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EXHAUSTING FAMILIES OF REPRESENTATIONS AND

SPECTRA OF PSEUDODIFFERENTIAL OPERATORS

VICTOR NISTOR AND NICOLAS PRUDHON

Abstract. A powerful tool in the spectral theory and the study of Fred-
holm conditions for (pseudo)differential operators is provided by families of
representations of a naturally associated algebra of bounded operators. Mo-
tivated by this approach, we define the concept of an strictly norming family
of representations of a C∗-algebra A. Let F be a strictly norming family of
representations of A. We have then that an abstract differential operator D

affiliated to A is invertible if, and only if, φ(D) is invertible for all φ ∈ F . This
property characterizes strictly norming families of representations. We provide
necessary and sufficient conditions for a family of representations to be strictly
norming. If A is a separable C∗-algebra, we show that a family F of represen-
tations is strictly norming if, and only if, every irreducible representation of
A is weakly contained in a representation φ ∈ F . However, this result is not
true, in general, for non-separable C∗-algebras. A typical application of our
results is to parametric families of differential operators arising in the analysis
on manifolds with corners, in which case we recover the fact that a parametric

operator P is invertible if, and only if, its Mellin transform P̂ (τ) is invertible,
for all τ ∈ Rn. The paper is written to be accessible to non-specialists in
C∗-algebras.
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Introduction

Let us begin by motivating the present work using spectral theory and the related
Fredholm conditions for pseudodifferential operators. A typical result in spectral
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2 V. NISTOR AND N. PRUDHON

theory of N -body Hamiltonians [9, 15, 16, 20] associates to the Laplacian H a
family of other operators Hφ, φ ∈ F , such that the essential spectrum Specess(H)
of H is obtained in terms of the usual spectra Spec(Hφ) of Hφ as the closure of the
union of the later:

(1) Specess(H) = ∪φ∈F Spec(Hφ) .

It was noticed that sometimes the closure is not necessary, and one of the motiva-
tions of our paper is to clarify this issue. It is well known that the operators Hφ

are obtained as homomorphic images of the operator H , that is Hφ = φ(H), where
the morphisms φ ∈ F are defined on a certain C∗-algebra associated to H . This
justifies the study of families of representations. See for example [16] for results in
this direction.

Another motivation comes from the characterization of Fredholm operators (Fred-
holm conditions) for (pseudo)differential operators [21]. More precisely, for suitable
manifolds M and for differential operators D on M compatible with the geometry,
there was devised a procedure to associate to M the following data:

(i) spaces Zα, α ∈ I;
(ii) groups Gα, α ∈ I; and
(iii) Gα-invariant differential operators Dα acting on Zα ×Gα.

This data can be used to characterize the Fredholm property of D as follows. Let
m be the order of D, then

(2) D : Hs(M) → Hs−m(M) is Fredholm ⇔ D is elliptic and

Dα is invertible for all α ∈ I .

Moreover, the spaces Zα and the groups Gα are independent of D. IfM is compact
(without boundary), then the index I is empty (so there are no Dαs). In general,
for non-compact manifolds, the conditions on the operators Dα are, however, nec-
essary. The non-compact geometries to which this characterization of Fredholm
operators applies include: asymptotically euclidean manifolds, asymptotically hy-
perbolic manifolds, manifolds with poly-cylindrical ends, and many others. Again,
the operators Pα are homomorphic images of the operator P , which motivates the
study of families of representations.

The results in [15, 16, 21] mentioned above are the main motivation for this work,
which is a purely theoretical one on the representation theory of C∗-algebras, even
though the applications are to spectral theory and (pseudo)differential operators.
We thus define the concept of an strictly norming family F of representations of
a C∗-algebra A as having the property that for any a ∈ A, there exists φ ∈ F
such that ‖a‖ = ‖φ(a)‖. We have learned from G. Skandalis that he has also
considered this condition (private communication). The family F does not have
to consist of irreducible representations. Let F be a strictly norming family of
representations of A, we show then that an abstract differential operatorD affiliated
to A is invertible if, and only if, φ(D) is invertible for all φ ∈ F . This property
characterizes strictly norming families of representations. We provide a necessary
and sufficient conditions for a family of representations to be strictly norming in
terms of the topology on the Jacobson primitive ideal spectrum Prim(A) of A. If
A is a separable C∗-algebras, we show that a family F of representations is strictly
norming if, and only if, every irreducible representation of A is weakly contained
in a representation φ ∈ F . Some related results were obtained by Exel in [14] and
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by Roch in [30]. These results are concerned with sufficient families of irreducible
representations and are discussed below. See also [17, 31].

A typical application is to parametric families of differential operators arising in
the analysis on manifolds with corners (more precisely, in the case of manifolds with
polycylindrical ends). In that case, we recover the fact that an operator compatible
with the geometry is invertible if, and only if, its Mellin transform is invertible. We
discuss also several other examples. Due to the nature of the main applications to
other areas than the study of C∗-algebras, we write the paper with an eye towards
the non-specialist in C∗-algebras.

We thank V. Georgescu for useful discussions and for providing us copies of his
papers. We also thank D. and I. Beltiţa, M. Dadarlat, S. Baaj, and G. Skandalis
and for useful discussions. The first named author would like to also than the Max
Planck Institute for Mathematics in Bonn, where part of this work was performed,
for its hospitality. After a first version of this paper has been circulated, we have
learned of the nice paper of Exel [14], which has also prompted us to change some
of the terminology used in this paper.

1. C∗-algebras and their primitive ideal spectrum

We begin with a review of some needed general C∗-algebra results. We recall
[12] that a C∗-algebra is a complex algebra A together with a conjugate linear
involution ∗ and a complete norm ‖ ‖ such that (ab)∗ = b∗a∗, ‖ab‖ ≤ ‖a‖‖b‖,
and ‖a∗a‖ = ‖a‖2, for all a, b ∈ A. (The fact that ∗ is an involution means
that a∗∗ = a.) In particular, a C∗-algebra is also a Banach algebra. Let H be
a Hilbert space and denote by L(H) the space of linear, bounded operators on
H. One of the main reasons why C∗-algebras are important is that every norm-
closed subalgebra A ⊂ L(H) that is also closed under taking Hilbert space adjoints
is a C∗-algebra. Abstract C∗-algebras have many non-trivial properties that can
then be used to study the concretely given algebra A. Conversely, every abstract
C∗-algebra is isometrically isomorphic to a norm closed subalgebra of L(H) (the
Gelfand-Naimark theorem, see [12, theorem 2.6.1]).

Let A denote a generic C∗-algebra throughout this paper. A representation of A
on the Hilbert space Hπ is a ∗-morphism π : A→ L(Hπ) to the algebra of bounded
operators on Hπ. We shall use the fact that every morphism φ of C∗-algebras (and
hence any representation of a C∗-algebra) has norm ‖φ‖ ≤ 1. Consequently, every
bijective morphism of C∗-algebras is an isometric isomorphism, and, in particular

(3) ‖φ(a)‖ = ‖a+ ker(φ)‖A/ ker(φ) .

It follows that if φ1 and φ2 are representations of A with the same kernel, then
‖φ1(a)‖ = ‖φ2(a)‖ for all a ∈ A. A two-sided ideal I ⊂ A is called primitive
if it is the kernel of an irreducible representation. We shall denote by Prim(A)
the set of primitive ideals of A. For any two-sided ideal J ⊂ A, we have that its
primitive ideal spectrum Prim(J) identifies with the set of all the primitive ideals
of A not containing the two-sided ideal J ⊂ A. It turns out then that the sets of
the form Prim(J), where J ranges through the set of two-sided ideals J ⊂ A, define
a topology on Prim(A), called the Jacobson topology on Prim(A).

