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Abstract

We consider the One Warehouse Multi-Retailer (OWMR) problem with de-
terministic time-varying demand in the case where shortages are allowed.
Demand may be either backlogged or lost. We present a simple combina-
torial algorithm to build an approximate solution from a decomposition of
the system into single-echelon subproblems. We establish that the algorithm
has a performance guarantee of 3 for the OWMR with backlog under mild
assumptions on the cost structure. In addition, we improve this guaran-
tee to 2 in the special case of the Joint-Replenishment Problem (JRP) with
backlog. As a by-product of our approach, we show that our decomposition
provides a new lower bound of the optimal cost. A similar technique also
leads to a 2-approximation for the OWMR problem with lost-sales. In all
cases, the complexity of the algorithm is linear in the number of retailers
and quadratic in the number of time periods, which makes it a valuable tool
for practical applications. To the best of our knowledge, these are the first
constant approximations for the OWMR with shortages.
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distribution systems.

1. Introduction

We consider two multi-echelon inventory control problems: The One
Warehouse Multi-Retailer (OWMR) problem and its special case the Joint
Replenishment Problem (JRP). Both problems share the same divergent net-
work structure: A single warehouse replenishes N retailers facing customers
demands, by ordering material from an external suppliers. Demands are ful-
filled by units that are first ordered at the warehouse, then at the retailers.
In particular, the divergent structure of the system requires that the retailers
can only order material that is available (i.e. physically held) at the ware-
house. The JRP is a special case of this problem in which the warehouse
cannot hold any unit. In this work, we focus on a discrete and determinis-
tic setting by assuming that the demands are known over a finite planning
horizon of T periods. Costs are incurred when a location places an order
to replenish its stock (ordering costs), when units are physically held in the
system (holding costs) or when demand is not immediately satisfied (penalty
costs). The goal is then to determine an ordering strategy in order to min-
imize the total cost incurred to fulfill the demands by moving the products
through the network.

Most of the existing work on this problem focuses on the case where all
demands must be satisfied on time. Even in this simpler setting the OWMR
problem and the JRP are both known to be NP-hard (Arkin et al. (1989)).
Those problems have attracted a lot of attention in the past and many heuris-
tics have been developped. In particular Levi et al. (2008), Stauffer et al.
(2011) and Bienkowski et al. (2014) introduced constant factor approxima-
tion algorithms for the former problem (1.8, 2, 1.791 respectively). We refer
to these papers for a detailed review of the corresponding literature. Nonner
and Souza (2009) have also proposed a 5/3-approximation algorithm for the
JRP problem, for the special case where each demand has a strict deadline.

In this paper, we focus on extensions of these standard models in which
shortages (either backlog or lost sales) are allowed. Such models have been
extensively studied in the lot-sizing literature when a single location faces
customers demands over a discrete, finite planning horizon. Zangwill (1966)
was among the first to extend the pioneering work of Wagner and Whitin
(1958) to incorporate the possibility to backlog units. Later, Federgruen and
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Tzur (1993) and Aggarwal and Park (1993) used more advanced dynamic
programming techniques to solve the problem and improved the time com-
plexity. An interesting extension of the lot-sizing problem is the multi-item
version, which considers that several items are distributed, each incurring its
own holding and backlogging costs. Several papers (see Pochet and Wosley
(1988, 1994) and Küçükyavuz and Pochet (2009)) have focused on the inte-
ger programming formulation of this problem in the case of single or multiple
items. The special case of the JRP is a generalization of the multi-item prob-
lem in which additional ordering costs are incurred whenever a specific item
replenishes its own stock. Levi et al. (2006) developed an algorithm based on
primal-dual approach for this problem with backlogging and proved its cost
is at most twice the optimal cost in the worst case.

The literature on lost sales models is more recent: Sandbothe and Thomp-
son (1990) were the first to propose a forward algorithm to solve a lot-sizing
problem with production capacity constraints and stockouts. Later, Aksen
et al. (2003) introduced a dynamic programming approach to solve efficiently
the uncapacitated version with time-varying costs. Liu et al. (2007) consid-
ered a model where inventory is bounded, present an optimal dynamic pro-
gram for this model and test it on industrial problem successfully. Other
papers deal with the multi-item versions of the basic lot-sizing problem.
In particular, Absi and Kedad-Sidhoum (2008) extends the original work
of Sandbothe and Thompson (1990) to a multi-item version and use a MIP
approach to develop an effective method to find near optimal solutions.

Our contributions

This work extends the decomposition technique of Stauffer et al. (2011)
to more general models allowing backorders or lost-sales and derive a constant
approximation algorithm in each case. We present a new lower bound for
each problem, based on a decomposition into simple single-echelon systems.
We then recompose the optimal solutions to the subproblems into a feasible
solution to the original problem. In the case of the OWMR problem with
backlogging, we prove that the cost of the solution obtained is guaranteed to
be at most three times the optimal cost under mild assumptions on the cost
structure. In addition in the JRP case, some of these assumptions become
irrelevant and we show that our algorithm can be modified to match the best
known performance guarantee obtained by Levi et al. (2006) when backorders
are allowed. Finally, we adapt our technique to the OWMR problem with
lost-sales and build a 2-approximation for this problem. To the best of our
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knowledge, this paper presents the first constant approximation algorithms
for the backlogging and the lost-sales version of the OWMR problem. The
complexity of our algorithms is linear with the number of time periods and
quadratic with the number of retailers.

The remainder of this paper is organized as follows. In §2, we formally
introduce the assumptions and notations used throughout the following sec-
tions. In §3, we present the split and uncross technique and provide a 3-
approximation algorithm for the backorder version of the OWMR problem.
In §4, we show that in our cost structure, the lost-sales model is simply a
special case of the backlogging problem. We are then able to improve the
performance guarantee of our algorithm to two by simply modifying one step
of our algorithm.

2. Assumptions and cost structure for the backlogging model

In this section, we focus on models where unmet demand is backordered.
In this version of the OWMR problem, demands faced by the retailers are not
necessarily satisfied on time but can instead be backlogged and served by an
order placed later in time. We now discuss the assumptions and notations
used troughout the remainder of the paper. In particular, we present a
general cost structure that extends the cost structure introduced in Levi
et al. (2008) and Stauffer et al. (2011).

