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Abstract

We present a methodology for the common
development of combustion engine control Software
between TIER-1 supplier and OEM. The classical
approach of shared development used in single core
projects has to be adapted to the new challenges of
integration and protection, in the multi-core context.
New integration and protection constraints are
specified at design time, which are considered at
integration and protection time. A common
integration step is defined, where interfaces and
constraints at the border are agreed. After that, each
part can be modified and protected independently,
enabling parallel developments by the partners.

1. Introduction

In the automotive domain, the body controller ahdssis
systems markets are driven by the integration of ne
innovative features, resulting in an increase olUEGn

the car, e.g. in an AUDI A8 with up to 80 ECUs.this
context, the multi-core technology is seen as an
opportunity to slow-down the inflation of ECUs ihet
car, by enabling the integration of loosely coupled
functions in one same ECU, as a kind of fusion @ssc

On the other side, the combustion engine marketiven

by an increase of engine throughput, a reduction of
consumption (CO2), and a reduction of emissionds Th
results in more complex systems with tighter realet
constraints, and finally in SW sizes above 1.5 ionillof
lines of code. Such increase of computation povesr c
only be achieved by the use of multi-core platfor(fFig).

1). The challenge is then in this case to distakahighly
cohesive system on different cores, as a kind s¥idn
process.
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Fig. 1: Quota of deliveries based on multi-core CPU at
VW/AUDI

In [1], it has been previously described how thiallenge
can be handled. We want now to focus on the common

2014 2015

work between Continental Automotive, as TIER-1
(supplier), and Volkswagen Automotive Group, as OEM

In an engine management system, a part of theifursct

is provided by the OEM, and another part is prodity

the TIER-1, resulting in a complex integration agHiy
coupled SW modules and runnables. In addition, the
reduction of time-to-market requires parallel depehent

of these parts, on TIER-1 side and OEM side.

This paper describes the process developed between
Continental and VAG to support an integrated shared
development in a multi-core legacy (non AUTOSAR)
SW, and is based on real project experience. Therga
organized as follows:

In a first chapter, we describe the context of eagi
control SW. We particularly elaborate on the high
coupling of underlying modules, and the hard réalet
requirements of functions. The iterative developmen
process and the need for parallel development letwe
the parties are also explained.

In a second chapter, the general integration amgdlds
described. We introduce the concepts developediand
use internally, as well as across partners. Weagxphat

an important step in the integration is the elathonaof a
precise and exhaustive cartography of the SW.

In a third chapter, the data protection topic igradsed.
We show the importance of this topic, in regardthe
high coupling / data flow characteristic to engaystems.
The basic mechanisms are developed, from the
specification of protection requirements, until the
implementation. We finally provide a comparison 2f
basic methods of intervention.

The fourth chapter describes the context of shared
development and the different use cases. The néed o
defining a common architecture, a common integnatio
frame, and the necessary adaptations of the irtegra
and protection processes are explained.

Finally, in a last chapter, we provide the stat¢hefart on
these topics, as known from us. We draw a compaigo
the standards AMALTHEA, AUTOSAR, and ASAM-
MDX, which are the state of the art in the autowmti
domain. In particular, we point some weaknessestad|

to the shared development, and to the multi-copedas,
requiring evolutions of the standard.

2. Multi-core challenges at engine systems
Technical context
The importance of integration and data protectian i

engine systems context is due to the high couptihg
combustion control functions, a unique situation in
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automotive domain. Most of these functions contha
same highly dynamic phenomena: the cone
thermodynamic process from beginning of air int¢éike
the end of exhaust pipe. The different sensors
actuators interact physically with each other,

therefore the corresponding SW control algoritt
permanently exchange information signals.

A rough measurement of this coupling can be base
the number of exchanged signals (SW connector
AUTOSAR language) (Fig.)2 In most of the caseshe
exchange concerns 2 modules. This means one tc
coupling (high coupling). In the other side of &gectra
some signals (e.g. engine rotation speed,
temperature...) are needed in many control laws,
therefore exchanged all over the SW. This ns 1:n
coupling, with n greater than 100 (i.e. 10% of
complete application).

10000

Coupling: Data shared across modules

1000

100

2 3 4 5-10 11-20  21-40 41-100 >100

Fig. 2: Number of modules sharing data

Finally, these signals are data implemented as Isi
scalars, complex structures, or arrays. performance
reasons, global variables are used.

But this module-tanodule coupling gives only &
overview of the static facet of the SW. These SWiuahes
are based on severalfunctions (executable entities

AUTOSAR language) executed at different r: for one
module, several executable entities might be neces
Only in 10% of the cases, a single module -up in one
single executable.

Therefore, ahead to the data flow between modalésata
flow between executables can be measurFig. 3),
which gives a first idea of race conditions we haot
tackle with.

10000
Coupling: Data shared across executables

1000

10 +

2 3 4 5-10 11-20 21-40 41-100 =100

Fig. 3: Number of executables sharing data

Such estimation gives a similaricture than on
component level, but with a higher level of flow:hilé
70% of the data are encapsulated inside a modulg,
30% of them are encapsulated inside one exect

Finally, the full picture on the data is as follo

- 1/3 are local to one egatable

- 1/3 are exchanged between executables, but loc
a module (“interrunnable variables

- 1/3 are exchanged between executables of diffi
modules (“sender-receiver”)

As these executables (8.000) are scheduled frore
than 60 operating systetasks (ranging from 1ms to 1
mixing timing and angular frequencies, distributed
different cores), a significant part of the datawf is
subject to race conditions in our m-core environment.