By φ : A → L(Hφ) we shall denote generic representations of A. For any
representation φ of A, we define its support, supp(φ) ⊂ Prim(A) as the complement
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of Prim(ker(φ)), that is, supp(φ) := Prim(A)rPrim(ker(φ)) is the set of primitive
ideals of A containing ker(φ).

Remark 1.1. The irreducible representations of A do not form a set (there are too
many of them). The unitary equivalence classes of irreducible representations of A

do form a set however, which we shall denote by Â. By π : A → L(Hπ) we shall
denote an arbitrary irreducible representation of A. There exists then by definition
a surjective map

(4) can : Â→ Prim(A)

that associates to (the class of) each irreducible representation π ∈ Â its kernel
ker(π). For each a ∈ A and each irreducible representation π of A, the algebraic
properties of π(a) depend only on the kernel of π. That yields a well defined
function

(5) can : Â ∋ π → ‖π(a)‖ ∈ [0, ‖a‖] ,

which descends to a well defined function

(6) na : Prim(A) ∋ π → ‖π(a)‖ ∈ [0, ‖a‖] , na(ker(π)) = ‖π(a)‖ .

A C∗-algebra is called type I if, and only if, the surjection can : Â → Prim(A)
of Equation (4) is, in fact, a bijection. Then the discussion of Remark 1.1 becomes
unnecessary and several arguments below will be (slightly) simplified since we will
not have to make distinction between equivalence classes of irreducible represen-
tations and their kernels. Fortunately, many (if not all) of the C∗-algebras that
arise in the study of pseudodifferential operators and of other practical questions
are type I C∗-algebras. In spite of this, it seems unnatural at this time to restrict
our study to type I C∗-algebras. Therefore, we will not assume that A is a type I
C∗-algebra, unless this assumption is really needed. Nevertheless, when A is a type
I C∗-algebra, we will identify Â and Prim(A).

We shall need the following simple (and well known) lemma.

Lemma 1.2. The map na : Prim(A) ∋ π → ‖π(a)‖ ∈ [0, ‖a‖] is lower semi-
continuous, that is, the set {I ∈ Prim(A), ‖a+ I‖A/I > t } is open for any t ∈ R.

We include the simple proof for the benefit of the non-specialist.

Proof. Let us fix t ∈ R. Since na takes on non-negative values, we may assume
t ≥ 0. Let then χ : [0,∞) → [0, 1] be a continuous function that is zero on [0, t2]
but is > 0 on (t2,∞) and let b = χ(a∗a), which is defined using the functional
calculus with continuous functions. If φ : A→ L(Hφ) is a representation of A, then
we have that ‖φ(a)‖2 = ‖φ(a∗a)‖ ≤ t2 if, and only if,

χ(φ(a∗a)) = φ(χ(a∗a)) = φ(b) = 0 .

Let then J be the (closed) two sided ideal generated by b, that is, J := AbA. Then

{I ∈ Prim(A), ‖a+ I‖A/I ≤ t } = {I ∈ Prim(A), b ∈ I }

= {I ∈ Prim(A), J ⊂ I } = Prim(A) r Prim(J) ,

is hence a closed set. Consequently, {I ∈ PrimA, ‖a + I‖A/I > t } is open, as
claimed. �
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2. Faithful families

Let F be a set of representations of A. We say that the family F is faithful if the
direct sum representation ρ := ⊕φ∈F φ is injective. Faithful families of irreducible
representations of a C∗-algebra A were called weakly sufficient in [30]. The results
of this subsection are for the most part very well-known, see for instance [30], but we
include them for the purpose of later reference and in order to compare them with
the properties of strictly norming families. We have the following well known result
that will serve us as a model for characterization of “strictly norming families” of
representations in the next subsection.

Proposition 2.1. Let F be a family of representations of the C∗-algebra A. The
following are equivalent:

(i) The family F is faithful.
(ii) The union ∪φ∈F supp(φ) is dense in Prim(A).
(iii) ‖a‖ = supφ∈F ‖φ(a)‖ for all a ∈ A.

Proof. (i)⇒(ii). We proceed by contradiction. Let us assume that (i) is true,
but that (ii) is not true. That is, we assume that ∪φ∈F supp(φ) is not dense in
Prim(A). Then there exists a non empty open set Prim(J) ⊂ Prim(A) that does
not intersect ∪φ∈F supp(φ), where J ⊂ A is a non-trivial two-sided ideal. Then
J 6= 0 is contained in the kernel of ⊕φ∈F φ and hence F is not faithful. This is a
contradiction, and hence (ii) must be true if (i) is true.
(ii)⇒(iii). For a given a ∈ A, the map sending the kernel kerπ of an irreducible
representation π to ‖π(a)‖ is a lower semi-continuous function Prim(A) → [0,∞),
by Lemma 1.2. Moreover, for any a ∈ A there exists an irreducible representation
πa such that ‖πa(a)‖ = ‖a‖. Hence, for every ǫ > 0, {π ∈ Prim(A), ‖π(a)‖ >
‖a‖ − ǫ} is a non empty open set (it contains kerπa) and then it contains some
π ∈ ∪φ∈F supp(φ), since the later set was assumed to be dense in Prim(A). Let
φ ∈ F be such that ker(π) ⊃ ker(φ). Then

‖a‖ ≥ ‖φ(a)‖ ≥ ‖π(a)‖ > ‖a‖ − ε ,

where the first inequality is due to the general fact that representations of C∗-
algebras have norm ≤ 1 and the second one is due to the fact that

‖φ(a)‖ = ‖a+ ker(φ)‖A/ ker(φ) ≥ ‖a+ ker(π)‖A/ ker(π) = ‖π(a)‖ ,

by Equation (3). Consequently, ‖a‖ = supφ∈F ‖φ(a)‖, as desired.
(iii)⇒(i). Let ρ := ⊕φ∈F φ : A→ ⊕φ∈F L(Hφ). We need to show that ρ is injective.
The norm on ⊕φ∈F L(Hφ) is the sup norm, that is, ‖(Tφ)φ∈F‖ = supφ∈F ‖Tφ‖.
Therefore ‖ρ(a)‖ = supφ∈F ‖φ(a)‖ = ‖a‖, since we are assuming (iii). Conse-
quently, ρ is isometric, and hence it is injective. �

In the next proposition we shall need to assume that A is unital (that is, that
it has a unit 1 ∈ A). This assumption is not very restrictive since, given any non-
unital C∗-algebra A0, the algebra with adjoint unit A = A+

0 := A0⊕C has a unique
C∗-algebra norm.

For any unital C∗-algebra A and any a ∈ A, we denote by SpecA(a) the spectrum
of a in A, defined by

SpecA(a) := {λ ∈ C, λ− a is not invertible in A } .
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It is known classically that SpecA(a) is compact and non-empty, unlike in the case
of unbounded operators [12]. For A non-unital, Spec(a) := SpecA+(a). We shall
need the following general property of C∗-algebras.

Lemma 2.2. Let A1 ⊂ B be two C∗-algebras and a ∈ A1 be such that it has an
inverse in B, denoted a−1. Then a−1 ∈ A1. In particular, the spectrum of a is
independent of the C∗-algebra in which we compute it:

(7) SpecA1
(a) = SpecB(a) =: Spec(a) .

If a ∈ A for some non-unital C∗-algebra, then we define Spec(a) := SpecA+(a),
where A+ := A⊕C, so Spec(a) is independent of the C∗-algebra containing a also
in the non-unital case.

Proposition 2.3. Let F be a faithful family of representations of a unital C∗-
algebra A. An element a ∈ A is invertible if, and only if, φ(a) is invertible in
L(Hφ) for all φ ∈ F and the set {‖φ(a)−1‖, φ ∈ F} is bounded.

