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Abstract Soil microorganisms such as mycorrhizae and
plant-growth-promoting rhizobacteria have beneficial effects
on crop productivity. Agricultural practices are known to im-
pact soil microbial communities, but past studies examining
this impact have focused mostly on one or two taxonomic
levels, such as phylum and class, thus missing potentially
relevant information from lower levels. Therefore, we propose
here an original, sub-phylum method for studying how agri-
cultural practices modify microbial communities. This meth-
od involves exploiting the available sequence information at

the lowest taxonomic level attainable for each operational tax-
onomic unit. In order to validate this novel method, we
assessed microbial community composition using 454 pyro-
sequencing of 16S and 28S rRNA genes, and then we com-
pared the results with results of a phylum-level analysis. Ag-
ricultural practices included conventional tillage, reduced till-
age, residue removal, and residue retention. Results show that,
at the lowest taxonomic level attainable, tillage is the main
factor influencing both bacterial community composition, ac-
counting for 13 % of the variation, and fungal community
composition, accounting for 18 % of the variation. On the
other hand, phylum-level analysis failed to reveal any effect
of soil practice on bacterial community composition and
missed the fact that different members of the same phylum
responded differently to tillage practice. For instance, the fun-
gal phylum Chytridiomycota showed no impact of soil treat-
ment, while sub-phylum-level analysis revealed an impact of
tillage practice on the Chytridiomycota sub-groups
Gibberella, which includes a notorious wheat pathogen, and
Trichocomaceae. This clearly demonstrates the necessity of
exploiting the information obtainable at sub-phylum level
when assessing the effects of agricultural practice on microbi-
al communities.

Keywords Microbial diversity . Microbial community
composition . Taxonomical level . Pyrosequencing .

Conservation agriculture

1 Introduction

Soil microorganisms are abundant and diverse and can have
both beneficial and adverse effects on crop growth. Some,
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such as plant-growth-promoting rhizobacteria and mycorrhi-
zae, are well known to favor crop productivity and plant health
(Siddiqui and Futai 2008; Berg 2009). They are notably in-
volved in key processes such as improving plant nutrient ac-
quisition, and they also play a major role in stimulating plant
growth and in protecting plants against pathogens by produc-
ing bioactive substances. Conversely, agricultural practices
influence the physical and chemical properties of the soil
and hence affect the abundance and diversity of soil microor-
ganisms (Kladivko 2001; Helgason et al. 2009; Lienhard et al.
2013). This generates interest in studying the responses of
microbial communities to agricultural practices.

Powerful new tools are now available for assessing at very
high resolution the huge diversity of microbial communities
and the composition thereof. One is massive DNA (pyro)se-
quencing, which generates thousands of DNA sequences
(Cardenas and Tiedje 2008) in record time. In addition, the
recent introduction of multivariate analysis in microbial ecol-
ogy has made it possible to summarize and explore such data,
to detect microbial patterns and relate them to the environment
(Ramette 2007). A central question in such studies remains:
how to choose the taxonomic level used to detect microbial
patterns?

The most recent surveys based on massive DNA sequenc-
ing and multivariate analysis, aiming to detect microbial pat-
terns in an agricultural context, have focused on a high taxo-
nomic level, i.e., class or phylum (Lienhard et al. 2013; Ceja-
Navarro et al. 2010; Navarro-Noya et al. 2013). Such studies
allow a coarse assessment of the variability of large microbial
groups in relation to agricultural practices. This approach,
however, ignores a large part of the accessible information
concerning lower taxonomic levels, which could be more rel-
evant to agriculture. For example, Ascomycota is a vast group
of fungi containing both beneficial and harmful organisms, the
latter being illustrated by the genus Gibberella, which in-
cludes the causative agent of Fusarium head blight of wheat
(Bottalico and Perrone 2002). In addition, a phylum or class
can contain subgroups of organisms responding differently to
environmental factors. For example, subgroups of
Acidobacteria, one of the most abundant bacterial phyla in

many soils, are reported to respond differently to tillage prac-
tice (Yin et al. 2010).

