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Structuprint: a scalable and extensible tool
for two-dimensional representation of
protein surfaces
Dimitrios Georgios Kontopoulos1* , Dimitrios Vlachakis2*, Georgia Tsiliki3 and Sofia Kossida4

Abstract

Background: The term ‘molecular cartography’ encompasses a family of computational methods for two-dimensional
transformation of protein structures and analysis of their physicochemical properties. The underlying algorithms
comprise multiple manual steps, whereas the few existing implementations typically restrict the user to a very
limited set of molecular descriptors.

Results: We present Structuprint, a free standalone software that fully automates the rendering of protein surface
maps, given - at the very least - a directory with a PDB file and an amino acid property. The tool comes with a default
database of 328 descriptors, which can be extended or substituted by user-provided ones. The core algorithm
comprises the generation of a mould of the protein surface, which is subsequently converted to a sphere and
mapped to two dimensions, using the Miller cylindrical projection. Structuprint is partly optimized for multicore
computers, making the rendering of animations of entire molecular dynamics simulations feasible.

Conclusions: Structuprint is an efficient application, implementing a molecular cartography algorithm for protein
surfaces. According to the results of a benchmark, its memory requirements and execution time are reasonable,
allowing it to run even on low-end personal computers. We believe that it will be of use - primarily but not exclusively -
to structural biologists and computational biochemists.

Keywords: Molecular cartography, Protein surfaces, Visualization, Surface comparison, Structural biology

Background
Over the last two decades, the growth rate of the Protein
Data Bank has been exponential. As structural data for
biomolecules are increasingly made available, the study
of homologous proteins can be performed not only at
the level of sequence, but also at the level of three-
dimensional structure. This has led to the development
of numerous sophisticated methods, concerning, among
others, the analysis of structural evolution [1] and the
structure-based design of new drugs [2].
For the comparison of protein surfaces in particular, a

family of methods is based on the reduction of the di-
mensionality of the system. The concept of projecting a

three-dimensional protein structure to two dimensions
was first introduced by Fanning et al. under the term
‘molecular cartography’ [3]. They presented this notion
as a novel method for studying the entire surface of a
protein, emphasizing on the topography of antigenic
sites. It involved conversion of the protein structure into
a triaxial ellipsoid, followed by its transformation into a
graticule (a latitude/longitude grid). Pawłowski and Godzik
later expanded on this approach by annotating protein
surface maps according to the physicochemical properties
of the exposed residues (e.g., charge or hydrophobicity), as
a means to compare evolutionarily related proteins [4].
Even though a number of modifications to the afore-

mentioned methodologies for two-dimensional protein
representation have been proposed [5–7], molecular car-
tography has not found much use in the literature. This
may be partly due to the significant amount of effort that
is required to manually convert the atomic coordinates of
a PDB file first into a spherical structure and then into a
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map. Visualizing the distribution of a particular physico-
chemical property on the surface further increases the
complexity and the overall approach becomes increasingly
tedious. A few applications that implement molecular car-
tography algorithms are available (SURF’S UP! [8], PST
[9], Udock [10]), but the range of supported physicochem-
ical descriptors for visualization is typically limited to
charge and hydrophobicity. Integrating other predictors is
either unfeasible or not straightforward for the end user,
creating an obstacle for specialized analyses. Moreover, an
application that harnesses the power of multiprocessor
systems to simultaneously render multiple protein surface
maps is not to this day available. This would be very
useful, for example, when visualizing entire molecular
dynamics simulations or comparing the members of a
large protein family.
To fill these gaps, we introduce Structuprint, a new

tool for visualization of protein surfaces in two dimen-
sions. Its name is a combination of the terms ‘structure’
and ‘fingerprint’, alluding to the fingerprint-like figures
that it generates (see Fig. 1 for an example). Structuprint
can produce single 2D maps starting from a PDB file, or
GIF animations from multiple files. It is designed with a
focus on scalability and extensibility. The tool can utilize

multiple CPU cores on GNU/Linux and OS X machines
and can easily incorporate any physicochemical predictors
provided by the user, other than those in its own default
set. The following sections describe the design choices be-
hind its algorithm, present the results from a benchmark
and show three characteristic examples of use.

