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Abstract Maize is grown under a wide spectrum of soil and
climatic conditions. Maize is moderately sensitive to salt
stress; therefore, soil salinity is a serious threat to its produc-
tion worldwide. Understanding maize response to salt stress
and resistance mechanisms and overviewing management op-
tions may help to devise strategies for improved maize perfor-
mance in saline environments. Here, we reviewed the effects,
resistance mechanisms, and management of salt stress in
maize. Our main conclusions are as follows: (1) germination
and stand establishment are more sensitive to salt stress than
later developmental stages. (2) High rhizosphere sodium and
chloride decrease plant uptake of nitrogen, potassium, calci-
um, magnesium, and iron. (3) Reduced grain weight and num-
ber are responsible for low grain yield in maize under salt
stress. Sink limitations and reduced acid invertase activity in
developing grains is responsible for poor kernel setting under
salt stress. (4) Exclusion of excessive sodium or its compart-
mentation into vacuoles is an important adaptive strategy for

maize under salt stress. (5) Apoplastic acidification, required
for cell wall extensibility, is an important indicator of salt
resistance, but not essential for better maize growth under salt
stress. (6) Upregulation of antioxidant defense genes and β-
expansin proteins is important for salt resistance in maize. (7)
Arbuscular mycorrhizal fungi improve salt resistance in maize
due to better plant nutrient availability. (8) Seed priming is an
effective approach for improving maize germination under
salt stress. (9) Integration of screening, breeding and ion ho-
meostasis mechanisms into a functional paradigm for the
whole plant may help to enhance salt resistance in maize.

Keywords Arbuscular mycorrhizal fungi . Apoplastic
acidification .Carbon fixation .Expansion . Ionhomeostasis .

Plant-growth-promoting rhizobacteria . Osmotic adjustment .

Seed priming

Contents
1. Introduction
2. Effects of Salt Stress

2.1. Germination and plant growth
2.2. Mineral uptake and assimilation
2.3. Light harvesting and carbon fixation
2.4. Grain development and yield

3. Resistance Mechanisms

3.1. Osmoregulation and osmoprotection
3.2. Ion homeostasis
3.3. Apoplastic acidification
3.4. Antioxidant defense system
3.5. Hormonal regulations
3.6. Molecular mechanisms

4. Management of Salt Stress

4.1. Selection and breeding approaches

M. Farooq (*)
Department of Agronomy, University of Agriculture,
Faisalabad, Pakistan
e-mail: farooqcp@gmail.com

M. Farooq :K. H. M. Siddique
The UWA Institute of Agriculture, The University of Western
Australia, Crawley, WA 6009, Australia

M. Farooq
College of Food and Agricultural Sciences, King Saud University,
Riyadh 11451, Saudi Arabia

M. Hussain
Department of Agronomy, Bahauddin Zakariya University,
Multan, Pakistan

A. Wakeel
Institute of Soil and Environmental Sciences,
University of Agriculture, Faisalabad, Pakistan

Agron. Sustain. Dev. (2015) 35:461–481
DOI 10.1007/s13593-015-0287-0



4.2. Marker-assisted selection
4.3. Biotechnology and functional genomics
4.4. Arbuscular mycorrhizal fungi
4.5. Plant-growth-promoting rhizobacteria
4.6. Exogenous appl ica t ion of hormones and

osmoprotectants
4.7. Seed priming and nutrient management

5. Conclusions

1 Introduction

Soils with excess soluble salts or exchangeable sodium in the
root zone are termed salt-affected soils. Owing to limited rain-
fall and high evapotranspiration demand, coupled with poor
soil and water management practices, salt stress has become a
serious threat to crop production in arid and semi-arid regions
of the world (Flowers and Yeo 1995; Munns 2002). Although
the general perception is that salinization only occurs in
arid and semi-arid regions, no climatic zone is free from
this problem (Rengasamy 2006). More than 800 million
hectares of land worldwide is affected by either salinity
(397 million hectares) or sodicity (434 million hectares)
(FAO 2005; Munns 2005).

High osmotic stress due to low external water potential, ion
toxicity by sodium and/or chloride, or imbalanced nutrition
due to interference with the uptake and transport of essential
nutrients are three potential effects of salt stress on crop
growth. The latter may not have an immediate effect because
plants have some nutrient reserves which can be remobilized
(Flowers and Flowers 2005; Munns et al. 2006). Osmotic
stress is linked to ion accumulation in the soil solution, where-
as nutritional imbalance and specific ion effects are connected
to ion buildup, mainly sodium and chloride, to toxic levels
which interferes with the availability of other essential ele-
ments such as calcium and potassium (El–Bassiouny and
Bekheta 2001; Munns et al. 2006; Hussain et al. 2013).
Toxic levels of sodium in plant organs damage biological
membranes and subcellular organelles, reducing growth and
causing abnormal development before plant mortality
(Davenport et al. 2005; Quintero et al. 2007). Several physio-
logical processes such as photosynthesis, respiration, starch
metabolism, and nitrogen fixation are also affected under sa-
line conditions leading to losses in crop productivity.

Maize (Zea mays L.) is the third most important cereal
crop after rice and wheat and is grown under a wide
spectrum of soil and climatic conditions. It is an important
C4 plant from the Poaceae family and is moderately sen-
sitive to salt stress (Fig. 1; Maas and Hoffman 1977;
Maas et al. 1983; Chinnusamy et al. 2005); nonetheless,
wide intraspecific genetic variation for salt resistance exists
in maize (Mansour et al. 2005).

According to the biphasic model of salinity-induced
growth reduction (Munns 1993), osmotic stress during the
first phase and ion toxicity during the second phase are re-
sponsible for reduced growth in cereals, specifically wheat
(Fig. 2). The same model for salinity-induced growth reduc-
tion in maize was confirmed by Fortmeier and Schubert
(1995), but ion toxicity and the associated growth reduction
can occur, to a small extent, in the first phase in maize (Sümer
et al. 2004). The sensitivity of maize to salinity is associated
with higher accretion of Na+ in the leaves (Fortmeier and
Schubert 1995).

A saline level of more than 0.25 M NaCl damages maize
plants and may stunt growth and cause severe wilting
(Menezes-Benavente et al. 2004). Sodium is the main toxic

1 mM NaCl 100 mM 

Fig. 1 Effect of salt stress on the vegetative growth of maize (cv. Pioneer
3906) roots and shoots grown hydroponically at 1 and 100 mM NaCl.
Treatments were applied 1 week after transplanting. This picture shows
the plants 21 days after seed soaking and 1 week after application of
salt stress

Fig. 2 Biphasic model of salinity-induced growth reduction (modified
from Munns 1993)
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ion interfering with potassium uptake and thus disturbs sto-
matal undulations causing severe water loss and necrosis in
maize (Fortmeier and Schubert 1995; Sümer et al. 2004); a
reduction in potassium content in the leaf symplast of maize
has been reported under saline conditions (Shahzad et al.
2012). Moreover, salt stress also induces oxidative damage
to plant cells with overproduction of reactive oxygen species
in maize (de Azevedo Neto et al. 2006).

The ability of plants to survive and produce harvestable
yields under salt stress is called salt resistance. Salt resistance
is a complex phenomenon, and plants manifest a variety of
adaptations at subcellular, cellular, and organ levels such as
stomatal regulation, ion homeostasis, hormonal balance, acti-
vation of the antioxidant defense system, osmotic adjustment,
and maintenance of tissue water status to grow successfully
under salinity (Neubert et al. 2005; de Azevedo Neto et al.
2006; Hichem et al. 2009; Schubert et al. 2009; Kaya et al.
2010; Jafar et al. 2012). An integrated approach encompassing
conventional breeding together with marker-assisted selec-
tion, biotechnology, exogenous use of growth regulators/
osmoprotectants, and nutrient management may be needed
for successful maize cultivation on salt-affected soils (Eker
et al. 2006; Gunes et al. 2007; Janmohammadi et al. 2008;
Kaya et al. 2010; Li et al. 2010).

Although several excellent reviews on salt stress in plants
are available, there is no comprehensive review on salt stress
in maize. In this review, the common morphological, physio-
logical, and molecular responses of maize to salt stress are
briefly discussed and some pragmatic options have been pro-
posed on how these responses could be exploited to improve
salt resistance in maize.

2 Effects of salt stress

Salt stress affects growth and development of maize; however,
the response of plants varies with the degree of stress and crop
growth stage. Short-term exposure of maize plants to salt
stress influences plant growth owing to osmotic stress in the
first phase of salt stress (Sümer et al. 2004) without reaching
toxic sodium concentrations (Fortmeier and Schubert 1995).
The effects of salt stress on growth and productivity, water
relations, nutrient uptake and transport, carbon harvesting,
grain development, and yield of maize are briefly discussed
below.

2.1 Germination and plant growth

Seed germination is the most critical stage in seedling estab-
lishment which determines the success of crop production on
salt-affected soils. Generally, salt stress during germination
delays the start, reduces the rate, and enhances the dispersion
of germination events (Ashraf and Foolad 2005; Farsiani and

Ghobadi 2009). It is important to note that germination and
early seedling growth are more sensitive to salinity than later
developmental stages (Goldsworthy 1994).

Salt stress influences seed germination primarily by suffi-
ciently lowering the osmotic potential of the soil solution to
retard water absorption by seeds, by causing sodium and/or
chloride toxicity to the embryo or by altering protein synthe-
sis. Hyper-osmotic stress and toxic effects of sodium and chlo-
ride ions on germinating seeds in a saline environment may
delay or inhibit germination (Hasegawa et al. 2000; Khaje-
Hosseini et al. 2003; Farsiani and Ghobadi 2009). However,
in maize, it is sodium toxicity and not chloride toxicity that is
the major problem in the second phase of salt stress.

Salinity reduces shoot growth by suppressing leaf initia-
tion and expansion, as well as internode growth, and by
accelerating leaf abscission (Rios-Gonzalez et al. 2002;
Akram et al. 2010a; Qu et al. 2012). Salt stress rapidly
reduces leaf growth rate (Munns 1993) due to a reduction
in the number of elongating cells and/or the rate of cell
elongation (Szalai and Janda 2009).