On the other hand, detecting microbial patterns at a finer
taxonomic level such as genus or species remains difficult or
even unfeasible, because a great many soil microbes remain
unknown at these levels, and because pyrosequenced DNA
fragments are still too short to allow accurately assigning the
sequence at these levels.

Consequently, we propose an original method to increase
the resolution of the analysis by exploiting a maximum of
information in the dataset, a method that could provide better
discrimination between microbial communities according to
the agricultural soil practice. The method is to exploit the
available sequence information at the lowest taxonomic level
attainable for each operational taxonomic unit.

To test the usefulness of this method, we have used it
to examine the effects of tillage and crop residue manage-
ment practice (Fig. 1) on microbial community composi-
tion and have compared the results obtained with those of
a phylum-level analysis of the same soil samples. For this,
we have used 16S and 28S pyrosequencing followed by
redundancy ordination analysis.

2 Materials and methods

2.1 Site description

The studied site is located on the experimental farm of
Gembloux Agro-Bio Tech (University of Liège, Gembloux,
Belgium, at 50° 33′ 45.92″N and 4° 42′ 48.97″ E). According
to the WRB soil system, the soil type of the studied site is
classified as Cutanic Luvisol. The soil texture is silt loam
(FAO) with 18–22 % clay, 70–80 % silt, and 5–10 % sand
particles, and the organic matter is characterized by a C/N ratio
between 10 and 12. The Belgian climate is maritime temper-
ate, with cool, humid summers and mild, rainy winters. The
monthly average temperature is highest in July, at 18.4 °C, and
lowest in January, at 3.3 °C. The monthly average rainfall is
highest in December, at 81 mm, and lowest in April, at

Fig. 1 Different soil treatments applied to the experimental field: a
reduced tillage, crop residues being left at the soil surface; b
conventional tillage, the crop residues having been mixed into the soil

by plowing. Both pictures show the appearance of the soil before and after
passage of the machine which prepares the soil and sows simultaneously
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51.3 mm (data from the Belgian Royal Meteorological
Institute).

2.2 Soil treatments and experimental design

The experimental design consisted of a Latin square arrange-
ment with four replicates of four soil treatments. Each soil
treatment consisted of a combination of different soil prac-
tices: a tillage practice (conventional or reduced tillage) with
a crop residue management practice (residue retention or re-
moval). The combinations were as follows: conventional till-
age with residue removal (CT/−R, the agricultural practice
most commonly used in Belgium), conventional tillage with
residue retention (CT/+R), reduced tillage with residue reten-
tion (RT/+R), and reduced tillage with residue removal (RT/
−R). Conventional tilled plots were ploughed to a depth of
25 cm, while in reduced-tillage plots, only the top 10 cm of
soil was mixed. The estimated quantity of crop residues from
the 2012 season was 8.3 t/ha for the plots with residue reten-
tion (+R) and 4.5 t/ha for the plots with residue removal (−R).
Crops are rotated on the studied field, and the experimental
design and different soil treatments have been applied since
autumn, 2008. Crop history is as follows: Brassica napus
(2009), Triticum aestivum (2010, 2011, and 2012), and Vicia
faba (2013).

2.3 Soil sampling and physicochemical analyses

We took 16 soil samples from the faba bean field in April
2013, 10 days after sowing and 1 month after glyphosate
application. Each sample was a composite of five 25-g sub-
samples. Each subsample consisted of a 5-cm core collected
corresponding to a depth of 15 to 20 cm. This depth was
chosen to allow comparisons with other studies conducted
by our laboratory and because we wanted to focus on the soil
layer located between the depth reached by reduced tillage
(7 cm) and that reached by conventional tillage (25 cm).
One should note that the response of microbial communities
is related to crop residue location, which is different for con-
ventional and reduced tillage (Helgason et al. 2014). Under
conventional tillage, residues are mixed within the soil profile,
while under reduced tillage, there is a stratification of residues.
For each sample, we performed physical and chemical soil
analyses. Volumetric water content and porosity were mea-
sured by the normalized cylinder method (AFNOR NF X31-
501). Clay content was measured by the normalized pipette
method (AFNORNFX31-107). Soil nitrates were determined
by the QuickChem®: method 12-107-04-1-B. Soil pH was
measured in 1 N KCl (2:5w/v). Water-extractable elements
were quantified by flame absorption (Ca,Mg), flame emission
(P, Na), or colorimetry (P) after extraction of 20 g of 8-mm
sieved fresh soil in 100 ml H2O for 1 h at room temperature

and filtration on 602 H 1/2. Carbon was quantified as de-
scribed by Ghani et al. (2003).

