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Abstract
• Key message Several aspects of the life cycle of the
Périgord black truffle have been elucidated only recently,
while others remain either controversial or unstudied. In
this paper, we present a revised life cycle of this fungus and
highlight key aspects that have yet to be addressed or re-
quire further understanding.

• Context The hypogeous sporophores of several Tuber spe-
cies, renowned for their aromatic and gustatory qualities, are
widely commercialized. One of the most valuable species is
Tuber melanosporum Vittad., the Périgord black truffle also
known as “the black diamond”. However, many aspects of
T. melanosporum life cycle remain unsolved.
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• Aims In this work, we examine past and recent findings on
the life cycle of T. melanosporum, currently regarded as a
model system for Tuber species, with the view of highlighting
aspects of its life cycle which remain unsolved.
• Results Several aspects of its life cycle have recently been
elucidated (i.e. characterization of two mating type genes, het-
erothallism, prevalence of sexual reproduction on vegetative
propagation, exclusion of one mating type by its opposite on
ectomycorrhizas, dependency of ascocarps on their host for
carbon allocation), while others remain unaddressed.

Annals of Forest Science (2016) 73:105–117
DOI 10.1007/s13595-015-0461-1



• Conclusion Numerous additional aspects of the
T. melanosporum life cycle remain unsolved, such as exclu-
sion or competition mechanisms between ectomycorrhizal
mating types, factors involved in ascocarp initiation, the na-
ture of the connection linking ascocarps and mycorrhizas and
atmospheric nitrogen fixation.

Keywords Mating type . Competition .Male and female
gametes . Black truffle

1 Introduction

The genus Tuber belongs to the Ascomycota, Discomycetes,
Pezizomycota, Pezizomycetes, Pezizales and Tuberaceae. It
comprises at least 180 species (Bonito et al. 2013). Index
Fungorum recognizes 290 species, subspecies and varieties.
The genus Tuber displays a large geographic distribution, but
only in the Northern hemisphere (Jeandroz et al. 2008). It is
found throughout all of Europe including Scandinavia (Got-
land Island in Sweden) (Weden et al. 2004). Some species are
found in North Africa (Ceruti et al. 2003). The genus Tuber is
widespread in Asia (India, China, Mongolia) and present in
North America (Bonito et al. 2013).

The hypogeous sporophores of several Tuber species, re-
nowned for their flavour, are widely commercialized. The most
valuable species, by virtue of their aromatic and gustatory qual-
ities, are the three European species, Tuber magnatum Pico
(Piedmont white truffle), Tuber melanosporum Vittad.
(Périgord black truffle, also known as “the black diamond”)
and Tuber aestivum Vittad. (Burgundy truffle).

In this work, we examine past and recent findings on the
life cycle of T. melanosporum, currently regarded as a model
system for Tuber species, with the view of highlighting as-
pects of its life cycle which remain unsolved.

2 Lessons from the past

It has long been observed that Périgord black truffles grow
near tree roots, mainly those of oaks. In 1808, in the Vaucluse
department at Saint-Saturnin-les-Apt, a Frenchman, Joseph
Talon, sowed acorns at the foot of trees which had produced
Périgord black truffles and then transplanted the infected seed-
lings to new locations (Olivier et al. 2012). Several years later,
he observed Périgord black truffle ascocarps growing on his
plantations. At the end of the nineteenth century, the Minister
of Agriculture of Prussia directed a German forester, Albert
Bernhard Frank, to explore possibilities for truffle cultivation.
In 1885, Frank discovered the symbiotic relationship that ex-
ists between fungi and tree roots and called this fungus-root

association “mykorhiza”(Frank 1885). He also drew an illus-
tration representing a beech ectomycorrhiza found in the vi-
cinity of a truffle. Indeed, the drawn ectomycorrhiza does not
look like a true Tuber ectomycorrhiza. Frank was not the first
to describe ectomycorrhizas; however, he was the first to un-
derstand their function. Dangeard (1894) described
T. melanosporum ectomycorrhizas on Quercus pubescens L.
From 1890 to 1932, Mattirolo in Torino made numerous ob-
servations on truffle mycorrhizas (Mattirolo 1914). The first
experimental proof that Tuber spp. have the capacity to estab-
lish a symbiotic association with roots of their hosts was ob-
tained only in the late 1960s when Fassi and Fontana (1967)
succeeded in inducing the synthesis of ectomycorrhizas
through the inoculation of Pinus strobus L. with Tuber
maculatum Vittad. Likewise, Palenzona (1969) succeeded in
establishing mycorrhizal synthesis of T. melanosporum,
T. aestivum and Tuber brumale Vittad. on Corylus avellana
L. In the 1970s, then Chevalier and colleagues produced
T. melanosporum and T. brumale mycorrhizas under axenic
conditions (Grente et al. 1972; Chevalier 1973; Chevalier
et al. 1973; Chevalier and Desmas 1977).