As a salt-sensitive crop, shoot growth in maize is strongly
inhibited in the first phase of salt stress (Pitann et al. 2009a, b;
Szalai and Janda 2009; El Sayed 2011; Wakeel et al. 2011a).
De Costa et al. (2007) observed stunted maize growth with
dark green leaves without any toxicity symptoms during the
first phase of salt stress, owing to impaired extension
growth as osmotic adjustment and turgor maintenance were
not limiting. Likewise, growth of salt-resistant hybrids
proved that it was not turgor but cell wall extensibility
which restricted cell extension growth during the first phase
of salt stress (Van Volkenburgh and Boyer 1985; Schubert
2009; Schubert et al. 2009).

Although the root is the first organ exposed to salt stress,
shoots are more sensitive to salt stress than roots (Munns and
Sharp 1993). Salinity promotes suberization of the hypoder-
mis and endodermis, and the Casparian strip develops closer
to the root tip than in non-saline roots (Shannon et al. 1994).
Salt stress may also displace calcium from plasma membrane-
binding sites, thus causing membrane leakiness as a primary
cellular response to salt stress (Cramer et al. 1988). However,
it is interesting to note that if salt stress influences the integrity
of the plasma membrane, then the cell wall acidification
process, which is partially dependent on adenosine
triphosphate-driven outward pumping of protons across
the intact plasma membrane, may also be affected
(Spanswick 1981). Acidification of the apoplast is the ma-
jor requirement for increasing cell wall extensibility, which
controls extension growth (Hager 2003). The apoplastic pH
increased in salt-sensitive maize genotypes under salt stress
which reduced extension growth due to less acidification of
the apoplast (Pitann et al. 2009a). Plasma membrane H+

pumping by ATPase in maize leaves is inhibited under salt
stress, probably due to the expression of inefficient H+-
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ATPase isoforms (Zörb et al. 2005). In contrast to the salt-
sensitive maize hybrid Pioneer 3906, the salt-resistant hy-
brid SR 03 maintained plasma membrane H+ pumping and
expressed reduced apoplastic pH (Pitann et al. 2009c), a
premise for cell wall loosening according to the acid
growth theory (Hager 2003). Despite maintaining cell wall
acidification, growth of the maize hybrid SR 03 decreased
in the first phase of salt stress suggesting that additional
factors other than apoplastic pH limit plant growth (Pitann
et al. 2009b). In this regard, cell wall proteins such as
expansins are of great interest. Expansins, wall-loosening
enzymes located within the apoplast of the elongation zone
of leaves (Cosgrove 2000), regulate cell elongation. Their
function is acid dependent and may contribute to cell wall
loosening below pH 5 (Cosgrove 2000; Uddin et al. 2013).
Pitann et al. (2009a) observed a reduction in the β-
expansin protein in a salt-sensitive maize hybrid exposed
to salt stress, while the salt-resistant hybrid was less affect-
ed. In general, β-expansins are more numerous and abun-
dantly expressed in maize tissues compared to α-expansins
(Wu et al. 2001). In conjunction with the evolution of the
grass cell wall, β-expansins in maize have developed spe-
cialized functions with a distinct set of matrix polysaccha-
rides and structural proteins (Carpita 1996; Wu et al. 2001).

Assimilate supply to growing tissues is not limiting during
the first phase of salt stress (De Costa et al. 2007), suggesting
that photosynthesis is not responsible for any growth reduc-
tion in maize during this phase. However, salinity-induced
changes in the activities of leaf cell walls explain this growth
reduction (Geilfus et al. 2010). Apoplastic peroxidase and
hydrogen peroxide regulate the biosynthesis of diferulates
(Encina and Fry 2005) and diferulate cross-links in the maize
cell wall (Lindsay and Fry 2008; Burr and Fry 2009).
Transient increases in apoplastic peroxidase lead to termina-
tion of segmental elongation (De Souza and MacAdam 1998,
2001). The simultaneous increase in peroxidase activity and
phenolics in maize corroborates a role of this enzyme in the
oxidation of phenolics (Devi and Prasad 1996). For moderate
salt stress, inhibition of lateral shoot development becomes
apparent over weeks, which affects reproductive development
over months, such as early flowering or reduced floret num-
bers. During this time, a number of older leaves may die;
however, production of younger leaves may continue
(Munns and Tester 2008).

In crux, germination and stand establishment are more sen-
sitive to salt stress than later developmental stages. Salt stress,
during the germination phase, often delays the start of germi-
nation and disperses germination events. Salinity-induced
growth reduction in maize is caused by suppressed leaf initi-
ation, expansion, and internode growth and by increased leaf
abscission. In maize, suppression of expansion growth by sa-
linity is principally caused by reduced apoplastic acidification
and activity of wall-loosening enzymes.

2.2 Mineral uptake and assimilation

In salt-affected soils, excessive buildup of sodium and chlo-
ride ions in the rhizosphere leads to severe nutritional imbal-
ances in maize due to strong interference of these ions with
other essential mineral elements such as potassium, calcium,
nitrogen, phosphorus, magnesium, iron, manganese, copper,
and zinc (Hasegawa et al. 2000; Karimi et al. 2005; Turan
et al. 2010). Generally, salt stress reduces the uptake of nitro-
gen, potassium, calcium, magnesium, and iron (Karimi et al.
2005; Gunes et al. 2007; Turan et al. 2010; Kaya et al. 2010;
Shahzad et al. 2012; Qu et al. 2012; Yasmeen et al. 2013).

For maize, sodium is the principal toxic ion (Fortmeier and
Schubert 1995; Sümer et al. 2004) interfering with potassium
uptake and transport leading to disturbance in stomatal mod-
ulations and causing water loss and necrosis. Competition
between potassium and sodium under salt stress severely re-
duces potassium content in both leaves and roots of maize
(Alberico and Cramer 1993; de Azevedo Neto and Tabosa
2000; Kaya et al. 2010) and reduces potassium content by
up to 64 % in the symplast of expanding tissues under salt
stress (Shahzad et al. 2012). Moreover, salt stress not only
reduces potassium uptake rates but, to a greater extent, dis-
turbs potassium translocation from root to shoot tissues in
maize leading to lower potassium shoot contents than root
contents (Shahzad et al. 2012). Reduced potassium content
was observed in maize leaves under salt stress; however, in
certain genotypes, no reduction in root potassium content was
observed (de Azevedo Neto et al. 2004). Net uptake of potas-
sium is dependent on potassium concentration in the root me-
dium and root potassium status, and inhibition in potassium
translocation is usually higher at low potassium contents un-
der salt stress (Botelia et al. 1997).

Increased sodium accumulation also disturbs calcium nu-
trition (Hu et al. 2007; Kaya et al. 2010; Shahzad et al. 2012)
during the first phase of salt stress; calcium transport to the
youngest leaves of maize is impaired (Fortmeier and Schubert
1995). Reduced leaf expansion with reduced calcium contents
in expanding shoot tissues in maize is due to reduced transport
in a saline environment; some calcium is required to uphold
cell membrane integrity for proper functioning (Hu et al.
2007). The high values for sodium/potassium, sodium/calci-
um, and sodium/magnesium ratios in the total plant and
apoplast and symplast of expanding tissues in maize confirm
that impaired transport of potassium, calcium, and magnesium
by sodium might upset plant metabolism leading to reduced
growth under saline conditions (Shahzad et al. 2012). In an-
other study, a substantial rise in sodium contents in ten maize
hybrids with increasing salinity levels decreased calcium and
potassium contents leading to reduced potassium/sodium and
calcium/sodium ratios (Akram et al. 2010a).

Besides potassium and calcium, nitrogen uptake and trans-
location is severely inhibited under salt stress leading to
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reduced nitrogen contents in different maize tissues (Karimi
et al. 2005; Gunes et al. 2007; Gadalla et al. 2007; Turan et al.
2010). A gradual increase in salts in irrigation water substan-
tially reduced shoot and grain nitrogen uptake with the max-
imum reduction observed at 6 dS m−1 salinity in irrigation
water (Gadalla et al. 2007). Negative effects of salinity on
potassium, calcium, and magnesium uptake are further aggra-
vated under potassium deficiency. Potassium and magnesium
contents in both leaves and roots of maize plants decreased
drastically under both potassium-deficient and saline condi-
tions, but the reduction was much higher under combined
stresses than individual salt stress or potassium deficiency
(Qu et al. 2012). Moreover, salt stress significantly increased
both sodium and chloride contents in maize leaves and roots
and potassium deficiency further aggravated sodium and chlo-
ride accretion in leaves and roots of maize. However, potassi-
um, sodium, magnesium, and chloride contents in leaves were
higher than those in roots, but calcium leaf contents were
lower than that in roots. The potassium/sodium ratio in leaves
and roots decreased with a greater reduction under combined
stresses than individual stresses (Qu et al. 2012).

Higher buildup of sodium and chloride concentrations in
different plant tissues is the principal reason for nutritional
imbalances. Accumulation of sodium and chloride concentra-
tions in different plant tissues increased linearly with increas-
ing electrical conductivity of applied water or salinity levels.
At low electrical conductivity of irrigation water, chloride ac-
cumulation was more than Na+, but as electrical conductivity
increased, sodium accretion was much higher than Cl− in
maize, and maize productivity was more sensitive to Na+ ac-
cretion than chloride (Isla and Aragues 2010).

The sodium concentrations in the leaf apoplast of maize
significantly increased with higher sodium supply. The sodi-
um concentration in the leaf apoplast did not reach a high
enough concentration to cause the decline in leaf growth under
salinity. Apoplastic calcium concentration remained constant,
while potassium concentrations increased in the leaf apoplast
under salinity (Mühling and Läuchli 2002). In this regard,
Fortmeier and Schubert (1995) reported the relationship be-
tween high sodium in older leaves of maize and the death of
respective leaves. Sodium accumulation in leaves, particularly
in the leaf apoplast, may be responsible for sodium toxicity in
leaves (Volkmar et al. 1998).

In conclusion, high sodium and chloride ions, due to salin-
ity, in the rhizosphere decrease plant uptake of nitrogen, po-
tassium, calcium, magnesium, and iron and thus cause severe
nutritional imbalances in maize.