The average soil physicochemical parameters characteriz-
ing each treatment (CT/R+, CT/R−, RT/R+, and RT/R−) are
presented in Table 1. We performed a statistical test (ANOVA,
n=4) to assess the impacts of tillage practice and crop residue
management on the log-transformed soil parameters. The re-
sults (Table 1) show a variation in potassium, phosphorus,
sodium, porosity, pH, and nitrates between conventional and
reduced tillage, all these values being higher under conven-
tional tillage. There was no impact of residue management
(residue retention or removal) on soil parameters.

2.4 DNA extraction and pyrosequencing of 16S and 28S
rRNA gene sequences

We used the PowerMax® soil DNA isolation kit (MO BIO
Laboratories, Solana Beach, CA) to extract metagenomic
DNA from 8 g (wet weight) of each composite sample, ac-
cording to the manufacturer’s recommendations. We checked
the quality of the DNA by gel electrophoresis, and we quan-
tified it with the Qubit fluorometer (Invitrogen, Carlsbad, CA,
USA) prior to storage at −20 °C.

We used Roche 454 pyrosequencing technology to se-
quence fragments of the 16S and 28S rRNA genes. For bac-
terial DNA, the procedure was briefly as follows: We carried
out a PCR to amplify a 500-bp fragment of the 16S rRNA
gene from the total bacterial DNA. We used primers designed
by fusion of (1) primers targeting the 16S rRNA gene frag-
ments E9-29, 5′-GAGAGTTTGATCATGGCTCAG-3′, and
E530-541, 5′-ACCGCGGCTGCTGGCAC-3′ (Baker et al.
2003), (2) multiplex identifiers (MIDs), and (3) the Roche
454 pyrosequencing adaptors (Roche Diagnostics, Vilvoorde,
Belgium). Our PCR method could be biased, as we directly
amplified our target using a fusion primer (Berry et al. 2011).
However, the bias is the same for each sample we studied. We
performed the PCR under the following conditions: the am-
plification mix contained 5 U FastStartHigh Fidelity DNA
polymerase (Roche Diagnostics, Vilvoorde, Belgium), 1× en-
zyme reaction buffer, 200 μM dNTPs (Eurogentec, Liège,
Belgium), each primer at 0.2 μM, and 100 ng genomic
DNA in a final volume of 100 μl. Thermocycling conditions
were denaturation at 94 °C for 15 min followed by 25 cycles
of 94 °C for 40 s, 56 °C for 40 s, 72 °C for 1 min, and a final 7-
min elongation step at 72 °C. We carried out amplification on
a Mastercycler ep Gradient thermocycler (Eppendorf, Ham-
burg, Germany). PCR products were electrophoresed through
a 1 % agarose gel and the DNA fragments were plugged out
and purified with the SV PCR Purification Kit (Promega Be-
nelux, Leiden, the Netherlands). We assessed the quality and
quantity of the products with a Picogreen dsDNA quantitation
assay (Isogen, St-Pieters-Leeuw, Belgium). We sequenced all
amplicons with the Roche GS-Junior Genome Sequencer
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(Roche, Vilvoorde, Belgium). For fungi, the procedure was
the same, except that we amplified and sequenced a 500-pb
fragment of the 28S rRNA gene with the following primers:
NL-1, 5′-GCATATCAATAAGCGGAGGAAAAG-3′, and
NL-4, 5′-GGTCCGTGTTTCAAGACGG-3′ (Kurtzman and
Robnett 1997).