More recently, studies based on genetic and genomic ap-
proaches (i.e. release of the genome sequence) have helped
mycologists to take a leap toward understanding the life cycle
and reproductive modes of these fungi (Lanfranco et al. 1995;
Rubini et al. 2007; Kües and Martin 2011; Rubini et al. 2014).
While these studies succeeded in solving some important
questions, they also brought to light unexpected features of
the life cycle of these fungi.

3 Questions recently answered

3.1 T. melanosporum is a heterothallic fungus

Within the Ascomycetes, sexually reproducing species usual-
ly follow one of the three basic sexual productive strategies:
homothallic, pseudohomothallic (or secondary homothallic)
and haploid heterothallic (Leisle and Klein 1996). Differing
to that for homothallic and pseudohomothallic species, in
heterothallic fungi, same clone mating is prevented. The
impossibility of mating truffle mycelia under controlled
conditions has precluded the investigation of their mating
strategies by direct approaches. Nevertheless, population
genetics studies have been used to address this key
biological aspect. Bertault et al. (1998, 2001) were the first
to use co-dominant molecular markers for a large-scale
screening of T. melanosporum populations and found an ex-
tremely low level of polymorphism over the whole study area
as well as the absence of any heterozygote ascocarp. These
authors then concluded that the narrow genetic variability
among populations resulted from a population bottleneck ex-
perienced by this species during the last glacial period, while
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the absence of heterozygotes was due to homothallism or even
exclusive selfing. Some of the conclusions drawn by Bertault
and colleagues were then challenged by subsequent studies
based on SSR (single sequence repeats) markers. Murat
et al. (2004) showed a significant genetic differentiation be-
tween European T. melanosporum populations, while Rubini
et al. (2005) and Riccioni et al. (2008) reported on the occur-
rence of outc ross ing bo th in T. magnatum and
T. melanosporum, respectively. As such, the SSR-assisted
screening of the gleba and the pool of spores recovered from
single T. magnatum and T. melanosporum fruiting bodies
showed the presence of additional alleles in the asci with re-
spect to the corresponding gleba in many of the samples
analysed (Paolocci et al. 2006; Riccioni et al. 2008). As a
result, this evidence not only undermined the hypothesis of
strict selfing but also prompted the authors to argue that the
gleba of truffles is largely made up of haploid hyphae of uni-
parental origin.

The conclusive evidence that T. melanosporum is not ho-
mothallic but an obligate outcrossing (heterothallic) fungus
was proved by studying the structure and organization of the
mating type genes in its genome (Martin et al. 2010, 2012).
Ascomycetes usually exhibit two mating types, Mat1-1 and
Mat1-2, two non-allelic sequences called idiomorphs (Coppin
et al. 1997; Debuchy et al. 2010). They encode transcriptional
factors that play a role both in the recognition between strains
of different mating types and during meiosis, by controlling
the production of pheromones and their receptors (Coppin
et al. 1997). In homothallic Ascomycetes, both Mat genes
are present in each strain. Conversely, in heterothallic fungi
the twoMat genes are never present in the same strain, as it is
the case in those of T. melanosporum (Martin et al. 2010;
Rubini et al. 2011a).

3.2 Tuber ectomycorrhizas are formed by haploid mycelium

SSR markers were also used to determine the identity and
ploidy level of T. magnatum ectomycorrhizas through the con-
trolled inoculation of the host plant with SSR-genotyped
sporal pools (Paolocci et al. 2006). These analyses provided
direct evidence that T. magnatum ectomycorrhizas originate
from primary haploid mycelium. After germination, the mei-
otic ascospores produce haploid mycelium, which colonizes
host root tips, forming ectomycorrhizas. The same process is
involved in T. melanosporum life cycle (Rubini et al. 2011b)
and possibly in all species of the genus Tuber. Particularly
relevant is the fact that each plant can be simultaneously col-
onized by different haploid mycelia, but the resulting
ectomycorrhizas remain spatially separated on the root appa-
ratus. Similarly, the presence of haploid ectomycorrhizas as
well as evidence of a spatial separation between
ectomycorrhizas from different fungal strains were then ob-
served on host plants from open-field conditions (Rubini et al.