Implementation
Amino acid properties database
Values for 328 properties/descriptors were calculated for
the 20 common amino acids with MOE 2010.10 [11]
and were stored within an SQLite database. In particular,
the database contains 11 categories of descriptors: i) 33
adjacency and distance matrix descriptors [12–16] (e.g.,
Balaban’s connectivity topological index [14]); ii) 41
atom/bond count descriptors [17, 18] (e.g., the number
of double bonds); iii) 18 conformation dependent charge
descriptors [19] (e.g., the water accessible surface area of
polar atoms); iv) the 16 Kier and Hall connectivity and
kappa shape indices [20, 21] (e.g., the Zagreb index);
v) 21 MOPAC descriptors [22] (e.g., the ionization po-
tential); vi) 48 partial charge descriptors (e.g., the total
positive partial charge); vii) 12 pharmacophore feature
descriptors (e.g., the number of hydrophobic atoms);

Fig. 1 The main steps of the algorithm executed by Structuprint. Here, a mould of the surface of the 3D structure of the leporine serum albumin
([PDB: 4F5V]) is first generated. The property values (e.g., charge) of the amino acids below the mould are retained. Then, the dummy atoms
consisting the mould are mapped onto a sphere. Finally, the sphere is projected onto a map using the Miller cylindrical transformation and a
smoothing of the property values is performed. The elements of the upper half of the figure were rendered with UCSF Chimera
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viii) 11 potential energy descriptors (e.g., the solvation
energy); ix) 16 physical properties [18, 23–27] (e.g.,
the molecular weight); x) 18 subdivided surface areas;
xi) 94 surface area, volume, and shape descriptors
(e.g., globularity). A detailed explanation of each de-
scriptor is provided in the properties codebook which
accompanies the tool. By drawing values from this
database, Structuprint can visualize the distribution of
a property across protein surfaces. Users can extend it
by adding measurements for more chemical compo-
nents or provide their own custom SQLite database in
order to incorporate novel descriptors.

Algorithm
Generation of a mould of the surface of a protein
The main steps of the algorithm implemented by Struc-
tuprint are shown in Fig. 1. The tool first produces a
mould of the protein structure’s surface in two steps.
The structure is initially placed within a 3D grid with
cell dimensions of 1 × 1 × 1 Å. Then, one dummy atom is
inserted in each empty grid cell that neighbours a single
protein atom. This process was previously described by
Vlachakis et al. [28] and is extended here, with dummy
atoms being assigned the identity of the amino acid to
which their neighbouring protein atom belongs. This re-
sults to a quite accurate approximation of the underlying
protein surface at the level of residue atoms.

Transformation of the mould into a sphere
The next step involves the conversion of the dummy
atoms mould to a sphere. To this end, the algorithm cal-
culates the coordinates of the centre of mass of the
mould c - i.e., the average position of all atoms -, and
the maximum distance of any atom vi from the centre of
mass (radius):

c ¼ xc; yc; zcð Þ

¼
Xn

i¼1
xi

n
;

Xn

i¼1
yi

n
;

Xn

i¼1
zi

n

 !
ð1Þ
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The coordinates of each atom are normalized with re-
spect to the centre of mass:
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Then, to transfer the dummy atoms onto the surface
of a sphere, each vector vi

' is scaled to a length equal to
the radius:
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Projection of the sphere onto a map
The Cartesian coordinates of each wi are converted to
latitude/longitude values (in units of radians) using the
following set of equations:

latitudei ¼ tan−1
z

0 0
iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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y