2.5 Bioinformatic analysis of the pyrosequencing data

A total of 85,935 raw reads were obtained for bacteria and 82,
119 for fungi. The obtained partial 16S and 28S rRNA gene
sequences were processed with the MOTHUR package
(Schloss et al. 2009). We denoised all sequence reads with
the Pyronoise algorithm implemented in MOTHUR and fil-
tered them according to the following criteria: minimal length
of 425 bp; an exact match to the barcode, and one mismatch
allowed for the proximal primer. We used ChimeraSlayer to
check the sequences for the presence of chimeric amplifica-
tions (Haas et al. 2011). The numbers of high-quality reads
obtained after read processing were 68,230 for bacteria and
66,337 for fungi. We compared the resulting high-quality read
sets with a reference dataset of aligned sequences of the cor-
responding region derived from the SILVA 111 database of
full-length rDNA sequences implemented in MOTHUR. To
cluster the final reads into operational taxonomic units, we
used in MOTHUR the nearest neighbor algorithm with a
0.03 distance unit cutoff. A taxonomic identity was attributed

to each operational taxonomic unit by comparison with the
SILVA database (80 % homogeneity cutoff). The raw data sets
are available in the SRA database (Sequence Read Archive)
under project accession number SRP043491 for bacteria and
under project accession number SRP044036 for fungi.

2.6 Statistical analyses

We performed all statistical analyses with R statistical soft-
ware (Team 2013). We analyzed the impact of tillage practice
and crop residue management on microbial alpha diversity
and microbial community composition. This analysis was
done at two taxonomic levels: phylum level and the most
precise taxonomic level that could be reached for each opera-
tional taxonomic unit.

2.6.1 Microbial alpha diversity analysis

As using samples with different sequencing depths can bias
alpha diversity indexes, a random sequence subsampling step
was carried out so as to compare samples containing the same
number of sequences: that of the sample having the lowest
sampling depth (2693 sequences for bacteria and 2453 for
fungi). To measure the alpha diversity of bacteria and fungi
in the different subsamples, we used MOTHUR to evaluate
the richness and Shannon indexes. We performed an ANOVA
(n=4) to determine if the alpha diversity changed with the soil

Table 1 Average physicochemical soil parameters according to the soil treatment (tillage practice: conventional or reduced tillage) and type of crop
residue management (residue retention or residue removal)

Physical and chemical
soil parameters

Unit Conventional
tillage–residue
retention

Conventional
tillage–residue
removal

Reduced
tillage–residue
retention

Reduced
tillage–residue
removal

Texture

Sand % 5.7±0.8 5.9±0.9 5.9±0.5 5.5±0.6

Silt % 78.2±2.3 78.0±1.6 78.1±1.4 78.9±1.6

Clay % 16.2±2.1 16.2±2.3 16.1±1.3 15.6±1.7

Water-extractable elements

Carbon mg/kg 105 °C 368.3±53 350.2±52 373.1±57 385.0±60

Calcium 45.4±10.2 38.8±3.4 44.8±13.5 42.8±11.4

Potassium Tillage** 17.1±3.8(a) 13.7±4.2(a) 11.3±4.3(b) 8.6±3.6(b)

Phosphorus Tillage* 3.9±1.0(a) 3.9±1.1(a) 3.4±1.4(b) 2.7±0.9(b)

Sodium Tillage* 21.2±0.9(a) 20.6±0.4(a) 20.3±1.1(b) 19.6±0.8(b)

Magnesium 2.7±0.5 2.6±0.3 2.9±0.7 2.7±0.6

Porosity Tillage** % 46.9±1.7(a) 45.8±2.0(a) 43.3±1.4(b) 43.0±2.9(b)

Water content % 33.4±0.3 32.4±1.0 32.2±1.0 32.3±0.5

pH Tillage* – 6.6±0.1(a) 6.6±0.2(a) 6.4±0.2(b) 6.3±0.1(b)

Nitrates Tillage** kg/ha 13.3±2.4(a) 15.5±5.0(a) 7.3±2.2(b) 6.9±4.8(b)

Total organic carbon % 1.1±0.1 1.1±0.1 1.2±0.1 1.1±0.1

A statistical test (ANOVA, n=4) was performed to assess the impact of soil treatment on log-transformed soil parameters. Lines in bold with letters mean
that there is an effect of soil treatment. Different letters correspond to significantly different values. The significance level is as follows: * significant at the
0.05 probability level and ** significant at the 0.01 probability level
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treatment applied. We used the operational taxonomic unit
level to measure alpha diversity.