We consider N retailers that face customers demands over a finite plan-
ning horizon, discretized into T periods. For each retailer i = 1, . . . , N and
each period t = 1, . . . , T , let dit be the deterministic demand for retailer i
in period t, to which we also refer as the demand point (i, t). Each retailer
orders units from a central warehouse, which in turn orders from an external
supplier. Recall that we assume that the decisions are centralized in order
to minimize the total cost incurred by the system. As a consequence, orders
placed by the retailers are always filled on time by units coming from the
on-hand inventory of the warehouse. If the warehouse orders from its sup-
plier in period t, it incurs a fixed ordering cost K0

t , regardless of how many
units are ordered. Similarly, retailer i pays a fixed ordering cost Ki

t for or-
dering from the warehouse in period t. Chan et al. (2000) have shown that if
the ordering costs at the retailers vary over time, the OWMR problem is as
hard to approximate as the set cover problem and thus admits no constant
guarantee unless P = NP (Feige (1998)). Therefore we assume in this paper
that the ordering costs at each retailer i > 0 are stationary, i.e. Ki

t = Ki for
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all periods t = 1, . . . , T . The leadtimes are deterministic, thus we assume
without loss of generality that the orders are delivered instantaneously from
one location to another.

The most common assumption in the inventory literature is to consider
that holding and backlogging units induce linear costs that are proportional
to the inventory level in each location. However, it is worth noticing that the
algorithms developped in the following sections only need to satisfy weaker
properties to yield a constant performance guarantee for the OWMR problem
with backorders. For clarity reasons, we start by introducing the assump-
tions on the cost structure in the linear case first. We then relate this basic
parameters to the so-called metric carrying cost structure and generalize the
assumptions to this more complex setting.

The linear cost structure

In the traditional linear cost structure, each unit physically held in loca-
tion i in period t incurs a holding cost hit ≥ 0, while each backlogged unit
for a specific retailer i ≥ 1 induces a penalty cost of bit ≥ 0. Note that we
consider that the penalty cost for backlogging a demand is entirely incurred
at the retailer, where demands have to be served eventually. In other words,
we restrict ourselves to policies in which the warehouse cannot backlog the
orders of the retailers, i.e. retailers can only order units that are available
at the warehouse. Another common assumption for the OWMR problem is
that the set of retailers can be partitioned into two subsets IJ and IW such
that:

IJ =
{
i = 1, . . . , N : hit ≤ h0t for all t

}
(1)

IW =
{
i = 1, . . . , N : hit ≥ h0t and bit ≥ h0t for all t

}
(2)

In the remainder of this paper, retailers in set IJ are also called J-retailers,
while retailers from set IW are called W -retailers. In simple words, it is
cheaper to store units at J-retailers than at the warehouse, while it is cheaper
to hold units at the warehouse than at W -retailers. Note that in addition we
assume that for all i ∈ IW and t = 1, . . . , T , it is also cheaper to hold unit at
the warehouse rather than backlogging it at retailer i in period t. In other
words, the backlogging cost of anyW -retailer is greater than the holding cost
at the warehouse. This assumption matches many practical situations, since
backlogging units is often more expensive than holding them in the stock,
which is in turn more expensive than holding them in the central warehouse
in the case of W -retailers.
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The (shelf-age) carrying cost structure

We now introduce a more general cost structure, called carrying cost
structure, that encapsulate both holding and backlogging costs in a single
notation. These parameters extend the shelf age dependent holding costs
introduced in Levi et al. (2008) and Stauffer et al. (2011), which generalize
the classical level-dependent holding costs usually considered in the litera-
ture (see Federgruen and Wang (2013) for further discussion on these cost
structures). Namely, a unit ordered in period r at the warehouse and in pe-
riod s ≥ r at retailer i (we denote by ⌈r, s⌋ such a pair of orders) to satisfy a
unit of demand dit incurs a per-unit carrying cost of φit

rs. That is, φ
it
rs encap-

sulates the cost for holding one unit at the warehouse from r to s, then either
holding it at retailer i from period s to t (if s ≤ t) to serve demand in period t,
or backlogging one unit of demand (i, t) from period t to s (if s > t). Note
that this cost structure can capture additional phenomena than the tradi-
tional linear holding/backlogging costs. For instance, it allows us to consider
situations in which the holding cost incurred for a specific item at the cen-
tral warehouse depends on which retailers it replenishes. It can also capture
additional phenomena such as perishability, with a prohibitive holding cost
if the period of storage in a location is longer than a certain threshold.

Clearly, linear cost parameters are a special case of carrying cost param-
eters: Indeed, for each demand point (i, t), each ordering period r of the
warehouse and each ordering period s ≥ r of retailer i, one can define the to-
tal carrying cost incurred to serve demand (i, t) with the pair of orders ⌈r, s⌋
as follows:

φit
rs =

{ (∑s−1

u=r h
0
u +

∑t−1

v=s h
i
v

)
dit if s ≤ t

(∑s−1

u=r h
0
u +

∑s−1

v=t b
i
v

)
dit otherwise

(3)

As already mentioned, the carrying cost parameters do not need to satisfy
equation (3) for us to derive constant approximations for the backlogging
model we consider. In fact, we simply assume that parameters φit

rs satisfy
the following five properties:

(P1) Non-negativity. The parameters φit
rs are nonnegative.

(P2) Piecewise monotonicity with respect to s. Every retailer i is in exactly
one of the two following situations: Either φit

rs is non-increasing in s ∈
[r, t] and non-decreasing in s ∈ [t, T ] for each demand point (i, t) and
warehouse order r, or φit

rs is non-decreasing in s ∈ [r, T ] for each demand
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point (i, t) and warehouse order r. This property defines a partition of
the set of retailers into two subsets: IW and IJ , respectively.

(P3) Monotonicity with respect to r. For each retailer i = 1, . . . , N , each
demand point (i, t) and retailer order in period 1 ≤ s ≤ T , φit

rs is
non-increasing in r ∈ [1, s]. Moreover if i ∈ IJ , we have: φit

rr ≥ φit
r′r′

for r ≤ r′ ≤ t and φit
rr ≤ φit

r′r′ for t ≤ r ≤ r′.

