
HAL Id: hal-01284333
https://hal.science/hal-01284333

Submitted on 8 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

On Memory Reuse Between Inputs and Outputs of
Dataflow Actors

Karol Desnos, Maxime Pelcat, Jean François Nezan, Slaheddine Aridhi

To cite this version:
Karol Desnos, Maxime Pelcat, Jean François Nezan, Slaheddine Aridhi. On Memory Reuse Be-
tween Inputs and Outputs of Dataflow Actors. ACM Transactions on Embedded Computing Systems
(TECS), 2016, 15 (2), pp.30. �10.1145/2871744�. �hal-01284333�

https://hal.science/hal-01284333
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

30

On Memory Reuse Between Inputs and Outputs of Dataflow Actors

KAROL DESNOS, MAXIME PELCAT and JEAN-FRANÇOIS NEZAN, IETR, INSA Rennes
SLAHEDDINE ARIDHI, Texas Instruments France

This article introduces a new technique to minimize the memory footprints of Digital Signal Processing
(DSP) applications specified with Synchronous Dataflow (SDF) graphs and implemented on shared-memory
Multiprocessor Systems-on-Chips (MPSoCs). In addition to the SDF specification, which captures data de-
pendencies between coarse-grained tasks called actors, the proposed technique relies on two optional inputs
abstracting the internal data dependencies of actors: annotations of the ports of actors, and script-based
specifications of merging opportunities between input and output buffers of actors. Experimental results on
a set of applications show a reduction of the memory footprint by 48% compared to state-of-the-art mini-
mization techniques.

Categories and Subject Descriptors: C.3 [Special-Purpose and Application-Based Systems]: Real-time
and embedded systems ; D.3.4 [Programming Languages]: Processors—Optimization

General Terms: Design

Additional Key Words and Phrases: Dataflow, memory optimization, buffer merging

ACM Reference Format:
Karol Desnos, Maxime Pelcat, Jean-François Nezan, and Slaheddine Aridhi, 2015. On memory reuse be-
tween inputs and outputs of dataflow actors. ACM Trans. Embedd. Comput. Syst. 15, 2, Article 30 (February
2016), 25 pages.
DOI:http://dx.doi.org/10.1145/2871744

1. INTRODUCTION
Over the last decade, the popularity of data-intensive image and Digital Signal Pro-
cessing (DSP) algorithms in embedded systems has rapidly grown, with many appli-
cations in the automotive [Arndt et al. 2013], the multimedia and the telecommuni-
cation domains [Pelcat et al. 2012]. When developing data-intensive applications for
embedded systems, addressing the memory challenges is an essential task as it can
dramatically impact the quality and performance of a system. Indeed, the silicon area
occupied by the memory can be as large as 80% of a chip and may be responsible for a
major part of its power consumption [Zorian 2002]. Despite the large silicon area allo-
cated to memory banks, the amount of internal memory available on most embedded
Multiprocessor Systems-on-Chips (MPSoCs) is still limited, thus the development of
data-intensive applications remains a challenging objective. For example, when ex-
ecuting a computer vision algorithm on high-definition (1080p) RGB video stream,
several frames of 2 MPixels may be processed simultaneously, each frame requiring
6 MBytes of memory to be stored in the RGB format. As most modern MPSoCs embed
at most a few tens of MBytes, minimizing the memory footprints of such applications
has become an essential step in the development of an embedded system, often deter-
mining the feasibility of this system.

Author’s addresses: K. Desnos (kdesnos@insa-rennes.fr), M. Pelcat (mpelcat@insa-rennes.fr) and J.-F. Nezan
(jnezan@insa-rennes.fr), IETR, INSA Rennes, UMR CNRS 6164, UEB, 20 avenue de Buttes de Coësmes,
35708 Rennes, France; S. Aridhi (saridhi@ti.com), Texas Instruments France, 5 chemin des Presses, 4 allée
Technopolis, 06800 Cagnes-Sur-Mer, France.
c©ACM, 2016. This is the author’s version of the work. It is posted here by permission of ACM for your

personal use. Not for redistribution. The definitive version was published in ACM Transactions in Embedded
Computing Systems, VOL15, ISS2, (16.02) http://doi.acm.org/10.1145/2871744
c© 2016 ACM 1539-9087/2016/02-ART30 $15.00
DOI:http://dx.doi.org/10.1145/2871744

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article 30, Publication date: February 2016.

30:2 K. Desnos et al.

This article introduces a new optimization technique to minimize the memory foot-
print of applications described with a dataflow Model of Computation (MoC). Repre-
senting an application with a dataflow graph [Lee and Parks 1995] consists of dividing
this application into a set of processing entities, named actors, interconnected by a set
of First-In First-Out queues (FIFOs). FIFOs allow the transmission of data tokens be-
tween actors. An actor starts its preemption-free execution (that is, it fires) when its
incoming FIFOs contain enough data tokens. The number of data tokens consumed and
produced during the execution of an actor is specified by a set of firing rules. The pos-
sibility of analyzing dataflow graphs due to their natural expressivity of parallelism
makes them particularly popular both for research [Lee and Parks 1995; Pelcat et al.
2012] and commercial purposes [Kalray 2013]. Indeed, it is this parallelism that makes
dataflow an attractive MoC to fully exploit the computing power offered by MPSoCs
[Pelcat et al. 2012], Graphics Processing Units (GPUs), and manycore architectures
[Kalray 2013].

In the literature, most memory optimization techniques for dataflow MoCs rely
solely on an analysis of the high-level data dependencies specified in dataflow graphs.
The memory reuse opportunities exploited by these optimization techniques is thus
limited by the high abstraction level considered and by the lack of information about
the internal data dependencies of actors. In this article, a new set of annotations for
dataflow graphs is introduced to allow the developer of an application to specify mem-
ory reuse opportunities between input and output buffers of an actor.

The numerous memory reuse opportunities revealed by considering internal data
dependencies of dataflow actors are detailed in Section 2. Then Section 3 presents
related work on this topic. The new graph annotations enabling the description of
actor-level memory reuse opportunities are introduced in Section 4. Section 5 shows
how these new memory reuse opportunities can be exploited to reduce the memory
footprint allocated for dataflow graphs. Finally, Section 6 assesses the efficiency of the
proposed minimization technique on a set of dataflow graphs of real applications.

2. MOTIVATIONS: MEMORY REUSE OPPORTUNITIES FOR DATAFLOW ACTORS
This section introduces the context of our paper with a presentation of the semantics
of the dataflow Model of Computation (MoC) used and a presentation of memory reuse
opportunities for both pre-defined and user-defined dataflow actors.

2.1. Synchronous Dataflow
Synchronous Dataflow (SDF) [Lee and Messerschmitt 1987] is the most commonly
used dataflow Model of Computation (MoC). An SDF graph G = 〈A,F 〉 is a directed
graph containing a set of actors A that are interconnected by a set of FIFOs F . An actor
a ∈ A comprises a set of data ports 〈P in

data , P
out
data〉 where P in

data and P out
data respectively

refer to a set of data input and output ports. Data ports are used as anchors for FIFO
connections. Functions src : F → P out

data and snk : F → P in
data associate source and sink

data ports to a given FIFO. For each port, a data rate is specified by the function rate :
A×F → N. The rate of a port corresponds to the fixed number of data tokens consumed
or produced on this port for each execution (or firing) of the parent actor. This property
allows a static analysis of an SDF graph during the application compilation. Static
analyses can be used to ensure consistency and schedulability properties that imply
deadlock-free execution of the application and bounded FIFO memory needs. If an SDF
graph is consistent and schedulable, a fixed sequence of actor firings can be repeated
indefinitely to execute the graph. This minimal sequence is deduced from the token
exchange rates of the graph and is called graph iteration [Lee and Parks 1995].

An example of an SDF graph with 6 actors is given in Figure 1. FIFOs are labeled
with their data token production and consumption rates. A FIFO marked with a dot

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article 30, Publication date: February 2016.

On Memory Reuse Between Inputs and Outputs of Dataflow Actors 30:3

Read
RGB

w*(h+2*n) w*hw*h w*hw*h/nw*(h/n+2)w*h3*w*h

RGB2
Gray

Sobel Median DisplaySplit x[w*(h+2*n)]

Fig. 1: Image processing SDF graph

signifies that initial tokens are present in the FIFO queue when the system starts to
execute. The number of initial tokens is specified by the ×[N] label. Initial tokens are a
semantics element of the SDF MoC that makes communication possible between suc-
cessive iterations of the graph execution; they are often used to pipeline the execution
of applications described with SDF graphs [Lee and Messerschmitt 1987]. Actors have
no states in the SDF MoC, consequently if enough data tokens are available, an actor
can start several executions in parallel. For example in Figure 1, actor Split produces
enough data tokens for actor Sobel to be executed n times in parallel. Hence, the SDF
MoC naturally expresses the parallelism of an application. Assigning a static order to
the firings of actors on the cores of an architecture is called scheduling the application.

Within the SDF MoC, actors are considered as “black boxes” whose internal behavior
can be implemented in any programming language. To simplify the description of this
internal behavior, it is convenient to assume that the memory consumed and produced
on each FIFO during the firing of an actor constitutes a contiguous memory space
called a buffer, and referenced by a pointer [Wipliez and Raulet 2010]. Indeed, by using
contiguous memory spaces, the developer of an application avoids the multiple jumps
in memory that would have a negative impact on the system performance. By doing
so, the developer also avoids writing complex pointer operations that would decrease
the source code readability [Cudennec et al. 2014].

Median

Read
RGB

40

40
24

24

2440 72 72120

72
b

c

d

e

f

g

h

i

j k

a
216

RGB2
Gray

Sobel

Sobel

Sobel

DisplayJoinForkSplit
ww

w
w

r
r

r

r

r

rr
x72

Fig. 2: Single-rate SDF graph derived from the SDF graph of Figure 1 (with h=9, w=8,
and n=3).

To reveal these buffers of fixed sizes, an SDF graph can be transformed into an
equivalent single-rate graph where each FIFO is replaced with single-rate FIFOs whose
consumption and production rates are identical. Each single-rate FIFO is thus a buffer
of fixed size accessed by two actors, assuming that executions of successive graph iter-
ations never overlap. For example, Figure 2 presents the single-rate SDF graph that
can be derived from SDF graph of Figure 1.