[
[
o

#Runnables (task level) e
#Tasks
#Interrupts

i
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40
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Airbag Body Controller Electronic Double Clutch HEV Controller Engine
Brake Transmission Management
System

Fig. 4: Number of dynamic artifactsfor integration in
different domains

Of course, on the static aspect, the mentionedlcauis
reduced using SW composition, to allow a platfoeunse
approach. But this has no effect on the race ciomdi

Challenges

Therefore, the introduction of mu-core in engine
systems is a challenging task.

On the scheduling and integration side, new comgs
are adding complexity: The number of integrai
containers (tasks) increases, the relation betwieem is
more complex (parallelization, chaining...), new typds
constraints show up (affinities...), as well as r
distribution strategies (all SW on one core,
dependant SW on one core, sa-related SW on one
core...), and the different partners (OEM, T-1, 3d
party...) may have different views/constraints awho
utilize the different cores.

On the protection side, a SW running previouslyai
protected single core cooperative environment &a
fixed priority with deferred preemption schedulir—
FPDS) has now to support parallel execution.
particular, to achieve a maximum flexibility of tf&W
distribution, which is motivated by the high vaiiléip of
project configurations, the module designs havebd
independent of any core consideration. Fnstance, 2
runnables of the same module might run on 2 diffe
cores — or not -depending on the project reusing

module. The same module must even still be reusa
the <innle core nraiects <till 1inder develonne



Finally, due to the tight economic constraintsoanplete
rework of the existing SW is not affordable. Therefthe
methodology has to cover the legacy SW not desifored
multi-core.

3. Integration process
General

The topic of integration in this context covers the
integration of one or more runnables of a software
component or composition into one or more taskshef
complete software system, performed by an integrato
this phase the correct position of the runnabletha
sequence shall be determined and the necessaectioot

of data against concurrent access shall be gedertaie
ensure the stability or coherency of the data usethe
runnable. It is further on assumed that the provafehe
runnables and the integrator are time-wise andtilmta
wise separated from each other as a consequence of
worldwide software development of large scale safew
project.

Dynamic requirementsfor runnables:

For the correct real time behavior of the software
functions in the target application, it is necegs&w
describe unambiguously the dynamic requirementshior
integration of the runnables into existing tasksy(famic
integration”). This is true for runnables of thepplier in
context of a platform development and especially fo
runnables of the OEM, when looking on integratise u
cases in different applications of the same or ewkn
different suppliers.

Due to this different use cases it is importandéscribe
rather the requirements than a given solution. Daisg
the solution might be sufficient for one project ould
manifest many design constraints to other projects,
especially when looking across multiple suppliesing
different architectures.

The minimum requirement on dynamic integrationhis t
description of the point in time, when the runnasieall

be executed. In the Continental PowerSAR architectu
the available points in time (“rates”) are standeed in a
Reference Architecture and are called SystemEvents.
They are characterized by different attributes tikguired
minimum and maximum period, guaranteed deadlind, an
more. For each Runnable to be integrated, a seetall
RunnableEvent is created, which specifies the ratémn
constraint of this runnable by referring to an 8ri3
SystemEvent. This RunnableEvent should not be
confused with the AUTOSAR RteEvent, which defines
more an integration solution than a requirement.

Still missing are requirements concerning the efat
between runnables using the same SystemEvent.hEor t
description of requirements for a sequence one dcoul
either describe a relation to one or more runnables
name, the so called “Execution Order ConstrainO(8

or use a requirement concerning the allowed agedafta,
which is consumed, named “Data Age Constraint” (DAC

(Fig. 5).

The type of constraint to be used depends on e afr
responsibility for a part of the software. Withirsaftware
composition where the responsibility is at a singgeson

or small group of developers, EOC might be quite
efficient, as giving the order of executables o thwn
composition combines a lot of refined requirements
concerning the data flow and allows an easier et

of the sequence requirements. On the other hand ofhos
those execution orders are needed because of the da
flow of some “important” data, which contribute toe
dynamic behavior of a complete event chain. WithCEO
this information might get lost and in case of
repartitioning or renaming of the software: the E@{ght
become invalid.

{L = ' J —

S —— )

The scheduling is a result of
# Execution Order Canstraints 4
= Data Age Constraints z

3

o
Fig. 5: Solving Sequence of runnablesusing
Constraints

When using a DAC, one is working on the interfatée
runnables and does not depend on runnable names. In
model where only data which are consumed by a tiena
are described with a DAC the requirement doesn’t
become invalid in case of a repartition of the ables. If
the data use is changed, this attribute has tmbsigdered

as well. This is especially helpful in a sharedelepment
context as the interfaces are the subject of discos
when defining the interaction of OEM and supplier
software e.g. in Sequencing Workshops (See Fig. 6).

Fig. 6 : Effect of position in the sequence on the data
flow between supplier and OEM runnables

Due to the complex coupling and data flow inherent
engine systems, an exhaustive analysis and resolofi
data precedence problem is not possible: the probies
not always one solution. Therefore, the principfethe
DAC approach is to identify, among all possiblewi#
the few ones which have a real impact on the syskem
instance, low dynamic information, like the air
temperature might have one — or more — recurrentes
delay without big impact on most of the functiotial.
At the opposite, having the wrong value for a ayéin
index can be dramatic for the injection controller.
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Today this information is exchanged via non formal
requirement specification in a textual way duehe tact
that MDX V1.2 [2] doesn't offer means for a formal
description and most OEMs didn’'t migrate up to nmw
AUTOSAR, where the timing extensions would offer a
possibility to describe a RTE Event and in addition
runnable sequence needs or a DAC.