0 0
i

x 0 0
i

vuut
ð5Þ

For the two-dimensional projection, several techniques
were initially tested (e.g., the sinusoidal projection [29]
and the Hammer projection [29, 30]), before deciding on
the Miller cylindrical projection [29, 31]:

mi ¼ longitudei;
5
4
⋅ ln tan

π

4
þ 2
5
⋅latitudei

� �� �� �
ð6Þ

This projection was selected on the basis of its simplicity
and ease of understanding. It is one of the most popular
projections in cartography, as it can depict the entirety of
the sphere, including the poles. Latitude and longitude
lines are parallel and straight. Projection-induced distor-
tion is zero at the equator, increases gradually towards
higher latitudes, and becomes maximal at the poles. This
leads to significant overestimation of the distance among
atoms at the upper and lower parts of the figure (Fig. 1),
similarly to the areal exaggeration of Greenland and
Antarctica. Nevertheless, the Miller cylindrical projec-
tion introduces less polar distortion than the Mercator
projection, on which it is based.

Map smoothing
The previous step resulted in a map of the protein sur-
face with data points coloured by a property of choice.
However, this ‘primary’ map is not suitable for detecting
areas with an overall concentration of atoms with high
or low property values, which is one of the main benefits
of this cartographic approach. For instance, a small area
with both negatively and positively charged residue
atoms would not appear as almost neutrally charged, but
as a tiny dipole. To prevent the appearance of small ‘hot
spots’ and redistribute the property values among neigh-
bouring data points, the algorithm includes a smoothing
step. The map is iteratively divided in grid squares of
varying dimensions, from 0.001° × 0.001° to 0.5° × 0.5°,
with a step increase of 0.001°. In each iteration of this
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process, grid cells are assigned the average value of all
data points within them. Finally, the value of every data
point is defined as the average value of its corresponding
grid cell across all iterations. This smoothing method
ensures that areas with pronounced accumulation of
high or low values are easily discernible from those with
a mixed population.

User interfaces
The default interface of Structuprint is a cross-platform,
command-line interface (CLI). It consists of two execut-
ables: structuprint_frame and structuprint. The structu-
print_frame executable produces a TIFF figure from a
single input PDB file, using the R package ggplot2 [32] for
plotting. The structuprint executable is responsible for pro-
cessing multiple superimposed PDB files - either serially or
in a parallel manner -, generating a TIFF figure per input
file and a final GIF animation, rendered with the Imager
Perl module [33]. Most parameters of the underlying algo-
rithms can be modified by the user, such as the delay be-
tween animation frames, the background colour, and the
appearance of ID numbers on final figures. A full descrip-
tive list of the available parameters for both executables
can be found in Structuprint’s manual, distributed along
with the application and also available from its website.
Other than the CLI, Structuprint also comes with a

Graphical User Interface (GUI), available by default only
on GNU/Linux systems. The GUI is built with the Gtk2
toolkit and offers a user-friendly interface to all the com-
mand line arguments and options. As an example of its
capabilities, in Fig. 2 Structuprint’s GUI is producing an
animation on a multiprocessor machine using 30 cores.

Parallelism
On Unix-like systems (e.g., GNU/Linux, OS X), Structu-
print supports task parallelism when generating anima-
tions. Using the Parallel::ForkManager Perl module [34],
Structuprint can take advantage of multiple CPU cores by
assigning each input PDB file to a different processor. The
simultaneous rendering of multiple individual frames con-
siderably reduces the total execution time, allowing for
visualization of entire molecular dynamics simulations
within a reasonable time frame.