2.3 Light harvesting and carbon fixation

Photosynthesis is the most important process by which green
plants convert solar energy into chemical energy in the form of
organic compounds synthesized by fixation of atmospheric

carbon dioxide. Carbon fixation in maize is very sensitive to
salt stress (Omoto et al. 2012). Both stomatal and non-
stomatal limitations and their combination are associated with
salinity-induced reductions in maize photosynthesis (Gong
et al. 2011). Reduced stomatal conductance, impaired activi-
ties of carbon fixation enzymes, reduced photosynthetic pig-
ments, and destruction of photosynthetic apparatus are among
the key factors limiting carbon fixation capacity of maize
plants under salt stress (Kaya et al. 2010; Gong et al. 2011;
Omoto et al. 2012; Qu et al. 2012).

Total photosynthesis decreases due to inhibited leaf devel-
opment and expansion, as well as early leaf abscission, and as
salt stress is prolonged, ion toxicity, membrane disruption, and
complete stomatal closure become the prime factors responsi-
ble for photosynthetic inhibition (Fig. 3). Munns and Tester
(2008) identified the reduction in stomatal aperture as the most
dramatic and readily measurable whole-plant response to sa-
linity and also concluded that the osmotic effect of salt outside
the roots induces stomatal responses. Salt stress affects stoma-
tal conductance immediately due to perturbed water relations
and shortly afterward due to the local synthesis of abscisic
acid.

As a C4 plant, maize uses NADP-malic enzyme-type pho-
tosynthesis (Omoto et al. 2012), and these plants fix atmo-
spheric carbon dioxide principally into oxaloacetate through
phosphoenolpyruvate carboxylase in mesophyll cells.
Oxaloacetate is then transported tomesophyll cell chloroplasts
and reduced to malate by the NADP-dependent malate dehy-
drogenase enzyme. Malate is then shifted to bundle sheath
cells of chloroplasts and decarboxylated by NADP-malic en-
zyme to provide carbon dioxide and reducing power. This
carbon dioxide is fixed by ribulose-1,5-bisphosphate
carboxylase/oxygenase (Rubisco) via the Calvin cycle as per
C3 plants. In that way, higher carbon dioxide contents near
Rubisco in the bundle sheath cells restrain oxygenase activity
and help to improve photosynthesis compared with C3 plants
at the expense of reduced photorespiration (Kanai and
Edwards 1999). Activities of C4 photosynthetic enzymes like
pyruvate orthophosphate dikinase, phosphoenolpyruvate car-
boxylase, NADP-dependent malate dehydrogenase, and
NAD-dependent malate dehydrogenase tend to increase under
salt stress in maize even though the structure of mesophyll cell
chloroplasts is damaged (Omoto et al. 2012). In contrast, in
bundle sheath cells, activities of NADP-malic enzyme and
Rubisco decrease without any visual symptoms of damage
to chloroplasts in bundle sheath cells. Moreover, pyruvate
orthophosphate dikinase protein content increases, but phos-
phoenolpyruvate carboxylase protein content decreases in
maize due to salinity (Omoto et al. 2012). Gas exchange anal-
ysis confirmed that reductions in net photosynthetic rate are
connected with the limited availability of intercellular carbon
dioxide due to reduced rates of transpiration and stomatal
conductance in salt-treated maize plants. Furthermore,
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reductions of 40, 89, and 81 % in the photosynthetic metabo-
lites malate, pyruvate, and starch, respectively, were associat-
ed with reduced gas exchange under saline environments.
Reduced gas exchange, as a consequence of reduced stomatal
conductance and decreased enzyme activities of bundle sheath
cells, was responsible for reduced photosynthetic activity in
maize under salinity stress (Omoto et al. 2012). Gong et al.
(2011) also reported a reduction in both transpiration and net
photosynthesis rates due to limited carbon dioxide uptake un-
der salt stress.

A reduction in photosynthetic pigments such as chloro-
phylls a and b and carotenoids is also associated with a decline
in the net photosynthesis rate in maize under salt stress
(El Sayed 2011; Qu et al. 2012). Cha-um and Kirdmanee
(2009) observed a linear reduction in chlorophylls a and b,
total chlorophyll, and carotenoid contents in maize with
increased salt stress. Moreover, the maximum quantum
and photon yield of photosystem II and net photosynthetic
rate also decreased due to degradation of chlorophyll and
carotenoid contents.

An impaired potassium/sodium ratio, due to increased
sodium uptake in maize, affects the bioenergetic processes
of photosynthesis under salt stress, and these effects are
further aggravated under potassium deficiency. Plant growth,

chlorophyll and carotenoid contents, potassium and magne-
sium uptake, photochemical efficiency and the quantum
yield of photosystem II, non-photochemical and photo-
chemical photosystem II, and electron transport rates in
photosystems I and II of maize plants decreased under
salt stress (Qu et al. 2012). Moreover, accumulation of
sodium and chloride, and the quantum yield of energy
dissipation of photosystems I and II in maize leaves
increased under salt stress. Salt stress and potassium
deficiency impaired the light reaction pathways of pho-
tosystems I and II in maize seedlings with a greater
reduction in photosystem II than photosystem I (Qu et al.
2012). Likewise, according to Gong et al. (2011), the combi-
nation of salt stress and potassium deficiency impacted pho-
tosynthesis differently than each individual stress, enhancing
oxidative damage and inhibiting maize growth.

To summarize, stomatal and non-stomatal limitations and
their combination are associated with salinity-induced re-
ductions in photosynthesis in maize. Stomatal limitations
cause reductions in intercellular carbon dioxide, whereas
the salinity-induced oxidative damages—reduced canopy
size, reduced photosynthetic pigments, and reduced activity
of certain photosynthetic enzymes—are the major non-
stomatal constraints.

Salt stress Increase in Na+ uptake'

Inhibited leaf expansion, 
development

Early leaf abscission

Limited carboxylation

Decline in 
photosynthesis

ROS 
production

Membrane 
disruption

Reduction in 
P/S 

pigments

Decrease in 
quantum yield 

of PSII

Reduced e  transport-

Decrease in 
stomatal

conductance

Decrease in 
intercellular 

CO
2

Diminished activities of 
PEPcase, NADP-ME, 
Rubisco

Ion toxicity

Fig. 3 Possible mechanism inwhich photosynthesis is reduced under salt
stress. Salt stress disturbs the balance between production of reactive
oxygen species (ROS) and antioxidant defense causing accumulation of
reactive oxygen species, which induces oxidative stress. Increase in tissue
Na+ causes ion toxicity, which decreases the leaf growth, and results in
early leaf abscission, which reduces the carboxylation. Salt stress limits

photosynthesis due to a decline in activities of ribulose-1,5-bisphosphate
carboxylase/oxygenase (Rubisco), phosphoenolpyruvate carboxylase
(PEPCase), and NADP-malic enzyme (NADP-ME). Moreover, non-
cyclic electron transport is downregulated to match the reduced
requirements of reduced (nicotinamide adenine dinucleotide phosphate)
production and thus reduces adenosine triphosphate synthesis
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2.4 Grain development and yield

Grain weight and number are important indicators for apprais-
ing final grain yield of cereals (Farooq et al. 2011, 2014). Salt
stress in maize, during the reproductive phase, decreases grain
weight (Abdullah et al. 2001; Kaya et al. 2013) and number
(Abdullah et al. 2001; Schubert et al. 2009; Kaya et al. 2013),
resulting in substantial reductions in grain yield (Abdullah
et al. 2001; Schubert et al. 2009; Kaya et al. 2013). Salinity-
induced reductions in photosynthesis and sink limitations are
the major causes of poor kernel setting and reduced grain
number (Hiyane et al. 2010; Schubert 2011). In this regard,
Hutsch et al. (2014) opined that sink limitation rather than
decline in photo-assimilation is the primary cause of poor
kernel setting and reduced grain number under salt stress.
Moreover, the reduction in acid invertase activity in develop-
ing maize grains is responsible for poor kernel setting under
salt stress. Acid invertase is directly linked to sink strength,
and any reduction in its activity will limit grain number in
maize owing to accelerated kernel abortion (Hutsch et al.
2014). However, salinity-induced reductions in assimilate
translocation, from source to developing grains, are also re-
sponsible for poor grain setting and filling and ultimately grain
yield (Lohaus et al. 2000).

In conclusion, reduced grain weight and number are re-
sponsible for low grain yield of maize under salt stress. Sink
limitation and reduced acid invertase activity in developing
maize grains are responsible for poor kernel setting and re-
duced grain numbers under salt stress.

3 Resistance mechanisms

Maize plants undergo a variety of adaptations at subcellular,
cellular, and organ levels to grow successfully under salinity.
Salt resistance is a complex phenomenon; maize plants man-
ifest several adaptations such as stomatal regulation, changes
in hormonal balance, activation of antioxidant defense system,
osmotic adjustment, maintenance of tissue water contents, and
various mechanisms of toxic ion exclusion under salt stress. A
brief summary of these salt resistance mechanisms at various
levels in maize plants is described below.

3.1 Osmoregulation and osmoprotection

Osmotic adjustment or osmoregulation is the key adaptation
of plants at the cellular level to minimize the effects of
salinity-induced drought stress, especially during the first
phase of salt stress. Osmoregulation is primarily met with
the accretion of organic and inorganic solutes under salinity
and/or drought to lower water potential without lessening ac-
tual water contents (Serraj and Sinclair 2002). Soluble sugars,
sugar alcohols, proline, glycine betaine, organic acids, and

trehalose are among the major osmolytes. Kaya et al. (2010)
reported that proline accumulation increases in maize plants
experiencing salt stress. At 400 mM NaCl, sweet corn leaves
accumulated more than 600 μmol g−1 proline (de Azevedo
Neto et al. 2004). Likewise, Mansour et al. (2005) reported
increased accumulation of both proline and glycine betaine in
maize under salt stress.