In addition to these two types of constraints, E@
DAC, another concept can be used: the phase coff]ept
It consists in partitioning the time domain accoglito
standard features in automatism. As example, Itigica
the runnables dealing with acquisition and diagaoseed

to be executed before the runnables dealing witipudu
commands. Therefore, a phase is associated toem giv

runnable, according to its inner functionality, and
therefore is valid independently of the integration
environment. This leads to a fully reusable and

independent integration constraint. This method been
introduced at Conti since 3 years now, and used
internally. Nevertheless, its extension on shared
development with external partners is more difficul

SW _Cartography

For a correct integration and protection of the SwNis
necessary to know the whole structure of the codketlae
data accesses for read and write performed thraudhe
whole call graph of the application. No grey arballsbe

left over, as it can have severe consequencesrekssp
the cartography will be, as precise the protectom
integration will be.

Verifying a DAC is only possible if the full datana
control flow of the relevant sequence is known.e Bame
applies to EOC, where the involved runnables are no
mandatorily those directly integrated in the seqaen
Depending on the type of the SW which has to be
integrated, this cartography can be establisheédbas
C-code, MDX description, or ARXML SW-components,
a mixture of these use cases needs to be supported.

4. Protection process

Structuring the problem

In terms of data protection against race conditian®
types of problems are taking special importancenirdti-
core context: data stability and data coherency.

Stability: As soon as runnables can execute inllegra
and exchange data, it becomes very probable, tdatea
is modified while it is used on another core. i titata is
scalar, and atomic, each individual read accessatare
corrupted by a write access on another core. The re
access point will get the newest or the old vaRuat, if
there are several read accesses, or if the same whthe
data is expected across 2 successive runnables,thbe
stability of the data might be corrupted. In sonases,
this might be acceptable, because for instancesanee
data is used in different decoupled parts of tigeréhm,
and/or because the data has a low dynamics andaonly
small change of its value is possible. But in otbases,
like for instance for booleans or state machindg t
impact of a change during an algorithm can be sever

Coherency: The modification of an elaborated data
(structure, array, a set of atomic data...) on ome udile

it is accessed on the other core can have severe
consequences, too. For instance, 2 exclusive irgtom

(a flag and its complement...) need to be written eezdi

in a coherent manner. The reading of the data ggttroe
“interrupted” by the writing of these data on tlather
core. Or on the opposite, the writing of the dagamight

be “interrupted” by the reading on the other cokeven
both cases can happen. Here again, this does noéo

all variables of the SW, but only sub-sets. Fotanse, in
one given algorithm, it is often the case that alslds
from different rates are used, and therefore careot
coherent, by essence.

Consistency needs

Considering the huge data flow across runnables and
tasks, as depicted in chapter 2, our approach ibeto
selective on the data and runnables to be protesteshd

of limiting the HW resources consumption, this lisnihe
protection cases that may have negative functional
impacts.

31 51 =TT =2
I T
S L
st 1 51 ! 516-24:I s1_$2.43
-4 04

I...

The protection is a ensured by,
»  Stability Needs W
» Coherency Needs 0

Fig. 7: Ensuring data protection using Stability and
Coherency Needs

Therefore, functional consistency needs are spgekifit
design phase by function experts: stability of @ierdata
accessed by distinct but coupled executables, and
coherency for sub-sets of coupled data in certain
executable. The function experts are responsible to
specify the stability and coherency needs whereaired,
and only there. In this way, the learning and depelent
effort related to multi-core is minimized, and fisaction
experts can concentrate on their core competemysiqs
and control laws. They have to concentrate on tieat’
(to protect) and not on the “how” (to solve thetpuation).

It has to be noted that the initial AUTOSAR appitoac
(“implicit communication”), where protection wasgigd
everywhere, has been modified in AUTOSAR 4.1.1[4]
(and in ASAM-MDX 1.3 [5]), with the introduction of
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Data Stability and Data Coherency Needs. But this
represents a significant evolution in the RTE (&ipand
implicit) communication paradigms.

At integration and protection step, the requireraefolr
data consistency are analyzed and checked agdiest t
project architecture (task configuration) and ography
(data flow). In case a consistency is required,aeer
condition is requested, and the SW is ready to be
protected, then the protection of the relevant data
established in the relevant executables.

Race condition
Consistency Software is
requirement valid protection ready
Buffer
established

Fig. 8 : Data consistency buffer evaluation

To cover the simple cases where consistency is
systematically required, and to reduce the effébmeeds
specification, complementary automatic strategies a
used. For instance, coherency of non atomic (6) data
and stability of multiple accesses of same datalénan
executable do not need to be specified.

Protection by buffering

The protection of data against race condition isstigo
(but not uniquely) ensured by a buffering mechanigm

consists in copying the data in a task-local buyfferd
using the buffer instead of the original variabfe the
algorithm. Fill and flush routines are inserted time
program flow (task bodies) in order to copy theialale
into the buffer, and vice versa.

In the AUTOSAR implicit communication, the copiega
done at beginning/end of task, resulting in longfféring
segments”, and high resource consumption. In daksi
approaches, the copy is done at beginning/enderesadh
runnable, which is resource consuming too, but in
addition does not ensure consistency across ruesiabl

In our case, the copies are done along the taskaa
these drawbacks. For instance, the filling of tagadnto
the buffer is done at the latest possible positiothe task
(“as late as possible”), in order to benefit frome fatest
available value in the global system.