2.6.2 Microbial community composition analysis

We used multivariate analysis to relate microbial community
composition to soil treatment, i.e., tillage practice (conven-
tional or reduced tillage) and type of crop residue management
(residue retention or removal). We determined the impact of
soil treatment on bacterial and fungal community composition
at two taxonomic levels: phylum level and the most precise
taxonomic level possible for each operational taxonomic unit,
called the “precise level” in the following text. For the analy-
sis, microbial abundance data was first log2 transformed with
the decostand() function implemented in the vegan package
(Oksanen et al. 2007). The log2 transformation was chosen to
weight the variation of dominant taxa abundance in a reason-
able way. We used redundancy ordination analysis to analyze
and compare relationships between microbial community
composition at each taxonomic level and soil practice. We
constrained the redundancy ordination analysis by three ex-
planatory variables: tillage practice, crop residue management
practice, and the interaction of both. We used the ordistep()
function of vegan to select the most significant explanatory
variable. In addition, we used the envfit() function of vegan to
fit soil physical and chemical parameters to the ordination
graph, as these parameters, related to soil practices, might
explain microbial composition variability. Finally, we re-
vealed the bacteria and fungi most strongly affected by the
best explanatory variable with the goodness() function of
vegan.

3 Results and discussion

With a view to achieving better discrimination power than is
usual in such studies, we compared two methods of microbial
community composition analysis applied to soils subjected to
different tillage practices—conventional and reduced till-
age—and different residue management practices—crop resi-
due retention and removal. One approach was to limit our
analysis to the phylum level (the level most studied in soil
microbial surveys), the second being to use the most precise
taxonomic level reachable for each operational taxonomic
unit. We then assessed the information gain provided by the
more precise analysis.

3.1 Phylum composition of microbial communities

Our analyses showed that, for each soil treatment,
Proteobacteria (25–29 %), Acidobacteria (18–24 %), and
Bacteroidetes (9–14%) were the most abundant bacterial phy-
la (Fig. 2a). These phyla are often dominant in very diverse

agricultural soils (Janssen 2006; Lienhard et al. 2013;
Navarro-Noya et al. 2013). We also showed that the most
abundant fungal phyla for each combination wereAscomycota
(74–86 %) and Basidiomycota (12–25 %), which are
saprotrophic soil fungi (de Boer et al. 2005) frequently dom-
inant in soil ecosystems (Lienhard et al. 2013; Buée et al.
2009) (Fig. 2b).

3.2 Analysis of alpha diversity in relation to soil treatment

The average soil alpha diversity characterizing each soil treat-
ment and the numbers of sequences before and after the sub-
sampling step are summarized in Table 2. We performed a
statistical test (ANOVA, n=4) to assess the effect of soil prac-
tice (conventional or reduced tillage) and crop residue man-
agement practice (residue retention or removal) on the alpha
diversity indexes.

Fungal richness appeared lower than bacterial richness
(Table 2), with fewer than 300 operational taxonomic units
for fungi and more than 1000 for bacteria. Strangely, this very
low fungal richness is comparable to that observed in agricul-
tural soils with high aluminum toxicity (Lienhard et al. 2013).
In our soil, the low fungal richness might be due to cultivation
history, as for a long time before 2008, the experimental field
was subjected to conventional tillage with tilling tools liable to
disturb fungal hyphae.

After only 4 years of experiment, we can already observe
differences in bacterial and fungal alpha diversity indexes be-
tween conventional and reduced tillage.

The diversity of bacteria appeared higher under conven-
tional tillage (Table 2). This could be due to the physical
disturbance caused by tillage. Aggregates are broken and the
organic matter is released and available for bacterial activity
(Cheeke et al. 2012). Our results are consistent with those of
Lienhard et al. (2013) and Navarro-Noya et al. (2013), show-
ing an increase in bacterial diversity with increased soil
disturbance and cropping intensity. In addition, Siciliano
et al. (2014) have shown soil fertility, including nitrates and
organic matter, to be the most important factor influencing
bacterial and fungal richness and diversity indexes. In our soil,
the nitrate content was consistently higher under conventional
tillage (Table 1), which could also explain the observed higher
bacterial diversity under conventional tillage.

