) + ĝ(u). b) F (u, 1) = f (u) -ĝ(u). c) If f + g = t u then ĝ(a) = f (a + u)
Proof.

See [START_REF] Wolfmann | Special Bent and Near-Bent Functions in Advances in Mathematics of Cmmunication[END_REF], Lemma 13.

We now introduce a connexion between the dual of a bent function [f 0 , f 1 ] and the indicators Î0 f , Îf and Î+ f . Theorem 5. Let F = [f, g] be a (2t)-bent function and let F = [ f , g] be its dual function. Then:

a) f = Î- f + Î- g b) f + g = Î0 f . c) Î0 f + Î0 g = 1 d) If f + g = t u then: f (x) = Î- f (x) + Î- f (x + u) (in other words f = D u ( Î- f )). g(x) = Î- f (x) + Î+ f (x + u). Proof.
Proposition 1 says that one of | f (a) | and | ĝ(a) | is equal to 2 t and the other one is equal to 0. It follows that every a in F 2 2t-1 belongs to one of the following sets:

A 1 = {a ∈ F 2 2t-1 | f (a) = -2 t and ĝ(a) = 0} A 2 = {a ∈ F 2 2t-1 | f (a) = 0 and ĝ(a) = -2 t } A 3 = {a ∈ F 2 2t-1 | f (a) = 2 t and ĝ(a) = 0} A 4 = {a ∈ F 2 2t-1 | f (a) = 0 and ĝ(a) = 2 t } Remark that A 1 is the set of elements a of F 2 2t-1 such that f (a) = -2 t . In other words A 1 is the support of Î- f .
Similarly:

A 2 is the support of Î- g , A 3 is the support of Î+ f , A 4 is the support of Î+ g
The distribution of the Fourier coefficients of a near bent function is well known (see for instance Prop. 4 in [1]). This means that A i is non empty for i = 1, 2, 3, 4. Furthermore, obviously:

A i ∩ A j = ∅ if i = j and only if A 1 ∪ A 2 ∪ A 3 ∪ A 4 = F 2 2t-1 .

Proof of a)

The definition of the dual of F induces that (a, η) is in the support of F if and only if F (a, η) = -2 t .

Since F (a, 0) = f (a) + ĝ(a) (Theorem 5) then:

F (a, 0) = -2 t if a ∈ A 1 or a ∈ A 2 . In other words: f (a) = 1 if and only if a ∈ A 1 ∪ A 2 . Therefore A 1 ∪ A 2 is the support of f . Since A 1 is the support of Î-
f and A 2 is the support of Îg and because these two sets are disjoint then

A 1 ∪ A 2 is the support of Î- f + Î- f . This means f = Î- f + Î- f . Proof of b) Î0 f is the indicator of the set {x ∈ F 2 2t-1 | f (x) = 0}.
We know that (a, 0) is in the support of F if and only if a ∈ A 1 ∪ A 2 . and (a, 1) is in the support of F if and only if a ∈ A 1 ∪ A 4 . Hence the support of f is A 1 ∪ A 2 and the support of g is

A 1 ∪ A 4 .
Consequently the support of f + g is A 2 ∪ A 4 . This set is also the support of Î0 f , this means f + g = Î0 f .

Proof of c) Î0

f is the indicator of the set {a ∈

F 2 2t-1 | f (a) = 0}. Then A 2 ∪ A 4 is the support of Î0 f , Î0 g is the indicator of the set {a ∈ F 2 2t-1 | ĝ(a) = 0}. We see that A 1 ∪ A 3 is the support of Î0 g . Since A 2 ∪ A 4 and A 1 ∪ A 3 are disjoint then A 2 ∪ A 4 ∪ A 1 ∪ A 3 is the support of Î0 f + Î0 g . We know that A 2 ∪ A 4 ∪ A 1 ∪ A 3 = F 2 2t-1 and this proves that Î0 f + Î0 g = 1. Proof of d) Î0 f is the indicator of the set {x ∈ F 2 2t-1 | f (x) = 0} Now assume f + g = t u . From the descriptions of A 1 and A 2 , if a ∈ A 1 then a + u ∈ A 2 and if b ∈ A 2 then b = a + u with a = b + u ∈ A 1 . Hence A 2 = {a + u | a ∈ A 1 }. We know that the support of f is A 1 ∪ A 2 and that A 1 is the support of Î- f . It follows that: f (x) = Î- f (x) + Î- f (x + u) = D u Î- f (x)

Preliminary results

The next results are important tools for the proof of the main Theorems.

Theorem 6. (McGuire and Leander)

Let f be a near-bent function.

[f, f + t e ] is a bent-function if and only if D e ( Î0 f ) = 1. Proof. See [START_REF] Leander | Construction of Bent Functions from Near-Bent Functions[END_REF], Theorem 3.