2011b; Murat et al. 2013). It has been hypothesized that cell
surface factors might act at the pre-fusion level to prevent the
formation of anastomosis between strains and, consequently,
to maintain the genetic integrity of each strain during vegeta-
tive growth (Paolocci et al. 2006; Iotti et al. 2012).

In contrast to what is generally observed to occur in sym-
biotic Basidiomycetes, these data support the argument that
the mycorrhizas of symbiotic Ascomycetes are only formed
by primary mycelium and, in turn, that the life cycle of sym-
biotic Ascomycetes is prevalently haploid.

3.3 T. melanosporum strains of opposite mating types
compete for persistence on host plants

Rubini et al. (2011b) found only one T. melanosporum strain
per productive trees when ectomycorrhizas were randomly
collected around trees from a natural stand. However, while
monitoring the fate of fungal strains on artificially inoculated
plants the same authors found that 6 months after inoculation
with T. melanosporum ascospores, almost all of the seedlings
(11 of 12) had ectomycorrhizas of both mating types, while
18 months after inoculation, 7 of 12 of these seedlings had
only one mating type. Linde and Selmes (2012) analysed 85
2-year-old seedlings from several Australian nurseries. All of
these 2-year-old seedlings displayed ectomycorrhizas of both
mating types. Thus, at the mycorrhizal level, within 2 years
after inoculation, the competition appears to be very weak
between the two mating types. Would this be the case for
artificially inoculated seedlings transplanted to field condi-
tions? Observations made in Australia by Linde and Selmes
(2012) on T. melanosporum plantations set up between 2003
and 2007 showed that out of 16 productive trees, 8 displayed
only one mating type while on the remaining 8 plants,
ectomycorrhizas of both mating types were present, with
slightly irregular distribution. Murat et al. (2013) compared
two older plantations: one in Italy (Montemartano,
Q. pubescens and Quercus ilex planted in 1995) and one in
France (Rollainville, C. avellana, planted in 1991). In both
orchards, in large soil patches (up to 15 m2), all of the
T. melanosporum mycorrhizas displayed the same mating
type, but not the same genets as proved by SSR-assisted
genotyping of individual mycorrhizal root tips. From these
different studies, we can conclude that competition between
strains harbouring opposite mating types begins roughly
2 years after mycorrhizal establishment. Ten years after field
transplantation, this strong competition leads to the complete
exclusion of mycorrhizas of one mating type by mycorrhizas
of the other. Consequently, ectomycorrhizas of opposite mat-
ing type tend to be spatially confined in separate areas of the
truffle fields to form soil patches containing only one of the
two mating types. Rubini et al. (2014) recently reviewed the
practical implications related to competition between strains
of opposite mating types.
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3.4 Sexual reproduction overtakes vegetative propagation

As for the majority of ectomycorrhizal fungi (Bonello et al.
1998; Douhan et al. 2011), the genetic structure of
T. melanosporum in orchard results from a trade-off that takes
place between the vegetative propagation of ectomycorrhizas
along the roots and the formation of new ectomycorrhizas
following ascospore germination. In T. melanosporum or-
chards, genets that persist for several years and genets detected
only once have both been found. The former are less common
and are likely to spread via vegetative growth, the latter make
up the majority and likely derive from ascospore germination
(Murat et al. 2013). In these truffle orchards, gene flow occurs
mainly between closely situated genets (some metres) and less
frequently between more distantly spaced genets (more than
90 m) (Murat et al. 2013).

3.5 The maternal tissue of the ascocarps shares the same
genotype of nearby ectomycorrhizas

Rubini et al. (2011b) were the first to observe corresponding
genet ic prof i les between the maternal t i ssue of
T. melanosporum ascocarps and nearby ectomycorrhizas.
These similarities, later confirmed byMurat et al. (2013), were
observed in other ectomycorrhizal fungi (Guidot et al. 2001;
Zhou et al. 2001; Hirose et al. 2004; Lian et al. 2006), which is
consistent with the role of ectomycorrhizas in feeding the
nascent fruiting bodies (see below).