Proof. If a is invertible, φ(a) also is invertible and ‖φ(a)−1‖ = ‖φ(a−1)‖ ≤ ‖a−1‖
is hence bounded. Conversely, let ρ be the direct sum of all the representations
φ ∈ F , that is,

(8) ρ := ⊕φ∈F φ : A −→ ⊕φ∈F L(Hφ) .

If ‖φ(a)‖ is invertible for all φ ∈ F and there exists M independent of φ such
that ‖φ(a)−1‖ ≤ M , then b := (φ(a)−1)φ∈F is a well defined element in B :=
⊕φ∈FL(Hφ) and b is an inverse for ρ(a) in B. Let A1 := ρ(A). Then ρ(a) ∈ A1 is
invertible in B. Therefore by the Lemma 2.2 ρ(a) is invertible in A1. Then observe
that since ρ is continuous, injective, and surjective morphism of C∗-algebras, it
defines an isomorphism of algebras A→ A1. We then conclude that a is invertible
in A as well. �

The following is a converse of the above proposition. Recall that a ∈ A is called
normal if aa∗ = a∗a.

Proposition 2.4. Let F be a family of representations of a unital C∗-algebra A
with the following property:

“If a ∈ A is such that φ(a) is invertible in L(Hφ) for all φ ∈ F and
the set { ‖φ(a)−1‖, φ ∈ F } is bounded, then a is invertible in A.”

Then the family F is faithful.

Proof. Clearly, the family F is not empty, since otherwise all elements of A would
be invertible, which is not possible. Let us assume, by contradiction, that the
family F is not faithful. Then, by Proposition 2.1(ii), there exists a non-empty
open set V ⊂ Prim(A) that does not intersect ∪φ∈F supp(φ). Let J ⊂ A, J 6= 0, be
the (closed) two-sided ideal corresponding to V , that is, V = Prim(J). Since F is
non-empty, we have J 6= Prim(A). Then every φ ∈ F is such that φ = 0 on J . Let
a ∈ J , a 6= 0. By replacing a with a∗a ∈ J , we can assume a ≥ 0. Let λ ∈ Spec(a),
λ 6= 0. Such a λ exists since a is normal and non-zero. Let c := λ − a. Then, for
any φ ∈ F , φ(c) = λ ∈ C is invertible and ‖φ(c)−1‖ = λ−1 is bounded. However, c
is not invertible (in any C∗-algebra containing it) since it belongs to the non-trivial
ideal J . �
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Recall that C0(X) is the set of continuous functions on X that have vanishing
limit at infinity. Then C0(X) is a commutative C∗-algebra, and all commutative
C∗-algebras are of this form.

Example 2.5. Let µα, α ∈ I, be a family of positive, regular Borel measures on a
locally compact spaceX . Let φα be the corresponding multiplication representation
of the C∗-algebra C0(X) → L(L2(X,µα)). Wee have supp(φα) = supp(µα) and the
family F := {φα, α ∈ I} is faithful if, and only if, ∪α∈I supp(µα) is dense in X .
In particular, if each µα is the Dirac measure concentrated at some xα ∈ X , then
φα(f) = f(xα) =: evxα

(f) ∈ C and supp(µα) = {xα}. We shall henceforth identify
xα ∈ X with the corresponding evaluation irreducible representation evxα

. Then
we have that

F = {evxα
, α ∈ I} is faithful ⇔ {xα, α ∈ I} is dense in X .

This example extends right away to C∗algebras of the form C0(X ;K) of functions
with values compact operators on some given Hilbert space.

We conclude our discussion of faithful families with the following result. We
denote by ∪Sα := ∪αSα the closure of the union of the family of sets Sα.

Proposition 2.6. Let F be a family of representations of a unital C∗-algebra A.
Then F is faithful if, and only if, for any normal a ∈ A,

(9) Spec(a) = ∪φ∈F Spec(φ(a)) .

Proof. Let us assume first that the family F is faithful and that a is normal. Since
we have that Spec(φ0(a)) ⊂ Spec(a) for any representation φ0 of A, it is enough
to show that Spec(a) ⊂ ∪φ∈F Spec(φ(a)). Let us assume the contrary and let
λ ∈ Spec(a) r ∪φ∈F Spec(φ(a)). By replacing a with a − λ, we can assume that
λ = 0. We thus have that φ(a) is invertible for all φ ∈ F , but a is not invertible (in
A). Moreover, ‖φ(a)−1‖ ≤ δ−1, where δ is the distance from λ = 0 to the spectrum
of φ(a), by the properties of the functional calculus for normal operators. This is
however a contradiction by Proposition 2.3, which implies that a must be invertible
in A as well.
To prove the converse, let us assume that Spec(a) ⊂ ∪φ∈F Spec(φ(a)), for all

normal elements a ∈ A. Let J be a non-trivial (closed selfadjoint) two-sided ideal
on which all the representations φ ∈ F vanish. We have to show that J = 0,
which would imply that F is faithful. Let a ∈ J be a normal element. Then
Spec(a) ⊂ ∪φ∈F Spec(φ(a)) = {0}. Since a is normal we deduce a = 0 and hence
J has no normal element other than 0. Then, for any a ∈ J , we can write a =
1/2(a+a∗)+1/2(a−a∗), the sum of two normal elements in J because J is selfajoint.
Therefore 1/2(a+ a∗) = 1/2(a− a∗) = 0, and hence a = 0 and J = 0. �

Example 2.7. Let G be an amenable groupoid with units G(0) and R := {λx, x ∈
G(0)} be the set of regular representations of C∗(G). Then R is a faithful family of
representations of C∗

r (G), the reduced C∗-algebra associated to G [2, 6].

3. Full and strictly norming families

Let us notice that Example 2.5 shows that the ‘sup’ in the relation ‖a‖ =
supφ∈F ‖φ(a)‖ (Proposition 2.1) may not be attained. It also shows that the clo-
sure of the union in Equation (9) is needed. Sometimes, in applications, one does
obtain however the stronger version of these results (that is, the sup is attained and
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the closure is not needed), see [9, 16], for example. Moreover, the condition that the
norms of φ(a)−1 be uniformly bounded (in φ) for any fixed a ∈ A is inconvenient
and often not needed in applications. For this reason, we introduce now a more
restrictive class of families of representations of A.

Recall that supp(φ) is the set of primitive ideals of A that contain ker(φ). We
shall denote by A′ := A if A has a unit and A′ := A⊕C the algebra of adjoint unit
if A does not have a unit. The definitions of “strictly norming” and “sufficient”
families below are not new [14, 30].

Definition 3.1. Let F be a set of representations of the C∗-algebra A.

(i) We shall say that F is exhausting if Prim(A) = ∪φ∈F supp(φ).
(ii) We shall say that F is strictly norming if, for any a ∈ A, there exists φ ∈ F

such that ‖φ(a)‖ = ‖a‖.
(iii) We shall say that F is sufficient if an element 1 + a ∈ A′, a ∈ A, is invertible

if, and only if, 1 + π(a) is invertible for any π ∈ F .

Example 3.2. By classical results, the set of all irreducible representations of a C∗-
algebra is strictly norming. A proof of this well-known fact is contained in [14]. See
also Theorem 3.7.

Remark 3.3. Let Fi, i = 1, 2, be two families of representations of A. Let denote by
Ii := {ker(φ), φ ∈ Fi}. We assume that I1 = I2. Then the families Fi are at the
same time exhausting or not. The same is true for the properties of being strictly
norming, or sufficient. So these properties are really properties of a family of ideals
of A rather than of families of representations of A. Nevertheless, it is customary
to work with families of representation rather than families of ideals.

Let us record the following simple facts, for further use.

Proposition 3.4. Let F be a set of representations of a C∗-algebra. If F is ex-
hausting, then F is strictly norming. If F is strictly norming, then it is also faithful.