Theorem 7. (W)

Let f be a (2t -1)-near-bent function. let ω be in F 2 2t-1 and let be in F 2 .

If D ω f = then Îf = t ω + Remark: According to the definition of Îf this lemma means that if

D ω f = then f (x) = 0 if and only if t ω (x) = 1 + . Proof. f (u) = x∈F 2 2t-1 (-1) f (x)+tr(ux) = 2 2t-1 -2w(f + tr(ux). f (u) = 0 if and only if w(f + t u ) = 2 2t-2 . D ω f = means that f (x + ω) = f (x) + .
The transform τ : x → x + ω is a permutation of F 2 2t-1 and then preserves the weight of every (2t -1)-Boolean function. Thus:

{x | f (x) + tr(ux) = 1} = {x | f (x + ω) + tr(u(x + ω)) = 1}. (E) {x | f (x) + tr(ux) = 1} = {x | f (x) + + tr(ux) + tr(uω) = 1}. If tr(uω) + = 1 the right hand member of (E) is: {x | f (x) + tr(ux) = 0} = 2 2t-1 -{x | f (x) + tr(ux) = 1} Hence (E) becomes: {x | f (x) + tr(ux) = 1} = 2 2t-1 -{x | f (x) + tr(ux) = 1} In other words w(f + t u ) = 2 2t-1 -w(f + t u ) .

Conclusion:

fi is a near-bent function for every i ∈ N.

If tr(uω)

+ = 1 then w(f + t u ) = 2 2t-2 which is equivalent to f (u) = 0.
For every the number of u such that tr(uω) + = 1 is 2 2t-2 and this is also the number of u such that f (u) = 0 (see Prop. 4 in [1]). Then, immediately: f (u) = 0 if and only if tr(uω) + = 1. This means Îf = t ω + Theorem 8. Let F = [f 0 , f 0 + t u ] be a bent function with u be in F 2 2t-1 and let F = [ f0 , f1 ] be its dual. Let r be in in F 2 2t-1 .

[ f0 , f0 + t r ] is a bent function if and only if tr(ur) = 1.

Proof. 1) Since the dual of F is F then, according to Theorem 5, b): [ f1 , f1 + t r ] is a bent function if and only if tr(ur) = 1.

f 0 + f 0 + t u = Î0

Corollary 9.

From a bent function F = [f 0 , f 0 + t u ] with u in F 2 2t-1 , we obtain 2 2t-2 distinct bent functions [ f0 , f0 + t r ] such that tr(ur) = 1 .

Sequences of Bent Functions

We are now able to introduce an infinite sequence of bolean functions whose terms all are bent functions.

Theorem 10. Define sequences (F i ) i∈N of (2t)-boolean functions by: 1) F 0 = [f 0 , f 0 + t r 0 ] with f 0 a (2t -1)-boolean function and r 0 ∈ F 2 2t-1 , and for i ≥ 1:

F i = [f i , f i + t r i ] with f i (x) = D r i-1 Î- f i-1 (x) and tr(r i-1 r i ) = 1. If F 0 is a bent function then:
F i is a bent function for every i ∈ N. f i is a near-bent function for every i ∈ N

Proof. We prove the result by induction.

Step 1. For i = 0 the boolean function F 0 is bent by definition.

Step 2. Assume that for j ∈ N:

F j = [f j , f j + t r j ] is bent.
Let [ fj , gj ] be the dual of F j . Applying Theorem 8 to F j it comes that [ fj , fj + r j+1 ] is bent if and only if tr(r j r j+1 ) = 1. According to Theorem 5, d),we know that: fj = D r j Îf j (x) and then [ fj , fj + r j+1 ] is bent. This last function is nothing but F j+1 and this proves that F j+1 is bent. Proposition 1 implies that f i is a near-bent function for every i ∈ N.

Examples:

the j + 1 equations: λ j-1 = tr(u j )λ j + 1; λ k-1 = tr(u k )λ k + λ k+1 (1 ≤ k < j); 0 = tr(u 0 )λ 0 + λ 1 .

There are precisely two (j + 1)-tuples that satisfy the first j-equations (for λ 0 = 0 or λ 0 = 1) . By searching if these solutions are compatible with the equation (E j ) : λ j-1 + λ j tr(u j ) = 1. we see that. the system may have 0, 1 or 2 solutions. It is easy to see that the cardinaly of R j greater or equal to 4 thus at least two of its elements are not in the space u j , . . . , u 1 , u 0 .

Conclusion

Starting from any bent function of the type [f, f + t r ] we have constructed a seqence and a set of boolean functions both containing a large number of bent fuctions. This gives rice to open questions for instance about the maximum number of distinct bent functions as terms of such a sequence.

) = 1 .f1= 1 .