Soluble amino acid buildup substantially increased in
leaves of tested maize genotypes under salt stress with the
largest increase (113 %) in a salt-tolerant genotype
(BR5033); BR5033 was the only genotype to also significant-
ly increase amino acid contents in the roots (de Azevedo Neto
et al. 2004). However, all of the tested genotypes had the same
or lower soluble carbohydrate levels in leaves and roots in
saline environments, except for the salt-tolerant maize geno-
type BR5033 which increased by 14 % in leaves (de Azevedo
Neto et al. 2004). Moreover, by comparing salt-stressed plants
of both salt-sensitive (BR5011) and salt-tolerant (BR5033)
maize genotypes for root amino acid and carbohydrate con-
tents, the salt-tolerant (BR5033) maize genotype accumulated
132 and 122 % more amino acids and carbohydrates, respec-
tively, in roots than the salt-sensitive (BR5011) maize geno-
type (de Azevedo Neto et al. 2004). In contrast, Hussein et al.
(2007) observed reduced amino acid contents such as argi-
nine, lycine, serine, and glutamic acid; no change for glycine;
and enhanced levels of proline in response to salt stress in
maize. Salt stress also induced polyamine accumulation, but
spermidine was absent, possibly due to its fast turnover (Erdei
et al. 1996). In crux, osmoregulation helps maize plants to
minimize the effects of salinity-induced osmotic stress.
Proline and glycine betaine are the major osmolytes responsi-
ble for osmoregulation in maize under salt stress.

3.2 Ion homeostasis

Physiologically, the exclusion of excessive salt is an adaptive
trait of plants to acquire salt resistance. Accumulation of so-
dium in excessive amounts is highly toxic for maize growth
(Fortmeier and Schubert 1995) due to its strong interference
with potassium leading to disturbed stomatal regulation.
Therefore, exclusion of excessive sodium or its compartmen-
tation into vacuoles through tonoplast hydrogen/sodium
antiporters driven by the proton gradient is an important adap-
tive strategy for plants under salt stress. Through this strategy,
maize plants not only evade the cytosol from the toxic effects
of excessive sodium and gain tissue resistance for sodium
(Neubert et al. 2005), but also significantly lower the osmotic
potential which contributes to osmoregulation. In root cells of
maize, shifting sodium into vacuoles through the tonoplast
appears a viable strategy to minimize sodium transport to de-
veloping shoots (Neubert et al. 2005). Likewise, Chen et al.
(2007) reported that transgenic maize overexpressing the
Oryza sativa sodium/hydrogen antiporter (OsNHX1) gene
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outperformed the wild-type maize at 200 mMNaCl and accu-
mulated more sodium and potassium in leaves coupled with
lower osmotic potential.

Absorption of excessive sodium from xylem by parenchy-
ma cells in xylem to limit sodium translocation to shoots is
reported in maize (Yeo et al. 1977). While active sodium ef-
flux from maize roots under salinity was noted, the more effi-
cient sodium-excluding hybrid (Pioneer 3906) did not have
higher efflux rates than the less efficient sodium-excluding
hybrid (XL 75) (Schubert and Läuchli 1990). Mansour et al.
(2005) reported that the salt-sensitive maize cultivar
(Trihybrid 321) had higher leaf sodium than the salt-tolerant
maize (Giza 2). However, Alberico and Cramer (1993) sug-
gested that salt resistance in maize is not linked to sodium
content in shoots but rather that the ability of cells to shift
excessive sodium in vacuoles to maintain low sodium concen-
trations in the cytoplasm seemed more important.

Salt resistance in somemaize varieties is linked with higher
potassium and lower sodium and chloride fluxes and cytoplas-
mic contents (Table 1; Hajibagheri et al. 1989) and their ability
to rule out sodium and chloride from leaves to sustain a higher
potassium/sodium ratio (Cerda et al. 1995). The salt-resistant
maize hybrid (BR5033) excluded sodium more efficiently
from leaf cell cytoplasm than the salt-sensitive hybrid
(BR5011) (de Azevedo Neto et al. 2004). Moreover, shifting
sodium and chloride in the stems and/or leaf sheaths to lessen
the buildup of toxic ions in more sensitive leaf blades is an-
other adaptive strategy of maize plants in a saline environment
(Isla and Aragues 2010).

Under salt stress, maintaining potassium uptake and reduc-
ing potassium efflux from cells, and preventing sodium entry
and increasing efflux of sodium from cells are common strat-
egies adopted by plants to maintain desirable potassium/
sodium ratios in the cytosol (Wakeel et al. 2011b); resistant
maize hybrids have higher potassium/sodium ratios than sen-
sitive ones (Akram et al. 2007). At higher levels of salt stress
in a solution culture study, the two tolerant maize hybrids
(Pioneer 32B33 and Pioneer 30Y87) of ten hybrids under
study maintained the highest potassium and calcium contents
resulting in superior potassium/sodium and calcium/sodium
ratios and produced more biomass (Akram et al. 2010a).
Moreover, salt-tolerant hybrids maintained higher levels of
potassium in shoots than sodium while salt-sensitive hybrids

accumulated more sodium in shoots, and differential selectiv-
ity of plasma membrane may be associated with the
sensitivity/resistance of these hybrids (Akram et al. 2010a).
According to Mansour et al. (2005), salt stress substantially
increased sodium accretion at the expense of potassium and
calcium in the salt-resistant maize cultivar (Giza 2) than the
salt-sensitive cultivar (Trihybrid 321), while Cramer et al.
(1994) reported twice as much sodium accretion in the high-
biomass-producing hybrid (Pioneer 3578) than the low-
biomass-producing hybrid (Pioneer 3572) suggesting that
maize growth was primarily affected by osmotic factors under
salinity.

In conclusion, exclusion of excessive sodium or its com-
partmentation into vacuoles is an important adaptive strategy
for plants under salt stress, which helps maize plants to avoid
toxic effects of excessive sodium and lowers the osmotic po-
tential thus contributing to osmoregulation.

3.3 Apoplastic acidification

The acidification of cell apoplasts is required for cell wall
extensibility (Hager 2003) because lower apoplastic pH is
needed to activate the cell-wall-loosening enzymes, expansins
(Cosgrove 2000). Poor cell wall acidification leads to im-
paired growth in maize seedlings during the first phase of salt
stress due to inefficient plasma membrane H+-pumping by
ATPase, which may be due to changes in gene expression
(Zörb et al. 2005). However, the SR maize hybrid SR 03
maintained H+-pumping and decreased apoplastic pH better
than its parent hybrid Pioneer 3906, a prerequisite for cell wall
loosening to promote growth under salt stress (Pitann et al.
2009c;Wakeel et al. 2011a). Even though SR 03 hadmore cell
wall acidification, growth decreased during the first phase of
salt stress highlighting the possibility that factors other than
apoplastic pH are responsible for limiting cell wall extensibil-
ity (Pitann et al. 2009b). Although, maintaining low pH under
salt stress is not a necessary parameter for better growth of
maize (Hatzig et al. 2010).

In crux, apoplastic acidification under salt stress, required
for cell wall extensibility, is an important indicator of salt
resistance; nonetheless, it is not essential for better maize
growth under salt stress.

Table 1 Cytosolic⁄cytoplasmic
sodium concentration in different
parts of maize under saline
conditions

Method Plant
part

External (sodium)
(mM)

Cytosolic⁄cytoplasmic
sodium concentration
or activity (mM)

Reference

Efflux analysis Root 50 79–142 Hajibagheri et al. (1989)

Root 25 9–11 Schubert and Läuchli (1990)

X-ray microanalysis Root 100 42–138 Hajibagheri et al. (1987)

Leaf 200 100 Hajibagheri et al. (1987)
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3.4 Antioxidant defense system

Salinity-induced osmotic effects alter general metabolic pro-
cesses and enzymatic activities leading to overgeneration of
reactive oxygen species which causes oxidative stress in
maize (Menezes-Benavente et al. 2004). Overproduction of
reactive oxygen species is highly toxic and damages proteins,
lipids, carbohydrates, and deoxyribonucleic acid.
Photosystems I and II in chloroplasts and complex I, ubiqui-
none, and complex III of the electron transport chain in mito-
chondria are key sites for reactive oxygen species synthesis
(Gill and Tuteja 2010). Salinity-induced overgeneration of
hydrogen peroxide caused leaf veins in maize to collapse
due to leakage into neighboring cells (Menezes-Benavente
et al. 2004). Plants have multigenic responses against salt
stress that involve both osmotic and ionic homeostasis, as well
as cell detoxification, which is primarily met by antioxidant
defense mechanisms (Zhu 2001; Mittler 2002; Sairam and
Tyagi 2004).

Salinity enhanced the accretion of malondialdehyde (prod-
uct of lipid peroxidation) in leaves of both salt-tolerant (Arper)
and salt-sensitive (Aristo) maize genotypes in a linear fashion
with increasing salinity levels (Hichem et al. 2009).
Accumulation was more in senescent leaves than mature or
young leaves in both genotypes (Hichem et al. 2009).
However, the two genotypes behaved differently with higher
malondialdehyde contents in Aristo (sensitive) than in Arper
(tolerant) due to different antioxidant potentials. The better
leaf growth, leaf water content, and membrane stability index
observed in salt-tolerant maize (Arper) were associated with
higher antioxidant activity with greater accumulation of poly-
phenols under saline conditions (Hichem et al. 2009). Salt
stress enhanced the activities of antioxidant enzymes in maize
plants (Rios-Gonzalez et al. 2002) with higher catalase activ-
ity in both roots and leaves and higher glutathione reductase
and glutathione-S-transferase activity in leaves, and the over-
all activity of antioxidant enzymes was higher in roots than
leaves. Moreover, mature sections of roots had higher super-
oxide dismutase and peroxidase activities than root tips, and
activities were higher in the cortex section than stele of nodal
roots which may be due to oversynthesis of free radicals in
mature sections of the cortex of maize nodal roots (Rios-
Gonzalez et al. 2002). Activities of superoxide dismutase,
ascorbate peroxidase, guaiacol peroxidase, and glutathione
reductase increased in leaves of salt-stressed maize, and en-
hanced enzyme activities were more pronounced in salt-
tolerant maize (BR5033) than in salt-sensitive maize
(BR5011) (de Azevedo Neto et al. 2006). Glutathione reduc-
tase and catalase activities decreased while ascorbate peroxi-
dase, guaiacol peroxidase, and glutathione reductase activities
did not significantly change in the roots of the salt-tolerant
cultivar, but activities of all studied enzymes decreased under
salinity in the roots of salt-sensitive cultivar (de Azevedo Neto

et al. 2006). Catalase, ascorbate peroxidase, and guaiacol per-
oxidase enzymes in combination with superoxide dismutase
had the greatest hydrogen peroxide scavenger activity in both
leaves and roots of salt-stressed maize plants, as higher lipid
peroxidation was detected only in the leaves of the sensitive
genotype (BR5011) under salt stress (de Azevedo Neto et al.
2006).