Proof. Let A be the given C∗-algebra. Let us prove first that any exhausting
family F is strictly norming. Indeed, let a ∈ A. Then there exists an irreducible
representation π of A such that ‖π(a)‖ = ‖a‖. Let φ ∈ F be such that π ∈ supp(φ),
then, as in the proof of (ii)⇒(iii) in Proposition 2.1, we have that ‖a‖ = ‖π(a)‖ ≤
‖φ(a)‖ ≤ ‖a‖. Hence ‖φ(a)‖ = ‖a‖.

Let us prove first that any strictly norming family F is faithful. Indeed, let us
consider the representation ρ := ⊕φ∈F φ : A → ⊕φ∈F L(Hφ). By the definition
of a strictly norming family of representations, the representation ρ is isometric.
Therefore it is injective and consequently F is faithful. �

We summarize the above Proposition in

F exhausting ⇒ F strictly norming ⇒ F faithful.

In the next two examples we will see that there exist faithful families that are
not strictly norming and strictly norming families that are not exhausting.

Example 3.5. We consider again the framework of Example 2.5 and consider only
families of irreducible representations. Thus A = C0(X), for a locally compact
space X . The irreducible representations of A then identify with the points of
X , since X ≃ Prim(A) = Â. A family F of irreducible representations of A thus
identifies with a subset F ⊂ X . We then have that a family F ⊂ X of irreducible
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representations of A = C0(X) is faithful if, and only if, F is dense in X . On the
other hand, a family of irreducible representations of A = C0(X) is exhausting if,
and only if, F = X .

The relation between exhausting and strictly norming families is not so simple.
We begin with the following remark on the above example.

Remark 3.6. If X is moreovermetrisable, then every strictly norming family F ⊂ X
is also exhausting, because for any x ∈ X , there exists a compactly supported,
continuous function ψx : X → [0, 1] such that ψx(x) = 1 and ψx(y) < 1 for y 6= x
(we can do that by arranging that ψx(y) = 1 − d(x, y), for d(x, y) small, and use
the Tietze extension theorem. In general, however, it is not true that any strictly
norming family is exhausting. Indeed, let I be an uncountable set and X = [0, 1]I .
Let x ∈ X be arbitrary, then the family F := X r {x} is strictly norming but is
not exhausting. See also Propositions 4.4.

We now explain how the concepts of exhausting and strictly norming sets of
representations are useful for invertibility questions. Let us first notice that if an
element a ∈ A is not invertible, then either a∗a or aa∗ are not invertible. This is
seen for example by assuming that A ⊂ L(H). Assume the contrary. Then there
exist y, z such that ya∗a = 1 and aa∗z = 1. So b := ya∗a = ya∗aa∗z = a∗z satisfies
ab = ba = 1, and hence a is invertible. The following result was proved in [30].
Since the proof in that paper is for families of irreducible representations, we also
include a (different) proof.

Theorem 3.7. Let F be a set of representations of a unital C∗-algebra A. Then
F is strictly norming if, and only if, it is sufficient.

Proof. Let us assume (i) and let a ∈ A be such that φ(a) is invertible for all φ ∈ F .
We want to show that a is invertible as well. Let us assume, by contradiction,
that it is not invertible. Then either a∗a or aa∗ is not invertible. By replacing a
with a∗ (which is also not invertible), we can assume that a∗a is not invertible.
Then 0 ∈ Spec(a∗a) and hence the element b := ‖a‖2 − a∗a has norm ‖b‖ = ‖a‖2.
Therefore there exists φ ∈ F such that ‖φ(b)‖ = ‖b‖, since we have assumed that
F is strictly norming. Therefore ‖a‖2 − φ(a)∗φ(a) = φ(b) has norm ‖b‖ = ‖a‖2,
and hence 0 is in the spectrum of φ(a)∗φ(a), which is then not invertible. Therefore
φ(a) is not invertible. We have thus obtained a contradiction.
Conversely, let us assume (ii) and let a ∈ A. We want to show that there exists
φ ∈ F such that ‖φ(a)‖ = ‖a‖. Let us consider again b := ‖a‖2 − a∗a, which is
not invertible in A, by the properties of functional calculus. Therefore, there exists
φ ∈ F such that φ(b) = ‖a‖2−φ(a)∗φ(a) is not invertible. Since ‖φ(a)‖ ≤ ‖a‖, this
is possible only if ‖φ(a)‖ = ‖a‖. �

The following characterisation of Fredholm operators is a consequence of the
above theorem and is sometimes useful in applications.

Corollary 3.8. Let 1 ∈ A ⊂ L(H) be a sub-C∗-algebra of bounded operators on
the Hilbert space H containing the algebra of compact operators on H, K = K(H).
Let F be a faithful family of representations of A/K. We then have the following
characterisation of Fredholm operators a ∈ A:

a ∈ A is Fredholm if, and only if, φ(a) is invertible in for all φ ∈ F .
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The following proposition is the analog of Proposition 2.6 in the framework of
strictly norming families.

Theorem 3.9. Let F be a family of representations of a unital C∗-algebra A. Then
F is strictly norming if, and only if, for any a ∈ A,

(10) Spec(a) = ∪φ∈F Spec(φ(a)) .

Proof. Let us assume first that the family F is strictly norming. We proceed in anal-
ogy with the proof of Proposition 2.6. Since we have that Spec(φ0(a)) ⊂ Spec(a) for
any representation φ0 of A, it is enough to show that Spec(a) ⊂ ∪φ∈F Spec(φ(a)).
Let us assume the contrary and let λ ∈ Spec(a)r∪φ∈F Spec(φ(a)). By replacing a
with a− λ, we can assume that λ = 0. We thus have that φ(a) is invertible for all
φ ∈ F , but a is not invertible (in A). This is however a contradiction by Theorem
3.7, which implies that a must be invertible in A as well.

To prove the converse, let us assume that Spec(a) ⊂ ∪φ∈F Spec(φ(a)) for all a ∈
A. We shall use Theorem 3.7. Let us assume that a ∈ A and that φ(a) is invertible
for all φ ∈ F . Then 0 /∈ ∪φ∈F Spec(φ(a)). Since Spec(a) ⊂ ∪φ∈F Spec(φ(a)), we
have that 0 /∈ Spec(a), and hence a is invertible. Theorem 3.7 then shows that the
family F is strictly norming. �

Example 3.10. If G is an étale, Hausdorff, second countable, amenable groupoid,
then the family R := {λx, x ∈ G(0)} of regular representations introduced in Ex-
ample 2.7 is strictly norming for C∗

r (G) [14].

4. Topology on the spectrum and strictly norming families

Let us discuss now in more detail the relation between the concept of strictly
norming family and the simpler (to check) concept of an exhausting family. The
following theorem describes the class of C∗-algebras for which every strictly norming
family is also exhausting. It explains Example 3.5 and Remark 3.6.

Lemma 4.1. Let A be a C∗-algebra, J a two-sided ideal, and π a representation of
A such that π|J is non-degenerate. Also let a ∈ A, 0 ≤ a ≤ 1 such that ‖π(a)‖ = 1
and η > 0. Then there exists c ∈ J , c ≥ 0, ‖c‖ ≤ η such that ‖π(a+ c)‖ ≥ 1+ η/2.

Proof. For any fixed ε > 0 there exists a unit vector ξ such that 〈π(a)ξ, ξ〉 ≥ 1− ε.
Then the positive form ϕ(b) : = 〈π(b)ξ, ξ〉 has norm ‖ϕ‖ ≤ ‖ξ‖2 = 1 and satisfies
ϕ(a) ≥ 1− ǫ. But if (uλ) is an approximate unit in J , then

‖ϕ‖ ≥ ‖ϕ|J‖ = limϕ(uλ) = ‖ξ‖ = 1 .