Fungal richness appeared higher under conventional
tillage than under reduced tillage, and higher with resi-
due removal than with residue retention. Our results
differ from those of Lienhard et al. (2013), who ob-
served a negative effect of tillage on fungal richness
and suggested that this effect could be due to a negative
effect of tilling tools on the growth of fungal hyphae.
Yet, as for bacterial diversity, the higher fungal richness
observed under conventional tillage could be caused by
the higher nitrate content observed under conventional
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tillage. Here, the higher nitrate content under conven-
tional tillage seems to be a factor influencing fungal
richness more strongly than the disturbance of fungal
hyphae caused by tilling tools.

Although the use of such indexes is an easy way for
an ecologist to assess diversity, these indexes ignore
taxonomic identity, treating operational taxonomic units
as anonymous entities (Hartmann and Widmer 2006). It
is therefore interesting to analyze further such complex
soil microbial communities with a method such as ordi-
nation that takes microbial community composition into
account. However, using such a method requires choos-
ing an appropriate taxonomic level.

3.3 Effect of soil practice on microbial community
composition evaluated at two taxonomic levels

3.3.1 Bacterial community composition analysis

At phylum level (Fig. 3a), we observed no effect of soil prac-
tice on bacterial community composition. We did not focus on
cropping intensity, but it is worth noting that Lienhard et al.
(2013) report clear phylum-level differences in bacterial com-
munity composition along a cropping intensity gradient. This
suggests that changing the cropping intensity alters the soil
conditions more drastically than do our changes in soil prac-
tice, making it possible to detect coarser (phylum-level)

Fig. 2 Barplot representation of the relative abundances for each treatment (based on the sums of the four replicates) of a soil bacterial and b soil fungal phyla

Table 2 Soil alpha diversity indexes for each treatment, on the basis of operational taxonomic units (based on averages of four replicates)

Conventional
tillage – Residue
retention

Conventional
tillage – Residue
removal

Reduced
tillage – Residue
retention

Reduced
tillage – Residue
removal

Bacteria

Number of reads before/after subsampling 4408/2693 4274/2693 3926/2693 4451/2693

Richness index 1776±313 1762±311 1413±357 1571±236

Shannon index
Tillage***

6.62±0.02 (a) 6.63±0.03 (a) 6.37±0.10 (b) 6.38±0.13 (b)

Fungi

Number of reads before/after subsampling 3993/2453 4048/2453 4418/2453 4186/2453

Richness index
Tillage**
Residues*

251±24 (b) 291±40(a) 227±11 (d) 235±13 (c)

Shannon index 3.82±0.38 3.88±0.12 3.80±0.17 3.83±0.06

We performed a statistical test (ANOVA, n=4) to assess the impact of soil management practice (tillage practice and crop residue management practice)
on log-transformed indexes. Lines in bold with letters mean that there is an effect of soil treatment. Different letters correspond to significantly different
values. The numbers of sequences before and after the subsampling step are also given. Significance values are as follows: * significant at the 0.05
probability level, ** significant at the 0.01 probability level, and *** significant at the 0.001 probability level
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changes in bacterial communities. That our changes in soil
practice are milder is supported by the low percentage of var-
iance along the first two axes of our ordination plot (Fig. 3a).

At the precise level, however (Fig. 3b), we did observe a
significant shift in bacterial composition according to the soil
practice used. Tillage practice appeared as the best explanatory
variable, explaining 13 % of the variation in bacterial composi-
tion (p<0.01). Our results demonstrate that it is useful to exploit
the information that can be obtained at sub-phylum level, par-
ticularly in a systemwith lesser contrast between soil treatments,
since the effect of tillage practice was not detectable at phylum
level. At the more precise level, we were able to obtain sub-
phylum-level information on the bacteria impacted by tillage
practice. For example, we showed that the relative abundances
of bacteria of the groups Methylocystaceae, Sphingomonas,
Saprospiraceae, Oxalobacteraceae, and Chitinophaga were
higher under conventional tillage.