From the SDF programming framework perspective, actors firings are thus seen
as function calls accessing indivisible buffers. Since the internal behavior of actors is
unknown, the worst-case scenario must be assumed. In this case, the memory allocated
for input and output buffers of actors is thus reserved for the complete execution time
of actors. Each input and output buffer must be allocated in a separate memory space.
To allow memory reuse between input and output buffers of actors, new information
must be provided about the internal behavior of actors and the way in which they
access the data contained in their input and output buffers. The next section presents

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article 30, Publication date: February 2016.

30:4 K. Desnos et al.

the memory reuse opportunities offered by SDF graphs through the example of the
dummy image processing application presented in Figure 2.

2.2. Memory Reuse Opportunities
2.2.1. Special Actors with Pre-Defined Internal Behavior.

As presented in [Pelcat et al. 2012], graph transformations are often applied to the
SDF graph of an application in order to reveal its intrinsic parallelism before the mul-
ticore mapping, scheduling process and the memory allocation process. The single-rate
transformation of SDF graphs and the flattening of hierarchical SDF graphs are two
graph transformations that are important to our method.

During these two graph transformations, special actors are introduced to ensure the
equivalence with the original SDF graph. For example, Figure 2 illustrates the new
Fork and Join actors that were introduced during the single-rate transformation of
the SDF graph of Figure 1. The purpose of these special actors is to gather, distribute,
discard, and duplicate data tokens without performing actual computations on the
handled data tokens. The following list illustrates the memory reuse opportunities
offered by some of these special actors:

size/n

size/nsize
Fork

xn

(a) Fork actor

size/n

size/n size
Join

xn

(b) Join actor

size

sizesize
Brd

xn

(c) Broadcast actor

size

size

size
Rnd

xn

(d) Roundbuffer actor

Fig. 3: Special actors: graphs inside actors illustrate internal data movements.

— Fork and Join actors: The purpose of a Fork actor (Figure 3a), is to distribute equal
parts of the data received in its input buffer to its output buffers. For an input buffer
of size bytes, 2∗size bytes will be needed for the allocation of input and output buffers
of a Fork actor in non-overlapping memory spaces. By allocating an output buffer in
its corresponding range from the input buffer, half the memory allocated for this
actor can be saved. A symmetrical optimization is possible for Join actors (Figure 3b)
whose purpose is to assemble data from several input buffers into a single contiguous
output buffer.

— Broadcast actors: The purpose of a Broadcast actor (Figure 3c) is to produce a copy
of the content of its input buffer into each of its output buffer. For n output buffers
and an input buffer of size bytes, n ∗ size bytes will be needed for the non-overlapping
allocation of input and output buffers. By merging the n output buffers with the input
buffer, the memory allocated for a Broadcast actor can be divided by n+1.

— Roundbuffer actors: The purpose of a Roundbuffer (Figure 3d) actor is to forward
the data tokens received on its last input buffer to its output buffer, and to discard
data tokens received on all other input buffers. For n input buffers and an output
buffer of size bytes, n ∗ size bytes will be needed for the non-overlapping allocation of
input and output buffers. To take advantage of this internal behavior the allocation of
the last input buffer can be matched directly in the output buffer memory. Moreover,
since data tokens contained in all other input buffers are discarded by the Round-
buffer actor, it does not matter whether the data contained in these buffers are valid
or not. Hence, these input buffers can be allocated in overlapping memory spaces,
thus overwriting the content of each others. By doing so, the memory footprint of a

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article 30, Publication date: February 2016.

On Memory Reuse Between Inputs and Outputs of Dataflow Actors 30:5

Roundbuffer actor can be reduced to a footprint only twice as large as the size of the
output buffer.

In addition to reducing the memory footprint of the Fork, Join, Broadcast, and Round-
buffer actors, these optimizations also improve the performance of applications since
copying data from input to output buffers is no longer required. The memory reuse
opportunities presented in this section can be applied systematically since the actors
concerned are special actors whose behavior is not defined by the application developer.
The next section presents memory reuse opportunities resulting from the internal be-
havior of user-defined actors.

2.2.2. Actors with User-Defined Internal Behavior.
The description of the internal behavior of a dataflow actor is not part of the SDF
MoC. Consequently, many SDF programming frameworks have no knowledge of the
internal data dependencies of actors [Buck et al. 1994; Stuijk et al. 2006b]. The last
section showed that advanced memory optimization is possible for input and output
buffers of special actors whose behaviors are pre-defined. Although their behavior is
defined by the application developer, user-defined actors also present internal data
dependencies that may favor the use of advanced memory reuse techniques.

Information on the internal data dependencies between the input and output buffers
of an actor can be used to reveal the disjoint lifetimes of sub-ranges of the buffers.
For example, if a sub-range of an input buffer is last read before a sub-range of an out-
put buffer of equal size is first written, these two sub-ranges might be allocated in
the same memory space. In such a case, corrupting the input buffer by writing the
result into it is not an issue since the data contained in this input buffer will no longer
be used. An allocation technique which takes advantage of the data dependencies ex-
posed by an automatic analysis of application data access is presented in [De Greef
et al. 1997].

Gray
(16 bytes)

w=4

h
=

4

RGB
(48 bytes)

(a) RGB2Gray: Input RGB bytes with
a dark border can be used to store out-
put Gray bytes.

Slices
(3*40 bytes)

Input
(72 bytes)

(b) Split: Slices can be read directly from
the input buffer. Black pixel lines of the
slices are not part of the input image.

Fig. 4: Memory reuse opportunities for custom actors.

Figure 4a illustrates the internal data dependencies of the RGB2Gray actor for a
4x4 pixel image. In this example, 3 bytes, the R, G and B values, are read to produce
each output byte, the luminance value. Assuming that a raster scan of the input pixels
is used, the input bytes will never be read twice and the result can be stored directly
in the input. Hence, as illustrated in Figure 4a, the 16 output bytes can be stored in
a contiguous sub-range of the input buffer. The sub-range must be chosen to ensure

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article 30, Publication date: February 2016.

30:6 K. Desnos et al.

that output byte does not overwrite an unread input byte. In the example, the 16 bytes
of the Gray output buffer are stored in the [2; 17] sub-range of the RGB input buffer.
Another valid solution would be to store these 16 bytes in the [0; 15] sub-range.

A special case of mergeable buffers is the Split actor presented in Figure 4b. The
purpose of the Split actor is to divide an input image into several overlapping slices. In
this example, each slice has a 1-pixel line overlap with both the previous and the next
slices. Provided that the consumer of the slices do not write within the slice memory,
output slices can be allocated directly within the input buffer memory. As illustrated in
Figure 4b, border slices of the image may require the allocation of extra lines of pixel.
If each slice is allocated in its corresponding contiguous memory space of the input
buffer, then these extra lines will be allocated before and after the memory allocated
for the input buffer.

In-place internal behavior is a another special case of data access pattern that
a developer might take advantage of to optimize the memory footprint of his applica-
tion [Hsu et al. 2005]. An in-place algorithm is an algorithm that can write its results
directly in its input buffer during its execution. In addition to the input buffer memory,
the execution of an in-place algorithm requires a small working memory whose size is
independent of the size of the processed data. Examples of in-place signal processing
algorithms can be found in the literature such as Fast Fourier Transform (FFT) algo-
rithms [Burrus and Eschenbacher 1981], and sorting algorithms [Geffert and Gajdoš
2011].

Line Buffer
(16 bytes)

Input/Output
(72 bytes)

Median
value

Line n-1

Line n-1

Line n

Line n

Fig. 5: Internal behavior of Median actor with in-place results..

Figure 5 illustrates the in-place behavior of the Median actor from the SDF graph
of Figure 1. The purpose of the Median is to replace each pixel with the median value
derived from the neighboring 3x3 pixels. Its implementation is based on a sliding-
window of 3x3 pixels which successively scan the lines of the filtered image. To compute
the filtered value of a pixel, the median filter must keep the original values of the 8
surrounding pixels in memory. If the result of the filter is written directly in the input
image, the algorithm behavior will be corrupted since the new value assigned to a pixel
will be used for the computation of its neighbor pixels. By buffering two pixel lines of
the input image in a working memory, the Median actor can be implemented so that
its results are written directly in its input buffer. As illustrated in Figure 5, to compute
the value of a pixel, 3 pixels are read from the original input image and 6 pixels are
read from the line buffer. The line buffer stores the original value of pixels that have
already been overwritten in the input image by the application of the median filter
on previous lines of pixels. Note that the Median actor is not an in-place algorithm
in the strict sense as it requires a working memory (i.e. the line buffer) whose size is
proportional to the width of the processed input image.

The next section presents related work on memory optimization techniques which
take advantage of application data access and internal behavior of actors.

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article 30, Publication date: February 2016.

On Memory Reuse Between Inputs and Outputs of Dataflow Actors 30:7

3. RELATED WORK
The analysis of data dependencies to optimize the memory allocation of an application
has been an important research subject for many years and has been studied at many
levels of abstraction.

3.1. Compiler Optimizations
Data dependency analysis is an important optimization process of modern compilers.
This optimization consists of automatically analyzing the source code of an application
to identify data accesses and expose variables with disjoint lifetimes. Graph color-
ing [Quong and Chen 1993] and clique partitioning [Kim and Shin 2002] techniques
are then used to perform the memory allocation of these variables with a minimal
memory footprint. Such approaches have been widely used to optimize the memory
allocation for procedural programming languages such as C [De Greef et al. 1997] and
Fortran [Fabri 1979].

For example, in [De Greef et al. 1997], the order in which array elements are last
read and first written in a C program is exposed through an automated analysis of the
source code. Using this information, an allocation algorithm is proposed to partially
merge the memory allocated for arrays with non-overlapping lifetimes.

Keywords have been introduced in programming languages to explicitly specify the
type of access for a given variable or array. For example, the const keyword in C or the
final keyword in Java both specify that the associated primitive object will be read
but never written. There exist other keywords such as the restrict or the volatile
keywords in C language [Magee 2005]. Using these keywords, the developer of an ap-
plication gives information to the compiler that can not be deduced from code analysis
because of complex nested function calls or call to external libraries. This information
is used by the compiler to minimize the allocated memory footprint of applications.