So ‖ϕ|J‖ = ‖φ‖ = 1. Hence there exists c0 ∈ J , c0 ≥ 0, ‖c0‖ = 1, such that
ϕ(c0) ≥ 1− ε. We then set c = ηc0 and indeed, for ε small enough

‖a+ c‖ ≥ ϕ(a+ c) ≥ 1− ε+ η(1− ε) ≥ 1 + η/2 .

This completes the proof. �

We shall use the above lemma in the form of the following corollary.

Corollary 4.2. Let I0 = ker(π0) ∈ Prim(A) be a primitive ideal and V0 ⊃ . . . ⊃
Vn ⊃ Vn+1 . . . be a decreasing sequence of open neighbourhoods of I0 in Prim(A).
Then there exists a ∈ A such that ‖a‖ = ‖π0(a)‖ = 1 and ‖π(a)‖ ≤ 1 − 2k for any
irreducible representation π such that ker(π) /∈ Vk.
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Proof. To construct a ∈ A with the desired properties, let us consider the ideals Jn
defining the sets Vn, that is, Vn = Prim(Jn). The element a we are looking for will
be the limit of a sequence an ∈ A, where an are defined by induction to satisfy the
following properties:

(i) 0 ≤ an ≤ 1;
(ii) ‖π0(an)‖ = 1;
(iii) ‖π(an)‖ ≤ 1 − 2−k for all irreducible representations π such that ker(π) ∈

Prim(A)r Prim(Jk) for k = 0, 1, . . . , n;
(iv) ‖an − an−1‖ ≤ 22−n for n ≥ 1.

We define a0 as follows. We first choose b0 ∈ J0 such that 0 ≤ b0, and π0(b0) 6= 0.
By rescaling b0 with a positive factor, we can assume that ‖π0(b0)‖ = 1. Let then
χ0 : [0,∞) → [0, 1] be the continuous function defined by χ0(t) = t for t ≤ 1 and
χ0(t) = 1 for t ≥ 1. Then we define a0 = χ0(b0). Conditions (i–iv) are then satisfied

To define an in terms an−1, we first define cn and bn = an−1 + cn as follows. By
Lemma 4.1, there exists cn ∈ Jn, cn ≥ 0, ‖cn‖ ≤ 21−n, such that ‖π0(bn)‖ ≥ 1+2−n.
Let then χn : [0,∞) → [0, 1] be the continuous function defined by χn(t) = t for
t ≤ 1 − 21−n, χn linear on [1 − 21−n, 1] and on [1, 1 + 2−n], χ(1) = 1 − 2−n, and
χn(t) = 1 for t ≥ 1 + 2−n. Then we define an = χn(bn).

Claim. The sequence an ∈ A just constructed satisfies conditions (i–iv).

Indeed, let us check these conditions one by one:

(i) We have that an−1, cn ≥ 0, hence bn := an−1 + cn ≥ 0. Since 0 ≤ χn ≤ 1, we
obtain that 0 ≤ an := χn(bn) ≤ 1.

(ii) Since ‖π0(bn)‖ ≥ 1 + 2−n and χn(t) = 1 for t ≥ 1 + 2−n, we have that
‖π0(an)‖ = ‖π0(χ(bn))‖ = ‖χ(π0(bn))‖ = 1.

(iii) Let π ∈ Â be such that ker(π) ∈ Prim(Jk)
c := Prim(A) r Prim(Jk), for some

k ≤ n. Then π(cn) = 0. Assume k < n. Then ‖π(an−1)‖ ≤ 1− 2−k ≤ 1− 21−n, by
the induction hypothesis and hence

π(an) = π(χn(bn)) = χn(π(bn)) = χn(π(an−1)) = π(an−1) ,

since χn(t) = t for t ≤ 1− 21−n. Consequently, ‖π(an)‖ = ‖π(an−1)‖ ≤ 1− 2−k for
k < n. If k = n, then, similarly, π(an) = χn(π(an−1)). Since χn(t) ≤ 1 − 2−n for
t ≤ 1 and 0 ≤ an−1 ≤ 1, we have that ‖π(an)‖ = ‖χn(π(an−1))‖ ≤ 1− 2−n.

(iv) We have ‖bn‖ ≤ ‖an−1‖ + ‖cn‖ ≤ 1 + 21−n. Since |χ(t) − t| ≤ 21−n for all t,
we have ‖an − bn‖ ≤ 21−n. Hence

‖an − an−1‖ = ‖χn(bn)− an−1‖ ≤ ‖χn(bn)− bn‖+ ‖bn − an−1‖

≤ 21−n + ‖cn‖ ≤ 22−n.

This completes the proof of our claim, and hence the sequence an constructed above
satisfies Conditions (i-iv).

Let us now show how to use the fact that the sequence an ∈ A satisfies Conditions
(i-iv) to construct a as in the statement of this corollary. First of all, Condition (iv)
allows us to define a := limn→∞ an. Let us show that a ∈ A satisfied the desired
conditions. Since Conditions (i–iii) are compatible with limits, we have

(i) 0 ≤ a ≤ 1;
(ii) ‖π0(a)‖ = 1;
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(iii) ‖π0(a)‖ ≤ 1− 2−k on Prim(A)r Prim(Jk) for k ≥ 0.

Thus a has the properties stated in this corollary, which completes the proof. �

Theorem 4.3. Let A be a C∗-algebra. Let us assume that every I ∈ Prim(A) has a
countable base for its system of neighborhoods. Then every strictly norming family
F of representations of A is also exhausting.

Conversely, if every strictly norming family F of representations of A is also
exhausting, then every I ∈ Prim(A) has a countable base for its system of neigh-
borhoods.

Proof. Let us prove first the first part of the statement, so let us assume that every
primitive ideal I ∈ Prim(A) has a countable base for its system of neighborhoods
and let F be a strictly norming family of representations of A. We need to show
that F is exhausting. We shall proceed by contradition. Thus, let us assume that
the family F is not exhausting. Then there exists a primitive ideal I0 = ker(π0) ∈
Prim(A)r ∪φ∈F supp(φ). Let

V0 ⊃ . . . ⊃ Vn ⊃ Vn+1 . . . ⊃ {I0} = ∩kVk

be a basis for the system of neighborhoods of I0 in Prim(A). We may assume
without loss of generality that that the neighbourhoods Vn consist of open sets.
Therefore Vn = Prim(Jn) for some closed two-sided ideals Jn ⊂ A. Corollary 4.2
then yields a ∈ A such that ‖a‖ = ‖π0(a)‖ = 1, but ‖π(a)‖ ≤ 1 − 2k for any
irreducible representation π such that ker(π) ∈ Prim(A)r Vk. Then, for every φ ∈
F , we have that Prim(A)r supp(φ) is a neighborhood of I0 in Prim(A). Therefore
there exists n such that Vn ⊂ Prim(A)rsupp(φ) and hence ‖π(a)‖ ≤ 1−2−n for all
π such that ker(π) ∈ supp(φ). This gives ‖φ(a)‖ ≤ 1− 2−n < 1, thus contradicting
the fact that F is strictly norming. This proves the first half of the statement.