Results and discussion
Benchmark
To understand how execution time and memory consump-
tion scale with the number of atoms in an input PDB file,
we ran Structuprint against 700 randomly selected struc-
tures from the Protein Data Bank (Additional file 1). For
simplification purposes, multi-model PDB entries were ex-
cluded, as a large proportion of the atoms would overlap in
3D space, being essentially indistinguishable. The bench-
mark was performed on a GNU/Linux system with an Intel
Xeon E5-1650 v2 CPU at 3.50 GHz and 31.4 GB of mem-
ory. Structuprint was launched 10 times per PDB file and
the execution time was measured as the median time for
completion. Memory usage was measured similarly. We
then performed linear regressions using execution time and
memory consumption as dependent variables and number
of atoms as the independent variable. In both regressions,
we applied a Box-Cox transformation [35] to the dependent
variable to ensure that the residuals were normally distrib-
uted. The final fitted models are shown in Fig. 3. Execution
time increases linearly with the number of atoms, whereas

Fig. 2 Structuprint’s Graphical User Interface. The main window is split between two tabs for preparation of 1) animations and 2) single static
maps. The default parameters of the algorithm can be modified using the ‘Advanced options’ popup window. When Structuprint is rendering a
figure, its progress is shown in a temporary terminal
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memory consumption only increases with the square root
of the atom count. For example, on the aforementioned
system it took 88 seconds and 211 MB of RAM to generate
a Structuprint figure for a relatively small protein with
2,461 atoms ([PDB:1YLP]).

Examples of usage
To illustrate the utility of this tool, we present three differ-
ent examples of usage in this section. Two-dimensional

visualization with Structuprint enhances the representation
of protein surfaces and facilitates the interpretation of the
results in all three cases.

Visualization of molecular dynamics simulations
A seldom explored application of molecular cartography
involves the generation of 2D animations from a series
of PDB files. Here, we visualized a portion of a folding
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Fig. 3 Execution time (a) and memory consumption (b) of Structuprint, as a function of the atom count (n). The runtime complexity is O(n),
whereas the memory complexity is O

ffiffiffi
n

pð Þ. The uneven distribution of atom counts reflects the composition of the Protein Data Bank. As of
March 2015, ~99 % of entries in the PDB had an atom count of 61,000 or less, with the overall mean being 9,006 atoms

Fig. 4 Evolution of protein surfaces, as represented via Structuprint figures. a–c: Plastocyanin orthologs from Spinacia oleracea, Ulva pertusa, and
Ulva prolifera, respectively. d Chloroplastic fructose 1,6-biphosphatase from Spinacia oleracea. The colour depth denotes the FASA_H value across
each map, with darker areas having higher values of the descriptor. Despite the obvious conservation of surface shape and hydrophobicity, 2D
maps can distinguish even slight differences among evolutionarily related proteins. Inset: The maximum likelihood phylogenetic tree of the
proteins in panels a–d
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simulation of a variant of the chicken villin headpiece
subdomain (HP-35 NleNle) from the Folding@Home
project [36]. The part of the input simulation was 50 ps
long, with one frame being extracted every 0.25 ps. Each
frame was structurally superimposed to the previous one
with UCSF Chimera’s MatchMaker tool [37]. Then, two
separate animations were produced: one of the simula-
tion frames in ribbon representation and one of the cor-
responding 2D maps, with the topological polar surface
area - a measure of polarity - as the property of choice.
For comparison purposes, these two animations are
jointly shown in Additional file 2. This approach simpli-
fies the detection of conformational changes during the
course of the simulation, along with fluctuations in the
distribution of physicochemical variables.

Depiction of surface conservation
The evolution of protein surfaces and the conservation -
or lack - thereof is another domain in which Structu-
print can be applied. As an example, we performed a