Some of the groups just mentioned could play key roles in
crop health and growth. For example, Methylocystaceae
(Fig. 3b) is a group of methanotrophs, i.e., bacteria using
methane (CH4) as energy source under aerobic conditions
and thus capable of reducing methane emissions (Conrad
1996). Our results suggest that conventional tillage generates
favorable conditions for Methylocystaceae development. The
higher P and K contents observed (Table 1) under convention-
al tillage might explain our results, as Zheng et al. (2013) have
found P and K amendments to increase the methanotroph
population significantly. Interestingly, their survey evidenced

a negative correlation between methanotrophic activity
and methanotroph abundance. Species of the genus
Sphingomonas (Fig. 3b) are involved in degrading refractory
contaminants such as herbicides (Sørensen et al. 2001). Our
results suggest that conventional tillage favors such organ-
isms. The application of glyphosate to our field 1 month be-
fore soil sampling might have induced microbial glyphosate-
degrading activity, which is higher under aerobic conditions
(Rueppel et al. 1977). As we observed higher soil porosity
under conventional tillage than under reduced tillage but sim-
ilar water content regardless of the tillage practice (Table 1),
we could expect a higher oxygen content under conventional
tillage and hence better development of microorganisms ca-
pable of degrading glyphosate under aerobic conditions.

3.3.2 Fungal community composition analysis

At phylum level (Fig. 4a), we observed a significant shift in
fungal community composition according to the tillage prac-
tice (p<0.05). The shift was largely due to Chytridiomycota
(C), favored under conventional tillage, and Basidiomycota,
favored under reduced tillage. Fungi of the phylum
Basidiomycota are known to degrade lignin and cellulose un-
der anaerobic conditions (de Boer et al. 2005). Given the soil
humidity, which was similar for conventional and reduced
tillage, and the soil porosity, which was higher under reduced
tillage (Table 1), we could expect such anaerobic conditions to
be more frequent under reduced tillage. Little information is

Fig. 3 Factorial map of the redundancy analysis carried out on soil bacterial
community composition at a phylum level and b the most precise
taxonomic level attainable. The axes 1 and 2 represent the maximum
percentage of variance that can be explained by soil practice: tillage
practice (conventional tillage, CT; or reduced tillage, RT) and crop residue
management practice (residue retention, R+; or residue removal, R−). For

both analyses, a statistical test (ANOVA, n=4) was performed to assess the
effect of soil management practice on bacterial community composition. At
phylum level, there appeared no difference in bacterial community between
soil management practices, while differences due to tillage practice were
observed at the more precise level, this factor accounting for 13 % of the
bacterial community variation (p<0.01)
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available on the diverse groups of fungi composing the
Chytridiomycota, but soil Chytridiomycota appear capable
of recovering from dryness and high temperature (Gleason
et al. 2004), more likely to occur in tilled soil.

These same two phyla were likewise highlighted in the
survey of Lienhard et al. (2013), showing a greater relative
abundance of Chytridiomycota under high cropping intensity
(conventional tillage) and a greater relative abundance of
Basidiomycota under lower cropping intensity (zero tillage).
It thus appears that the contrast between our soil treatments,
insufficient to induce differences between bacterial communi-
ties detectable at phylum level, was sufficient to induce dif-
ferences between fungal populations detectable at this level.
This might be due to the lower diversity of fungi as compared
to bacteria (Table 2). It is generally accepted that a popula-
tion with a low diversity should be less stable under en-
vironmental stress, as species affected by the stress will
not be replaced by others, as in the case of a more diverse
population (Giller et al. 1997).

At the more precise level (Fig. 4b), however, we observed a
significant shift in fungal community composition according
to the tillage practice, which explained 18% of the variation in
community composition (p<0.01). The precise analysis
showed tha t d i f f e r en t member s o f the phy lum
Chytridiomycota (C) responded differently to tillage practice:
The relative abundance of Chytridiomycetes (C) was higher
under conventional tillage, but the relative abundance of
Powellomyces (C) was higher under reduced tillage.