Let us prove the converse, that is, the second half of the statement, which is
easier. Thus let us assume that every strictly norming family of representations of
A is also exhausting and let us prove that every primitive ideal I0 := ker(π0) ∈
Prim(A) has a countable basis for its system of neighbourhoods. Let us fix then
I0 := ker(π0) ∈ Prim(A) arbitrarily and show that it has a countable basis for its
system of neighbourhoods. Also, we associate to each primitive ideal I ∈ Prim(A)
an irreducible representation φI with kernel I. By definition of an exhausting
family, we have that the family of representations F := {φI , I ∈ Prim(A), I 6= I0}
is not exhausting. By our assumption, it is also not strictly norming. Hence by the
definition of a strictly norming family, there exists a ∈ A, such that ‖π(a)‖ < ‖a‖ for

all irreducible π with ker(π) 6= I0. Note that since the family Â is strictly norming
(see Example 3.2), we have that ‖a‖ = maxπ∈Â ‖π(a)‖, and hence ‖a‖ = ‖π0(a)‖.
By rescaling, we can assume ‖a‖ = ‖π0(a)‖ = 1. Then the sets

Vn := { ker(π) ∈ Prim(A), ‖π(a)‖ > 1− 2−n }

are open neighourhoods of I0 := ker(π0) in Prim(A) by Lemma 1.2. Let us show
that they form a basis for the system of neighborhoods of I0. Indeed, let G be
an arbitrary open subset of Prim(A) containing I0. Then there exists a two-sided
ideal J ⊂ A such that G = Prim(J). The set of irreducible representations of A/J
identifies with Prim(J)c := Prim(A) r Prim(J), and hence it does not contain π0.

Hence ‖π(a)‖ < 1 for all π ∈ Prim(A/J). Since Â/J is a strictly norming family of
representations of A/J , we obtain that ‖a+ J‖A/J < 1 (the norm is in A/J). Let
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n be such that ‖a+ J‖A/J ≤ 1 − 2−n. Then Vn ⊂ Prim(J) = G, which completes
the proof of the second half of this theorem. The proof is now complete. �

It is easy to show that separable C∗-algebras satisfy the assumptions of the
previous proposition.

Proposition 4.4. Let A be a separable C∗-algebra. Then every primitive ideal
I ∈ Prim(A) has a countable base for its system of neighborhoods. Consequently, if
F is a strictly norming set of representations of A, then F is exhausting.

Proof. Let {an} be a dense subset of A and fix I0 := ker(π0) ∈ Prim(A). Define

Vn := { ker(π) ∈ Prim(A), ‖π(an)‖ > ‖π0(an)‖/2 } .

Then each Vn is open by Lemma 1.2. We claim that Vn is a basis of the system of
neighborhoods of I0 := ker(π0) in Prim(A). Indeed, let G ⊂ Prim(A) be an open
set containing I0. Then G = Prim(J) for some two-sided ideal of A and π0 6= 0 on
J . Let a ∈ J such that π0(a) 6= 0. By the density of the sequence an in A, we can
find n such that ‖a− an‖ < ‖π0(a)‖/4. Then ‖π′(a)−π′(an)‖ < ‖π0(a)‖/4 for any
irreducible representation π′, and hence

(11) ‖π′(a)‖ − ‖π0(a)‖/4 < ‖π′(an)‖ < ‖π′(a)‖+ ‖π0(a)‖/4 , ∀π′ ∈ Â .

To show that Vn ⊂ G, it is enough to show that Vn ∩ Gc = Vn ∩ Prim(J)c = ∅.

Suppose the contrary and let π ∈ Â be such that ker(π) ∈ Vn ∩ Prim(J)c. Then
‖π(an)‖ > ‖π0(an)‖/2, by the definition of Vn. Moreover, π(a) = 0 since a ∈ J and
π vanishes on J . Let us show that this is not possible. Indeed, using Equation (11)
twice, for π′ = π0 and for π′ = π, we obtain

3

8
‖π0(a)‖ <

1

2
‖π0(an)‖ < ‖π(an)‖ <

1

4
‖π0(a)‖ ,

which is contradiction. Consequently Vn ⊂ G and hence {Vn} is a basis for the
system of neighborhoods of π0 in Prim(A), as claimed. �

The next two basic examples illustrate the differences between the notions of
faithful and strictly norming families.

Example 4.5. Let in this example A be the C∗-algebra of continuous functions f on
[0, 1] with values in M2(C) such that f(1) is diagonal, which is a type I C∗-algebra,

and thus we identify Â and Prim(A). Then the maps evt : f 7→ f(t) ∈ M2(C), for
t < 1, together with the maps evi1 : f 7→ f(1)ii (i = 0, 1) provide all the irreducible
representations of A (up to equivalence). The family

F = { evt, , t < 1 } ∪ {ev11 }

is a faithful but not exhausting family. In fact the function t 7→



1 0
0 1− t



 is not

invertible in A but π(f) is invertible for all π ∈ F . Of course, in this example,

every π ∈ Â = Prim(A) has a countable base for its system of neighborhoods, so
every strictly norming family of representations F of A is also exhausting.

The next example is closely related to the examples we will be dealing with
below.
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Example 4.6. Let T be the Toeplitz algebra, which is again a type I C∗-algebra,

and thus we again identify T̂ and Prim(T ). The Toeplitz algebra T is defined as
the C∗-algebra generated by the operator defined by the unilateral shift S. (Recall
that S acts on the Hilbert space L2(N) by S : ǫk 7→ ǫk+1.) As S∗S = 1 and SS∗− 1
is a rank 1 operator, one can prove that the following is an exact sequence

0 → K → T → C(S1) → 0 ,

where K is the algebra of compact operator. Extend the unique irreducible repre-
sentation π of K to T as in [12]. Also, the irreducible characters χθ of S1 pull-back
to irreducible characters of T vanishing on K. Then the spectrum of T is

T̂ = {π} ∪ {χθ , θ ∈ S1} ,

with S1 embedded as a closed subset. A subset V ⊂ Prim(T ) will be open if, and
only if, it contains π and its intersection with S1 is open. We thus see that the single

element set {π} defines an exhausting family. In other words T̂ = {π} = supp(π).
Since every exhausting family is also strictly norming, by Proposition 3.4, the family
{π} consisting of a single representation is also strictly norming. We can see also
directly that the family F = {π} (consisting of π alone) is strictly norming. Indeed,
it suffices to notice that ‖x‖ = ‖π(x)‖ for all x since π is injective. In this example

again every π′ ∈ T̂ = Prim(T ) has a countable base for its system of neighborhoods,
so every strictly norming family of representations F of T is also exhausting.

Here are two more examples that show that the condition that A be separable is
not necessary for the classes of exhausting families of representations and strictly
norming families of representations to coincide.

Example 4.7. Let I be an infinite uncountable set. We endow it with the discrete
topology. Then A0 := C0(I) and A1 := K(ℓ2(I)) (the algebra of compact operators
on ℓ2(I)) are not separable, however, if F is a strictly norming family of represen-
tations of Ai, i = 0, 1, then F is also an exhausting family of representations of
Ai.

5. Unbounded operators

The results of the previous sections are are relevant often in applications to
unbounded operators, so we now extend Theorem 3.7 to (possibly) unbounded
operators affiliated to C∗-algebras. We begin with an abstract setting.

5.1. Abstract affiliated operators. The notion of affiliated self-adjoint operator
has been extensively and successfully studied, see [5, 9, 15, 34, 35] for example. In
the sequel we will closely follow the definitions in [15], beginning with an abstract
version of this notion. See [18, 28] for results on unbounded operators on Hilbert
modules [7, 19, 24].

Definition 5.1. Let A be a C∗-algebra. An observable T affiliated to A is a
morphism θT : C0(R) → A of C∗-algebras. The observable T is said to be strictly
affiliated to A if the space generated by elements of the form θT (h)a (a ∈ A,
h ∈ C0(R)), is dense in A.

As in the classical case, we now introduce the Cayley transform. To this end, let
us notice that an observable affiliated to A extends to a morphism θ+T : C0(R)

+ →
A+ (the algebra obtained from A by adjunction of a unit). If moreover T is strictly



EXHAUSTING FAMILIES 15

affiliated to A, then θT extends to a morphism from Cb(R) to the multiplier algebra
of A, but we shall not need this fact.

Definition 5.2. Let T be an observable affiliated to A. The Cayley transform
uT ∈ A+ of T is

(12) uT := θ+T (h0) , h0(z) := (z + ı)(z − ı)−1 .