(P4) Triangle inequality. For each demand point (i, t) with i ∈ IW , we have

φit
rs ≤





φit
rt + φit

ss if r ≤ s ≤ t
φit
rt + φit

ts if r ≤ t < s
φit
rr + φit

ts otherwise

(P5) Backlogging cost bounding. If i ∈ IW , for each demand point (i, t) and
retailer i order in period s > t, we have φit

ts ≤ 2φit
ss

In the remainder of the paper, we refer to the metric carrying cost struc-
ture when the parameters satisfy the five properties introduced above. It is
straightforward to check that properties (P1), (P3) and (P4) capture the lin-
ear per-unit holding/penalty cost structure. Moreover if the set of retailers is
partitioned into two subsets IW and IJ as defined by (1) and (2), properties
(P2) and (P5) are also satisfied and therefore the linear holding/penalty cost
structure is a particular case of the metric carrying cost structure. Notice
that property (P5) generalizes the inequality bit ≥ h0t for all t and i ∈ IW to
the case of carrying cost parameters. As already discussed, these assumptions
cover many other practical cases.

In the remainder of this paper, we call a solution π to our problem a
policy. Any policy π for the problem is represented by a (N + 1)-uplet π =
(π0, π1, . . . , πN) where each πi is the set of pairs (ordering period, quantity)
for location i. A policy π is feasible for the OWMR problem if the two
following conditions are satisfied:

Condition 1. For all i = 1, . . . , N policy πi orders at least the sum of the
demands dit over the entire planning horizon.

Condition 2. Let r and r′ be two consecutive ordering periods of the ware-
house. Then the quantities ordered by π0 in period r are sufficient to
serve the orders placed by all the retailers in periods r, . . . , r′ − 1.
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Given a policy π for the entire system, we denote C (π) the total cost in-
curred by π over the planning horizon. This cost can be split into two parts:
The total ordering cost denoted K(π) and the total carrying (i.e. hold-
ing/backlogging) cost denoted Ψ(π) and thus we have:

C (π) = K(π) + Ψ(π)

We conclude this section by pointing out three dominant properties on
any feasible policy for the problem with the metric carrying cost struc-
ture. First, it is easy to prove that there exists an optimal policy πOPT =
(πOPT

0 , πOPT
1 , . . . , πOPT

N ) such that for all i = 1, . . . , N , πOPT
i orders only

when its inventory level is nonpositive. In addition, the metric carrying cost
structure ensures that there exists an optimal policy in which each demand
dit is served from a unique pair of orders ⌈r, s⌋, which is a classical dominant
property in most of the inventory models. This allows us to incorporate the
amount dit directly into the cost parameters by setting ψrs

it ≡ φit
rsd

i
t, where φ

it
rs

is a per-unit cost satisfying properties (P1)-(P5). Since dit ≥ 0 for all i, t,
parameters ψit

rs also satisfy properties (P1)-(P5) and correspond to the total
carrying cost incurred to serve the entire demand dit from the pair of orders
⌈r, s⌋. Therefore in the remainder of the paper we use parameters ψit

rs to
prove our approximation results. Finally, it is clear from property (P2) that
there exists an optimal policy in which all J-retailers orders are synchro-
nized with a warehouse order. In particular, we shall assume w.l.o.g. that
the optimal policies considered in the following sections satisfy this property.

3. The split and uncross technique

Basically, the algorithm works in two steps: First decompose the original
problem into several single-echelon subproblems, then solve each of them
and recompose the resulting policies into a feasible policy for the OWMR
problem. Each sub-problem is a relaxation of the OWMR problem where we
remove the requirement that warehouse and retailer orders are synchronized
but both just need to match the demand.

3.1. Phase 1: Decomposition of the OWMR problem

The first step of our algorithm is to decompose a general OWMR problem
with backlog into several single-echelon subproblems. In addition, we show
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that by splitting the carrying cost between the different subproblems, we can
derive a new lower bound for the original problem.

(Ŝ0) The warehouse is regarded as a single-echelon, multi-item system with
backlogging facing for each period t a demand dit for item i = 1, . . . , N .
A fixed ordering cost K0

r is incurred for placing an order in period r.
If a demand (i, t) is ordered in period r ≤ t, it incurs a holding cost
of 1

3
ψit
rt if i ∈ IW and 1

2
ψit
rr if i ∈ IJ . On the other hand if r > t, it

incurs a backlogging cost of 1

3
ψit
rr if i ∈ IW and 1

2
ψit
rr if i ∈ IJ .

(Ŝi) Retailer i is considered as a single-echelon system with backlog facing
demand dit with ordering cost Ki. The carrying cost incurred to order
in period s to serve the demand in period t is equal to 2

3
ψit
ss if i ∈ IW

and 1

2
ψit
ss if i ∈ IJ .

Problem (Ŝ0) and problems (Ŝi) are all equivalent to single-echelon lot-sizing
problems with backlog. However, note that the first one corresponds to the
multi-item version of this problem. These problems have been widely studied
in the literature and it is well-known that finding their optimal solution can
be reduced to finding a shortest path in a graph Gj = (Vj , Ej) representing

problem (Ŝj) (see Figure 1). For all j = 0, . . . , N , Vj = {0, . . . , T + 1} is
the set of periods, where 0 and T + 1 are two artificial periods representing
the beginning and the end of the planning horizon. Given two consecutive
orders u and v and t ∈ [u, v], properties (P2) and (P3) ensure that it is
suboptimal to serve demand dit with an order placed earlier than u or later
than v. As a consequence for i = 1, . . . , N an arc (u, v) ∈ Ei represents
two consecutive orders in a solution and its length is equal to the minimal
possible cost incurred for placing an order in period u and carrying the units
necessary to serve demands diu, . . . , d

i
v−1 by ordering them either in period u
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or in period v. Therefore its length liu,v is equal to:

liu,v =





v−1∑

t=1

2

3
ψit
vv if u = 0 and i ∈ IW

v−1∑

t=1

1

2
ψit
vv if u = 0 and i ∈ IJ

Ki +

v−1∑

t=u

2

3
min

{
ψit
uu, ψ

it
vv

}
if u > 0 and i ∈ IW

Ki +
v−1∑

t=u

1

2
min

{
ψit
uu, ψ

it
vv

}
otherwise

The definition of an arc (u, ), u ≤ v, is similar for the warehouse, except that
in this case the system has to serve demands of all the items between two
consecutive orders in periods u and v. Its length l0u,v is then set to:

l0u,v =





v−1∑

t=1

(
∑

i∈IW

1

3
ψit
vt +

∑

i∈IJ

1

2
ψit
vv

)
if u = 0

K0
u +

v−1∑

t=u

(
∑

i∈IW

1

3
min

{
ψit
ut, ψ

it
vv

}
+
∑

i∈IJ

1

2
min

{
ψit
uu, ψ

it
vv

}
)

otherwise

Note that these lengths are computed in time O(T 2) for the single-item prob-
lem and O(NT 2) for the multi-item case. Moreover, from the nonnegativity
of parameters ψit

rs, they are nonnegative and therefore one can easily find
a shortest path from node 0 to T + 1 in graph Gj using classical shortest
path algorithms. Since graph Gj is acyclic and has O(T 2) arcs, a topological
sorting or breadth-first search algorithm can compute the shortest path in
time O(T 2). Hence, finding an optimal policy for the single-echelon prob-

lems can be achieved in time complexity O(NT 2) for (Ŝ0) and O(T 2) for

each (Ŝi), i = 1, . . . , N .