Access M odification in executable

For modifying the data access to a buffer accesa in
legacy SW, 2 basic technigues are available:

The Data Reference Modification (DRM) [6] consigts
changing the address of the original data by thizess of

a buffer in the binary ELF file. Here the integesti of
object code sets some limits in terms of protectieor
instance, in case of multi rate executables thetfon
design has to be modified as the DRM process alttata
protection in only one context (variable address
substituted in binary by buffer address). In thastigular
case of multi-rate executables, the resulting aephe
might have other drawbacks like e.g. code duplicati

DAM (source code modification)

DRM (binary code modification)

Need of source
migration

Yes: Accessers (GET/SET) have to be added to
the code.

But, a migration can be done by a tool; and code
generators can be adapted, in the MBD case.

No.
But, redesign of the functions might be required in
special cases.

Finally, a similar migration is required for
AUTOSAR introduction.
Source code Yes. No: object code is the standard for IPP, in legacy

exchange

But some TIER-1 and OEMSs are used to work with
obfuscated code. In some cases, the OEM
functions are even coded by the TIER-1. Finally,
AUTOSAR process might need source code
exchange, in context of engine systems.

context.

Verification and

Early: Modification of accessers can easily be

Late: Need to compile and link before having the

validation checked at compile time. modification.
Compiler chain | Yes: Accessers modified on source code level. No: Same configuration of the compiler chain
independence across all partners. Furthermore, the chain has to

support DRM technique.

Openness to
complex cases

Yes: Step by step, new use cases are supported,
which need a more complex redirection of the
Accesser, than a simple address modification (e.g.
multi-rate cases). Furthermore, the addressing
mode to the buffer can be different than the one to
the original data, to gain performance.

No: Only address modification can be done,
limiting the possible intervention.

Coherency

cartography vs.

intervention

Yes: the cartography of the SW and the
intervention (accesser modification) are based on
the same model: The SW-code. This guaranties
the global coherency.

No: Unless the cartography is based on the obj.
code, which is late in the process, there might be a
gap between the cartography and the real
implementation in the binary leading to severe
mismatches on the protection.

Table 1: Comparison of Data Reference M odification and Data Accesser M odification
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The Data Accesser Modification (DAM) consists in
modifying the source code. Standardized APIs (data
“accessers”) are used in the code, and can besotel -
or not - to the buffer, using an include file. This
technique, which is similar to AUTOSAR, gives more
flexibility and optimization potential. For instagc it
allows runtime context dependant accessers. Oottier
hand, the different development parties like totgeb
their IP and are reluctant to share source codéghnis
necessary for the DAM process.

In Table 1, we provide a non-exhaustive list ofspemd
cons of each technique.

5. Shared development

Development process

One additional dimension of the SW development for
engine systems is the increasing integration, batefore
mixture of SW-components coming from different
sources, and often provided with different formgkg.

9). It becomes a classical use case, for instatwe,
integrate SW functions from the OEM in the TIER-1
ECU, as well as components frorff Barty. In extreme
cases, the TIER-1 has to integrate SW modules from
different OEMs (engine co-developments), or evermfr
own competitors. The amount of external SW may be
high (“box-business” model, where the TIER-1 only
provides the ECU plus the BSW), or on the oppositd,
(“full turn-key” programs). In between these twarexne
cases, the SW-part from the OEM to integrate might
provided as models, C-code, or object-code. It iigh
comply with AUTOSAR standard, or simply be legacy
SW.

q o o
40 GSOEMC
35

DSOEMA
30 4

25 4

DSOEMD

201 GSOEMA

15 4 " GSOEMB
10 4 VA

5 R

0 T T T T T T T T T T |
2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014

Fig. 9 : Percentage of OEM part in total program code

Of course, this “OEM plug-in” (monolithic or notihk to
be integrated in the existing task system, as\easilthe
rest of the SW. Integration constraints are thesefo
discussed between the parties. Constraints ondbdenl
SystemEvents are defined, as well as sequencing
constraints or event chains. The core distribuisoinally
derived from all those requirements. The used ptimte
methodology has to give a maximum of flexibility in
order to meet all use cases. The OEM plug-in haseto
protected against race conditions, like the TIERSW,
using the same principles, but with DRM insteadéiM
due to IPP reasons.

In total, a complete project lasts in average 24360
months, during which several synchronizations ayeed
between TIER-1 and OEM: releases of the OEM plug-in
to the TIER-1; and releases of the complete intedr&wW
from the TIER-1 to the OEM. Similarly to the TIER-1
functions, the OEM plug-in integrated in the ECUdws

a development cycle, and is updated several timeaagl
the project life-time. To shorten the developmenudpis,
the OEM needs to be able, “at home”, to furtheretigy,
re-integrate, and validate his functions. Therefeemust

be able to build again the system. This kind ofcpes
was a market standard in single core engine systems
where the TIER-1 SW is delivered as object codd,tha
OEM plug-in is modified, re-integrated, and re-cdlegb

on OEM side without intervention of the suppliehahks

to cooperative scheduling, a policy extensivelydus¢
Continental, there was no need of special meamsare
data consistency.

Now, as the OEM wants to distribute his SW over
different cores, and as the protection of the Siires a
particular analysis and treatment, a segregatidcheoSW

is done, between OEM and Supplier. The TIER-1 @art
frozen, protected, and compiled at TIER-1 sidehwvat
first version of the OEM part. Library files ardagased to
the OEM, with a build environment. Starting fromisth
point, the OEM part can be modified, and re-pradcit
OEM side. This means that independent buffering
strategies are applied on the different parts.