 11 Now we know from McGuire and Leander that [ f0 , f0 + t r ] is a bentfunction. if and only if D r ( Î0f0 D r ( Î0 f0 )(x) = D r (t u )(x) = t u (x) + t u (x + r) = tr(ux) + tr(u(x + r)) = tr(ur). It follows that [ f0 , f0 + t r ] isa bent function if and only if tr(ur) = 1. 2) According to Theorem 5,c),: Î0 f0 + Î0 We deduce that D r ( Î0 f0 ) = D r ( Î0 f1 ) whence D r ( Î0 f1 )(x) = tr(ur). As previously it comes:

1) Kerdock

• f 0 = Q u Q(x) = t-1 j=1 tr x 2 j +1 , Q e (x) = Q(ex). • r 0 = u. This is the initial Kerdock Bent Function (see [START_REF] Kerdock | A class of low-rate non linear codes[END_REF] and [START_REF] Mac Williams | The Theory of Error Correcting Codes[END_REF]).

2) Kasami-Welch

• f 0 (x) = tr(x 4 s -2 s +1 ) with 2t -1 ≡ 0 mod 3 and 3s ≡ ±1 mod (2t -1), s < t, • r 0 = 1. It is proved in [START_REF] Leander | Construction of Bent Functions from Near-Bent Functions[END_REF] that in this case [f 0 , f 0 + t 1 ] is a bent function.

Important Remark:

Of course we whish to find distinct bent functions as terms of F . If

is equal to F l with l < i we just have to change r i by any other s i such that tr(r i-1 s i ) = 1. We have 2 2t-2 -1 possibilities.

In this way we can expect to find a lot of bent functions as member of F .

Open question:

What is the maximum of distinct bent functions as terms of a sequence F ?

A construction

In the sequence F there are infinitely many terms F j which are bent functions but they are not distinct since the number of all bent function is limited. Corollary 9 gives 2 2t-2 distinct bent functions. The following constuction improves this result by a specific choice of the u i 's.

Construction: Let

j=0 is a set of distinct bent functions. . Question: what is the cardinality of ( B j ) 2t-2 j=0 ? Theorem 12. If u j ∈ R j-1 and u j / ∈< u j-1 , u j-2 , ...u 1 , u 0 > (subspace generated by u 0 , u 1 , ..u j-1 ) then ( B j ) 2t-2 j=0 is a set of 2 2t-1 -2 distinct bent functions.

Proof. First remember that t i (x) = tr(u i x).

Step 1: if 0 ≤ j ≤ 2t -1 the linear forms t 0 , t 1 , ..t j are linearly independant. We prove this result by induction. t 0 and t 1 are distinct and non zero since u 1 = u 0 and tr(u 1 u 0 ) = 1. Thus they are linearly independant. Now assume t 0 , t 1 , ..t j-1 linearly independant. Because of u j / ∈< u j-1 , u j-2 , ...u 1 , u 0 > and by using the vector space isomorphism u l -→ t l then: t j / ∈< t j-1 , t j-2 , ...t 1 , t 0 >. Hence t j , t j-1 , t j-2 , ...t 1 , t 0 are linearly independant.

Step 2: R j contains 2 2t-2-j elements. The j + 1 linear forms t 0 , t 1 ...t j of R j are linearly independant then the rank of the system tr(u j v) = 1, tr(u j-1 v) = 0, ..., tr(u 0 v) = 0 is j + 1 and its kernel has dimension 2t -1 -(j + 1) = 2t -2 -j. Therefore, the cardinality of R j which the number of solutions of the previous system is 2 2t-2-j .

Step 3: From the definition the cardinality of (

From the construction of R j and B j , al the member of ( B j ) 2t-2 j=0 are bent functions.

Remark 13. The cardinality of the set of the u j used in the construction is almost the cardinality of F 2 2t-1 .

Existence Problem

In order to validate Theorem 12 we have to study the existence of u j ∈ R j-1 and u j / ∈< u j-1 , u j-2 , ...u 1 , u 0 >.

The following Lemma was proved by Philippe Langevin.

Lemma 14. R j is defined as above. If 0 ≤ j < 2t -2 there exist elements in R j which are not in in the subspace generated by u 0 ,u 1 , . . . , u j .

Proof. In order to prove the Lemma, we count how many elements v of the space u j , . . . , u 1 , u 0 are in R j . A such element decomposes v = λ j u j +• • •+λ 1 u 1 +λ 0 u 0 where the scalar λ i ∈ F 2 satisfy the system: ∀k, 0 ≤ k ≤ j, tr(u k v) = j i=0 λ i tr(u i u k ) = medskip1, j = k; 0, k < j.

Since u i belongs to R i-1 and u k belongs to R k-1 then tr(u i u k ) vanishes whenever the integers i and k are not consecutive. The scalar λ i satisfy