3.2. Dataflow Optimizations
Minimizing the memory footprint of SDF applications is usually achieved by using
FIFO sizing techniques [Stuijk et al. 2006a; Benazouz et al. 2010] that consist of find-
ing a schedule to minimize the memory space allocated to each FIFO of an SDF graph.
In contrast to our technique, FIFO sizing techniques do not consider merging oppor-
tunities between input and output buffers. The technique presented in [Geilen et al.
2005] finds a schedule that minimizes the maximum number of tokens ever stored in
FIFOs of the graph during an iteration. In this method, consumption and production
of tokens are considered as synchronous events, thus allowing storage of tokens pro-
duced and consumed by an actor firing in the same memory space, but ignoring the
memory space needed to store these tokens during actor firings. For this reason, token
consumption and production were made asynchronous events when implementing this
method in Section 6.

Several solutions to broadcast data tokens can be found in the literature. Non-
destructive reads, also called FIFO peeking, is a well-known way to read data tokens
without popping them from FIFOs, hence avoiding the need for Broadcast actors [Fisch-
aber et al. 2007]. Unfortunately, this technique cannot be applied without considerably
modifying the underlying SDF MoC. Indeed, the use of FIFO peeking means that an ac-
tor does not have the same behavior for all firings. Otherwise, tokens of peeked FIFOs
would never be consumed and would accumulate indefinitely. Another solution to this
issue is to use a single-writer, multiple-readers FIFO that discards data tokens only
when all readers have consumed them [Mamidala et al. 2011]. An evaluation of this
technique is presented in Section 6.

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article 30, Publication date: February 2016.

30:8 K. Desnos et al.

In [Cudennec et al. 2014], a technique is proposed to enable buffer merging for a set
of actors with pre-defined behavior. In contrast to the method presented in this article,
this technique does not allow buffer merging for actors with a user-defined behavior.

Few articles can be found in the literature on the topic of allocation of input and out-
put buffers of an actor in overlapping memory spaces. In [Murthy and Bhattacharyya
2004], an annotation system is introduced to specify a relation between the number of
data tokens produced and consumed for a pair of input and output buffers of an actor.
This relation is then used jointly with scheduling information to enable the merging of
annotated buffers. In [Hsu et al. 2005; Forget et al. 2013], other annotation systems are
introduced to specify buffers that may be used for in-place execution of actors. The ad-
vantage of these annotation-based techniques is that no modification of the underlying
SDF MoC is required. Despite the fact that SDF FIFOs must be replaced with buffers
to benefit fully from these annotations, a regular SDF graph can still be obtained by
ignoring these annotations. The major drawback of these two annotation systems is
that they only allow pairwise merging of input and output buffers. Hence, these anno-
tation systems are unable to model the behavior of Fork or Broadcast actors, and so
require another method for merging several output buffers into a single input. More-
over, the optimization technique presented in [Murthy and Bhattacharyya 2004] relies
on a monocore scheduling of the application graph. The extension of this optimization
technique to multicore architectures and schedules is not straightforward.

Like existing annotation systems, the technique presented in this article does not
require any modification of the SDF semantics. In contrast to existing techniques, our
buffer merging technique can be used for any number of input and output buffers.
Although the work presented in this article only applies to the static SDF MoC, it
could easily be extended to dynamic dataflow MoCs, using technique similar to that
presented in [Wipliez and Raulet 2010] where certain FIFOs are replaced with buffers.

This paper extends our previous work on buffer merging technique [Desnos et al.
2015] by providing a set of notations and properties to formally model a buffer merg-
ing problem. Using these notations and properties enables the automated verification
of the validity of buffer merging patterns created by a developer. These notations are
also used to formally characterize the different steps of the iterative buffer merging op-
timization process in which the application of a merging pattern may invalidate other
buffer merging opportunities specified by the developer (Section 5). This paper also
introduces new port annotations and associated optimization process to handle the
memory optimization of Roundbuffer and similar actors. Finally, the paper presents
new experimental results on a broader set of dataflow specifications of real DSP appli-
cations.

4. GRAPH ANNOTATIONS
In addition to the single-rate SDF graph which specifies application behavior, the
buffer merging technique presented in this paper relies on two additional inputs ab-
stracting the internal behavior of actors: a script-based specification of mergeable in-
put and output buffers, and annotations of the ports of SDF actors. Advantages of this
technique are:

— No impact on SDF graphs: Annotating an application with these new inputs does
not require any modification of the underlying SDF graph. These new optional inputs
are only used by the development framework as part of a compile time optimization
process. If an annotated application were to be implemented on a target that does not
support these optimizations, these annotations could simply be ignored without any
impact on the application behavior. Conversely, the proposed annotations are not in-
dispensable for the description of a functional application. Annotations can be added

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article 30, Publication date: February 2016.

On Memory Reuse Between Inputs and Outputs of Dataflow Actors 30:9

to an application description only in late stages of development, when optimization
of the application memory footprint is needed.

— Independence from the host language: The host language is the language used
to specify the internal behavior of actors. The proposed optimization technique is not
based on an automated analysis of the host code of actors. Instead, a script-based
description of the mergeable buffers is provided by the application developer. This
abstract description can be suitable for several implementations of a given actor in
different host languages.

— Lightweight and intuitive information: The scripts specifying the memory reuse
opportunities for an actor are never longer than ten lines of code, and can be tested
independently from the internal computations performed by this actor. The use of
a scripting language instead of mathematical notations is also more natural and
intuitive for software developers.

— Semi-automated graph annotation: Since the behavior of some “special” actors
(Fork, Join, Broadcast, Roundbuffer) is pre-defined, annotations associated to with
actors can be added automatically during the graph transformations.

4.1. Actors Annotations with Memory Scripts
The first input used to abstract the internal behavior of actors is called a memory
script. The objective of memory scripts is to allow the application developer to to specify
which input buffer can be merged with which output for a given actor, and the relative
position of the resulting merged buffers. To this purpose, each actor of the SDF graph
can optionally be associated with a memory script.

Memory scripts are interpreted at compile time for each actor of the single-rate
graph. For each actor, the script inputs are: a list of the input buffers, a list of the out-
put buffers, and a list of parameters influencing the behavior of the actor. The script
execution produces a list of matches between the input and output buffers of the actor.
Each match associates a sub-range of bytes from an input buffer with a sub-range of
bytes from an output buffer. Applying a match consists of merging the memory allo-
cated to the two sub-ranges in a unique address range of the memory.

4.1.1. Memory Script Example.
Figure 6 presents the memory script associated with the user-defined Split actor and
illustrates the matches resulting from its execution. Memory scripts are written with
a derivative of the Java language called BeanShell [Niemeyer 2014]. The h, w, and n
parameters correspond to the height and width of the sliced image and the number of
slices produced by the actor respectively. Figure 6b illustrates the matches obtained
for the case of h = 9, w = 8, and n = 3. The output buffer of the Split actor is divided
into three sub-ranges of equal size (h/nbslice+2)∗w. Each output sub-range is matched
to the corresponding sub-range of the input buffer, thus creating overlaps between the
matched input sub-ranges. It is interesting to note that the first and the last sub-
ranges of the output buffer are partially matched outside the boundaries of the input
buffer initial byte range rbytes = [0, 72[.

4.1.2. Definitions.
The following definitions give the formal notations associated with the buffers and
matches concepts used in this article.

Definition 4.1 (Buffers). For an actor a ∈ A of a single-rate SDF graph G = 〈A,F 〉,
Ba is the set of input and output buffers of actor a. Bin

a ⊆ Ba and Bout
a ⊆ Ba are the

sets of input and output buffers respectively corresponding to ports P in
data and P out

data of
actor a. Each buffer b ∈ Ba is defined as a 1-tuple b = 〈rbytes〉 where:

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article 30, Publication date: February 2016.

30:10 K. Desnos et al.

/* Input buffer: bIn
* Output buffer: bOut
* Parameters: h, w, n
*/

int s=w*(h/n+2);//Slice size
for(int i=0; i<n ;i++){

bOut.match(// Match source
i*s, //Start index in bOut
bIn , //Match destination
(i*h/n-1)*w,//Start index in bIn
s); // Matched range size

}

(a) Memory Script

Split
72 120

80

-8

0

72
[80;120[[40;80[

[40;80[[16;56[

[0;40[[-8;32[

0

matches

output
buffer

input
buffer

(b) Created matches

Fig. 6: Memory script for Split actor (with h=9, w=8, and n=3).

– rbytes is the range of bytes associated with buffer b ∈ Ba. By definition rbytes =
[start, end[with start, end ∈ Z and start < end. The initial range of bytes rbytes
for buffer b ∈ Ba associated with port p ∈ P in

data ∪ P out
data is b.rbytes = [0, rate(p)[. The

amount of memory needed to allocate a given buffer is deduced from the range of
bytes b.rbytes associated with this buffer: size := b.rbytes.end− b.rbytes.start.

Definition 4.2 (Matches). For an actor a ∈ A of an SDF graph G = 〈A,F 〉:
Ma is the set of matches associated with buffers Ba of actor a. Each match m ∈ Ma is
defined as a tuple m := 〈bsrc, rsrc, bdst, rdst〉 where:
– bsrc, bdst ∈ Ba are the source and the destination buffers of match m ∈Ma.
– rsrc and rdst are the matched sub-ranges of bytes from buffers bsrc and bdst.
It is important to note that a match m ∈ M can be applied in both directions: the
destination sub-range m.rdst can be merged into the source buffer m.bsrc or the source
sub-range m.rsrc can be merged into the destination buffer m.bdst.

4.1.3. Matching Rules.
As shown in Figure 6, it is possible to match a contiguous sub-range of a buffer into

non-contiguous sub-ranges. This example also illustrates the possibility of matching
sub-ranges of a buffer partially outside the initial range of bytes of another buffer.
Although memory scripts offer great liberty for defining custom matching patterns, a
set of rules must be respected to ensure the correct behavior of an application.