We denote π̂j a feasible policy for system (Ŝj). Note that if j = 0, π̂0 is
a set of (N + 1)-uplet (r, qr), where r ∈ {1, . . . , T} and qr is the N -uplet of

quantities ordered for each item in period r. For all j, we denote Ĉj(π̂j) the

total cost incurred by policy π̂j in system (Ŝj). In the same fashion as the
one used for the global cost, it can be split between two components:

Ĉj(π̂j) = Kj(π̂j) + Ψ̂j(π̂j)
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1 2 3 4 50 6
l
j
0,1 = 0

l
j
1,4

l
j
4,6

Figure 1: An example of graph modelizing problem (Ŝj) with T = 5. The bold path
corresponds to the solution in which the policy orders in periods 1 and 4, for a total cost
of lj

0,1 + l
j
1,4 + l

j
4,6.

where Kj(π̂j) (resp. Ψ̂j(π̂j)) denotes the total ordering (resp. carrying) cost

incurred by policy π̂j in system (Ŝj).
To conclude this section, we introduce a new lower bound for the optimal

solution of the OWMR problem with backlog using the decomposition dis-
cussed above. Assume that we compute an optimal policy π̂∗

j to problem (Ŝj)
for all j. The next lemma uses the costs incurred by these policies in the
single-echelon systems (Ŝj) to define a lower bound on the cost of any policy
for the original problem. In particular, the sum of these costs is a lower
bound on its optimal cost.

Lemma 1. Consider a OWMR problem with backlog and a metric carrying
cost structure. Let C ∗ be the cost of an optimal policy for this problem and
let π̂∗

0, π̂
∗

1, . . . , π̂
∗

N be optimal single-echelon policies for problems (Ŝ0), (Ŝ1), . . . , (ŜN)
as defined in the decomposition. Then the following inequality holds:

C
∗ ≥

N∑

j=0

Ĉj(π̂
∗

j )
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Proof. The proof of this lemma is detailed in Appendix A. Basically, we
start from an optimal policy πOPT = (πOPT

0 , πOPT

1 , . . . , πOPT

N ) and decompose it

in N + 1 single-echelon policies π̄0, π̄1, . . . , π̄N , one for each system (Ŝj). We

then show that the sum of the costs incurred by policies π̄j in systems (Ŝj)
is lower than the optimal cost C

∗ for the original problem. The proof then
follows from the optimality of policies π̂∗

j .

3.2. Phase 2: The uncrossing algorithm

In this section, we modify the uncrossing method and use the decomposi-
tion (Ŝ0), (Ŝ1), . . . , (ŜN) to build a feasible solution for the original problem.
In addition we prove that when the solution is built upon the optimal single-
echelon policies for these independent systems, the policy obtained has a cost
of at most three times the optimal cost.

Let π̂0, . . . , π̂N be feasible policies for problems (Ŝ0), . . . , (ŜN). Recall that
in our model, the warehouse cannot backlog the orders of the retailers. Thus
in order to build a feasible policy to the original problem from policies π̂i,
we need to eliminate the problematic situations where policy π̂i orders a
demand dit in period s while π̂0 orders the same demand in period r > s. We
say that the pair of orders ⌈r, s⌋ is crossing (or not feasible) if r > s.

We now present the uncrossing algorithm for the OWMR problem with
backlog. Let R = {r1, . . . , rw} denote the set of periods when the warehouse
orders according to policy π̂0. For convenience we add to R an artificial
period rw+1 = T + 1 corresponding to the end of the planning horizon, with
no ordering cost. Given a set R – induced by a policy π0 – and a period
s = 1, . . . , T , let s+ and s- be the first period of R after s and the last period
of R prior to s, respectively:

s+ = min {r ∈ R : r ≥ s} (4)

s- = max {r ∈ R : r ≤ s} (5)

In what follows, the set R used to define s+ and s- will be clear from the
context.

For simplicity, we say that a retailer order in period s is crossing in
period r if there exists a demand dit served by π̂i in period s and by π̂0 in
period r, with r > s. As its name suggests, the following algorithm uncrosses
such retailer orders by simply adding an order of retailer i in period s+ in
order to synchronize with the warehouse. Note that in the case of J-retailers,
we also synchronize the orders when r ≤ s by placing an additional order
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in period s-, which enables us to bound the holding cost incurred in the
resulting policy.
The Uncrossing Algorithm
Input: A set of feasible policies π̂i for each problem (Ŝi), i = 0, . . . , N .
Output: A feasible policy πu for the OWMR problem with backlog, defined
as follows. Let r and s be the periods when π̂0 and π̂i order to serve de-
mand dit, respectively. The final policy π

u then uses the pair of orders ⌈rit, sit⌋
to serve demand dit, where

⌈rit, sit⌋ =





⌈s+, s+⌋ if r > s
⌈s-, s-⌋ if i ∈ IJ and r ≤ s
⌈s-, s⌋ if i ∈ IW and r ≤ s

(6)

Note that this operation is executed in time O(NT ), which leads to a
final complexity (including the resolution of the single-echelon subproblems)
of O(NT 2).

We now focus on the total cost incurred by πu, the final policy built by
the uncrossing algorithm. The following lemma bounds the overcost incurred
by the uncrossing algorithm compared to the costs of the independent single-
echelon policies π̂j.