At the end, the shared development process caedreas

an alternative or a complement to Rapid Prototyping
enabling short development loops between TIER-1 and
OEM.

Common ar chitecture

In this code sharing context, a common understandfn
the basic system behaviour is essential to be eshch
Right in the beginning, a definition of the featsire
provided by the Operating System has to be negotiat
and agreed: a common dynamic architecture. This
common architecture has to enable an efficienteptin,

an easy integration, and it has to support simardasind
validation of the scheduling.

First (and already known from single core systemskgt

of common SystemEvents, as defined in chapter 8tta
be defined. It might be a subset of the complete se
needed by the TIER-1, plus some extensions. Tiheset
SystemEvents are implemented as tasks, which have a
priority and pre-emption behaviour, and a corecaition.

In an engine management system typically we have a
mixture of time based system events (from 1ms to
1000ms) and angle based system events (cranksidhft a
camshaft synchronous). Typically, different syserants
with a same angular period, but different phasglgtive

to the Top Dead Centre might be required.

But, in addition to periodic system events, sparadi
initialization events, such as ECU start-up, ignitikey
transitions or failure memory clearing have to be
specified. Here mainly, the precise position of #vent,

and its system meaning have to be clear to aligzart
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The principle of initialization events is inspiréem the
object orientation concepts of constructors and
destructors, and allows having a coherent system
initialization across the complete SW. This conceged

in single core projects, has been enhanced indtygesof
multi-core context, as it is important that all esr
“toggle” get initialized synchronously and cohetgnt

Finally, with the step-wise deployment of AUTOSAR,
becomes important to fix also some basis on theobitee
RTE, as there are different interpretation/use betw
partners can cause severe incompatibilities agiaten
time. Therefore, in the definition of this common
architecture, the AUTOSAR configuration has alsdéo
addressed, in particular if the OEM wants to indégr
AUTOSAR SW and therefore fixes some implementation
choices in its SW-Component descriptions.

For an OEM like VAG the challenge is to find a syat
setup which is similar in all TIER-1 ECUs, and whiis
proven to work in a multi-core context. For the abo
named SystemEvents, this is possible across all ECU
suppliers. But the SystemEvents abstract implenienta
details like OS configuration of priority and preygtion,
core allocation, task chaining and handling of apar
system transitions (synchronized or not). With incdtre,
a new complexity is added to the system.

For a TIER-1 supplier like Continental, the chadleris to
find a setup which fits to its generic functions, far as
generic functions are integrated in the projeceffect, in
front of the TIER-1, there is a high variability GfEMSs,
with different visions of the architecture. The RA
challenge is then to fill the gap between the défife
visions.

Common integration frame

With the ongoing change from single-core to muttiec
systems the rising complexity of integration habuge
effect on the software development. It extendsHigh-
level goals of the classic software developmekg high
reusability, reliability and correctness, IPP. Aduhal
methods are needed, to achieve a closer examination
the sw-architecture. The given heterogeneous ttmis
integration and protection on the different TIERide
must be enabled through standardized general géeori
of integration and protection needs on the OEM .side
Additionally it is necessary to consider legacytwafe,
because it is not divisible with further ado. Adufial
specification and in some cases refactoring is eeed

The main challenge for efficient integration on tirabre
systems is an independent partitioning of the sofévthat
can run in parallel. But for that it is necessaryiihd and
describe the dependencies and avoid conflicts rateqt
and minimize inter-core data-access. Since two syear
Volkswagen, Continental and other TIER-1 work thget
on a model-based approach which resolves the folpw
main question of shared development for multi-core:
* What and how to specify and define the integration
and protection needs?
*  On which architecture level should the specificatio
be done?

* What is additionally required in methodology and
collaborative process?

This model-based approach is a continuous roundtrip
from specification until verification [7]. As Figl0
illustrates, this roundtrip includes all neededpstén the
shared context, considering the typical iterative
engineering process in automotive industry, whére t
software is developed in several iterations of\thiglodel
and with this has several different releases witferént
maturity and quality. In a first step to generdtie basic
element for all considerations in shared contexthe
system model — a model consolidation combines Byste
descriptions including hardware, operating systemd a
TIER-1-software information given in the
AMALTHEA format with the software description
including the OEM-software information and
requirements in the MDX format. This basis element
combines the required information. It is the funeaimfor
shared methods, like the already introduced sedugnc
workshops. It extends the collaborative software
development with new information to be exchanged in
new or enhanced formats.

With a consolidated system model, the software
architecture can be visualised and graphically tatad
with requirements, while analysing the data flondan
signal paths. In this second step typically the RAE is
responsible to process the requirements and ddfiee
final system design. The system-model and defined
requirements can be used with tool-support to fand
pareto-optimal design, with efficient resource @samd
requirement fulfilment. In the third step the upeth
system design is checked up against the requiremedtit
simulation of the dynamic behaviour in an earlyiges
phase, before final integration to take into act¢ptimat
the design is executable and fulfils all requiretaceior
the given target hardware. Finally in a last stéfgra
integration and measurement, the system is verifiid
evaluation of the requirements taking real software
hardware traces, which includes all system evems o
required call tree level for referenced elementstha
requirements.

In each step enhanced and complex tools are negessa
which should interpret the information given froracé
partner in adequate and standardized exchange tkorma

The specification of integration and protection dedike
coherency groups or data ages should be done on an
abstract level, considering the design rules of SWwW
architecture. On SW composition level the requireime
engineering is feasible for legacy software andsiters

the existing development process and given static
architecture, because SW compositions already
encapsulate functional dependencies given from
requirement and architecture engineering. It reslube
costs in development process because complexity and
efforts are reduced to specify the integration and
protection needs. For that different architectuiewg
have been created, each one fitting best to thease of
requirement engineering.
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A static architecture view visualises the logicrarehical
grouping of the static software structure and their
interfaces. On this first view it is recommendedi&dine,
analyse and check the more static requirementsalbat
signal grouping for coherency needs are possible.