R1. Both sub-ranges rsrc and rdst of a match m ∈ Ma must cover the same number of
bytes: rdst.end− rdst.start = rsrc.end− rsrc.start.

R2. A match m ∈ Ma can only be created between an input buffer bsrc ∈ Bin
a and an

output buffer bdst ∈ Bout
a .

R3. A sub-range of bytes of an output buffer bdst ∈ Bout
a can not be matched several

times by overlapping matches. Formally, if ∃ m = 〈bsrc, rsrc, bdst, rdst〉 ∈ Ma then
@ m′ = 〈b′src, r′src, b′dst, r′dst〉 ∈Ma|b′dst = bdst and r′dst ∩ rdst 6= ∅

R4. All matches m ∈ Ma must involve at least one byte from the initial byte range
bsrc.rbytes and one byte from the initial byte range bdst.rbytes. Formally, the following
condition must always be true: ∀m = 〈bsrc, rsrc, bdst, rdst〉 ∈ Ma, rsrc ∩ bsrc.rbytes 6= ∅
and rdst ∩ bdst.rbytes 6= ∅.

R5. Only bytes within the initial byte range b.rbytes of their buffer b ∈ Ba can be matched
with bytes falling outside the initial byte range of the matched buffer. Formally, con-

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article 30, Publication date: February 2016.

On Memory Reuse Between Inputs and Outputs of Dataflow Actors 30:11

sidering a match m = 〈bsrc, rsrc, bdst, rdst〉 ∈Ma, for each byte n ∈ rsrc and its matched
byte n′ ∈ rdst, if n /∈ bsrc.rbytes then n′ ∈ bdst.rbytes.

These five rules are checked for each match created during execution of a memory
script and errors are immediately reported to the developer. Rule R1 enforces the va-
lidity of the matches. Indeed, it is impossible to allocate a contiguous sub-range of n
bytes within a memory range of m bytes if m 6= n. Rules R2 and R3 prevent scripts
from generating matching patterns that would result in a destination merge issue (see
Section 5.1). Rules R4 and R5 regulate the creation of matches with bytes falling out-
side the initial range of bytes of buffers. A byte is called “virtual” if it does not belong
to the initial range of bytes of a buffer, otherwise the byte is called “real”. All “vir-
tual” and “real” bytes of a buffer are mapped in memory when a buffer is allocated. As
illustrated by the Split actor (Figure 6), memory scripts can be used to match a sub-
range of a buffer partially outside the range of “real” bytes of another buffer. Without
further limitations, this feature could be used to merge a buffer completely out of the
“real” byte range of another buffer, thus resulting in no memory reuse between the
two buffers. Such matches are made impossible by forcing matches to have at least
one “real” byte on both sides of the match (R4), and by forbidding matches between
“virtual” bytes (R5).

4.2. Data Ports Annotations
As illustrated by the Split actor, memory scripts allow the creation of overlapping
matches. Applying overlapping matches results in merging several sub-ranges of out-
put buffers in the same input buffer. Hence, actors reading data from the merged out-
put buffers are accessing the same memory. To ensure the correct behavior of the appli-
cation, the memory optimization process must check that actors accessing the merged
buffer do not write in this shared memory. If one of the consumer actor does not respect
this condition, its corresponding output buffer should not be merged and it should be
given a private copy of the data. Indeed, writing in the shared memory would modify
the input data read by other actors, which might change their behavior.

By default, the most flexible actor behavior is assumed; all actors are supposed to
be both writing to and reading from all their buffers during their execution. Since this
assumption excludes matches with overlapping sub-ranges, a set of graph annotations
has been introduced to specify how actors access their input and output buffers. Each
data port p ∈ P in

data ∪ P out
data can be annotated with the following keywords:

— Read-Only: The actor possessing a read-only input port can only read data from this
port. Like a const variable in C or a final variable in Java, the content of a buffer
associated to a read-only port can not be modified during the computation of the actor
to which it belongs.

— Write-Only: The actor possessing a write-only output port can only write data on
this port. During its execution, an actor with a write-only buffer is not allowed to
read data from this buffer, even if data in the buffer was written by the actor itself.

— Unused: The actor possessing an unused input port will never write nor read data
from this port. Like the /dev/null device file in Unix operating systems, an unused
input port can be used as a sink to consume and immediately discard data tokens
produced by another actor.

Developers should note that if a match created by a memory script results in match-
ing an input buffer into an output buffer where data is written by the actor, then the
corresponding input port must not be marked as read-only. For example, the input port
of the Split actor presented in Figure 6 cannot be marked as read-only because it is
matched in an output buffer whose first and last lines of pixel will be written by the

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article 30, Publication date: February 2016.

30:12 K. Desnos et al.

Split actor. In the SDF graph of Figure 2, an r mark is associated with each read-only
port and a w mark is associated with each write-only.

An example of use-case for the write-only and unused port annotations are the
Roundbuffer actors. As presented in Section 2.2.1, the only purpose of Roundbuffer
actors is to forward on their output port the last data tokens consumed on their input
ports. All input ports of a Roundbuffer actor except the last one can thus be marked
as unused. If a single-rate FIFO connects an unused input port to a write-only out-
put port, the memory allocated for this buffer will never be read by any actor. Hence,
the memory allocated for such a FIFO can be overwritten at any time, including dur-
ing the execution of the producer actor of the FIFO, without changing the behavior of
the application. The process taking advantage of write-only and unused annotations is
presented in Section 5.3.2 and does not depend on matches created by memory scripts.

Port annotations can easily be automated for the data ports of the pre-defined Fork,
Join, Broadcast, and Roundbuffer actors that are inserted during graph transforma-
tions. All output ports of these special actors are thus automatically marked as write-
only ports, and all input ports, except the first ports of the Roundbuffer actors, are
marked as read-only ports. For user-defined actors, it is the developer’s responsibility
to make sure that the internal behavior of actors is consistent with port annotations.

The memory scripts and port annotations presented in this section allow the de-
veloper of an application to specify how the input and output buffers can be merged,
and how actors access these buffers. In the next section, an optimization process is
presented to make use of these inputs to reduce the memory footprints of SDF graphs.

5. MEMORY MINIMIZATION PROCESS
The execution of memory scripts during the compilation of an SDF graph produces a
list of matches that represent merging opportunities for the input and output buffers of
actors. Some matching pattern specified by memory scripts may result in a corruption
of the application behavior (see Sections 4.1.3 and 5.1). The purpose of the memory
minimization process is to apply as many matches as possible without corrupting the
application behavior. For this purpose, the memory minimization process first builds
Directed Acyclic Graph (DAG) of buffers and matches by chaining the lists of matches
produced by the memory scripts.

Definition 5.1. A match DAG derived from a single-rate acyclic SDF graph G =
〈A,F 〉 is a Directed Acyclic Graph (DAG) denoted by T = 〈B,M〉 where:
– B is the set of vertices of the DAG. Each vertex is a buffer b ∈ Ba of an actor a from

the SDF graph (see Definition 4.1). In the match DAG, a single buffer b ∈ B is used
to represent an output buffer bo ∈ Bout

prod and an input buffer bi ∈ Bin
cons linked by a

single-rate FIFO.
– M is the set of directed edges of the DAG. Each edge m ∈M is a match produced by

the memory script of an actor (Definition 4.2).

The combination of all the buffers and matches of an application results in the cre-
ation of a forest (that is the creation of several unconnected match DAGs). An example
of match DAG is given in Figure 7 below the corresponding single-rate SDF graph. In
this figure, the single-rate FIFOs between actors RGB2Gray and Split, and actors Split
and Fork each are represented by a single buffer.

The match DAGs derived from an SDF graph are used by the optimization process
to identify the matches that can be applied without corrupting the behavior of the
application.

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article 30, Publication date: February 2016.

On Memory Reuse Between Inputs and Outputs of Dataflow Actors 30:13

Split

216

0

80

-8

0

216 72 72 40120120

72

[80;120[[40;80[

[40;80[[16;56[

[0;40[[-8;32[[0;72[[2;74[

RGB2
Gray

Fork

40

40

40
0

0

0

[0;40[[0;40[

[0;40[[40;80[

[0;40[[80;120[

0

120

Fig. 7: Match DAG associated to buffers of actors RGB2Gray, Split, and Fork.

5.1. Match Applicability Issues
A match m ∈ Ma is said to be applicable if it can be applied without changing the
behavior of the application. The 5 matching rules presented in Section 4.1.3 are nec-
essary conditions to ensure the applicability of a created match. However, following
these rules is not sufficient to guarantee the applicability of the created matches.

5.1.1. Match Overlap Issues.
Figure 8 gives examples of matches that respect the matching rules presented in Sec-
tion 4.1.3 but that can not be applied without corrupting the application behavior.

10

10
0

0

0

10

[0;10[[0;10[

[0;10[[0;10[

10
10

10 B

A

Brd
w
w

r

conflict

Brd matches

(a) Source overlap issue
10

15
0

0
0

0

20

[0;10[[0;10[[0;10[[0;10[

[10;20[[0;10[

15

20
10

10C

A B

Join
w

r
r

Join matches

conflict

B match 10

(b) Destination overlap issue

Fig. 8: Matching patterns with inapplicable matches.

— Source overlap issue: Matches with overlapping source sub-ranges can be applied
only if their destination buffers are read-only or unused. In Figure 8a, only one of
the Broadcast matches can be applied because neither actor A nor actor B have a
read-only input port and it is thus implicitly assumed that both actors may write in
their input buffers. If both matches were applied, actors A and B would write in each
other input buffer and corrupt the application behavior.

— Destination overlap issue: A chain of matches cannot be applied if it results in
merging several source sub-ranges in overlapping destination sub-ranges. In Fig-
ure 8b, if all matches were applied, the output buffers of actors A and C would be

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article 30, Publication date: February 2016.

30:14 K. Desnos et al.

merged in ranges [0, 15[and [10, 20[respectively of the output buffer of the Join actor.
Hence, if all matches were applied and actor A was executed after actor C, then actor
A would partially overwrite the data tokens produced by actor C, thus corrupting the
application behavior.

In order to detect and avoid applying the matches involved in a merging issue, a set
of new properties is introduced by the memory optimization process.