3.6 Ascocarp development depends on carbon allocation
by the host and can take several months

Measuring some micrograms at its birth, the developing asco-
carp can reach 50 to 100 g or more at the end of the maturation
process. It was claimed for a long time that truffle ascocarps
might be able to use dead host tissues or soil organic matter as
carbon sources through a saprophytic process and that they
became very early independent from the ectomycorrhizas
(Callot 1999). Using a 13C pulse-labelling technique, Le
Tacon et al. (2013) demonstrated, under field conditions, that
Tuber ascocarps are dependent on their hosts throughout their
development. Tuber mycorrhizas provide a slow, but domi-
nant pathway for carbon flux from trees to ascocarps.

The growth and development of T. melanosporum asco-
carps take several weeks/months and require carbon stored
in the host tree because they occurred after leaf fall (Le Tacon
et al. 2013). This is different to the ectomycorhizal Basidio-
mycetes, which produce fruiting bodies within a few days by
using recently assimilated carbon from the host (Teramoto
et al. 2012). Initiation of black truffle ascocarps begins in
May or June. Mature ascocarps are harvested from November
until March of the following calendar year.

4 Remaining unanswered questions

4.1 The exclusion of one mating type by the opposite one
and the structure and origin of gametes

4.1.1 How to explain the exclusion of one mating type by its
opposite in ectomycorrhizas?

The exclusion of one mating type by the opposite one in
ectomycorrhizas could be explained by the expression of
genes linked to the Mat locus or by the Mat locus itself. In
several Ascomycetes (Neurospora crassa Shear & B.O.
Dodge, Sordaria brevicollis L.S. Olive & Fantini, Ascobolus
stercorarius (Bull.) J. Schröt.), theMat locus is one of the loci
controlling vegetative incompatibility (Glass et al. 2000; Shiu
and Glass 1999). Vegetative incompatibility results in the
formation of a barrier system through cell-surface or extracel-
lular factors causing cell death resulting from plasmogamy
between non-compatible fungal strains. Anastomoses have
never been observed between hyphae of different
T. melanosporum strains grown under controlled conditions,
but have frequently been observed between hyphae of the
same strain (Iotti et al. 2012). Selosse et al. (2013) made the
hypothesis that vegetative incompatibility could explain the
exclusion of one mating type by the other from the same host
plant.

Exclusion is linked to competition and the question is how
two mycelia of different mating types compete in forming
ectomycorrhizas. This exclusion could be due to the release
of diffusible signals or derived as a consequence of physical
contact between ectomycorrhizas of different mating types.
One explanation could be that, under specific environmental
conditions and/or developmental stages of mycorrhizas, the
Mat1-1 mycelium encodes an extracellular compound toxic
for the Mat1-2 mycelium and vice versa. Rizwana and
Powell (1995) found that in Cryphonectria parasitica
(Murrill) M.E. Barr vic1 and vic2 heterokaryon, the incompat-
ibility function can be partially eliminated in protoplasts, sug-
gesting that cell surface molecules might be involved. Extra-
cellular compounds diffused by ectomycorrhizas in the soil
nearby may inhibit the growth of soil mycelia of the opposite
mating type. Additionally, the effect of hypothetical extracellu-
lar compounds should be confined to ectomycorrhizal stage
only as in vitro cultivated mycelia of opposite mating types
do not show any polarized growth or reciprocal inhibition (Iotti
et al. 2012). An alternative explanation is that physical contact
between mycorrhizas of opposite mating types determines the
onset of competition. However, as discussed earlier, at the my-
corrhizal level, it is likely that there are mechanisms operating
to prevent contact between strains to preserve their integrity,
regardless of their allelic configuration at theMat locus.

The environmental and clinical predominance of a given
mating type over the other occurs in different outcrossing
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fungi. Lin et al. (2005) demonstrated that a human pathogen
Basidiomycete, Cryptococcus neoformans (San Felice) Vuill.
can also reproduce through monokaryotic fruiting.
Monokaryotic fruit ing could occur through self-
diploidization or cell-cell fusion of genetically distinct part-
ners of a like mating type. This process explains why one
mating, usually the α type, can predominate on the other
one. This mechanism is unlikely to occur in T. melanosporum
fields. As such, for truffles harvested in areas where a single
mating type was present, ascospores bearing the opposite mat-
ing type were consistently observed to be present.