A second view, the dynamic software architecturewi
shows more the design of tasks, runnable sequemabs
their data accesses and data flow. This view icc#ly
used to discuss and analyse dynamic dependenkies li
execution order constraints, data ages and evam<bn
runnable level in sequencing workshops.

A new developed view combines both worlds, theicstat
and dynamic architecture: It shows the runnablegsan

a SW composition grouped for their period. If it is
defined, that this SW-composition specific runnable
groups are indivisible (what means the scheduleulsh
not interrupt this group), then it is recommendedefine
intra execution order constraints for this groups ase
data ages for the inter execution order.

Another aspect concerns the compatibility of the SW
components to each other. For instance, in ordeedoh

a similar level of parallelism, it would probablg liseful

to have a similar approach of developing SW compt:e
(e.g. rules, patterns) across the parties. Thexefior a
joint research project we look for patterns whiate a
suitable to develop SW components utilizing a high
degree of parallelism. These patterns shall beritbestin

a kind of cook book which can be used by OEM
developers as well as TIER-1 developers.

[ OEM |

| TIER1 |
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Fig. 10: Continuous Roundtrip for shared model-
based system design in multi-core projects

Then there is the topic of IP protection: even inl@se
collaboration the different partners need a gowodllef IP
protection. The exchange of source code is mayb¢heo
best solution to reach this goal, unless new telcigies

like remote build or obfuscated code are used. @bje
code can be used as exchange format, but withttie o
drawbacks already mentioned. Due to the permanently
increase of inter-penetration of different partiasthe
final SW, this topic is gaining importance. In diloh the

exchanged information of the system- and software-
descriptions needs IP-protection. For this dataisit
necessary to obfuscate specified signals and rimnab
names for IP-parts of the software. But it is reownded

to obfuscate only as much as really necessary but n
more, otherwise needed information to analyze and
specify dependencies and requirements for theaictien

of the OEM- and TIER-1 software are lost and ireeff
the specification in this shared context isn’t ploies

Common standard formalism

In order to reach a smooth integration into theirgef
integration frame the SW description and the spetif
timing requirements have to be exchanged between th
parties. This exchange has to be based on a machine
readable standard format, as integration and stionla
processes of such complex system are only possitie
tool support. Further on the use of a standargshéd
define a common understanding of system featurels an
forces the usage of a common wording. As each atdnd
has some space for interpretation, the harmonizatio
semantics and used tags is necessary.

In cooperation between OEM and TIER-1 the ASAM
MDX file format is currently widely used for SW gfirag

in non-AUTOSAR context. In those projects MDX is
used to deliver information necessary for integrati
purposes to the integrator of a SW component.

The MDX standard is well defined for data definitio
purposes, as well as for the exchange of SW fesature
information. Also variant handling can be describéal
system constant definition and settings. Basic diclireg
information can be transferred to the integratiagyp

As described above, in projects using multi-coreUEP

there is the need to exchange further information:

- Data flow information — this currently possible kit
the existing MDX standard V1.2, but the data
access frequency (access multiplicity) has to be
added for a more detailed view on the real SW.

- Data stability needs — not defined in V1.2

- Data coherency needs — not defined in V1.2

- Data Age Constraints — not defined in V1.2

- Scheduling requirements for runnables — already
possible with V1.2

- Scheduling dependencies between SW components —
not defined in V1.2

A new version of the MDX standard has been defiteed

address the missing topics: the V1.3 released slooce

2015.

Data stability groups can be specified as well agad

coherency groups using new tags in the SW collectio

area.

Data Age Constraints and access multiplicity in one

executable can be specified on data access elerirents

SW services (runnables).

With these extensions a SW component providerles tab

exchange the defined timing requirements and caimssr

of its SW components to the integrating party aswuised

above.

As there is a lot of legacy code at VW/AUDI thisymzas
been chosen to bring these SW components to the new
multi-core world, limiting the effort of reenginéeg.
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After defining this step in exchange format, theu® now

changes to:

- implementing of MDX V1.3 in development tools

- gathering all the requirements and constraintseto b
transported via MDX V1.3

- training the teams to this new process

In the near future the new features of the MDX dtad

will be used in practice.

Thecontract = Interface freeze

Freezing of interfaces consists of mainly two stefise

first step happens at the end of interface and esezing
workshops when the interface is agreed between the
involved parties and fixed in terms of mapping ohient,
names, ranges, resolution, DAC and EOC constraints.
The second step is performed, when the interface
adaptation is implemented at the TIER1 and the OEM
receives software for the parallel development. To
manifest and freeze the contract, the softwaretbdse
prepared in a certain way.

Protection adaptation: Part Management

When integrating TIER-1 and OEM SW parts, all
integration and protection Needs are collected. hEac
artifact in the project (data, runnable, module..s) i
allocated to one of the three parts: TIER-1, or Ofavt.
This allows applying different buffering policies dhe
different parts: For instance, if the OEM has ngreper
description of the protection Needs (stability, @@mncy),
then an automatic strategy can be applied, whiehnat
necessary on TIER-1 side.

Also, this partitioning allows to select betweefffetent
formats for the input (C-code, ARXML, MDX), but als
for the output (DAM, DRM).