Definition 5.2. The tuple associated to a buffer b ∈ B is extended as follows:
b = 〈rbytes, rmerge〉 where rmerge is the set of ranges of mergeable bytes of the buffer.
Buffers corresponding to FIFOs connected to a read-only or an unused input buffer are
initialized with a mergeable range rmerge = {rbytes}, otherwise rmerge = {∅}.

Here, rmerge is defined as a set of ranges because it can contain several non-
contiguous ranges as a result of an update of the buffer properties (see Section 5.2).

A range of bytes of a buffer is said to be mergeable only if the consumer actor asso-
ciated to the corresponding FIFO does not write in this buffer (that is, sink port of the
FIFO is either read-only or unused). If all ranges of bytes involved in a source overlap
issue are mergeable, then the corresponding matches can be applied without corrupt-
ing the application behavior. ()dst

m−→src denotes the translation of a range of bytes of
the destination buffer into the corresponding range of the source buffer according to
match m.

PROPERTY 5.1 (SOURCE OVERLAP ISSUE). Two matches m1,m2 ∈M with overlap-
ping source sub-ranges m1.rsrc and m2.rsrc with m1.bsrc = m2.bsrc can both be applied
if and only if (m1.rsrc ∩m2.rsrc) ⊆ ((m1.bdst.rmerge)

dst
m−→src ∩ (m2.bdst.rmerge)

dst
m−→src).

If this condition is not satisfied, the two matches are said to be in conflict, and at most
one of them can be applied.

PROPERTY 5.2 (DESTINATION OVERLAP ISSUE). Two matches m1,m2 ∈ M with
overlapping destination sub-ranges m1.rdst and m2.rdst with m1.bdst = m2.bdst are in
conflict and can never be both applied. Formally, if m1.rdst ∩m2.rdst 6= ∅, then m1 and
m2 mutually exclude each other.

Properties 5.1 and 5.2 present the applicability rules for the source overlap issue
and the destination overlap issue respectively.

5.1.2. Buffer Division Issue.
To ensure that the behavior of an application is not modified when buffer merging is
applied, a necessary condition is that all actors must always have access to all their
input and output buffers (Section 2.1). The example of Listing 1 shows that, provided
that the memory allocated for its output buffer is merged into its input buffer memory,
a null output pointer can be given to an in-place actor like RGB2Gray. In this example,
the output and input buffers are allocated in a single memory space, hence there is no
need to have a specific output pointer since all buffer accesses made by the actor can
be made using the input pointer.
// Call to RGB2Gray actor
// 16 output bytes are merged in byte range [2, 17] of the input buffer.
rgb2gray (4 /* height */, 4 /* width */,

ptr /* pointer to 48 bytes */, NULL /* null pointer */);

Listing 1: Possible call to RGB2Gray actor if buffers are merged as in Figure 4a.

As illustrated by the memory script of actor Split in Figure 6, contiguous sub-ranges
of bytes can be matched in non-contiguous ranges of bytes. The application of this

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article 30, Publication date: February 2016.

On Memory Reuse Between Inputs and Outputs of Dataflow Actors 30:15

matching pattern requires the division of the output buffer of actor Split into several
sub-ranges, each matched in a distinct location.

Since a buffer divided and allocated into non-contiguous sub-ranges can no longer
be accessed through a simple pointer, a condition for dividing a buffer is that all actors
accessing this buffer can still access all its sub-ranges. A divided buffer remains acces-
sible to an actor only if the memory script of this actor matches all the sub-ranges of
this buffer into other buffers accessible by this actor. In Figure 9a, neither actor A nor
actor B is associated with a memory script, and hence neither actor would be permitted
to keep an access to the sub-ranges if the buffer division was applied. Since applying
the Swap matches is only possible by dividing the output buffer of actor A or the input
buffer of actor B, these matches cannot be applied.

0 0

20 20

[0;10[[10;20[

[10;20[[0;10[

2020
BA Swap

Swap matches

(a) Division issue

0
0

0

0

2020 10

10

[0;10[[0;10[
[0;10[[10;20[

[0;10[[10;20[
[10;20[[0;10[

10
102020

ForkA Swap

Fork matchesSwap matches

(b) No division issue

Fig. 9: Divisibility of buffers

In Figure 9b, the Swap actor is followed by a Fork actor. In this case, all sub-ranges
of the input buffer of actor Fork are matched within its output buffers. Consequently,
actors Swap and Fork both expect a division of the buffer corresponding to the FIFO
between them. In such a case, the buffer can be divided into two non-contiguous ranges
of bytes merged and accessible into the input buffer of actor Swap and into the output
buffers of actor Fork respectively.

In order to detect and check the applicability of matching patterns which require the
division of a buffer, a set of new properties is introduced by the memory optimization
process.

Definition 5.3. The tuple associated to a buffer b ∈ B is extended as follows:
b = 〈rbytes, rmerge, rdiv〉 where rdiv is a set of indivisible ranges of bytes of the buffer. If
a range of bytes is indivisible it will compulsorily be allocated in a contiguous memory
space.

Considering the set of matches S ⊂ M involving a buffer b ∈ B, the set of indivisible
ranges rdiv of this buffer is initialized as the lazy union of the matched sub-ranges.

Definition 5.4 (Lazy union). Considering two ranges r1 = [a, b[and r2 = [c, d[, the

lazy union of these ranges, noted
lazy
∪ , is computed as follows:

r1
lazy
∪ r2 =

{
if r1 ∩ r2 6= ∅ then [min(a, c);max(b, d)[

if r1 ∩ r2 = ∅ then {[a, b[; [c, d[}

The lazy union of two sets of ranges is computed like a classic union ∪ of two sets of

ranges, but using with the lazy union
lazy
∪ as the basic operation.

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article 30, Publication date: February 2016.

30:16 K. Desnos et al.

Considering two consecutive ranges of bytes r1 = [a, b[and r2 = [b, c[, contrary to the
standard union operator whose result is r1 ∪ r2 = [a, c[, the result of the lazy union is

r1
lazy
∪ r2 = {[a, b[; [b, c[}.

Definition 5.5. For a buffer b ∈ B and the set S of associated matches

S = {m ∈M |m.bdst = b ∨m.bsrc = b}

Let m.rb be the matched sub-range (source or destination) of m ∈ S associated with
buffer b. The indivisible range rdiv associated with buffer b is initialized as follows:

b.rdiv =

if ∪
m∈S

m.rb = b.rbytes then
lazy
∪

m∈S
m.rb

else b.rbytes

In Figure 9b, the input buffer of actor Swap and the output buffer of actor Swap (and
input buffer of actor Fork) both have several indivisible ranges rdiv = {[0, 10[; [10, 20[}.
The two output buffers of actor Fork each have a single indivisible range that covers
their complete range of bytes: rdiv = rbytes = [0; 10[.

If only part of the range of bytes of a buffer b ∈ B is matched, then this buffer is
indivisible, and its indivisible range is b.rdiv = b.rbytes. For example, in Figure 7, the
indivisible range of bytes associated to the input buffer of actor RGB2Gray is [0; 216[.

Definition 5.5 specifies how the initial indivisible ranges of a buffer can be computed.
The following property gives the conditions that must be satisfied for a buffer to be
divided into these indivisible sub-ranges.

PROPERTY 5.3. For a buffer b ∈ B and the set of associated matches S ⊂ M (as
defined in Definition 5.5), buffer b can be divided into sub-ranges b.rdiv and matched
into non-contiguous ranges of bytes if and only if all the following conditions are met:

(1) Matches in S with m.bsrc = b completely cover the range of bytes of buffer b and
have no overlap. Formally, with Ssrc = {m ∈ S|m.bsrc = b}, the condition is
(∪
m∈Ssrc

m.rsrc = b.rbytes)1 ∧ (∀m1,m2 ∈ Ssrc : m1 6= m2 ⇒ m1.rsrc ∩m2.rsrc = ∅)2.

(2) Matches in S with m.bdst = b completely cover the range of bytes of buffer b and
have no overlap. Formally, with Sdst = {m ∈ S|m.bdst = b}, the condition is
(∪
m∈Sdst

m.rdst = b.rbytes)1 ∧ (∀m1,m2 ∈ Sdst : m1 6= m2 ⇒ m1.rdst ∩m2.rdst = ∅)2.

(3) All matches in S are applicable under Properties 5.1 and 5.2
(4) All matches in S must match buffer b only with indivisible buffers. Formally, with

m.bremote the second buffer (6= b) matched by m ∈ S, the condition is
∀m ∈ S,m.bremote.rdiv = m.bremote.rbytes.

When buffer b ∈ B is divided, it can no longer be accessed as a contiguous memory
space. Consequently, a unique reference (that is, a pointer) is not sufficient to access all
the memory associated with this buffer. In order to preserve the behavior of the appli-
cation, actors must find another access to the divided buffer. Consequently, all actors
accessing a divided buffer must have matched all sub-ranges of the divided buffer with
other buffers accessed by the actor. Hence, a buffer b can be divided only if both its
producer and consumer actors completely match b with other buffers. This condition is
expressed by the first parenthesis ()1 in the formal expression of conditions 1 and 2 of
Property 5.3. It is the developer responsibility to ensure that when an actor accesses a
divided buffer, it does so through the sub-ranges matched with other buffers.

To avoid ambiguities, all sub-ranges of a divided buffer must be matched exactly once
with other buffers accessed by the actors. This condition is expressed by the second
parenthesis ()2 in the formal expression of conditions 1 and 2 of Property 5.3.

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article 30, Publication date: February 2016.

On Memory Reuse Between Inputs and Outputs of Dataflow Actors 30:17

Following conditions 1 and 2, each sub-range of a divided buffer is matched exactly
once in buffers of its producer actor, and once in buffers of its consumer actor. If one
of these matches is not applied, the corresponding actor will not be able to access
the unmatched sub-range of the divided buffer. Consequently, all matches must be
applicable for the buffer to be divided (condition 3).

Finally, sub-ranges of a divided buffer can only be accessed in the remote buffers
with which they were merged. Consequently, these remote buffers cannot be divisible
themselves since their content must remain accessible to the actors through a simple
reference (condition 4).