Likewise, salt stress induced polyamine accumulation in
maize (Erdei et al. 1996). For instance, salt stress increased
apoplastic spermine and spermidine levels, mainly in the leaf
blade elongation zone. Polyamine oxidase activity provides
significant production of reactive oxygen species in the
apoplast, which contributes to 25–30 % of maize leaf blade
elongation (Rodríguez et al. 2009).

In summary, increased activities of enzymatic and non-
enzymatic antioxidants help maize plants to maintain growth
by scavenging the oxidative damages.

3.5 Hormonal regulations

Plant growth and development is governed by the synthesis of
hormones with small amounts sufficient to regulate plant
growth. Auxins, gibberellins, cytokinins, ethylene, and
abscisic acid are the most important phytohormones; among
them, the first three are growth promoters while the other two
are growth retardants. Maize plants under salt stress make
certain modifications to the synthesis of these growth
substances. For instance, Younis et al. (2003) observed in-
creased abscisic acid levels at the expense of indole acetic acid
(auxins) in maize under salinity stress; this modification may
lead to stomatal closure to minimize water loss as a conse-
quence of salinity-induced osmotic stress. In a saline environ-
ment, root tips are the first to sense impaired water availability
due to the osmotic effect sending a signal to shoots to adjust
whole-plant metabolism (Schubert 2009). Therefore, higher
abscisic acid accumulation in salt-resistant hybrids than in
the salt-sensitive maize hybrid (Pioneer 3906) under salt stress
highlighted the importance of abscisic acid accumulation for
salt resistance during the first phase of salinity stress (Schubert
2009; Schubert et al. 2009). The reduced sensitivity of leaf
growth to increased abscisic acid concentrations under salt
stress may be related to a growth-promoting function reg-
ulated by abscisic acid during the first phase of salt stress
(de Costa et al. 2007).

In conclusion, higher abscisic acid levels in salt-stressed
maize helps to minimize water loss and may even regulate
growth promotion. Leaf growth sensitivity decreases as
abscisic acid levels increase under such conditions.

3.6 Molecular mechanisms

Maize plants facing salt stress undergo a variety of adaptive
mechanisms at the molecular level to counteract the damaging
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effects of salinity stress. Of these, accumulation or inhibition
of several proteins and the upregulation and downregulation
of many gene transcripts are important (Zörb et al. 2004;
Menezes-Benavente et al. 2004). Expression of antioxidant
defense genes is triggered in maize to protect the cells from
salinity-induced oxidative damage (Menezes-Benavente et al.
2004). In photosynthesizing shoots of maize, catalase activity
increased due to the induction of mRNA accumulation in
response to higher reactive oxygen species levels under salt
stress (Menezes-Benavente et al. 2004). Likewise, the buildup
of superoxide dismutase transcripts increased without any no-
table change in total superoxide dismutase enzymatic activity
or isozyme profiles (Menezes-Benavente et al. 2004).
Moreover, Sod1, Sod2, Sod4, Sod4A, and all catalase tran-
scripts were suppressed in maize plants facing high intensity
of salt stress (Menezes-Benavente et al. 2004). Inhibition of
plasma membrane H+-pumping by ATPase, probably due to
increased expression of inefficient H+-ATPase isoforms, has
been reported in maize leaves under saline conditions (Zörb
et al. 2005; Pitann et al. 2009c).

Maize plants undergo several changes in protein accumu-
lation under salt stress. Maize grown under mild salt stress
(25 mM NaCl) experienced differential regulation in 31 and
45 % of shoot and root proteins, respectively, without any
effect on morphology or sodium and chloride uptake, whereas
maize plants exposed to high salt stress (100 mM NaCl)
underwent uncontrolled change in more than 80 % of total
separated proteins (Zörb et al. 2004). Fourteen proteins upreg-
ulated by salt stress were deoxyribonucleic acid-directed: de-
oxyribonucleic acid polymerase (A1), ribosomal protein S4
(A2), cytochrome P450-like protein (A3), serine/threonine ki-
nase (A4), adenosine kinase (A5), Rubisco large chain (B6),
Rubisco small chain (B7), fructose 1,6-bisphosphate aldolase
(B8), glyceraldehyde-3-phosphate dehydrogenase (B9), β-
glucosidase (B10), V-ATPase subunit α (B11), methionine
synthase (C12), S-adenosyl-methionine synthase (C13), and
glutamate-ammonia ligase (C14). Under low salt stress in
maize, these 14 proteins belong to three different groups,
i.e., (A) proteins involved in protein biosynthesis and modifi-
cations by kinases, (B) enzymes of carbon metabolism, and
(C) nitrogen metabolism (Zörb et al. 2004).

Considering that cell wall rigidness under unfavorable con-
ditions is crucial for stress adaptation, it is not surprising that
expansins are differentially regulated in an organ-specific
manner and that salt-sensitive to salt-tolerant cultivars differ
in their response to salt stress. For example, six isoforms of
expansins were investigated in a resistant and a tolerant maize
cultivar which differed in upregulation or downregulation
(Geilfus et al. 2010). The alteration/adaptation in cell wall
chemical composition may also contribute to salt resistance
in maize, as a low accumulation of non-methylated uronic
acid in leaf cell walls may contribute to salt resistance in the
first phase of salt stress (Uddin et al. 2013).

Salt stress (100 mM NaCl) reduced root and shoot growth
by more than 20 and 50 %, respectively (Geilfus et al. 2010);
however, total ribonucleic acid content of stressed maize api-
cal parts did not significantly change compared to the controls
(Atanassova et al. 1997). As for shoots, the apical ribonucleic
acid machinery of monocotyledonous plants such as maize is
considered more protected (Aspinall 1986; Barlow 1986;
Peterson et al. 1987).

In maize roots, salt stress induced the accumulation of four
polypeptides with molecular masses of 61, 51, 39, and 29 kDa
(Tamas et al. 2001). Rodríguez-Kessler et al. (2006) reported
the upregulation of two genes, Zmodc and Zmspds2A, respon-
sible for polyamine and spermidine synthesis under salt stress
in maize. Genotypic differences in the relative concentration
of six β-expansin transcripts together with differences in the
abundance of β-expansin protein were observed in response
to NaCl stress. In salt-sensitive Lector, reduced β-expansin
protein expression correlated positively with reduced shoot
growth under stress. Downregulation of ZmExpB2,
ZmExpB6, and ZmExpB8 transcripts possibly contributed to
the reduced protein abundance. In contrast, maintenance of
shoot growth in SR 03 may be related to an unaffected abun-
dance of growth-mediating β-expansin proteins in shoots. In
this regard, the upregulation of ZmExpB2, ZmExpB6, and
ZmExpB8 may sustain the stable expression of β-expansin
protein under salt stress (Geilfus et al. 2010).

In crux, accumulation or inhibition of specific proteins and
the upregulation and/or downregulation of many gene tran-
scripts help in salt resistance of maize. In this regard, upregu-
lation of antioxidant defense genes and expression of β-
expansin proteins are important for salt resistance in maize.

4 Management of salt stress

The introduction of salt-tolerant genotypes along with accu-
rate site-specific production technology is needed to sustain
maize productivity in salt-affected areas. Recent progress in
the field of genomics and biotechnology, coupled with
conventional breeding approaches, has the potential to in-
troduce transgenic maize cultivars to perform well under
stress conditions. Moreover, exogenous application of cer-
tain osmoprotectants and growth regulators, nutrient man-
agement, and seed invigoration techniques may also be
helpful for cost-effective maize production in saline areas.

4.1 Selection and breeding approaches

Maize is a highly polymorphic plant due to its cross-pollinated
nature with genetic variability in which salinity resistance exists
(Paterniani 1990). Therefore, mass screening of maize geno-
types is often used to identify salt-tolerant germplasm for
breeding programs to develop better-performing genotypes
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for salt-prone areas. Quick screenings for salt resistance on
the basis of some agronomic traits during early growth
stages of maize are often deemed valuable (Khan et al.
2003; Eker et al. 2006).

Maize is moderately salt-sensitive, but some tolerant geno-
types may exist due to lower sodium and chloride cytoplasmic
contents and higher potassium cytoplasmic contents
(Hajibagheri et al. 1989), and more potential to exclude sodi-
um and chloride from leaves to maintain superior potassium/
sodium ratios (Cerda et al. 1995). For instance, Benes et al.
(1996) reported restricted buildup of sodium and chloride in
roots due to their ensuing transport to shoots in salt-resistant
maize cultivars. Giaveno et al. (2007) confirmed genetic var-
iability among hybrids for germination under salt stress and
concluded that traits like seedling weight, growth rate, and
photochemical efficiency should be used to screen salt-
tolerant maize hybrids under salt stress.

Significant variation in ion accumulation among 19 maize
genotypes under salt stress (250 mMNaCl) for 6 days prior to
harvest was observed by Eker et al. (2006). Salt-tolerant ge-
notypes (based on severity of leaf symptoms) had appreciably
lower sodium accumulation in shoots and manifested higher
potassium/sodium and calcium/sodium ratios. The most sen-
sitive genotype (C.7993) had four times more sodium accu-
mulation in shoots than the most tolerant genotype (Maverik),
suggesting that sodium buildup in shoots is a reliable screen-
ing parameter for salt resistance in early growth stages of
maize. According to Mansour et al. (2005), sodium accumu-
lation was higher in salt-tolerant Giza 2 than salt-sensitive
Trihybrid 321. Higher abscisic acid accumulation in salt-
resistant hybrids may play a role in osmotic stress resistance
under salt stress (De Costa et al. 2007). Cell wall acidification
due to improved plasma membrane H+-ATPase activity in the
salt-resistant hybrid (SR 03) seemed an important resistance
trait; whereas in the sensitive hybrid (Pioneer 3906), H+-
pumping decreased due to the expression of inefficient H+-
ATPase isoforms. While osmotic adjustment, turgor, and cell
wall acidification were maintained in the newly developed
salt-resistant hybrids, cell wall extensibility appeared to limit
extension growth (Schubert et al. 2009).

In conclusion, mass screening of maize genotypes for salt
resistance may be done on the basis of seedling weight,
growth rate, photochemical efficiency, osmotic adjustment,
and cell wall acidification.