Lemma 2. The uncrossing algorithm applied to single-echelon policies π̂0, . . . , π̂N
produces an uncrossed feasible solution πu for the OWMR problem. The total
cost incurred by the resulting policy satisfies:

C (πu) ≤ 3

N∑

i=0

Ψ̂i(π̂i) +K0(π̂0) + 2

N∑

i=1

Ki(π̂i)

Moreover in the special case of the JRP (i.e. if IW = ∅), we have:

C (πu) ≤ 2

N∑

i=0

Ψ̂i(π̂i) +K0(π̂0) + 2

N∑

i=1

Ki(π̂i)

Proof. See Appendix B.
We now show that when the split and uncross algorithm builds a policy πu

upon optimal policies π̂∗

0 , π̂
∗

1, . . . , π̂
∗

N for single-echelon systems (Ŝ0), (Ŝ1), . . . , (ŜN), C (πu)
is at most three times the optimal cost C ∗. More precisely, the 3-approximation
algorithm works as follows:
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Step 1 Compute optimal policies π̂∗

0, π̂
∗

1, . . . , π̂
∗

N for problems (Ŝ0), (Ŝ1), . . . , (ŜN)
independently.

Step 2 Apply the uncrossing algorithm to policies π̂∗

0, . . . , π̂
∗

N .

Let πu∗ be the resulting policy: From Lemma 1 and 2, we have:

C (πu∗) ≤ 3
N∑

i=0

Ψ̂i(π̂
∗

i ) +K0(π̂
∗

0) + 2
N∑

i=1

Ki(π̂
∗

i )

≤ 3

N∑

i=0

Ĉi(π̂
∗

i )

≤ 3C ∗

We conclude that the following theorem holds:

Theorem 1. The policy πu∗ obtained after applying the split and uncross
algorithm to policies π̂∗

0, π̂
∗

1, . . . , π̂
∗

N has a performance guarantee of three for
the OWMR problem with backlog. Its complexity is quadratic in the case of
a metric carrying cost structure.

Notice that in the special case of the JRP, property (P5) becomes irrele-
vant since IW = ∅. In addition, the above inequality can be refined to reach
a performance guarantee of two:

C (πu∗) ≤ 2
N∑

i=0

Ψ̂i(π̂
∗

i ) +K0(π̂
∗

0) + 2
N∑

i=1

Ki(π̂
∗

i )

≤ 2
N∑

i=0

Ĉi(π̂
∗

i )

≤ 2C ∗

Theorem 2. The policy πu∗ obtained after applying the split and uncross
algorithm to policies π̂∗

0 , π̂
∗

1, . . . , π̂
∗

N has a performance guarantee of two for
the JRP with backlog.
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4. Lost sales

While in the backorder model we assume that customers are willing to
wait for their demands to be fulfilled, another alternative is to consider a
model in which customers are impatient and every unmet demand is simply
lost. Most of the lost-sales literature focuses on cost structures in which it
is dominant to serve demands on a first-come first-served basis. Although
this is clearly the case for the linear cost setting, our model uses a general
metric cost structure derived from the one introduced in §2, in which the
latter property is not necessarily dominant.

In this section, we introduce a modified decomposition for the problem
and exhibits a lower bound for the OWMR problem with lost-sales. We then
show how to adapt the split and uncross technique to this problem and build
a 2-approximation from the subproblems of the decomposition.

4.1. Cost structure

We use the general cost structure introduced in §2 to modelize the case
of lost-sales problem and simply consider it as a special case of the backorder
version, where parameters φit

rs are constant when demand dit is not satisfied
immediately. We have φit

rs = φit for all s > t and the following inequality
holds for parameters ψit

rs:

ψit
rs = ψit = φitdit for all s > t (7)

Thus the parameter ψit corresponds to the total lost-sales cost associated to
demand point (i, t). In other words, if the system serves demand dit with
the pair of orders ⌈r, s⌋ where s ≤ t, it incurs a cost ψit

rs while if it does
not serve this demand, the cost for loosing the sale is equal to ψit. An
other way to see the lost-sales penalty cost is to consider that there exists an
alternative stock from which we can order units to satisfy an unmet demand,
for a total ordering cost of ψit. Note that in our model one can speculate on
the penalty cost and deliberately choose to order from this alternative stock
if the penalty cost is attractive compared to the cost of serving the demand
using the inventory on hand.

Constraint (7) ensures that properties (P1)-(P4) are satisfied when s > t.
On the other hand, property (P5) is not necessary in the lost-sales case and
therefore we only assume that parameters ψit

rs satisfy properties (P1)-(P4)
and equation (7) in the remainder of this section.
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4.2. Decomposition in single-echelon systems

In the same fashion as the backorder model, we decompose the system
into N + 1 independent single-echelon problems with lost-sales. However in
this version, the holding costs and lost-sales penalty costs are halved instead
of divided by three. Similarly to the JRP case, increasing the fraction of
the real costs used in the subproblems is crucial to obtain a performance
guarantee of two.

The decomposition for the OWMR with lost-sales is defined as follows:

(S̃0) The warehouse is regarded as a single-echelon, multi-item system with
lost-sales, facing for each period t a demand dit for item i. A fixed
ordering cost K0

r is incurred for placing an order in period r. The
holding cost incurred if demand (i, t) is ordered in period r is equal
to 1

2
ψit
rr if i ∈ IJ and 1

2
ψit
rt if i ∈ IW . If the demand is lost, the system

incurs a lost-sales cost equal to 1

2
ψit.

(S̃i) Retailer i is considered as a single-echelon system with lost-sales, facing
demand dit with ordering cost Ki. The holding cost incured to order
to serve demand (i, t) with an order in period s is equal to 1

2
ψit
ss, while

the per-unit cost if the demand is lost is equal to 1

2
ψit.

Similarly to the previous sections, we define C̃i(π̃i) (resp. Ψ̃i(π̃i)) as the

total (resp. carrying) cost incurred by π̃i in system (S̃i) and we have for all
i = 0, . . . , N :

C̃i(π̃i) = Ki(π̃i) + Ψ̃i(π̃i)

We first discuss how to solve these single-echelon problems. Similarly to
the systems with backlog, this can be done using classical shortest path algo-
rithms in the same type of graph (see Figure 1). We define a graph Gj cor-

responding to each single-echelon problem (S̃j). The main difference comes
from the computation of the length of each arc (u, v), u < v, that we detail
below.