In summary, we cannot currently provide a definitive ex-
planation for either the mechanistic determinants or on the
biological implications underlying competition between
ectomycorrhizas of different mating types. We have simply
noted that competition between mating partners seems to be
counterintuitive to sexual propagation in heterothallic organ-
isms (Rubini et al. 2014). Further, it is still unknown whether
or not the host plant is somehow involved in this exclusion or
competition. According to observations made in the
Rollainville orchard (Lorraine, France), a single tree can be
colonized by two continuous patches, which seems to mean
that the host is not directly involved in the competition be-
tween the two mating types at the mycorrhizal level (Fig. 1).

4.1.2 Does the exclusion of one mating type by its opposite
exist in soils?

T. melanosporum can exist in soils in several forms such as
ascospores, germinating ascospores, free-living mycelium,
emanating hyphae frommycorrhizas, remainders of ascocarps
and ectomycorrhizas, or other forms like mitospores or
conidiospores. There are very few studies which address the

distribution of Tuber mating types in soils. Soil DNA kits
used for these studies do not allow for ascospore DNA ex-
traction, but do allow for DNA extraction from other forms of
fungal material (Parladé et al. 2013). Results obtained by
Murat et al. (2013) in two truffle orchards (Montemartano
and Rollainville) were found to be site-dependent. In
Montemartano, all soil samples exhibited a single mating
type, either Mat 1-1 or Mat 1-2, and this was shared with
the nearby T. melanosporum ectomycorrhizas. In Rollainville,
part of the soil samples exhibited fungal material harbouring
the Mat1-2 idiomorph, even next to sites in which the
ectomycorrhizas were formed by Mat1-1 strains; many soil
samples displayed both mating types, other soil samples ex-
hibited only the presence of only Mat1-1. The presence of
both mating types was also detected in soil samples collected
on productive patches of a naturally grown T. melanosporum
field (Rubini et al. 2011b). From these results, evidence
emerged that both mating types can be found in the soil, even
when only one is present on the ectomycorrhizas located
nearby. When only one mating type is detected in soil sam-
ples, it corresponds to the dominant mating type of the
ectomycorrhizas. Inefficient extraction and amplification of
the soil DNA could explain the fact that both mating types
are not always identified in soil samples. It is therefore con-
ceivable that fungal strains of both mating types need to co-
exist in productive soil, at least at specific temporal stages
(i.e. in spring when fertilization is thought to occur, Le Tacon
et al. 2014) even if only one mating type is present on the
ectomycorrhizas of productive trees. It is likewise plausible
that competition between the two mating types, which is ele-
vated at the ectomycorrhizal level, will not occur if one or both
mating partners do not establish functional ectomycorrhizas
with the host.
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4.1.3 What are the gametes?

As Tuber species belong to the Pezizales, their sexual cycle
cannot differ much from that of the majority of the other spe-
cies belonging to this order. In Pezizales, the ascogonium, or
the female structure, develops from haploid mycelium of one
mating type, often with an apical receptor called the tricho-
gyne. The ascogonium can be naked or it can be enclosed in
mycelium. The same haploid mycelium can form the anther-
idium, which produces the male elements (antherozoids). In
heterothallic Ascomycetes, the female and male elements de-
veloped from this hermaphrodite haploid mycelium,
harbouring the same mating type, are not able to mate (Nauta
and Hoekstra 1992).

The r e f o r e , we can a s sume tha t t h e hap l o i d
T. melanosporum mycelium colonizing host roots is equally
capable of giving birth both to antheridia, producing male
gametes (antherozoids), and ascogonia, producing female
gametes. Tuber ascogonia have been very rarely observed.
Parguey-Leduc and Janex-Favre published two pictures of a
T. melanosporum ascogonium with its trichogyne and its
ascogonial filament (in Callot 1999). The fact that the mater-
nal tissue of the T. melanosporum ascocarps always shares the
same mating type and genetic profile of the nearby
ectomycorrhizas (Rubini et al. 2011b; Murat et al. 2013) sup-
ports the assumption that it originates from the strain that
forms both ascogonium and the nearby mycorrhiza. Ascogo-
nium fertilization requires the entry of a male element of the
opposite mating type.