The Cayley transform allows us to reduce questions about the spectrum of an
observable to questions about the spectrum of its Cayley transform. Let us first
introduce, however, the spectrum of an affiliated observable. Let thus θT : C0(R) →
A be a self-adjoint operator affiliated to a C∗-algebra A. The kernel of θT is then
of the form C0(U), for some open subset of R. We define the spectrum SpecA(T )
as the complement of U in R. Explicitly,

(13) SpecA(T ) = {λ ∈ R, h(λ) = 0, ∀h ∈ C0(R) such that θT (h) = 0 } .

We allow the case SpecA(T ) = ∅, which corresponds to the case T = ∞ or uT = 1.
If σ : A→ B is a morphism of C∗-algebras, then σ◦θT : C0(R) → A is an observable
σ(T ) affiliated to the C∗-algebra B and

SpecB(σ(T )) ⊂ SpecA(T ) .

If σ is injective, then SpecB(σ(T )) = SpecA(T ), which shows that the spectrum is
preserved by increasing the C∗-algebra A. Note that

(14) σ(uT ) = uσ(T ) .

By classical results, if (uT − 1) is injective, then we can define a true self-adjoint
operator T := ı(uT + 1)(uT − 1)−1 ∈ A such that θT (h) = h(T ), h ∈ C0(R) [11].
This is the case, for instance, if If Spec(T ) is a bounded subset of R, in which case
we shall say that T is bounded. In any case, bounded or unbounded, our definition
of Spec(T ) in terms of θT coincides with the classical spectrum of T defined using
the resolvent. Let h0(z) := (z + ı)(z − ı)−1, as before.

Lemma 5.3. The spectrum Spec(T ) of the an observable θT : C0(R) → A affiliated
to the C∗-algebra A and the spectrum Spec(uT ) of its Cayley transform are related
by

Spec(T ) = h−1
0 (Spec(uT )) .

Proof. This follows from the fact that h0 is a homeomorphism of R onto its image
in S1 := {|z| = 1} and from the properties of the functional calculus. �

Let us notice that the above lemma is valid also in the case when

T = ∞ ⇔ θT = 0 ⇔ Spec(T ) = ∅ ⇔ uT = 1 ⇔ σ(uT ) = {1} .

One can make the relation in the above lemma more precise by saying that for
bounded T we have h0(Spec(T )) = Spec(uT ) whereas for unbounded T we have

(15) h0(Spec(T )) = h0(Spec(T )) ∪ {1} = Spec(uT ) ,

where h0(z) := (z + ı)(z − ı)−1, as before.
Here is our main result on (possibly unbounded) self-adjoint operators affiliated

to C∗-algebras.

Theorem 5.4. Let A be a unital C∗-algebra and T an observable affiliated to A.
Let F be a set of representations of A.
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(1) If F is strictly norming, then

Spec(T ) = ∪φ∈F Spec(φ(T )) .

(2) If F is faithful, then

Spec(T ) = ∪φ∈F Spec(φ(T )) .

Proof. The proofs of (i) and (ii) are similar, starting with the relation Spec(T ) =
h−1
0 (Spec(uT )) of Lemma 5.3. We begin with (i), which is slightly easier. Since

F is strictly norming, we can then apply theorem 3.9 to uT ∈ A+ and the family
σ ∈ F . We obtain

Spec(T ) = h−1
0 [Spec(uT )] = h−1

0 [∪σ∈F Spec(σ(uT ))]

= h−1
0

[
∪σ∈F Spec(uσ(T ))

]
= ∪σ∈F h

−1
0

[
Spec(uσ(T ))

]
= ∪σ∈F Spec(σ(T )) .

If, on the other hand, F is faithful, we apply proposition 2.6 after noting that
h0 is a homeomorphism of R onto its image in S1 := {|z| = 1} and hence h−1

0 (S) =

h−1
0 (S) for any S ⊂ S1. The same argument then gives

Spec(T ) = h−1
0 [Spec(uT )] = h−1

0 [∪σ∈F Spec(σ(uT ))]

= h−1
0

[
∪σ∈F Spec(uσ(T ))

]
= ∪σ∈F h

−1
0

[
Spec(uσ(T ))

]
= ∪σ∈F Spec(σ(T )) .

The proof is now complete. �

Remark 5.5. In view of the remarks preceeding it, Theorem 5.4 remains valid for
true self-adjoint operators T .

5.2. The case of true operators. We now look at concrete (true) operators.

Definition 5.6. Let A ⊂ L(H) be a sub-C∗-algebra of L(H). A (possibly un-
bounded) self-adjoint operator T : D(T ) ⊂ H → H is said to be affiliated to A if,
for every continuous functions h on the spectrum of T vanishing at infinity, we have
h(T ) ∈ A.

Remark 5.7. We have that T is affiliated to A if, and only if, (T − λ)−1 ∈ A for
one λ /∈ Spec(T ) (equivalently for all such λ) [9]. We thus see that a self-adjoint
operator T affiliated to A defines a morphism θT : C0(R) → A, θT (h) := h(T ) such
that Spec(T ) = Spec(θT ). Thus T defines an observable affiliated to A.

When A ⊂ L(H) is non degenerate, the correspondence between self-adjoint
operators affiliated to A and observables affiliated to A given by T 7→ θT is actually
bijective. This can be seen by using the unbounded functional calculus of normal
operators.

Since in our paper we shall consider only the case when A ⊂ L(H) is non degen-
erate, we shall not make a difference between operators and observables affiliated
to A.

Recall that an unbounded operator T is invertible if, and only if, it is bijective
and T−1 is bounded. This is also equivalent to 0 /∈ Spec(θT ). We have the following
analog of Proposition 2.3 and Theorem 3.7

Theorem 5.8. Let A ⊂ L(H) be a unital C∗-algebra and T a self-adjoint operator
affiliated to A. Let F be a set of representations of A.

(1) Let F be strictly norming. Then T is invertible if, and only if φ(T ) is
invertible for all φ ∈ F .
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(2) Let F be faithful. Then T is invertible if, and only if φ(T ) is invertible for
all φ ∈ F and the set {‖φ(T )−1‖, φ ∈ F} is bounded.

Proof. This follows from Theorem 5.4 as follows. First of all, we have that T is
invertible if, and only if, 0 /∈ Spec(T ). Now, if F is strictly norming, we have

0 /∈ Spec(T ) ⇔ 0 /∈ ∪φ∈F Spec(φ(T )) ⇔ 0 /∈ Spec(φ(T )) for all φ ∈ F .

This proves (i). To prove (ii), we proceed similarly, noticing also that the distance
from 0 to Spec(T ) is exactly ‖T−1‖. �

We have already remarked (Remark 5.5) that Theorem 5.4 extends to the frame-
work of this subsection, that is, that of (possibly unbounded) self-adjoint operators
on a Hilbert space.

6. Parametric pseudodifferential operators

Let M be a compact smooth Riemannian manifold and G be a Lie group (finite
dimensional) with Lie algebra g := Lie(G). We let G act by left translations onM×
G. We denote by Ψ0(M×G)G the algebra of order 0, G-invariant pseudodifferential

operators on M × G and Ψ0(M ×G)G be its norm closure acting on L2(M × G).
For any vector bundle E, we denote by S∗E the set of directions in its dual E∗. If
E is endowed with a metric, then S∗E can be identified with the set of unit vectors
in E∗. We shall be interested the the quotient

S∗(T (M ×G))/G = S∗(TM × TG)/G = S∗(TM × g) .