Finally, the final goal of a clear partitioning tife SW is
to minimize the interactions between the partsatdeast
to concentrate them in an adaptation part) anchable a
partitioning of the protection process. For ins&nc
dedicated buffers, dedicated copy routines, deelictask
sections can be defined and fixed for one part)enthie
other part is updated. It allows an independeridinfithe
SW at OEM side: The TIER-1 SW is built (protected,
compiled, validated) at TIER-1 side, while the OEBW

is re-built as many times as requested, at OEM side

51 =21

Fig. 11: Stability Needs apply to different parts

In Fig. 12, we show the resulting buffering for@ncrete
example. The TIER-1 and OEM runnables are ideutifie
by their respective colour. Different buffers arged in
the TIER-1 area, which are not reused in the OE&&ar
The OEM area can then be modified independentthef
TIER-1 area, and re-built.

Paralldl development / Parallel builds

Having a frozen interface allows starting a palalle
development in various stages depending in the atrafu
changes and the timing requirements of the devdlope
solution. Each partner (OEM, TIER-1) can modifyptst
without impacting the other one.

When doing only small changes, a parallel develogme
using a tooling for internal bypassing (e.g. eHQoiss
appropriate. The limitation of the internal bypaiss
mainly due to the tight internal resources (RAM, NRO
of the controller.

If the changes grow, or completely new functione ar
developed, the use of an external bypass systenmbean
useful. With this, an existing function is cut ooft the
sequencing and replaced by a calculation in anreaite
CPU. The communication to this external ECU is danhe
defined points before and after the existing fuorctiSo
the new function gets the same timing environmbant
the existing one. The communication via separata da
buffers to the external CPU ensures stability biaulé for
the external calculated functionality. When using
additional variables in the external calculation a
coherency need might be not fulfilled.

— [ TR

e A
— Adaptaton ey ———

e
|m

o

Fig. 12 : Partitionning of runnables and Buffersin
shared context

In both cases of external and internal bypassingade
conditions are modified, the buffering configuratis not
anymore valid, due to the modified cartographymight
be that a change in a bypassed function generates a
change of buffering in a non modified & stable ftio.

For instance, changing a write access to a reagksacor
changing the multiplicity of a read access mighteha
impacts on the buffering status elsewhere. Theeefibre
type of modifications that can be applied on arodigm

w/o impact on the race condition is very limitewl,nulti-
core context.

In addition, if the required change affects tigitegration
requirements (e.g. working on a 100us task in an
electrical engine controller), or connection to H&dtures
(e.g. special ASICs), that cannot be fulfilled bgpid
prototyping, external and internal bypassing as® alo
options.

In this case, the solution developed by Contineistdhe
only alternative to the re-delivery of parts betwe2EM
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and TIER-1 (with the consequences it has). As roastl
earlier, a high flexibility is provided to the OE&E long
as the interface (= integration of the adaptatiomables)
is unchanged. It is even possible for the OEM tangfe
its own integration, and in particular investigdiéferent
core distributions of his SW.

All the ways to evolve the functionality of the S3y/stem
will exist in future. Depending on the need forxftality
and the type of modification, the internal bypadl ve a
perfect solution for a rapid development. But daeits
limitations other solution are needed. On the otiaerd,
the parallel build gives full data protection andatantees
exact real time behaviour, but with the drawback of
comparably long turnaround times due to build dadhf
times.

6. Related works/ State of theart

For the discussed topics of shared development of
embedded automotive software, state of the arthase
guasi industry standards, depending on the use arade
target platform in the given project context. Theablic
promoted research project AMALTHEA [8] is of higher
interest for software engineering of future muldnd
many core software-systems. Parts of the pre-retbas
results with a well-defined data-model from thijpct
are already in use for software architecture syadibn
and description. Currently in usage for exchangeemo
present in the automotive embedded context are the
working groups of ASAM MDX [5] and AUTOSAR
[4][9]. Unified exchange and interoperability for softevar
description are supported; all data models havévalgunt
core data.

All these three standards enable software architect
engineering and exchange of relevant information.
Depending on the use case, they are more or l@gsblsu

In Table 2, the coverage of the different desavipti
context for all discussed use cases is comparedhfsr
three standards, where “x” means full support, ™(x)
means partly supported and “-“ means currently not
supported. In this comparison there where consitldre
latest versions with the highest coverage of infaion.

About MDX

The MDX description as an ASAM standard is used for
single-core projects and with additions since ersl.3
[10]. Also, software description for multi-core projeers
supported with the mayor basic multi-core featutie,
basic timing requirements, data consistency needs a
scheduling requirements from the OEM point of view.
Complete system description with hardware- and
operating system features are not supported. Fouse
case to describe and exchange the integration rédde
OEM application software it is suitable.

About AUTOSAR

Advanced description and new concepts like Appilicat
partitioning and more static architecture suppsrgiven
with AUTOSAR from version 4.2, which includes the
integration- and protection needs and further tgniand
architecture description. It is the most establisfermat

in the automotive industry, has the most suppavtfr
architecture and analysis tools and on this redwsghly
recommended. Nevertheless, the support of consigten
needs (“groups”) on RTE side is still an open point

About AMALTHEA

Finally the AMALTHEA format from version 1.1.1
[11][12], as the newest possibility in these casedls
features and more support for the dynamic desoripbif
the software. It extends the architecture and @min
requirements and gives possibilities to describeremo
technical design properties, for example of thegagr
platform with its hardware or the operating systétar
use cases like software simulation and partitiorohghe
software in multi-core context, this is recommeridab
[12]. This format is suitable for the exchange ofmplete
system description typically generated from the RHE
side, which is responsible for the integration.