brief phylogenetic analysis of three orthologs of plastocya-
nin - a protein involved in electron transfer in photosyn-
thesis [38] - for which crystallographic structures were
available. The amino acid sequences of spinach plasto-
cyanin (Spinacia oleracea [Swiss-Prot:P00289]) and
those of two green algal species (Ulva pertusa [Swiss-
Prot:P56274], Ulva prolifera [Swiss-Prot:P07465]) were re-
trieved from the UniProt database, along with the se-
quence of the spinach chloroplastic fructose 1,6-
biphosphatase ([Swiss-Prot:P22418]) that would be later
used as an outgroup. The sequences were aligned with
ProbCons 1.12 [39] and the best model of amino acid sub-
stitution was determined with RAxML 8.1.16 [40]. Ten
maximum likelihood trees were then inferred with RAxML
using the biphosphatase as the outgroup sequence, and the
best scoring tree was selected. Next, 2D protein surface
maps of the corresponding 3D structures ([PDB:1AG6,
1IUZ, 7PCY, 1SPI]) were produced with Structuprint, after
performing a structural superposition. For this example we
used a more complex descriptor, FASA_H:

Fig. 5 Three- and two-dimensional depiction of the native Rop structure (a) and the A31P mutant (b). In the 3D representation, the amino acid
side chain of the 31st residue - in the turn region - is shown in stick style. Positively charged residues are shown with blue colour, negatively
charged ones with red, and non-charged residues with white. With the 2D representation generated by Structuprint, large differences can be ob-
served not only in the shape of the surface, but also in the location of exposed negatively charged residues
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FASA H ¼ water accessible surface area of hydrophobic atoms
water accessible surface area of all atoms

ð7Þ

The results are shown in Fig. 4. There is significant
conservation of both surface structure and hydrophobi-
city patterns among all three species, with the algal
orthologs (Fig. 4b, c) exhibiting greater similarity, as ex-
pected. Finally, the representation of the chloroplastic
fructose 1,6-biphosphatase (Fig. 4d) is vastly different
from the others, highlighting the long sequence distance
among these proteins.

Comparison of conformational changes, e.g., due to
mutations
A third proposed application of Structuprint involves visu-
ally contrasting protein surfaces before and after events
such as mutations, ligand binding, pH or temperature al-
terations. We exemplify this case using a mutant of Rop, a
small regulatory protein from Escherichia coli with a na-
tive tertiary structure of a homodimeric four-helix bundle.
The native structure has been shown to be disrupted by a
single amino acid substitution (Ala31→ Pro) in the turn
region [41]. To show the consequences of this mutation,
we generated Structuprint maps of the wild type protein
([PDB:1ROP]) and the A31P mutant ([PDB:1B6Q]) after
superposition. Figure 5 illustrates the mutation-induced
conformation change, comprising different surface shape
and grouping of negatively charged residues.

Conclusions
We have developed a user-friendly application for two-
dimensional visualization of protein surfaces, optionally
supporting multicore processing and user-provided physi-
cochemical descriptors. Structuprint provides an alterna-
tive view of molecular surfaces, which - as shown in the
previous section - could be of great use to a variety of re-
searchers, including biochemists, structural biologists, and
biophysicists.

Availability and requirements
Project name: Structuprint
Project home page: http://dgkontopoulos.github.io/

Structuprint/
Operating systems: Prebuilt packages and installers

are available for GNU/Linux distributions (Ubuntu 14.04,
Debian 8, Fedora 22, CentOS 7, openSUSE 13.2), Windows,
and OS X. For all other operating systems, installation from
the source code is required. The GUI is available by default
only for GNU/Linux systems.
Programming languages: Perl 5, R
License: GNU GPLv3+
Any restrictions to use by non-academics: None

Availability of data and materials
The datasets supporting the conclusions of this article
are included within the article and its additional files.

Additional files

Additional file 1: Table of PDB entries used in the benchmark.
Accession codes and atom counts of 700 random, non-multimodel
PDB entries that were included in the benchmark. (CSV 12 kb)

Additional file 2: Conventional and molecular cartographic
visualizations of a molecular dynamics simulation of the chicken
villin headpiece subdomain (HP-35 NleNle). Comparison between
animations produced with conventional rendering methods (UCSF Chimera),
and with 2D maps generated by Structuprint. The right half shows the
movement of exposed amino acids with high topological polar surface
area values (blue) during the course of the simulation. (GIF 4858 kb)
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