4.2 Marker-assisted selection

A proteomic approach can be used to identify proteins asso-
ciated with salt resistance in maize for markers in breeding
programs to develop salt-tolerant genotypes. For instance,
Zörb et al. (2004) observed that 31 and 45 % of shoot and
root proteins, respectively, under mild stress (25 mM NaCl)
and more than 80 % of total separated proteins under severe

salt stress (100 mM NaCl) experienced differential regulation
in maize. In another study, de Azevedo Neto et al. (2004)
identified two maize genotypes BR5033 and BR5011 as the
most salt-tolerant and salt-sensitive, respectively, from the ge-
notypes under study based on root and shoot dry matter, leaf
area, relative growth rate, and net assimilation rate. Moreover,
shoot to root dry mass ratio, and leaf sodium and soluble
organic solute contents had no clear relationship with salt
resistance, but sodium and soluble organic solute accumula-
tions in roots were associated with maize salt resistance.
Therefore, sodium and soluble organic solute accumulations
in roots can be used as physiological markers to screen maize
for salt resistance (de Azevedo Neto et al. 2004).

In crux, use of molecular and physiological markers to
select maize genotypes for salt resistance is an attractive ap-
proach. Leaf sodium, soluble organic solute accumulation in
roots, and expression of specific proteinsmay help in selecting
maize genotypes for salt resistance.

4.3 Biotechnology and functional genomics

Transferring one or more genes from one species to another to
provoke desired qualitative and quantitative characters is re-
ferred to as the transgenic approach. This technique is much
faster than conventional breeding and ensures induction of
wanted genes without entry of surplus genes from the donor
organism (Gosal et al. 2009). Advances in functional geno-
mics and biotechnology have made it possible to recognize
salinity-responsive genes to establish plants with better salt
resistance through transgenic approaches. The sodium exclu-
sion from cytoplasm to the apoplasts or its compartmentation
in vacuoles through plasma membrane or tonoplast sodium/
hydrogen antiporters is an adaptive mechanism to avoid the
toxic effects of excess sodium ions in maize plants (Blumwald
2000; Hasegawa et al. 2000). Salt stress enhanced transcrip-
tion of ZmNHX which may lead to increased tonoplast
sodium/hydrogen antiporters in leaves of salt-resistant maize
hybrids by sequestering sodium into leaf vacuoles to protect
the cytoplasm from sodium toxicity (Pitann et al. 2013).
Transgenic maize plants performed better than wild-type
plants under saline conditions as a result of higher sodium/
hydrogen exchange rates in tonoplast vesicles (Table 2; Li
et al. 2010). The complementary DNA (cDNA) macroarray
is an effective tool for studying expression profiles to evaluate
similarities and differences in different expression patterns
under salt stress. A cDNA macroarray with 190 maize
expressed sequence tags induced by water stress was exposed
to abscisic acid, high salinity, and cold stress conditions.
Abscisic acid upregulated 48 and 111 expressed sequence tags
in leaves and roots, respectively, while high salinity stress
upregulated 36 and 41 expressed sequence tags in leaves
and roots, respectively (Zheng et al. 2006).
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Likewise, Quan et al. (2004) introduced the betA gene
encoding choline dehydrogenase from Escherichia coli in
maize inbred line DH4866 to establish transgenic maize with
better capacity for glycine betaine biosynthesis from choline
under stress conditions. Transgenic maize equipped with
the O. sativa sodium/hydrogen antiporter (OsNHX1) gene
outperformed and outyielded the wild-type maize at
200 mM NaCl in greenhouse conditions. Leaves of trans-
genic maize had higher sodium and potassium contents
coupled with lower osmotic potential than those of wild-
type maize treated with 100–200 mM NaCl (Chen et al.
2007). Bt transgenic lines of maize hybrid (YieldGard 2)
almost maintained growth when subjected to 0, 50, 100,
and 150 mM NaCl salt stress primarily due to higher
chlorophyll contents and chlorophyll stability index at all
salinity levels (Beltagi 2008).

At 0.4 % NaCl, only 50 % of wild-type seeds germinated,
and lower leaves of existing plants withered and upper leaves
shriveled, whereas in transgenic maize with the AtNHX1 gene,
83 and 56% of plants survived up to the five- to six-leaf stage.
Moreover, not a single wild-type plant reached the five-leaf
stage at 0.6 or 0.8 % NaCl, while some transgenic plants
survived for up to 30 days (Li et al. 2010). Likewise, trans-
genic maize lines had more grain yield per plant than the
respective control hybrids due to more grain per row and
higher 1000-gr weight under saline conditions (Li et al.
2010). Efficient compartmentalization of sodium in vacuoles
of cells of transgenic maize improved not only salt resistance
but also grain productivity in saline fields (Li et al. 2010).
Moreover, potassium concentration in leaves and roots of
transgenic maize lines was much higher than that of wild-

type plants (Li et al. 2010). By using the Flippase recombina-
tion enzyme P/Flippase recognition target-based marker elim-
ination system to eliminate the als gene, Li et al. (2010) pro-
duced marker-free salt-tolerant transgenic maize to improve
the bio-safety of the environment.

The overexpression of AtNHX1 resulted in enhanced salt
resistance in transgenic maize (Yin et al. 2004). The generated
transgenic maize plants expressed the OsNHX1 from rice
which accumulated high biomass in the presence of 200 mM
NaCl (Chen et al. 2007).

In conclusion, transgenic approach is quite effective for
improving salt resistance in maize. For instance, maize geno-
types with external genes producing vacuolar Na+/H+

antiporter and betaine aldehyde dehydrogenase etc. performed
well under salt stress.

4.4 Arbuscular mycorrhizal fungi

Arbuscular mycorrhizal fungi penetrate the cortical cells of
roots in a vascular plant forming unique structures, arbuscules,
and vesicles. Arbuscular mycorrhizal fungi help plants to cap-
ture nutrients such as phosphorus, sulfur, nitrogen, and
micronutrients from the soil. Root colonization by arbuscular
mycorrhizal fungi can induce major changes in the relative
abundance of major groups of organic solutes (Sheng et al.
2011). Arbuscular mycorrhizal fungi colonization of plant
roots is reduced by salt stress, indicating that salinity sup-
presses the formation of arbuscular mycorrhiza (Sheng et al.
2008).

Salt resistance in maize improved with arbuscular mycor-
rhizal fungi colonization and symbiosis (Feng et al. 2002).

Table 2 Transgenic maize for salt tolerance

Gene Gene product Source Cellular role(s) Parameter studied Conditions Reference

AtNHX1 Vacuolar sodium/
proton antiporter

Arabidopsis Sodium vacuolar
sequestration

Improved germination
and increased biomass

Field Yin et al. (2004)

OsNHX1 Vacuolar sodium/
proton antiporter

Rice Sodium vacuolar
sequestration

Increased biomass Solution culture in
greenhouse

Chen et al. 2007)

GutD Glucitol-6-phosphate
dehydrogenase

E. coli Synthesis and
accumulation
of sorbitol

Increased biomass Solution culture in
greenhouse

Liu et al. (1999)

BADH Betaine aldehyde
dehydrogenase

Suaeda
liaotungensis
Kitag

Synthesis and
accumulation
of glycine betaine

Better survival and
growth under salt
stress

Solution culture Wu et al. (2008)

BADH Betaine aldehyde
dehydrogenase

Atriplex hortensis Synthesis and
accumulation
of glycine betaine

Better survival and
growth under salt
stress

Solution culture in
greenhouse

He et al. (1999)

AtNHX1 Vacuolar sodium/
proton antiporter

Arabidopsis Sodium vacuolar
sequestration

Improved germination
and increased biomass

Field Li et al. (2010)

Bt Expression of low-
molecular-weight
proteins

Bacillus
thuringiensis

Synthesis of stress-
responsive proteins
with molecular
weights 298.81,
99.82, 20.79,
and 19.43 kDa

Better growth and
stability of chlorophyll
pigments

Soil-filled plastic
pots under natural
conditions

Beltagi (2008)
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Although salinity can negatively affect arbuscular mycorrhizal
fungi, many reports have shown improved growth and perfor-
mance of mycorrhizal plants under salt stress conditions. This
improvement has been correlated with host plant nutrition,
improved potassium/sodium ratios in plant tissues, and better
osmotic adjustment. Arbuscular mycorrhizal fungi also im-
proved photosynthetic and water use efficiencies under salt
stress. At the molecular level, arbuscular mycorrhizal symbi-
osis regulates the expression of plant genes involved in the
biosynthesis of proline, genes encoding aquaporins, and genes
encoding late embryogenesis abundant proteins with chaper-
one activity (Porcel et al. 2012). In fact, in maize, there are
more than 30 different aquaporin genes (Chaumont et al.
2001), and the regulation of these genes allows mycorrhizal
plants to maintain better water status in their tissues. Gene
expression patterns suggest that mycorrhizal plants are less
strained by salt stress than non-mycorrhizal plants (Porcel
et al. 2012).

In summary, arbuscular mycorrhizal fungi colonization and
symbiosis improve salt resistance in maize due to better nutri-
ent availability, increased potassium/sodium ratios in plant
tissues, and better osmotic adjustment

4.5 Plant-growth-promoting rhizobacteria

Soil bacteria applied through seed inoculation, which colonize
plant roots and enhance plant growth and/or resistance against
abiotic stresses, are called plant-growth-promoting
rhizobacteria. Increased ethylene in plants is directly related
to the concentration of 1-aminocyclopropane-1-carboxylate,
produced under stress conditions, in plant tissues
(Machackov et al. 1997). Recently, it was discovered that
several plant-growth-promoting rhizobacteria promote plant
growth by lowering endogenous ethylene synthesis in roots
through 1-aminocyclopropane-1-carboxylate deaminase ac-
tivity (Glick et al. 1998). When 1-aminocyclopropane-1-
carboxylate deaminase-containing plant-growth-promoting
rhizobacteria are bound to the developing seedling, they can
act as a sink for 1-aminocyclopropane-1-carboxylate ensuring
that the ethylene level does not become elevated to the point
where root growth is impaired (Grichko et al. 2000). By re-
ducing ethylene and facilitating the formation of longer roots,
these bacteria may enhance seedling survival during the first
few days after sowing (Glick et al. 1998). Soil microorgan-
isms that produce 1-aminocyclopropane-1-carboxylate deam-
inase promote plant growth by sequestering and cleaving
plant-produced 1-aminocyclopropane-1-carboxylate, thereby
lowering ethylene levels in the plant (Penrose et al. 2001).
Plant ethylene levels are regulated by 1-aminocyclopropane-
1-carboxylate deaminase, a key enzyme present in plant-
growth-promoting rhizobacteria, by metabolizing its precur-
sor 1-aminocyclopropane-1-carboxylate into α-ketobutyrate
and ammonia. Inoculation of plants under salinity stress with

plant-growth-promoting rhizobacter ia having 1-
aminocyclopropane-1-carboxylate deaminase activity miti-
gates the inhibitory effects of salinity on root growth by low-
ering the ethylene concentration in the plant (Nadeem et al.
2010; Zafar-ul-Hye et al. 2014). Inoculation of rhizobacteria
with 1-aminocyclopropane-1-carboxylate deaminase activity
is effective in promoting plant growth under salt stress by
lowering ethylene or 1-aminocyclopropane-1-carboxylate ac-
cumulation, which at higher levels can inhibit root and shoot
growth (Kausar and Shahzad 2006). Negative effects of stress-
induced ethylene could be partially eliminated by inoculation
with 1-aminocyclopropane-1-carboxylate deaminase-
containing rhizobacteria (Nadeem et al. 2006). In a field study,
Nadeem et al. (2009) reported that rhizobacterial strains, par-
ticularly Pseudomonas and Enterobacter spp., significantly
promoted the growth and yield of maize under salt stress.