ASAM-MDX (v1.3)
AUTOSAR (v4.2)
AMALTHEA (v1.1.1)

Software
Runnable level
Data access (i.e. interfaces)
Access occurrences
Runtime
Process level
Activation (periodic, sporadic, single)
Call sequence of runnables
Hierarchical call sequences
Logic grouping of runnables
Signals
Data description
Requirements
Execution Order Constraint
Execution Order Constraint (hierarchical)
Data Stability Needs
Data Coherency Needs
Data Age Constraints (time based)
Data Age Constraints (cycle based)
Hardware
Cores (frequency, instruction per cycle,
topology)
Core features (lock-step, peripherals)
Memory topology (bus, crossbar, caches,
access times)
Operating System
Scheduling (algorithm, core resources) )| -
Process configuration -

Table 2: Comparison of Standardscurrently in usein
Automotive domain

About the automotive domain

The engine systems domain is the first one in aatwe
requiring an introduction of multi-core processdte to a
lack of computing power (with the exception of
multimedia). This is the domain where the deploytr@n
multi-core is most advanced, and which has thetaigth
constraints as mentioned in chapter 2.
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About other industrial domains

To our knowledge, there is no other industrial doma
where the development of embedded multi-core SW has
similar constraints. In aeronautics, space andndefethe
time to market, and target system price are nothen
same magnitude, like security and safety requirésnéys
example, the following article shows the growth of
automotive embedded SW with the aeronautic casp [13
In particular, in the aeronautic domain, the maiouk is

on the scheduling topic: due to safety issues,ineffl
scheduling is widely used, which requires a safe
estimation of the Worst Case Execution Times (highl
impacted by new multi-core architectures). As examp

in [14], the authors consider the access to shared
resources only in the point of view of timing impadn
Automotive, domain, offline scheduling is not sdeof
used, as the mostly used OS is AUTOSAR OS or OSEK
OS. This is even more true in the engine systemsagg
where half of the SW is executed at angular (imet
variable) rates. Concerning data protection, sotudies

are conducted, which concern the detection of race
conditions, but in our case, we aim not only toniify
them, but also to protect them automatically. Femttore,

the shared resource topic is addressed under the vi
point of impact on timing and WCET. Also, the
integration topic is also very specific to enginstems
context, as mentioned in the chapter 2 about cogpli

About ARAMIS and ARTEMISECSEL EMC?

ARAMIS:

In [15][16], the authors address the integratiopidobut
on a vehicle level, and on a basis of distributioin
functions across ECUs. Multi-core is seen as an
opportunity to reduce the number of ECUs in the loar
requires a good distribution of the functions oa tores
[17]. In [18], the particularity of engine systenis
recognized as it is qualified as a central ECU.

Several papers [19] address the topic of schedutihthe
verification of timing properties. But in general,
individual components are considered, designed
independently of any framework (reference archibet
Other papers [20][21][22] address the topic of diteg
race conditions, but once again, our purpose idimied

to detection.

ARTEMIS ECSEL EME:

The project EME is dedicated to multi-core mixed
criticality systems, dynamically reconfigurable.  her
objectives of this project have no relationship dor
purpose, as the mix of OEM vs. TIER-1 Sw is not
organized on a criticality basis (e.g. TOER-1 Sw lo
critical and OEM-SW high critical), but rather on a
functional basis. Also, the critical/safety aspeats not
part of this paper. Concerning the dynamic configion,
and/or reallocation of functions is not seen ak@atserm
option, in regard to the tight coupling and reahdi
requirements in the engine control area. One istgrg
paper [23] concerns the migration of legacy SW tdtim
core platforms, but the approach is different ttizan one
chosen on our side, as a redesign of the functisns
requested, according to a pre-established coreaditm
(which is part of the design itself). In our casar clear

goal is an independence of the design from the
integration, which can change from project to prbje

7. Conclusion

The formal requirement engineering on dynamic aspec
has a relevant impact on the development proceds an
artifacts to be handled. New templates, guideliand
trainings have been set up to cope with these argdis.
New design rules are necessary, which will fac#itthe
parallelization of the control algorithms, but hetsame
time have to minimize the re-design effort: on OEide,
like on TIER-1 side, the design of the functionsdto be
prepared for multi-core, but have to be independéany
core and memory distribution, a choice which ishhig
project specific. It is also not possible to fix reo
distribution for a function for the next 10 yeaf® reach
this goal of flexibility, it is therefore essentitthat the
function development focuses on the original rezmignt
(protection and integration needs), rather thanaoy
implementation (e.g. using of double buffering).

The introduced model based approach needs long term
establishment, but in prototype projects the first
experiences confirm significant easement, bettstesy
understanding for each party in collaborative psscand

in conclusion a key enabler to reach the multi-core
challenges for SW development. Step by step thees
and tools are adapted.

Finally new technologies will arise, which will lnénce

the design of the functions. For instance, dynamic
scheduling / allocation to cores, different paoti§ in the
ECU... Also, the increase of computation power linked
multi-core will certainly motivate higher integrati of
systems, going towards mixed domains ECUs. We can
think of course about integration of Transmissiantol

Unit and Engine Control Unit, PowerTrain Controdler
But it is to be expected that functions out of the
PowerTrain domain start to be integrated, leadma@n
even higher variability, and therefore needs fortigh
reprogramming, for instance.

At the end, it is doubtless, that the multi-coreaduction

is at the origin of a big evolution of architectsyrand the
presented shared development process will be a key
enabler.
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