We have that Ψ0(M ×G)G ≃ C∗
r (G)⊗K and then obtain the exact sequence

(16) 0 → C∗
r (G)⊗K → Ψ0(M ×G)G → C(S∗(M × g)) → 0 ,

[21, 22, 25, 34]. Note that the kernel of the symbol map will now have irreducible

representations parametrised by Ĝr the temperate unitary irreducible representa-
tions of G. Let T ∈ Ψm(M × G)G and denote by T ♯ ∈ Ψm(M × G)G its formal
adjoint (defined using the calculus of pseudodifferential operators). All operators
considered below are closed with minimal domain (the closure of the operators de-
fined on C∞

c (M × G)). We denote by T ∗ the Hilbert space adjoint of a (possibly
unbouded) densely defined operator.

Lemma 6.1. Let T ∈ Ψm(M × G)G be elliptic. Then T ∗ = T ♯. Thus, if also
T = T ♯, then T is self-adjoint and (T + ı)−1 ∈ C∗

r (G), and hence it is affiliated to
C∗

r (G).

Proof. This is a consequence of the fact that Ψ∞(M ×G)G is closed under multi-
plication and formal adjoints. See [21, 22, 34] for details. �

In other words, any elliptic, formally self-adjoint T ∈ Ψm(M × G)G, m > 0, is
actually self-adjoint.

Let us assume G = Rn, regarded as an abelian Lie group. Then our exact
sequence (16) becomes

(17) 0 → C0(R
n)⊗K → Ψ0(M × Rn)Rn → C(S∗(TM × R

n)) → 0 .

This shows that A := Ψ0(M × Rn)Rn is a type I C∗-algebra, and hence we can

identify Â and Prim(A). Then we use that, to each λ ∈ Rn, there corresponds
an irreducible representation φλ of C0(R

n) ⊗ K. Recalling that every irreducible
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(bounded, *) representation of an ideal I in a C∗-algebra A extends uniquely to
a representation of A, we obtain that φλ extends uniquely to an irreducible rep-

resentation of Ψ0(M × Rn)Rn denoted with the same letter. It is customary to

denote by T̂ (λ) := φλ(T ) for T a pseudodifferential operator in Ψm(M × Rn)R
n

,

m ≥ 0. To define T̂ (λ) for m > 0, we can either use the Fourier transform or,
notice that ∆ is affiliated to the closure of Ψ0(M ×Rn)R

n

. This allows us to define

∆̂(λ). In general, we write T = (1 − ∆)kS, with S ∈ Ψ0(M × Rn)R
n

and define

T̂ (λ)q = ̂(1 −∆)(λ)kŜ(λ). (We consider the “analyst’s” Laplacian, so ∆ ≤ 0.)

Lemma 6.2. Let A := Ψ0(M × Rn)Rn . Then the primitive ideal spectrum of A,
Prim(A), is in a canonical bijection with the disjoint union Rn ∪ S∗(TM × Rn),
where the copy of Rn corresponds to the open subset {φλ, λ ∈ Rn} and the copy
of S∗(TM × Rn) corresponds to the closed subset {ep, p ∈ S∗(TM × Rn)}. The
induced topologies on Rn and S∗(TM × Rn) are the standard ones. Let S∗M :=
S∗(TM) ⊂ S∗(TM × Rn) correspond to T ∗M ⊂ T ∗M × Rn. Then the closure of
{φλ} in Prim(A) is {φλ} ∪ S∗M .

Proof. By standard properties of C∗-algebras (the definition of the Jacobson topol-
ogy), the ideal C0(Rn)⊗K ⊂ A defines an open subset of Prim(A) with complement
Prim(A/I) with the induced topologies. This proves the first part of the statement.
In order to determine the closure of {φλ} in Prim(A), let us notice that the princi-

pal symbol of T̂ (λ) can be calculated in local coordinate carts onM (more precisely,
on sets of the form U × Rn, with U a coordinate chart in M). This gives that the

principal symbol of T̂ (λ) is given by the restriction of the principal symbol of T to
S∗M .
Indeed, let U = Rk. A translation invariant pseudodifferential P operator on

U × Rn = Rk+n is of the form P = a(x, y,Dx, Dy) with a independent of y:

a(x, y, ξ, η) = ã(x, ξ, η). With this notation, we have P̂ (λ) = ã(x,Dx, λ). The

principals symbol of P̂ (λ) is then the principal symbols of the (global) symbol
Rk ∋ (x, ξ) → ã(x, ξ, λ), and is seen to be independent of the (finite) value of
λ ∈ Rn and is the restriction from S∗(TU × Rn) to S∗(TU × {0}) of the principal
symbol of ã.
Comming back to the general case, the same reasoning gives that the image of

φλ is Ψ0(M). The primitive ideal spectrum of this algebra is canonically homeo-
morphic to the closure of {φλ}, and this is enough to comple the proof. �

By the exact sequence (16), in addition to the irreducible representations φλ,
λ ∈ Rn (or, more precisely, their kernels), Prim(A) contains also (the kernels of)
the irreducible representations ep(T ) = σ0(T )(p), p ∈ S∗(TM × Rn).

Proposition 6.3. Let F := {φλ, λ ∈ Rn} ∪ {ep, p ∈ S∗(TM × Rn)r S∗M}.

(i) The family F is a strictly norming family of representations of Ψ0(M × Rn)Rn .
(ii) Let P ∈ Ψm(M×Rn)R

n

, then P : Hs(M×Rn) → Hs−m(M×Rn) is invertible

if, and only if P̂ (λ) : Hs(M) → Hs−m(M) is invertible for all λ ∈ Rn and
the principal symbol of P is non-zero on all rays not intersecting S∗M .

(iii) If T ∈ Ψm(M × Rn)R
n

, m > 0, is formally self-adjoint and elliptic, then
Spec(ep(T )) = ∅, and hence

Spec(T ) = ∪λ∈Rn Spec(T̂ (λ)) .
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Proof. (i) follows from Lemma 6.2. To prove (ii), let us denote by ∆M ≤ 0 the
(non-positive) Laplace operator on M . Then the Laplace operator ∆ on M × Rn

is ∆ = ∆Rn +∆M . Note that (1 −∆)m/2 : Hs(M × Rn) → Hs−m(M × Rn) and
(c − ∆M )m/2 : Hs(M) → Hs−m(M), c > 0, are isomorphisms. By [22], we have
that

P1 := (1−∆)(s−m)/2P (1−∆)−s/2 ∈ A := Ψ0(M × Rn)Rn .

It is then enough to prove that P1 is invertible on L2(M × Rn). Moreover from
part (i) we have just proved and Theorem 3.7 we know that P1 is invertible on

L2(M × Rn) if, and only if, P̂1(λ) := φλ(P1) is invertible on L2(M) for all λ ∈ Rn

and the principal symbol of P1 is non-zero on all rays not intersecting S∗M . But,

using also 1̂−∆(λ) = (1 + |λ|2 −∆M ), we have

P̂1(λ) = (1 + |λ|2 −∆M )(s−m)/2P̂ (λ)(1 + |λ|2 −∆M )−s/2 ,

which is invertible by assumption.
To prove (iii), we recall that T is affiliated to A, by Lemma 6.1. The result then

follows from Theorem 5.4(1) (See also Remark 5.5). �

Operators of the kind considered in this subsection were used also in [1, 8, 10, 23,
26, 32, 33]. They turn out to be useful also for general topological index theorems
[13, 27]. A more class of operators than the ones considered in this subsection were
introduced in [3, 4]. The above result has turned out to be useful for the study of
layer potentials [29].
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Villars. [Gauthier-Villars Great Classics]. Éditions Jacques Gabay, Paris, 1996. Reprint of the
second (1969) edition.

[13] Heath Emerson and Ralf Meyer. Equivariant embedding theorems and topological index
maps. Adv. Math., 225(5):2840–2882, 2010.



20 V. NISTOR AND N. PRUDHON

[14] Ruy Exel. Invertibility in groupoid C∗-algebras. In Operator theory, operator algebras and
applications, volume 242 of Oper. Theory Adv. Appl., pages 173–183. Birkhäuser/Springer,
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