We first introduce the following virtual cost parameters:

ω̃it
r =

{
min {ψit

rr, ψ
it} if i ∈ IJ

min {ψit
rt, ψ

it} otherwise
(8)

ρ̃its = min
{
ψit
ss, ψ

it
}

(9)
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These are the virtual minimum cost between satisfying or loosing demand dit
when the last order is placed in period r or s. One can precompute these
parameters in time O(T 2) for one retailer and O(NT 2) for the warehouse.
We then define the length of each edge (u, v) in graphs Gi and G0 as follows:

∀i = 1, . . . , N, l̃iu,v =





v−1∑

t=1

1

2
ψit if u = 0

Ki +

v−1∑

t=u

1

2
ρ̃itu otherwise

l̃0u,v =





N∑

i=1

v−1∑

t=1

1

2
ψit if u = 0

K0
u +

N∑

i=1

v−1∑

t=u

1

2
ω̃it
u otherwise

These lengths are computed in time O(NT 2). As for the backorder version,

the time complexity to compute the N +1 optimal policies to problems (S̃j)
is equal to O(NT 2).

We now focus on the lower bound resulting from this decomposition. The
following lemma derives from Lemma 1:

Lemma 3. Consider a OWMR problem with lost-sales. Let C ∗ be the cost
of an optimal policy for this problem and let π̃∗

0 , π̃
∗

1, . . . , π̃
∗

N be optimal single-

echelon policies for problems (S̃0), (S̃1), . . . , (S̃N) as defined in the decompo-
sition. Then the following inequality holds:

C
∗ ≥

N∑

i=0

C̃i(π̃
∗

i )

Proof The proof is similar to the one of Lemma 1 (see Appendix C).

4.3. The algorithm

To conclude this section, we show how to adapt the split and uncross tech-
nique to the lost-sales case and build a 2-approximation algorithm. Let π̃0, . . . , π̃N
be feasible policies for problems (S̃0), . . . , (S̃N) and let R = {r1, . . . , rw, rw+1}
the set of periods when policy π̃0 places order, where again rw+1 = T + 1 is
an artificial period corresponding to the end of the planning horizon. The
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algorithm is very similar to the one presented in §3.2, with the following
simple modification. Let i = 1, . . . , N and t = 1, . . . , T : If neither π̃0 nor π̃i
satisfies dit, then the demand is lost in the final policy πu. Otherwise the or-
dering periods for demand dit at the warehouse and at the retailer are defined
according to equation (6).

It is straightforward that the lower bound from Lemma 2 holds in this
special case of the problem. However, since we only halve the holding and
penalty costs in the subproblems instead of dividing them by three, we can
improve upon this result to get the following lower bound:

Lemma 4. The uncrossing algorithm applied to single-echelon policies π̃0, . . . , π̃N
produces an uncrossed feasible solution π̃u for the OWMR problem with lost-
sales. The total cost incurred by the resulting policy satisfies:

C (π̃u) ≤ K0(π̃0) + 2Ψ̃0(π̃0) + 2
N∑

i=1

C̃i(π̃i)

Proof See Appendix D.
Finally, assume the solution built by the split and uncross algorithm

when applied to the optimal single-echelon policis π̃∗

0 , π̃
∗

1, . . . , π̃
∗

N for prob-

lems (S̃0), (S̃1), . . . , (S̃N). Let π̃u∗ be the resulting policy: From Lemma 3
and 4, we have:

C (π̃u∗) ≤ K0(π̃
∗

0) + 2Ψ̃0(π̃
∗

0) + 2

N∑

i=1

C̃i(π̃
∗

i )

≤ 2

N∑

i=0

C̃i(π̃
∗

i )

≤ 2C ∗

and the following theorem states the approximation ratio of the technique:

Theorem 3. The policy π̃u∗ obtained after applying the split and uncross
algorithm to policies π̃∗

0 , π̃
∗

1, . . . , π̃
∗

N has a performance guarantee of two for
the OWMR problem with lost-sales. Its complexity is linear in the case of
linear cost and quadratic in the case of metric carrying cost parameters.
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5. Conclusion and perspectives

Although the literature on discrete deterministic divergent inventory sys-
tems is already substantial, almost all the existing works assume that de-
mands must be satisfied on time. Our work propose the first constant ap-
proximation for the OWMR problem with backlog or lost-sales. We derive
new, intuitive lower bounds for the problems considered and prove that our
algorithms have a constant performance guarantee under a general cost struc-
ture that can capture many practical situations. In addition we show that
the performance guarantee can be improved in special cases of our model,
namely the JRP and a lost-sales model.

Although these results fill a gap in the literature on deterministic inven-
tory theory, there remains some room for improvement. One obvious way for
future research is to try to improve the performance guarantee of three in
the backlogging case. One could also want to generalize the assumptions on
the cost structure by eliminating the backlogging cost bounding constraint
or considering nonlinear carrying costs.

Appendix A. Proof of Lemma 1

Consider an optimal policy πOPT = (πOPT

0 , πOPT

1 , . . . , πOPT

N ) for the OWMR
system with backlog. For all j = 0, . . . , N , let π̄j be the single-echelon policy
that places the same orders as πOPT

j . That is, if πOPT orders demand (i, t) in
period r at the warehouse and s at retailer i, π̄0 and π̄i orders demand (i, t)
in period r and s, respectively.

Note that by definition of π̄j for all j, the ordering costs remain un-

touched: K(πOPT) =
∑N

j=0Kj(π̄j). Therefore we simply have to prove that
∑N

j=0Ψj(π̄j) ≤
Ψ(πOPT) and the proof will follow from the optimality of policies π̂∗

0, π̂
∗

1, . . . , π̂
∗

N .
Consider a demand point (i, t) and let r and s be the periods when πOPT orders
the demand at the warehouse and at retailer i, respectively. The carrying
cost incurred by πOPT for this demand is therefore equal to ψit

rs. On the other
hand, the total cost incurred by policies π̄0 and π̄i to carry this demand in
systems (Ŝ0) (resp. (Ŝi)) is equal to 1

3
ωit
rr (resp. 2

3
ψit
ss) if i ∈ IW and 1

2
ωit
rr

(resp. 1

2
ψit
ss) if i ∈ IJ . Hence we want to show that ψit

rs is bounded as follows:

ψit
rs ≥





1

3
ψit
rr +

2

3
ψit
ss if i ∈ IW

1

2
ψit
rr +

1

2
ψit
ss otherwise.