Inoculation enhanced salt resistance by reducing sodium
concentration, which improved the potassium/sodium ratio
and calcium level in maize tissues. This may further enhance
water flow which significantly improves dry matter produc-
tion (Hamdia et al. 2004). The inoculation of maize with
Azospirillum under a salt-stressed environment significantly
decreased proline concentration. The comparatively high salt
resistance of maize, particularly the salt-sensitive cultivar, sig-
nificantly changed the selectivity of potassium, calcium, and
sodium. Azospirillum inoculation reduced the rate of sodium
uptake and increased the uptake of major cations particularly
calcium and potassium (Table 3; Hamdia et al. 2004). Rojas-
Tapias et al. (2012) demonstrated that inoculation with
Azotobacter chroococcum strains C5 and C9 protected plants
against the inhibitory effects of NaCl by improving sodium
exclusion and potassium uptake in maize, thereby increasing
the potassium/sodium ratio. Polyphenol and chlorophyll con-
tents were enhanced by inoculation with strains C5 and C9.

In c rux , inocu la t ion of ma ize seeds wi th 1 -
aminocyclopropane-1-carboxylate deaminase-producing bac-
teria improves the salt resistance of maize by reducing ethyl-
ene production and triggering the formation of longer roots,
whereas inoculation with Azospirillum reduces the rate of so-
dium uptake and increases the uptake of major cations partic-
ularly calcium and potassium, thus improving salt resistance
in maize.

4.6 Exogenous application of hormones and osmoprotectants

Exogenous application of various plant growth regulators and
osmoprotectants is widely used to neutralize the damaging
effects of salt stress on plants. Externally applied plant hor-
mones and osmoprotectants like auxins, gibberellins, cytoki-
nins, abscisic acid, brassinolids, polyamines, and salicylic
acid have the potential to ameliorate toxic effects of salt
stress in maize with elevated osmotic adjustment to maintain
turgor, improve nutrient uptake, accumulate antioxidants,
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and detoxify reactive oxygen species, thereby maintaining
membrane and enzyme stability (He et al. 1991; Hussein
et al. 2007; Gunes et al. 2007; Kaya et al. 2010).

Salt stress substantially reduced total biomass, chlorophyll
a and b contents, grain yield, and relative water contents ac-
companied by elevated electrolyte leakage; application of
both kinetin and indole acetic acid on foliage individually
nullified the damaging effects of NaCl stress while, in combi-
nation, had no effect on salinity resistance in maize plants
(Kaya et al. 2010). Moreover, salinity increased leaf sodium
concentration in maize at the expense of calcium and potassi-
um, while foliar application of kinetin and indole acetic acid
rectified these effects and increased calcium and potassium
contents in leaves. Therefore, foliar application of kinetin
and indole acetic acid at 2 mM has the potential to counteract
the adverse effects of salinity on maize growth and productiv-
ity due to increased uptake of essential nutrients and better
membrane permeability (Kaya et al. 2010). Previously,
Darra and Saxena (1973) reported that foliar indole acetic acid
application improved the uptake of essential nutrients along
with a notable decline in sodium uptake leading to better
growth and yield of maize under salt stress.

Salicylic acid is another important secondary metabolite
that induces salinity resistance in plants by regulating several

physiological processes through signaling. Maize plants ex-
posed to 40 mMNaCl reduced plant dry biomass, while those
with exogenously applied salicylic acid increased dry biomass
in both saline and non-saline environments, but the effect was
more pronounced in the saline environment (Gunes et al.
2007). Likewise, salt stress increased membrane permeability
in maize leaves as a consequence of elevated lipid peroxida-
tion, measured in terms of malondialdehyde content, but
salicylic acid application reduced membrane permeability
and decreased lipid peroxidation in the saline environment
(Gunes et al. 2007).

In another study, a maize crop irrigated with 4000 ppm
saline water reduced leaf area and stem, leaf, and whole-
plant dry weights by 53.18, 57.29, 47.43, and 51.43 %, re-
spectively, compared with the control, while 200-ppm foliar
application of salicylic acid rectified the deleterious effects
of salinity and improved plant height; number and area of
green leaves; stem diameter; and stem, leaf, and whole-
plant dry weights. Moreover, salicylic acid application en-
hanced proline accumulation and amino acid contents such
as arginine, lycine, serine, and glutamic acid under stress
conditions (Hussein et al. 2007). Salicylic acid application
also helped to overcome salinity-induced nutrient imbalance
in maize (Hussein et al. 2007). Nitrogen uptake decreased,

Table 3 Influence of plant-growth-promoting rhizobacteria containing 1-aminocyclopropane-1-carboxylate deaminase on salt resistance of maize

Bacteria/transgenic plants with ACC deaminase Plant response References

Pseudomonas syringae, Pseudomonas
chlororaphis, Pseudomonas bathycetes,
Enterobacter aerogenes, Pseudomonas
fluorescence

Inoculation improved growth under high levels of salinity. Relative
water content, chlorophyll content, and potassium/sodium ratio
enhanced by inoculation over control. In another study by the
same authors, inoculation improved growth, yield, and nutrition
of maize plants under saline field conditions

Nadeem et al. (2007, 2009)

Azotobacter strains C5 and C9 Sodium exclusion and potassium uptake in maize, thereby increasing
potassium/sodium ratio. Enhanced polyphenol and chlorophyll
contents

Rojas-Tapias et al. (2012)

Plant-growth-promoting rhizobacteria having 1-
aminocyclopropane-1-carboxylate deaminase

Significant increases in root-shoot length, root-shoot fresh and dry
weights, and chlorophyll pigments observed at electrical
conductivity 10 dS m−1 compared to uninoculated control

Nadeem et al. (2006)

Pseudomonas putida biotype A, Pseudomonas
fluorescens biotype A

Plants demonstrated good root-shoot length against salinity stress
under gnotobiotic conditions

Kausar and Shahzad (2006)

Azotobacter chroococcum strains C5 and C9 Improved sodium exclusion and potassium uptake in maize, thereby
increasing potassium/sodium ratio. Enhanced polyphenol and
chlorophyll contents

Rojas-Tapias et al. (2012)

Rhizobium strain Thal-8 chickpea nodulating Reduced electrolyte leakage and osmotic potential, increased
osmoregulant (proline) production, maintenance of relative water
content in leaves, and selective uptake of potassium ions.
Increased total uptake of potassium and calcium

Bano and Fatima (2009)
Pseudomonas sp. 54RB

Bacillus megaterium Increased root hydraulic conductance in inoculated plants which
correlated with more plasma membrane type two (PIP2)
aquaporin in roots under salt-stressed conditions.More ZmPIP1;1
protein under salt-stressed conditions in inoculated leaves

Marulanda et al. (2010)

Azospirillum lipoferum strain Z4/1 Azospirillum inoculation markedly altered sodium, potassium, and
calcium selectivity. Azospirillum restricted sodium uptake and
enhanced potassium and calcium uptake. Azospirillum inoculation
stimulated nitrate reductase and nitrogenase activity in both shoots
and roots of both cultivars

Hamdia et al. (2004)
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but phosphorus uptake increased in maize under salinity
stress, and salicylic acid reversed it with considerable reduc-
tions in sodium and chloride accumulation. Furthermore, iron,
manganese, zinc, and copper contents increased with salinity
and salicylic acid application further aggravated their uptake
except for zinc (Gunes et al. 2007). Likewise, brassinosteroid
application enabledmaize seedling growth to recover from the
effects of salinity (He et al. 1991).

Foliar spray of hydrogen peroxide effectively minimized
salinity-induced effects by increasing the activities of cat-
alase, guaiacol peroxidase, ascorbate peroxidase, and su-
peroxide dismutase, with catalase being the most respon-
sive. Increased catalase activity appears to be linked to
gene expression regulation and lower malondialdehyde
levels (Gondim et al. 2012).

Hydrogel polymers can also be used as soil conditioners to
improve plant growth due to their ability to swell in water and
release the absorbedwater to plant roots and their involvement
in partitioning, binding, and release of essential plant nutrients
particularly under salt stress. El Sayed (2011) observed severe
reductions in plant height, root extension, root and shoot
biomass, harvest index, leaf area, photosynthesis, mitotic
division, and productivity (both grain and straw yield per
pot) in salinity-stressed maize in a sandy soil, while inser-
tion of the hydrogel polymer in sand rectified the damag-
ing effects of salinity and substantially improved all of the
above-mentioned traits.

Tuna et al. (2008) evaluated the combined effects of salt
stress and gibberellins on plant growth and the nutritional
status of maize. Salt stress reduced total dry matter, chloro-
phyll content, and relative water content but increased proline
accumulation, superoxide dismutase, peroxidase and polyphe-
nol oxidase activities, and electrolyte leakage. Gibberellin
treatments overcame to varying extents the adverse effects of
NaCl stress on the above physiological parameters.
Gibberellins reduced enzyme activities in salt-stressed plants.
Salt stress reduced somemacronutrient andmicronutrient con-
centrations, but exogenous application of gibberellins in-
creased these to control levels. Foliar application of gibberel-
lins counteracted some of the adverse effects of NaCl salinity
with the accumulation of proline which maintained membrane
permeability and increased macronutrient and micronutrient
levels.