In Figure 9b, the buffer corresponding to the output of the Swap actor satisfies
all three conditions described in Property 5.3. Hence, if this buffer is divided, a null
pointer will be given in its place to actors Swap and Fork. Listing 2 presents the func-
tion call of these two actors for the case when the buffer between is divided.

// Call to actor Swap
// Output range [0;10[is accessible in range [10;20[of the input
// Output range [10;20[is accessible in range [0;10[of the input
swap(ptrIn /* Input */, NULL /* Output: null pointer */);
// Call to actor Fork
// Input range [0;10[is accessible in range [0;10[of the first output
// Input range [10;20[is accessible in range [0;10[of the second output
fork(NULL /* Input: null pointer */, ptrOut1 /* Output */, ptrOut2 /* Output */);

Listing 2: Call to actors Swap and Fork from Figure 9b if the buffer between the two
actors is divided.

In Figure 7, the buffer corresponding to the output of the Split actor satisfies the
conditions of Property 5.3.

5.2. Selection of Applicable Matches
Properties 5.1, 5.2, and 5.3 give the necessary conditions that a match must satisfy
to be applicable. Using these properties, the purpose of the minimization process is
to select and apply as many matches as possible in order to minimize the memory
footprint of an application.

Algorithm 1 gives the pseudo-code of the optimization process. The purposes of the
different parts of this optimization process are detailed in following sections.

ALGORITHM 1: Optimization process for the application of buffer matches.
Input: B - set of buffers initialized as specified in Definitions 4.1 and 5.5

M - set of matches generated by memory scripts and satisfying rules R1 to R5
Output: Mapplied: a set of applied matches

1 Separate T = 〈B,M〉 into independent match DAGs DAGSet = {Ti = 〈Bi,Mi〉};
2 for each Ti ∈ DAGSet do
3 // Fold match DAG Ti

4 repeat
5 Msel ← ∅;
6 // A match m = 〈bsrc, rsrc, bdst, rdst〉 can be selected only if:

7 // @m′ ∈Msel such that m′.bdst = m.bsrc or m′.bsrc = m.bdst
8 Msel ← Select applicable match(es) in Mi ;
9 Apply selected matches Msel in Ti;

10 Mapplied ←Mapplied ∪Msel;
11 until Mi = ∅ or Msel = ∅;
12 endfor

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article 30, Publication date: February 2016.

30:18 K. Desnos et al.

5.2.1. Applying a match.
The heart of the optimization process is to apply the selected matches at line 9 of
Algorithm 1. Applying a match consists of merging a buffer or, for a divided buffer, a
sub-range into a target buffer. The merged sub-range can either be part of the source
or the destination buffer of a match, merged in a target sub-range at the other end of
this match (see Definition 4.2).

Applying a set of matches is a complex operation that requires many transforma-
tions in the corresponding match DAG. The following list describes the transforma-
tions resulting from the application of a match m = 〈bsrc, rsrc, bdst, rdst〉 ∈M where bsrc
is the target buffer and bdst is the merged buffer. All notations can thus be reversed
(src � dst) when applying a match where the target is the destination range.

Applying a match consists of:

— Updating the target buffer properties: The mergeable ranges rmerge, the indi-
visible ranges rdiv, and the range of bytes rbytes of the target buffer must be updated
with the properties of the merged sub-range. Formally,

bsrc.rbytes ←[min(bsrc.rbytes.start, rsrc.start),max(bsrc.rbytes.end, rsrc.end)[

(bsrc.rmerge ∩ rsrc)←[bsrc.rmerge ∩ (bdst.rmerge)
dst

m−→src] ∩ rsrc

(bsrc.rdiv ∩ rsrc)←[bsrc.rdiv
lazy
∪ (bdst.rdiv)

dst
m−→src] ∩ rsrc

Where notation bsrc.rmerge ∩ rsrc on the left-hand part of an assignation is used to
specify that only the sub-range rsrc of the mergeable range bsrc.rmerge is updated
(that is, rsrc can be seen as mask for the assignation).

— Reconnecting matches of the merged sub-range: The merged buffer is not nec-
essarily a leaf of the match DAG. In other words, the merged sub-range of the des-
tination buffer bdst may itself be the source of other matches m′ ∈ M . In such case,
these matches should be reconnected to the target buffer as follows:

m′.bsrc ← bsrc and m′.rsrc ← (m′.rsrc)
dst

m−→src

— Removing conflicting matches, applied matches, and merged buffers: If the
applied match m ∈ M is in conflict with other matches (see Properties 5.1 and 5.2),
these other matches will no longer be applicable once m is applied. Inapplicable
matches are thus removed from the match DAG. The merged buffer and the applied
match no longer exist in the match DAG, and are also removed from it. Although
these elements are no longer part of the match DAG, the optimization process keeps
track of them to identify future violations of Properties 5.1 and 5.2.

5.2.2. Match DAG Folding.

The match DAG folding algorithm is the iterative optimization process responsible
for selecting the matches to apply (lines 2 to 11 of Algorithm 1). This process iterates
until no applicable matches can be found in the match DAG.

The order in which the matches are applied is important to maximize the number
of applied matches. In particular, matches that are not involved in any conflict should
be applied first. Since applying such matches does not require the removal of any con-
flicting match from the match DAG, applying them first is a good way to maximize the
number of applied matches. For example, if all but one output buffers of a Broadcast
actor are mergeable, applying the match with the non-mergeable output first would be
a bad choice since it would forbid the application of all other matches.

It is important to note that a match can be applied during an iteration only if neither
its source nor its destination buffer is itself merged during the same iteration. Indeed,

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article 30, Publication date: February 2016.

On Memory Reuse Between Inputs and Outputs of Dataflow Actors 30:19

when a first match is applied, the properties of the target buffer are updated in such
a way that may prevent the application of a second match. For example, in the match
DAG of Figure 8b, all matches are applicable during the first iteration of the folding
algorithm. However, only one match connected to the output buffer of actor B can be
applied at a time to avoid destination merge issue.

0

216 120

0

80

-8

0

72

40

40

40
0

0

0

Fork
matches

Split
matches

RGB2Gray
matches

(a) 1st iteration

0

120

-8
0

214

Split
matches

(b) 2nd iteration

Fig. 10: Folding the match tree formed by RGB2Gray-Split-Fork

Figure 10 illustrates the processing of the folding algorithm on the match DAG from
Figure 7. In the first iteration (Figure 10a), 4 matches can be applied simultaneously:
the three output buffers of the Fork actor are merged into the output buffer of the
Split actor, and the input buffer of the RGB2Gray actor is merged into the input buffer
of the Split actor. As a result of this last merge, the input buffer of the Split actor is
enlarged to cover a range of bytes rbytes = [0, 214[. In the second iteration (Figure 10b),
the output of the Split actor is divided into three sub-ranges, each corresponding to a
previously merged output buffer of the Fork actor. These three sub-ranges are merged
into overlapping sub-ranges of the input buffer of the Split actor. Since all matches
of the match DAG were applied, the execution of the match DAG folding algorithm is
terminated and a single buffer of 222 bytes remains in the folded match DAG. Without
the merging technique, the allocation of each buffer in a separate memory space would
require 528 bytes.

5.3. Static Memory Allocation of Merged Buffers
The static memory allocation of merged buffers in a shared-memory is realized using a
memory reuse technique for SDF graphs presented in [Desnos et al. 2014]. This tech-
nique relies on the construction of a Memory Exclusion Graph (MEG) whose weighted
vertices are the memory objects that must be allocated in memory to support the exe-
cution of the application. Two memory objects are connected with an exclusion if they
can not be allocated in overlapping memory ranges. An exclusion is added between
two memory objects if they have overlapping lifetime, that is, if they may store valid
data simultaneously. For example two memory objects are linked with an exclusion
if they represent two single-rate buffers from parallel data-paths that may contain
data-tokens simultaneously. Two memory objects representing an input and an output
buffer of the same actor may contain valid data simultaneously during the execution
of this actor, they are thus linked with an exclusion.

5.3.1. Buffer Merging in the Memory Exclusion Graph (MEG).
Each memory object of the MEG presented in Figure 11a corresponds to a single-rate
FIFO of the SDF graph from Figure 2. Updating a MEG with results from the buffer
merging optimization process simply consists of merging memory objects that corre-
spond to merged buffers. For example, in Figure 11b, memory objects a to f are merged
into a single memory object of 222 bytes as a result of applying matches for the match

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article 30, Publication date: February 2016.

30:20 K. Desnos et al.

c
120

f
40

e
40

d
40

i
24

h
24

g
24

j
72

k
72

b
72

a
216

(a) MEG for the FIFOs from Figure 2

j
72

k
72[0, 88[

[0, 88[
[0, 88[

a - f
222

i
24

h
24

g
24

(b) 1st update

[0, 88[g - k
72

a - f
222

(c) 2nd update
Fig. 11: Updates of the Memory Exclusion Graph (MEG).

DAG presented in Figure 10. Partial exclusions are then added between the merged
memory objects and the other memory objects from the exclusion graph. In the exam-
ple of Figure 11b, a partial exclusion is added between the first 88 bytes of the merged
memory object a-f and memory objects g, h, and i.

Figure 11c illustrates the MEG obtained when memory objects g to k are merged
according to matches associated with the Join actor and the in-place Median actor.
The allocation of this MEG requires 222 bytes of memory since the exclusion between
merged memory objects a-f and g-k is partial. Without the buffer merging technique,
the allocation of the original MEG requires 288 byte of memory. The allocation of the
same application with the FIFO sizing technique presented in [Stuijk et al. 2006a]
requires 552 bytes.

5.3.2. Removing Exclusions.
Port annotations unused and write-only can be used to specify that the data tokens of
an input port of an actor will never be used, and to specify that the data tokens written
on an output port will never be read again by their producer respectively. Hence, if
a single-rate FIFO is connected both to a write-only output port and an unused input
port, the data tokens written on this FIFO will never be used by the application and can
be discarded as soon as they are produced. Even though single-rate FIFOs connected
to a write-only and an unused port contain only useless data tokens, their allocation in
memory is still required. Indeed, the actor producing the data tokens on this FIFO has
no knowledge that these tokens will never be used, and so an output buffer must still
be provided.