(A.1)
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which is precisely the sum of the costs incurred by policies π̄0 and π̄j to
carry demand dit. We now prove that inequality (A.1) holds depending on
the nature of retailer i.

If i ∈ IJ , we have r = s since πOPT is optimal and therefore

ψit
rs = ψit

rr = ψit
ss (A.2)

=
1

2
ψit
rr +

1

2
ψit
ss (A.3)

If i ∈ IW , we distinguish between two cases, listed below:

• s ≤ t or r > t: Properties (P2) and (P3) ensure that

ψit
rs ≥ max

{
ψit
rt, ψ

it
ss

}

≥
1

3
ψit
rr +

2

3
ψit
ss (A.4)

• r ≤ t < s: We have from properties (P2) and (P3)

ψit
rs ≥ max

{
ψit
rt, ψ

it
ts

}

≥
1

3
ψit
rr +

2

3
ψit
ts

≥
1

3
ψit
rr +

2

3
ψit
ss (A.5)

Hence in all cases, inequality (A.1) is satisfied and we have Ψ(πOPT) ≥∑N

j=0Ψj(π̄j). As a consequence the following inequality holds:

C
∗ = C (πOPT) ≥

N∑

j=0

Cj(π̄j) (A.6)

Inequality (A.6) and the optimality of policies π̂∗

j for problems (Ŝj) then
conclude the proof:

N∑

j=0

Cj(π̂
∗

j ) ≤
N∑

j=0

C (π̄j)

≤ C
∗
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Appendix B. Proof of Lemma 2

First, note that for all i = 1, . . . , N and t = 1, . . . , T , the pair of or-
ders ⌈rit, sit⌋ chosen by the algorithm to serve dit satisfies r

it ≤ sit and there-
fore policy πu is uncrossed and feasible.

We now prove that the final cost incurred by πu is bounded. By con-
struction, each ordering period of π̂i is replaced by at most two ordering
periods at retailer i in πu. More precisely, the set of ordering periods of
retailer i in πu is included in {s-, s+|s an ordering period of π̂i} if i ∈ IJ , and
in {s, s+|s an ordering period of π̂i} if i ∈ IW . Thus the number of order-
ing periods at each retailer is at most doubled by the uncrossing algorithm.
Moreover the uncrossing algorithm leaves the orders of π̂0 untouched, hence
using the assumption of stationary ordering costs Ki at the retailers, we
have that the ordering costs incurred by πu are at most twice the sum of the
ordering costs incurred by policies π̂i.

Therefore if IW 6= ∅ it only remains to prove that the following inequalities
hold:

Ψ(πu) ≤ 3

N∑

j=0

Ψ̂j(π̂j) (B.1)

Let i = 1 . . . , N and t = 1, . . . , T and focus on demand point (i, t). Let r
be the period when π̂0 orders dit and s the period when π̂i orders d

i
t in their

single-echelon solution. We now bound the final carrying cost incurred in πu

to serve dit. Recall that in π
u, dit is served by the the pair ⌈rit, sit⌋, as defined

in equation (6). Hence we want to show that for a retailer i and periods t, r, s,
the following inequality is satisfied:

ψit
rit,sit ≤





3 ·
1

3
ψit
rt + 3 ·

2

3
ψit
ss = ψit

rt + 2ψit
ss if i ∈ IW and r ≤ t(B.2)

3 ·
1

3
ψit
rr + 3 ·

2

3
ψit
ss = ψit

rr + 2ψit
ss if i ∈ IW and r > t (B.3)

2 ·
1

2
ψit
rr + 2 ·

1

2
ψit
ss = ψit

rr + ψit
ss if i ∈ IJ (B.4)

If i ∈ IJ , the order of retailer i that serves d
i
t in policy πu is synchronized

with a warehouse order either in period s- or s+. Note that by definition we
necessarily have r ≤ s- if r ≤ s and r ≥ s+ if r > s. Hence if r ≤ s, we have
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from property (P4)

ψit
s-s- ≤ ψit

rr

≤ ψit
rr + ψit

ss

On the other hand if r > s, πu uses the pair ⌈s+, s+⌋ to serve dit and from
property (P2) and (P3) the following inequality holds

ψit
s+s+ ≤

{
ψit
rr if r > t
ψit
ss otherwise

≤ max
{
ψit
rr, ψ

it
ss

}

≤ ψit
rr + ψit

ss

Hence if i ∈ IJ inequality (B.4) is satisfied for all t, r, s.
In the case where i is a W -retailer, we again derive a lower bound for the

carrying cost depending on how r, s and t are ordered. If r ≤ s and r ≤ t,
the final cost incurred in πu to serve dit is ψ

it
s-s. Notice that in this case, we

have r ≤ s-. Therefore we can bound the carrying cost incurred to serve
demand dit using properties (P3), (P4) and (P5) in their turn:

ψit
s-s ≤

{
ψit
s-t + ψit

ss if r ≤ s ≤ t
ψit
s-t + ψit

ts if r ≤ t < s

≤

{
ψit
rt + ψit

ss if r ≤ s ≤ t
ψit
rt + ψit

ts if r ≤ t < s

≤ ψit
rt + 2ψit

ss

On the other hand if t < r ≤ s, properties (P3) and (P5) ensure that

ψit
s-s ≤ ψit

ts

≤ 2ψit
ss

≤ ψit
rr + 2ψit

ss

Finally if r > s, we use properties (P2) and (P3) to bound the final carrying
cost:

ψit
s+s+ ≤

{
ψit
rr if t < s+

ψit
ss otherwise

≤ max
{
ψit
rr, ψ

it
ss

}

≤ ψit
rr + ψit

ss
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We conclude that if i ∈ IW inequalities (B.2) and (B.3) are satisfied.
Therefore if πu uses the pair of orders ⌈rit, sit⌋, inequalities (B.2), (B.3)

and (B.4) are always satisfied. As a consequence inequality (D.1) holds and
the proof follows:

C (πu) ≤ 3
N∑

j=0

Ψ̂j(π̂j) +K0(π̂0) + 2
N∑

i=1

Ki(π̂i)

To conclude the proof, notice that when IW = ∅, inequality (B.4) implies
that

Ψ(πu) ≤ 2

N∑

j=0

Ψ̂j(π̂j)

and thus one can modify the upper bound in the special case of the JRP:

C (πu) ≤ 2
N∑

j=0

Ψ̂j(π̂j) +K0(π̂0) + 2
N∑

i=1

Ki(π̂i)