Themale elements have not yet been identified in the genus
Tuber. The fact that these male structures have never been
found could mean that the male function may be fulfilled by
any haploid tissues, such as haploid mycelium issued from
ascospores, or mitotic conidia, as suggested by Rubini et al.
(2011b). It has long been understood that for several
Neurospora species, mitotic conidia are able to act as
spermatia (Dodge 1932). Many Ascomycetes form asexual
spores (conidia) that serve as vegetative elements or as male
parents (Nelson 1996). Urban et al. (2004) described in soils,
where Tuber borchii Vittad. and Tuber oligospermum (Tul. &
C. Tul.) Trappe ascocarps were present, the existence of
anamorph structures producing mitotic conidia or
conidiospores. According to the authors, these conidia could
possibly play a role in the vegetative propagation of these two
Tuber species. Nevertheless, it is possible that these conidia
are linked with the male apparatus and, as such, could play a
role in the sexual reproduction as suggested by Healy et al.
(2012). According to these authors, Pezizales mitospores, in-
cluding Tuber mitospores, failed to form ectomycorrhizas on
seedlings of different species, consistent with the hypothe-
sized role of spermatia. However, the question of whether
conidia of Tuber species act as spermatia or agents of disper-
sion, or both, remains unanswered. Another question concerns

the origin of these conidiospores. Do they arise directly from
haploid mycelium resulting from germinating ascospores in
the soil or do they arise from antheridia previously formed
from haploid ectomycorrhizas?

Mitospores or conidiospores described by Urban et al. on
T. borchii and T. oligospermum and later by Healy et al. on
several other Tuber species have not yet been found in
T. melanosporum, but we can assume that they exist. If
mitospores are important for Tuber sexual reproduction, as
suggested by Healy et al. (2012), we can make the assumption
that climatic conditions could be critical for initiation of sexual
reproduction throughout the development of the mitospores,
expected to occur in late winter or spring of the year n−1. Le
Tacon et al. (2014) found a significant positive correlation
between January rainfall of the year n−1 and T. melanosporum
production in France, which could further support this
hypothesis.

4.1.4 How do male gametes survive?

A single tree can produce ascocarps during several consecu-
tive years with very little shift in the location of the fruiting
bodies from 1 year to the next (Murat et al. 2013). Moreover,
ascocarps are not found more frequently where two patches
border one another (Fig. 1), although their chances for mating
are expected to be higher in the zone of contact between two
mycorrhizal patches of oppositemating types. Both the female
partner and the male partner need to have established a stable
presence over several years in the same soil patch. The male
elements could survive in the soil several years after their
transfer from one patch to another by vegetative and sapro-
phytic means. However, it is difficult to believe that the male
elements can survive in the soil several years without estab-
lishing a functional link with a carbon supplying partner. It is
in fact largely accepted that ectomycorrhizal fungi, including
T. melanosporum (see below), do not rely on dead organic
matter as a carbon source (Treseder et al. 2007; Le Tacon
et al. 2013). Thus, an alternative explanation could be that
the male partner can survive in association with non-
classical hosts. Along this line of reasoning, we know that
truffle mycelium can be hosted by species, which form
ectomycorrhizas like those of the genus Cistus (Comandini
et al. 2006). It can be also hosted by orchids without forming
a classical ectomycorrhizas structure (Selosse et al. 1999) or
hosted by herbaceous plants, which could lodge the mycelium
without forming mycorrhizas.

Related to this concern, Gryndler et al. (2014) recently
reported on the association of T. aestivum mycelia with roots
of non-host trees and herbaceous plants. Regardless of the
modes of survival of the male elements present in the soil,
each of the two mating partners needs vegetative growth to-
ward the other to achieve the process of fecundation.
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4.1.5 How do gametes of opposite mating types meet?

To complete its life cycle, a heterothallic ascomycete needs to
produce an ascogonium cell that is fertilized, through the
trichogyne, by a male element produced by a strain of the
opposite mating type. The recognition between cells of oppo-
site mating types is mediated by diffusible pheromones that
are produced in a mating type-specific manner. In the
T. melanosporum genome, several key genes, related to bio-
synthesis and perception of pheromones, have been identified
(Martin et al. 2010; Rubini et al. 2012). To mate, the two
T. melanosporum mating partners have to be close enough to
one another to sense and be perceived via the pheromone
receptor system establishing their reciprocal presence (Rubini
et al. 2012). The transfer of fertilizing agents, such as detached
cells, spores, mitospores and so on, to ectomycorrhizas of the
opposite mating type could be favoured by animals, such as
worms, insects, small mammals or wild boars, or by the tools
used for orchard management. However, the close proximity
of two potential mating partners is not sufficient to engage the
fertilization process. Linde and Selmes (2012) showed in Aus-
tralian truffle orchards that about 40% of unproductive trees
sustain mycorrhizas of both mating types. Factors other than
the close vicinity of compatible gametes are thus necessary for
fertilization to take place. For example, a cold stress factor
could be necessary (Zampieri et al. 2011). Understanding the
factors that switch the pheromone signal transduction pathway
in T. melanosporum strains of different mating types may help
us to elucidate the biotic and abiotic determinants underlying
the entry of this fungus into the sexual phase.