Since the allocation of write-only and unused FIFOs is mandatory, but their content
is useless, all corresponding buffers can be allocated in overlapping memory spaces, re-
gardless of their respective lifetimes. Indeed, if two write-only and unused buffers are
allocated in overlapping memory ranges, the content of one buffer might be corrupted
when the other content is written. However, this data corruption will not change the
application behavior since the content of these buffers will never be used. This mecha-
nism is especially useful for hierarchical SDF graphs [Piat et al. 2009] whose hierarchy
flattening results in the insertion of many Roundbuffer actors with unused input ports.

To enable the allocation of memory objects corresponding to write-only and unused
FIFOs in overlapping memory ranges, exclusions between them are simply removed
from the MEG. Figure 12a gives an example of SDF graph with unused and write-only
FIFOs. The MEG derived from this SDF graph is presented in Figure 12b. A first up-
date of this MEG (Figure 12c) consists of merging memory objects c and e according to
the matches created by the memory script of actor Roundbuffer. Then, a second update
consists of removing exclusions between memory objects a, b and d that correspond to
single-rate FIFOs connecting write-only ports to unused ports (Figure 12d).

Since all the memory objects of the original MEG exclude each other: they form a
clique, so no memory reuse can be applied between them, thus requiring 55 bytes of
memory for their allocation. After the first update, the remaining memory objects still
form a clique and so 45 bytes are needed for their allocation. Finally, after the last
update, memory objects a, b, and d are no longer linked by an exclusion and can be

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article 30, Publication date: February 2016.

On Memory Reuse Between Inputs and Outputs of Dataflow Actors 30:21

10
10

15

10

10

D

C

B

A
Rndw

w

w
w

w

r
uu

u

b

c

d

e
a

(a) SDF graph. r, w, and u
mark read-only, write-only, and
unused ports respectively.

c
10

b
10

a
10

e
10

d
15

(b) Original MEG

c - e
10

b
10

a
10 d

15

(c) 1st update: merg-
ing c and e.

c - e
10

b
10

a
10 d

15

(d) 2nd update:
removing exclusions
between a, b, and d.

Fig. 12: Removing exclusion between write-only and unused memory objects of a MEG.

allocated in overlapping memory ranges. Hence, only 25 bytes of memory are needed
to allocate the MEG of Figure 12d. On this application, applying the buffer merging
technique leads to a reduction of the memory footprint by 55%.

The next Section presents experimental results of our buffer merging technique
when applied to more complex applications.

6. EXPERIMENTS
The buffer merging technique presented in this article was implemented within the
open-source rapid prototyping framework PREESM [Pelcat et al. 2014]. To assess the
performance of this buffer merging technique, a set of SDF specifications of state-of-
the-art computer vision, telecommunication and signal processing applications were
used. Table I presents the characteristics of the SDF graphs of these applications.
The Sobel application is the example used throughout this article and illustrated in
Figure 1. The Stereo application is a stereo-matching computer vision algorithm whose
purpose is to extract 3D information from a pair of 2D images [Mercat et al. 2014]. The
Chaotic application is a generator of pseudo-random sequences used for cryptography
purposes and described in [El Assad and Noura 2013]. The LTE PRACH application is
a description of the preamble detection part of the Long Term Evolution (LTE) wireless
communication standard [Pelcat et al. 2012]. Finally, the Large FFT application is an
implementation of an FFT algorithm optimized for processing a very large number of
samples (65536 complex values in our SDF implementation) [Takahashi 2000].

Table I: SDF graphs used in our experiments.

SDF graph Associated scripts Single-rate SDF Executed scripts
Application Actors FIFOs Custom Special Actors FIFOs Custom Special
Sobel 6 5 3 0 10 11 3 2
Stereo 28 42 4 10 300 987 62 83
Chaotic 10 14 6 3 29 45 16 12
LTE PRACH 14 10 2 1 398 543 88 93
Large FFT 9 8 6 0 780 1544 771 6

In Table I, the SDF graph column presents the number of actors and FIFOs in the
SDF graphs of the applications. The Associated scripts column gives the number of
actors of the graphs that are associated with custom and special memory scripts. Cus-
tom scripts are the memory scripts written by the application developer to specify the
memory reuse opportunities for user-defined actors written specifically for an appli-
cation whereas special scripts corresponds to memory scripts associated with actors

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article 30, Publication date: February 2016.

30:22 K. Desnos et al.

with a pre-defined behavior such as Fork, Broadcast, and Roundbuffer actors. It is in-
teresting to note that on average, more than half of the actors of an SDF graph can be
associated with a memory script.

The Single-rate SDF column gives the number of actors and FIFOs obtained after
applying the single-rate transformation. A large increase of the number of actors and
FIFOs compared to the SDF graph column is indicative of a high degree of the data
parallelism implicitly embedded in the original SDF graph, and explicitly revealed
during the single-rate SDF transformation. Except for the Sobel application that is
a simple example used throughout this paper, all other applications have a degree of
parallelism greater than 8 for the most computation intensive actors. When deploying
the applications on a multicore architecture, this degree of parallelism ensures that
all processing elements will execute a fair amount of computations.

The Executed scripts column presents the number of executions of both custom and
special memory scripts. The numbers presented in this column are much larger than
those presented in the Associated scripts column because each script associated with
an actor of the original SDF graph may be executed several times after the duplication
of actors during the single-rate transformation. Special actors that are automatically
inserted in SDF graphs during the single-rate transformation also increase the num-
ber of executed memory scripts.

Table II: Memory footprints for different memory optimization techniques.

Application None FIFO

sizing1
FIFO sizing1 +

Brd. FIFO2

Buffer
min.3

MEG3 Buff.
Merg.

MEG4 +
Buff. Merg.

Sobel 672 B 552 B 552 B 288 B 288 B 294 B 222 B
Stereo 1452 MB 373 MB 35 MB – MB 1256 MB 170 MB 23 MB
Chaotic 6.93 MB 2.15 MB 2.15 MB 1.67 MB 2.63 MB 1.92 MB 1.91 MB
LTE PRACH 5.81 MB – MB – MB – MB 1.10 MB 2.12 MB 1.04 MB
Large FFT 3074 kB 1794 kB 1794 kB 512 kB 514 kB 257 kB 257 kB
1: [Stuijk et al. 2006a] 2: [Mamidala et al. 2011] 3: [Geilen et al. 2005] 4: [Desnos et al. 2014]

Table II presents the memory footprints allocated for the mono-core execution of 5
applications with 6 different optimization techniques. Footprints given in the None col-
umn are obtained when no memory optimization technique is used and each buffer of
the single-rate SDF graph is allocated in an dedicated memory space. The FIFO sizing
and the FIFO sizing + Brd. FIFO columns are obtained with a state-of-the-art FIFO
sizing technique [Stuijk et al. 2006a] implemented in the SDF For Free (SDF3) frame-
work [Stuijk et al. 2006b]. For the results of the third column, broadcast FIFOs were
also used [Mamidala et al. 2011] to further reduce the allocated memory footprints.
Results of the fourth column were obtained with the buffer minimization technique
allowing reuse of memory for the allocation of FIFOs [Geilen et al. 2005] (Section 3).
Results of the second, third and fourth columns were obtained by applying the mini-
mization techniques to the SDF graphs of application before applying the single-rate
transformation. The results of the fifth column are obtained by exploiting only graph-
level memory reuse opportunities [Desnos et al. 2014]. Results of the sixth and the
seventh columns were allocated using the new buffer merging technique presented
in this article. The memory reuse opportunities offered by the updated MEG were
exploited only for the last column. This FIFO sizing and the buffer minimization tech-
niques model the memory optimization problem as a state-space exploration problem
that can become too large to be solvable for complex SDF graphs. For this reason, sev-
eral cells of Table II have been left empty for the LTE PRACH and Stereo applications.
The results presented in this table show the efficiency of the proposed buffer merg-

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article 30, Publication date: February 2016.

On Memory Reuse Between Inputs and Outputs of Dataflow Actors 30:23

ing technique which allocates on average 48% less memory than the combination of
state-of-the-art FIFO sizing and broadcast FIFOs techniques.

An application of special interest is the Large FFT application that can be executed
in-place when the buffer merging technique is applied. Indeed, 256 kB of memory cor-
responds to the exact amount of memory needed to store the 65536 complex values,
where each complex value is stored with two 16-bit fixed point numbers. The extra
kilobyte allocated for the application corresponds to the memory needed to store itera-
tion indexes and constants.

cores
1 2 3 4 5 6 7 8

memory
footprint

+0%

+5%

+10%

+15%

+20%

+25%

+30%

+35%

+40% Stereo
LTE PRACH
Sobel / Chaotic / Large FFT

Fig. 13: Memory footprints of the 5 applications on a variable number of cores.

The buffer merging technique was also used to allocate memory for a mapping of the
applications on an 8-core shared-memory MPSoC. Figure 13 shows the evolution of
the memory footprints of the 5 applications when mapped and scheduled on a variable
number of cores. In this graph, the memory footprints of the applications are expressed
relative to the memory allocated for a mono-core execution.

The buffer merging process presented in this article is independent of scheduling
considerations as it is solely based on the precedence relationships defined in the
single-rate SDF graph. The growth of memory footprints that can be observed in Fig-
ure 13 is caused by the MEGs of applications that are updated with scheduling in-
formation to reflect the additional data parallelism that is exploited when applications
are deployed on multiple cores. Since the buffer merging technique and the MEG-based
memory optimization have no impact on scheduling decisions, all the parallelism em-
bedded in SDF graphs is exploited to improve the performance of applications when
mapping them on multicore architectures [Desnos et al. 2014]. Since this paper focuses
on memory optimizations, the performance improvements of applications mapped on
multiple cores is not within the scope of this paper. Nevertheless, it should be noted
that since the degree of parallelism of these applications is higher than the number of
cores to which they are mapped, each core receives an equitable amount of computa-
tion and the performance of these application is greatly increased when mapping them
on a multicore architecture.

Despite the additional data parallelism of applications mapped on multiple cores, for
a worst case scenario, up to 40% additional memory is required to allocate the applica-
tions from Table I on 8 cores. It is important to note that the buffer merging technique
means that the memory footprint allocated for the Sobel, the Chaotic, and the Large
FFT applications remains constant irrespective of the number of cores. This is due to
the fact that large majority of buffers within the application have been merged by the

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article 30, Publication date: February 2016.