Appendix C. Proof of Lemma 3

We prove this inequality in a similar manner as we did for Lemma 1.
Consider an optimal policy πOPT = (πOPT

0 , πOPT

1 , . . . , πOPT

N ) for the OWMR
system with lost-sales. For all j = 0, . . . , N , we define π̄j as the policy that
orders in the same periods as πOPT

j and fills or looses demands exactly as

the latter does. Obviously, we again have K(πOPT) =
∑N

j=0Kj(π̄j). We now

prove that
∑N

j=0Ψj(π̄j) ≤ Ψ(πOPT). Consider a retailer i and a demand

point (i, t). If dit is lost in π
OPT, then by construction it is lost in π̄0 and π̄i

and we directly have:

ψit =
1

2
ψit +

1

2
ψit (C.1)

Now assume the demand is filled and let r and s be the periods when πOPT

orders dit at the warehouse and at the retailer, respectively. The holding cost
incurred by πOPT for dit is equal to ψ

it
rs. If i is a J-retailer, we have r = s and

therefore

ψit
rs = ψit

rr = ψit
ss =

1

2
ψit
rr +

1

2
ψit
ss (C.2)
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On the other hand if i is aW -retailer, we can bound this cost using properties
(P2) and (P3):

ψit
rs ≥ max

{
ψit
rt, ψ

it
ss

}

≥
1

2
ψit
rt +

1

2
ψit
ss (C.3)

In both cases, the sum of the holding costs incurred by π̄0 and π̄i to serve de-
mand (i, t) in systems (S̃0) and (S̃i) is lower than or equal to the cost incurred
in πOPT to serve the same demand. Therefore from equations (C.1), (C.2)
and (C.3) we conclude Ψ(πOPT) ≥

∑N

j=0Ψj(π̄j). The optimality of policies π̃∗

j

for problems (S̃j) then yields:

N∑

j=0

Cj(π̃
∗

j ) ≤
N∑

j=0

C (π̄j)

=
N∑

j=0

Kj(π̄j) + Ψj(π̄j)

≤ K(πOPT) + Ψ(πOPT)

≤ C
∗

Appendix D. Proof of Lemma 4

To prove the feasibility of the resulting policy, we refer the reader to
the proof of Lemma 2. Similarly, it is straightforward to see that K(π̃u) ≤
K0(π̃0) + 2

∑N

i=1Ki(π̃i), since for every order in π̃i the algorithm places at
most two orders in the final policy π̃u. Therefore we only have to prove that

Ψ(π̃u) ≤ 2
N∑

j=0

Ψj(π̃j) (D.1)

Let i = 1 . . . , N and t = 1, . . . , T and focus on demand point (i, t). If
the dit is lost in π̃0 or π̃i, it incurs a cost of at least 1

2
ψit in these policies.

Since by construction it is also lost in π̃u, it incurs a cost of exactly ψit in the
final solution. Now assume the demand is filled both in π̃0 and π̃i and let r
and s be the respective ordering periods of these policies for this demand. We
want to prove that the final holding cost incurred in π̃u to serve dit is at most
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Warehouse

Retailer i

r = s-

π̃0 π̃i
π̃u

s t

(a) Example with i ∈ IJ and r ≤ s

(t ≥ s)

Warehouse

Retailer i

π̃0π̃i
π̃u

s s+ t r

(b) Example with i ∈ IJ and r > s

(s ≤ t ≤ r)

Warehouse

Retailer i

π̃0 π̃i
π̃u

t r s

(c) Example with i ∈ IW and r ≤ s

(t ≤ r)

Warehouse

Retailer i

π̃0π̃i
π̃u

s r = s+ t

(d) Example with i ∈ IW and r > s

(t ≥ r)

Figure D.2: Examples of paths followed by the units after applying the uncrossing policy

the sum of the holding cost it incurs in policies π̃0 and π̃i. This final cost
depends on the path followed by the units in the system after applying the
uncrossing policy. Specifically, we want to compare this cost with the cost
of the paths the same units follow in the single echelon policies π̃0 and π̃i.
We distinguish several cases depending on the type of retailer and on the
respective position of r and s (see also Figure D.2 for a specific example of
units path in each case):

• If i ∈ IJ and r ≤ s, π̃u orders dit in period s- at the warehouse and
at the retailer for a final cost of ψit

s-s-. The holding cost incurred by
policy π̃0 (resp. π̃i) to serve this demand is equal to ψit

rr (resp. ψit
ss).
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Since s- ≥ r, we have from property (P3):

ψit
s-s- ≤ ψit

rr

≤ ψit
rr + ψit

ss (D.2)

• If i ∈ IJ and r > s, π̃u orders the demand in period s+ at the warehouse
and at the retailer for a final cost of ψit

s+s+
. The holding cost incurred

by policy π̃0 (resp. π̃i) to serve this demand is equal to ψit
rr (resp. ψ

it
ss).

Since s+ ≥ s, we have from property (P3):

ψit
s+s+ ≤ ψit

ss

≤ ψit
rr + ψit

ss (D.3)

• If i ∈ IW and r ≤ s, π̃u orders the demand in period s- at the warehouse
and in period s at the retailer for a final cost of ψit

s-s. Recall that by
definition, we have r ≤ s-. The holding cost incurred by policy π̃0
(resp. π̃i) to serve this demand is equal to ψit

rt (resp. ψit
ss). Thus we

have from property (P3) and (P4):

ψit
s-s ≤ ψit

rs ≤ ψit
rt + ψit

ss (D.4)

• If i ∈ IW and s < r, π̃u orders the demand in period s+ at the warehouse
and at the retailer for a final cost of ψit

s+s+ . The holding cost incurred
by policy π̃0 (resp. π̃i) to serve this demand is equal to ψit

rt (resp. ψ
it
ss).

Since s+ > s we have from property (P3):

ψit
s+s+ ≤ ψit

ss

≤ ψit
rt + ψit

ss (D.5)

Note that in inequalities (D.2)-(D.5), the right-hand side corresponds
exactly to twice the sum of the holding cost incurred in policy π̃0 and π̃i to
serve demand dit. As a consequence in all cases the holding or penalty cost
incurred to serve or loose this demand in π̃u is at most twice the sum of the
costs incurred for the same demand in policies π̃0 and π̃i. We conclude that
inequality (D.1) holds and the proof follows.
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