Some phyla, furthermore, showed no impact of soil man-
agement practice (Fig. 4a), while analysis at the precise level
(Fig. 4b) revealed an effect of tillage on the relative abundance
of certain phylum members. A difference was observed, for
example, between two subgroups of the phylum Ascomycota:
a higher relative abundance was observed for Gibberella (A)
under conventional tillage and for Trichocomaceae (A) under
reduced tillage. These results again highlight the importance
of comparing communities of soil fungi at the most precise
taxonomic level accessible.

Some of these taxa are known to have specific roles in
ecosystems. For example, Gibberellazeae, also known as Fu-
sarium graminearum, is the causative agent of Fusarium head
blight of wheat (Bottalico 1998). This disease can cause root,
stem, and ear decay, resulting in a significant reduction in crop
yield. As reported by Booth (1971), F. graminearum can sur-
vive saprophytically on a wide range of gramineous host de-
bris, such as wheat residues. As our samples were taken at a
depth between 15 and 20 cm, the higher relative abundance of
F. graminearum observed under conventional tillage might be
due to the presence of crop residues from previous wheat
crops at this depth, while crop residues remain in the topsoil
(<10 cm) under reduced tillage.

For both bacteria and fungi, the observed pattern changes
can be explained by differences in soil conditions between
conventional and reduced tillage. We show here that several
soil parameters, including porosity, potassium, nitrates, pH,
sodium, and phosphorus, were higher under conventional

Fig. 4 Factorial map of the redundancy ordination analysis of soil fungal
community composition at a phylum level and b the most precise
taxonomic level attainable. Axes 1 and 2 represent the maximum
percentages of variance that can be explained by soil practice, i.e., by
tillage practice (conventional tillage, CT; reduced tillage, RT) and crop
residue management practice (residue retention, R+; residue removal, R−).

For both analyses, a statistical test (ANOVA, n=4) was performed to assess
the effect of soil practice on fungal community composition. At both
phylum level and the more precise level, there appear differences in
fungal community composition between soil practices, with tillage
practice accounting, respectively, for 16 and 18 % of the variation
(p<0.05 and p<0.01)
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tillage and might explain variations in bacterial community
composition. Among these factors, the pH has been recog-
nized as the best driver of changes in bacterial community
composition and diversity, while fungal community composi-
tion appears closely associated with changes in nutrient status,
such as phosphorus and the C/N ratio (Lauber et al. 2008).
Here we show a variation in nitrates and phosphorus between
conventional and reduced tillage, which might explain the
observed fungal pattern changes.

By exploiting the data obtainable at a more precise
taxonomic level, we are able to go further in our analysis
and to identify groups of organisms that are affected by
soil management practice. For example, because
Gibberellazeae has a negative effect on wheat, informa-
tion on its higher relative abundance under conventional
tillage is relevant to farmers, who can expect to see the
disease under such soil practice. This information is
missed when the data are analyzed at phylum level. How-
ever, to exploit the available data on microbial community
composition, agronomists need to know more about the
roles played by soil microorganisms in their environment,
and about their effects on plant health and growth. For
many taxa, such information is still hard to obtain.

4 Conclusion

In the present work, we have attempted to improve the
discrimination power of microbial community analysis
applied to soils subjected to different tillage and residue
management practices. For this, we have assessed the im-
portance of exploiting 16S and 28S rRNA gene sequenc-
ing data at sub-phylum level to identify effects of soil
management practice. Our results highlight tillage practice
as an important factor influencing microbial community
composition. Plowing notably affects several physico-
chemical parameters that contribute greatly to shaping
the microbial habitat: soil porosity, pH, and the NO3, P,
K, and Na contents. These can be expected to affect mi-
crobial community composition. Most importantly, we
show that some effects of tillage observed at sub-
phylum level escape notice at phylum level and that some
effects detectable at this higher taxonomic level mask dif-
ferences in the responses of different members of a same
phylum. Clearly, phylum-level analysis cannot do justice
to the diversity of organisms within a phylum. As on the
other hand it is currently impossible to assign a genus or
species to each operational taxonomic unit, we recom-
mend the compromise described in this paper: using for
each operational taxonomic unit the most precise taxo-
nomic level attainable. This method should facilitate a
fine-scaled and detailed assessment of microbial commu-
nities across different soil practices.
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