30:24 K. Desnos et al.

buffer merging technique, thus leaving few reuse opportunities to the later MEG-based
optimization. Since the buffer merging technique is independent of scheduling consid-
erations, the allocated memory footprints for these applications are not impacted by
the mapping on multiple cores. For all applications, the memory footprint allocated on
8 cores remains lower than the footprints allocated by state-of-the-art FIFO sizing and
broadcast FIFOs techniques for a mono-core execution. These results show that the
proposed buffer merging technique is more efficient than state-of-the-art techniques
to minimize the memory footprint of real applications specified with SDF graphs. The
tools1 and most applications2 used for these experiments are open-source and can be
freely downloaded in order to reproduce the presented results.

7. CONCLUSION
In this paper, a new buffer merging technique is introduced to minimize the memory
footprints of DSP applications specified with an SDF graph. This technique is based
on graph annotations that allow the developer to specify merging opportunities be-
tween input and output buffers of actors. This paper details how these annotations
are converted into a formal specification of the buffer merging problem. This formal
specification then serves as a basis both for checking the validity of the specified buffer
merging patterns and for the memory minimization process whose purpose is to apply
as many merging opportunities as possible while preserving the application behavior.
Experiments on a set of real DSP applications have shown that our technique results
on average in memory footprints 48% smaller than state-of-the-art optimization tech-
niques. Experiments also showed that the proposed buffer merging technique limits
the growth of the memory footprint of applications when deploying them on a multi-
core architecture. Future work on this subject will include the automated creation of
memory-scripts through an analysis of the source code of actors.

REFERENCES
Oliver Jakob Arndt, Daniel Becker, Christian Banz, and Holger Blume. 2013. Parallel implementation of

real-time semi-global matching on embedded multi-core architectures. In Embedded Computer Systems:
Architectures, Modeling, and Simulation (SAMOS XIII). IEEE, 56–63.

Mohamed Benazouz, Olivier Marchetti, Alix Munier-Kordon, and Pascal Urard. 2010. A new approach for
minimizing buffer capacities with throughput constraint for embedded system design. In Computer
Systems and Applications (AICCSA), 2010 IEEE/ACS. IEEE, 1–8.

Joseph Buck, Soonhoi Ha, Edward A. Lee, and David G. Messerschmitt. 1994. Ptolemy: A framework for
simulating and prototyping heterogeneous systems. International Journal of Computer Simulation Vol.
4 (1994), 155–182.

C. Sidney Burrus and Peter W. Eschenbacher. 1981. An in-place, in-order prime factor FFT algorithm. Acous-
tics, Speech and Signal Processing, IEEE Transactions on 29, 4 (Aug 1981), 806–817.

Loı̈c Cudennec, Paul Dubrulle, François Galea, Thierry Goubier, and Renaud Sirdey. 2014. Generating Code
and Memory Buffers to Reorganize Data on Many-core Architectures. Procedia Computer Science 29
(2014), 1123–1133.

Eddy De Greef, Francky Catthoor, and Hugo De Man. 1997. Array placement for storage size reduction
in embedded multimedia systems. In Application-Specific Systems, Architectures and Processors, 1997.
Proceedings., IEEE International Conference on. IEEE, 66–75.

Karol Desnos, Maxime Pelcat, Jean-François. Nezan, and Slaheddine Aridhi. 2014. Memory Analysis and
Optimized Allocation of Dataflow Applications on Shared-Memory MPSoCs. Journal of Signal Process-
ing Systems, Springer US 80 (July 2014), 19–37.

Karol Desnos, Maxime Pelcat, Jean-François. Nezan, and Slaheddine Aridhi. 2015. Buffer Merging Tech-
nique for Minimizing Memory Footprints of Synchronous Dataflow Specifications. In International Con-
ference on Acoustics, Speech and Signal Processing (ICASSP15). IEEE, 1111–1115.

1PREESM website: http://preesm.sf.net and SDF3 website: http://www.es.ele.tue.nl/sdf3/
2Stereo, Sobel and Large FFT PREESM applications: https://github.com/preesm/preesm-apps

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article 30, Publication date: February 2016.

On Memory Reuse Between Inputs and Outputs of Dataflow Actors 30:25

S. El Assad and H. Noura. 2013. Generator of chaotic sequences and corresponding generating system. (Feb.
2013). Patent No. US 8781116 B2, Filed March 28th., 2011, Issued Jul. 15th., 2014.

Janet Fabri. 1979. Automatic storage optimization. Courant Institute of Mathematical Sciences, NY Univer-
sity.

Scott Fischaber, Roger Woods, and John McAllister. 2007. SoC Memory Hierarchy Derivation from Dataflow
Graphs. In Signal Processing Systems, Workshop on. IEEE, 469–474.

J. Forget, C. Gensoul, M. Guesdon, C. Lavarenne, C. Macabiau, Y. Sorel, and C. Stentzel. 2013. SynDEx v7
User Manual. INRIA Paris-Rocquencourt. http://www.syndex.org/v7/manual/manual.pdf.

Viliam Geffert and Jozef Gajdoš. 2011. In-Place Sorting. In SOFSEM 2011: Theory and Practice of Computer
Science, I. Čern, T. Gyimthy, J. Hromkovič, K. Jefferey, R. Krlović, M. Vukolić, and S. Wolf (Eds.). Lecture
Notes in Computer Science, Vol. 6543. Springer Berlin Heidelberg, 248–259.

Marc Geilen, Twan Basten, and Sander Stuijk. 2005. Minimising Buffer Requirements of Synchronous
Dataflow Graphs with Model Checking. In Design Automation Conference. ACM, NY, USA, 819–824.

Chia-Jui Hsu, Ming-Yung Ko, and Shuvra S. Bhattacharyya. 2005. Software Synthesis from the Dataflow
Interchange Format. In Proceedings of the 2005 Workshop on Software and Compilers for Embedded
Systems (SCOPES’05). ACM, 37–49.

Kalray. 2013. Many-core processors - Dataflow. (Dec. 2013). http://www.kalray.eu/technology/dataflow/
Jong T. Kim and Dong R. Shin. 2002. New efficient clique partitioning algorithms for register-transfer syn-

thesis of data paths. Journal of the Korean Phys. Soc 40 (2002), 754–758.
Edward A. Lee and David G. Messerschmitt. 1987. Synchronous data flow. Proc. IEEE 75, 9 (sept. 1987),

1235 – 1245.
Edward A. Lee and Thomas M. Parks. 1995. Dataflow process networks. Proc. IEEE 83, 5 (1995), 773–801.
David P. Magee. 2005. Matlab Extensions for the Development, Testing and Verification of Real-time DSP

Software. In Proceedings of the 42nd Annual Design Automation Conference. ACM, NY, USA, 603–606.
Amith R. Mamidala, Daniel Faraj, Sameer Kumar, Douglas Miller, Michael Blocksome, Thomas Gooding,

Philiph Heidelberger, and Gabor Dozsa. 2011. Optimizing MPI Collectives Using Efficient Intra-node
Communication Techniques over the Blue Gene/P Supercomputer. In Parallel and Distributed Process-
ing Workshops and Phd Forum (IPDPSW), International Symposium on. IEEE, 771–780.

Alexandre Mercat, Jean-François Nezan, Daniel Menard, and Jinglin Zhang. 2014. Implementation of a
Stereo Matching Algorithm Onto a Manycore Embedded System. In International Symposium on Cir-
cuits and Systems. IEEE, 1296–1299.

Praveen K. Murthy and Shuvra S. Bhattacharyya. 2004. Buffer Merging: a Powerful Technique for Reducing
Memory Requirements of Synchronous Dataflow Specifications. Trans. Des. Autom. Electron. Syst. 9, 2
(April 2004), 212–237.

Patrick Niemeyer. 2014. BeanShell website. (2014). http://www.beanshell.org.
Maxime Pelcat, Slaheddine Aridhi, Jonathan Piat, and Jean-Franois Nezan. 2012. Physical Layer Multi-

Core Prototyping: A Dataflow-Based Approach for LTE eNodeB. Springer.
Maxime Pelcat, Karol Desnos, Julien Heulot, Clement Guy, Jean-François. Nezan, and Slaheddine Aridhi.

2014. PREESM: A Dataflow-Based Rapid Prototyping Framework for Simplifying Multicore DSP Pro-
gramming. In EDERC 2014 Proceedings. IEEE, 36.

Jonathan Piat, Shuvra S. Bhattacharyya, and Mickaël Raulet. 2009. Interface-based hierarchy for syn-
chronous data-flow graphs. In SiPS Proceedings. IEEE, 145 – 150.

Russel W. Quong and Shu-Ching Chen. 1993. Register Allocation via Weighted Graph Coloring. ECE Tech-
nical Reports. 232. Register Allocation via Weighted Graph Coloring.

Sander Stuijk, Marc Geilen, and Twan Basten. 2006a. Exploring trade-offs in buffer requirements and
throughput constraints for synchronous dataflow graphs. In Design Automation Conference, Proceed-
ings. ACM, 899–904.

Sander Stuijk, Marc Geilen, and Twan Basten. 2006b. SDF3: SDF For Free. In Conference on Application of
Concurrency to System Design, Proceedings (ACSD ’06). IEEE Computer Society, 276–278.

Daisuke Takahashi. 2000. High-performance parallel FFT algorithms for the HITACHI SR8000. In High
Performance Computing in the Asia-Pacific Region. Proceedings., Vol. 1. IEEE, 192–199.

Matthieu Wipliez and Mickaël Raulet. 2010. Classification and transformation of dynamic dataflow pro-
grams. In Design and Architectures for Signal and Image Processing (DASIP),. IEEE, 303–310.

Yervant Zorian. 2002. Embedded memory test and repair: infrastructure IP for SOC yield. In Test Confer-
ence, 2002. Proceedings. International. IEEE, 340–349.

Received February 2015; revised July 2015; accepted October 2015

ACM Transactions on Embedded Computing Systems, Vol. 15, No. 2, Article 30, Publication date: February 2016.