4.2 Post fertilization events and the complexity of truffle
development

4.2.1 When do plasmogamy and karyogamy take place?

In Pezizales, after being trapped by the trichogyne, the
antherozoid can remain dormant or can fuse rapidly with as-
cogonium cells by plasmogamy. In T. melanosporum, we do
not know if plasmogamy takes place immediately after fertil-
ization. On the one hand, as highlighted earlier, molecular data
has shown that the gleba is a haploid and maternal tissue like
the peridium, whose cells prompt the walls to thicken. On the
other hand, each haploid ascospore, resulting from the kary-
ogamy between the two partners followed by meiosis, bears
either the Mat1-1 or Mat1-2 gene (Rubini et al. 2011a). The
dikaryotic cells of maternal and paternal origin are difficult to
see and molecular approaches have thus far failed to detect
dikaryotic cells of maternal and paternal origin at any stage of
truffle development.

We can therefore infer the genomic configuration of the
male partner only by analysing the spores. These results
have substantiated the view that the fertilization process,

and the resulting dikaryotic phase in Tuber spp., could be
spatially and/or temporally confined to the very early
stages of ascocarp development (Rubini et al. 2007). To
date, the reproductive phases downstream of fertilization
have yet to be traced molecularly. However, inferences
about the reproductive biology of truffles can be made
on the basis of morphological and microscopic analyses.
By observing a cross section of a T. melanosporum truffle,
it clearly emerges that white and black elements are pres-
ent: the former have traditionally been regarded as sterile
veins the latter as fertile veins as the spores localized
therein. The sterile veins are therefore thought to be made
by the maternal tissue and will remain white during the
whole process of maturation, while the fertile veins
should contain the fertile ascogenous, and thus hetero-
karyotic tissue (Fig. 2). These fertile veins which also
are white in non-mature ascocarps become brown and
then black when the spores are mature (Figs. 3 and 4).
However, before they measure 1 mm in diameter, no
ascogenous tissue can be microscopically detected in the
young ascocarps. Only maternal tissue can be observed.
Moving from these microscopic observations, it could be
then argued that plasmogamy occurs several weeks after
fertilization when the first fertile veins appear.

Conversely, once they have reached a diameter of about
1 mm, the ascocarps start to exhibit white fertile veins in
which plasmogamy have occurred, but not karyogamy. In-
deed, dikaryotic cells can be observed in this ascogenous tis-
sue (Fig. 5a). During ascocarp development, ascogenous cells
do not give rise to croziers like in many Pezizales. They con-
tinuously give birth to specialized cells, the ascus mother cells
(Fig. 5b), in which karyogamy and then almost immediately
meiosis occurs (Fig. 5c). The meiosis is followed by one
(Fig. 5d) or more postmeiotic mitoses, to give birth to four

Haploid
maternal
tissue

n+n
ascogenous

tissue

Asci

Haploid
ascospores

Fig. 2 Haploid maternal tissue and ascogenous tissue with asci and
ascospores in a semi-mature T. melanosporum ascocarp (light
microscope, 30-μm thick cut of Tuber melanosporum ascocarp without
staining)
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(or more) plurinucleate ascospores (Fig. 5e), whose walls are
formed by a double-membrane system inside the ascus mother
cell. In the near future, we expect that it will be possible to
dissect and genotype each single structure differentiated with-
in the ascocarp during its development to provide conclusive
evidence in support of our model (Fig. 6).

4.2.2 Why does it take several years for ascocarp production
to begin after host plantation?

Seedlings harbouring T. melanosporum ectomycorrhizas nev-
er produce ascocarps during the 2 years of the nursery phase.
Ascocarps are usually produced 5 to 20 years after plantation.
Thus, T. melanosporum cannot be considered an early-stage
ectomycorrhizal fungus like Laccaria bicolor (Maire) P.D.
Orton, Laccaria laccata (Scop.) Cooke, Scleroderma citrinum
Pers., Paxillus involutus (Batsch) Fr. and some other

Basidiomycetes which fructify 1 or 2 years after the establish-
ment of the symbiosis in the nursery (Buée et al. 2011).
T. melanosporum seems to belong to middle-stage
ectomycorrhizal fungi which fructify several years after the
establishment of the stand. Nevertheless, Tuber species do
not all behave in the same way. Fassi and Fontana (1967,
1969) obtained ascocarps of T. maculatum associated with
P. strobus in the second year after mycorrhizal establishment
in containers, and the following year by transplantation to new
pots.