Pretreatment by addition of 1 μM hydrogen peroxide to a
hydroponic solution for 2 days induced increased salt resis-
tance during subsequent exposure to salt stress. This was ev-
idenced by plant growth, lipid peroxidation, and antioxidative
enzymemeasurements. In both leaves and roots, the variations
in lipid peroxidation and antioxidative enzyme (superoxide
dismutase, ascorbate peroxidase, guaiacol peroxidase, gluta-
thione reductase, and catalase) activities of both acclimated
and unacclimated plants suggest that differences in antioxida-
tive enzyme activities may, at least in part, explain the

increased resistance of acclimated plants to salt stress and that
hydrogen peroxide metabolism is involved as a signal in the
process of maize salt acclimation (de Azevedo Neto et al.
2005). In maize, exogenously applied glycine betaine im-
proved growth, leaf water content, net photosynthesis, and
the apparent quantum yield of photosynthesis in salt-stressed
plants (Yang and Lu 2005). The glycine betaine application,
however, did not affect maximum efficiency of photosystem II
photochemistry. The improvement in photosynthesis of salt-
stressed maize plants by glycine betaine application was sug-
gested to be associated with improvements in stomatal con-
ductance and actual photosystem II efficiency (Yang and Lu
2005). Foliar application of glycine betaine to low or non-
accumulating plants helped to improve plant growth under
salinity stress (Yang and Lu 2005). It was also observed that
glycine betaine-treated plants under salinity stress had signif-
icantly reduced sodium and increased potassium concentra-
tions in shoots compared with untreated plants. Hence, gly-
cine betaine may help in salinity resistance through its role in
signal transduction and ion homeostasis. Exogenous applica-
tion of glycine betaine to low-accumulating or non-
accumulating plants may help to reduce adverse effects of
environmental stresses (Yang and Lu 2005).

To summarize, exogenous application of plant hormones
and osmoprotectants like auxins, gibberellins, cytokinins,
abscisic acid, brassinolids, polyamines, salicylic acid, and pro-
line may also help to improve maize performance under salt
stress. Application of these substances helps in osmotic ad-
justment, nutrient uptake, and the antioxidant defense system.

4.7 Seed priming and nutrient management

Suboptimal crop stands due to poor and erratic seed germina-
tion are a challenge for profitable crop production in saline
areas. Salt stress substantially reduces and delays germination
in maize (Farsiani and Ghobadi 2009) due to salinity-induced
osmotic stress and toxic effects of sodium and chloride ions on
germinating seeds (Hasegawa et al. 2000; Khaje-Hosseini
et al. 2003). Seed priming has the potential to improve maize
germination under saline conditions. Hydropriming under salt
stress improved final germination percentage, germination in-
dex, seedling vigor index, and seedling length in maize, prov-
ing its potential as a seed invigoration technique for improved
maize performance under saline conditions (Janmohammadi
et al. 2008).

Soaking maize grains in water improved their germination
rate under saline conditions (Ashraf and Rauf 2001). In addi-
tion, the authors demonstrated that sodium, potassium, and
calcium concentrations increased significantly in all parts of
a germinating seed primed with sodium chloride, potassium
chloride, or calcium chloride, respectively. Seeds primed with
calcium chloride had the highest chloride accumulation in all
parts of the germinating seed, followed by seeds treated with
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sodium chloride and potassium chloride. Most of the calcium
was retained in the seed and mesocotyl, thus restricting its
transport to plumules and radicles. Ashraf and Rauf (2001)
investigated seed halopriming with distilled water, sodium
chloride, potassium chloride, and calcium chloride and found
that, while all of the salt agents were effective at mitigating the
adversities of salinity on maize germination, priming with
calcium chloride was the most effective. Hormonal priming
with chloroethylphosphonic acid, an ethylene releaser, en-
hanced maize seedling biomass under salt stress (Table 4;
Carvalho et al. 2011).

Hydropriming significantly improved germination and
seedling growth presented as final germination percentage,
germination index, seedling vigor index, and seedling length
in stressed and non-stressed maize (Janmohammadi et al.
2008). Presowing treatments with 28-homobrassinolide fur-
ther enhanced the activities of antioxidative enzymes in addi-
tion to lowering lipid peroxidation and increasing protein con-
centration, thus suggesting that 28-homobrassinolide can alle-
viate oxidative stress in salt-treated maize plants (Arora et al.
2008). Other priming agents for improving growth or seed
yield under saline conditions and not just germination of the
pretreated seed include ascorbic acid, thiamin, and pyridoxine
(Ahmed-Hamad and Monsaly 1998). Khodary (2004) found
that 0.1-mM salicylic acid application to plants under saline
conditions enhanced growth and development.

Imbalanced nutrition due to impaired uptake and transport
of essential plant nutrients such as nitrogen, calcium, potassi-
um, magnesium, iron, and zinc under salt stress is well report-
ed in maize leading to diminished plant growth and produc-
tivity (Karimi et al. 2005; Gunes et al. 2007; Turan et al. 2010;
Kaya et al. 2010; Shahzad et al. 2012; Qu et al. 2012).
Application of these essential plant elements has the potential

to counteract the effects of salinity stress on maize productiv-
ity. Potassium application enhanced productivity in all maize
cultivars by improving yield-related traits under saline condi-
tions which confirms the role of potassium in the salinity
resistance of maize (Maqsood et al. 2008). Likewise, signifi-
cant elevations in leaf area index and crop growth rate of
maize after potassium application in saline fields have been
reported (Akram et al. 2010b) and are linked to continued
water uptake and turgor maintenance, as potassium plays a
key role in osmoregulation (Akram et al. 2010b). Other pos-
itive effects of potassium application are improved water re-
lations and mineral nutrition, in terms of reduced sodium up-
take (Akram et al. 2010b). Likewise, greater reductions in
potassium, calcium, and magnesium contents in both leaves
and roots of maize occurred with the combined stresses rather
than with only the salt stress or only potassium deficiency.
Salinity enhanced both sodium and chloride accumulation in
leaves and roots and potassium scarcity further aggravated
their buildup. Moreover, potassium/sodium, calcium/sodium,
and magnesium/sodium ratios declined in both leaves and
roots with larger reductions when combined rather than with
individual stresses (Qu et al. 2012). Iron foliar application
improved the nutritional status of maize seedlings grown un-
der salinity stress (Salama et al. 1996).

Under salinity stress, maize growth is affected by nitrogen
deficiency as a result of antagonistic effects of chloride ions
with nitrate ions (Shahzad et al. 2012); hence, nitrogen appli-
cation can significantly improve maize performance in saline
conditions. Nitrogen application at 120 kg ha−1 counteracted
the damaging effects of salinity and notably improved growth,
yield, and nitrogen uptake under salt stress (Gadalla et al.
2007). In another study, nitrogen application above the rec-
ommended level for non-saline soils substantially increased

Table 4 Influence of seed priming on the performance of maize under saline conditions

Presowing technique Nature of priming agent Attribute/s which improved References

Hydropriming – Germination Ashraf and Rauf (2001)

Hormonal priming Ascorbic acid, thiamin, and
pyridoxine

Growth, grain yield Ahmed-Hamad and Monsaly
(1998)

Hormonal priming Salicylic acid Growth, photosynthesis, carbohydrate metabolism Khodary (2004)

Matripriming Sand priming Shoot height, seedling fresh and dry weights, soluble
sugars, peroxidase, and catalase activities

Zhang et al. (2007)

Hormonal priming Chloroethylphosphonic acid, an
ethylene releaser

Biomass Carvalho et al. (2011)

Hydropriming – Germination, early seedling growth Janmohammadi et al. (2008)

Hormonal priming 28-homobrassinolide Protein concentration, antioxidative enzyme activities
(decreased lipid peroxidation)

Arora et al. (2008)

Hormonal priming Hydrogen peroxide Seed germination percentage, activities of ascorbate
peroxidase, catalase, and guaiacol peroxidase

Gondim et al. (2010)

Halopriming NaCl Earlier emergence and germination rate, plant height, yield Bakht et al. (2011)

Hormonal priming Ethylene Biomass Carvalho et al. (2011)

Halopriming NaCl Shoot dryweight and length, leaf number and area, chlorophyll Farahbakhsh and Saiid (2011)
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physiological traits such as leaf area index, crop growth rate,
net assimilation rate, and all yield components in salt-stressed
maize compared with the control (Akram et al. 2010c). While
nitrogen nutrition is important in crop production under salt
stress, the nitrogen source is also important. For instance, ni-
trogen application through ammonium increased catalase, glu-
tathione reductase, and glutathione-S-transferase activities in
maize, while peroxide dismutase and superoxide dismutase
activities decreased (Rios-Gonzalez et al. 2002).

In conclusion, seed priming with sodium, calcium, and
potassium salts is an effective approach to improve maize
germination under salt stress. As nitrogen and potash deficien-
cy is observed in salt-affected soils, application of nitrogenous
and potash fertilizers may help to improve maize performance
in saline conditions.

5 Conclusions

Salt stress is a major obstacle for ensuring global food securi-
ty. Research on developing salt resistance in maize is diverse.
Salinity imposes osmotic stress and ionic toxicity to plants
which have adverse effects on stand establishment, growth,
and development. Salt stress disturbs the activities of cytosolic
enzymes and may cause nutritional disorders and oxidative
damage, all of which drastically reduce maize yield. The
development of salt-resistant plants through conventional
breeding and genetic engineering has shown that conven-
tional breeding has been more successful in this regard.
Nonetheless, expected future advances in transformation
technology like RNAi, transposon insertional knockouts
for candidate stress-resistant genes, and comprehensive
knowledge of signaling pathways are predicted to generate
salt-resistant maize plants in coming years. Integration of
mass screening and breeding, marker-assisted selection,
exogenous application of hormones and osmoprotectants for
seeds or growing plants, and cellular-based stress signaling
and ion homeostasis mechanisms into a functional paradigm
for the whole plant may help to improve salt resistance in maize.
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