We have not yet identified the factors involved in the
induction of the fructification of early- or late-stage
ectomycorrhizal fungi. Seedlings artificially inoculated
with T. melanosporum ascospores exhibit ectomycorrhizas
of both mating types (Rubini et al. 2011b). Thus, the
absence of one mating type cannot explain the absence
of fructification at this step. As reported above, after field
transplantation, strong competition occurs between
ectomycorrhizas of different mating types, which leads
to the formation of patches where only one mating type
is present. These patches could remain sterile if no
mycelia or gametes of the opposite mating type are pres-
ent in the soil. However, as pointed out earlier, close
proximity of male and female gametes of opposite
mating types is not sufficient to engage the fertilization
process. Unknown factors, which remained to be
discovered, are necessary for ascocarp initiation. Courty
et al. (2010) demonstrated that poplar clones differentially
control gene expression of their fungal associates. Tuber
fructification could also be under the genetic control of
the host. For the moment, no evidence exists to demon-
strate such a mechanism.

4.3 Does nitrogen fixation occur in T. melanosporum
ascocarps?

Barbieri et al. (2010) detected the expression of the nitroge-
nase gene nifH from Bradyrhizobia in T. magnatum asco-
carps; they found that the nitrogenase activity assessed by
acetylene reduction was comparable to that of young legume
nodules. Antony-Babu et al . (2014) proved that
T. melanosporum ascocarps are extensively colonized by
Bradyrhizobiaceae. They detected the nif genes in the asco-
carps, al though these genes were not rela ted to
Bradyrhizobiaceae but to unknown bacteria, suggesting the
involvement of other N2-fixing bacteria. Despite the presence
of these bacterial nif genes inside the T. melanosporum asco-
carp, N2 fixation was neither detected by acetylene reduction
assay nor by the use of 15N2 gas in immature and mature
ascocarps collected in two orchards in France (Deveau et al.,
unpublished data). Therefore, despite a similar taxonomic
community structure, the bacterial community within the as-
cocarps of T. magnatum and T. melanosporum would appear

Ascogenous 
tissue with asci    

Haploid maternal  
tissue 

Fig. 3 Haploid maternal tissue and ascogenous tissue of a mature
T. melanosporum ascocarp (dissecting microscope, 4× magnification)

Fig. 4 T. melanosporum black haploid mature ascospores in their asci
(light microscope)
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to differ at the functional level: bacteria would not participate
at all or would participate very little in the nitrogen nutrition of
T. melanosporum ascocarp in contrast to what occurs in
T. magnatum. However, more extensive analysis on multiple
orchards will be necessary to definitively determine whether
or not T. melanosporum ascocarps possess nitrogen fixation
abilities via the bacteria inhabiting the gleba. Indeed, it is
possible that this activity is expressed only in specific condi-
tions that remain to be discovered.

4.4 The link between ascocarps and ectomycorrhizas has not
yet been found

The existence of a physiological connection between
ectomycorrhizas and ascocarps and the allocation of carbon
by the host to truffles throughout their development has been
established (Le Tacon et al. 2013). However, this physical link
between truffle ectomycorrhizas and ascocarps has never been
directly observed. This is because it is not possible to grow

Fig. 5 Dikaryotic tissue,
karyogamy, meiosis and
ascospore differentiation in non-
mature ascogenous tissue of
T. melanosporum ascocarps (a, b
dilacerated ascocarp stained with
1 μM DAPI and Calcofluor
White Stain (Invitrogen) imaged
with Zeiss LSM 780 confocal
microscope at 40× magnification.
c–e 30-μm thick cut of
T. melanosporum ascocarp
stained with 1 μM DAPI and
observed under UV fluorescence
with an Olympus BX42TF
epifluorescence microscope at
63× magnification). a
Ascogenous tissue with
dikaryotic cells. b Young ascus
mother cells with two nuclei and
then one nucleus after
karyogamy. c Meiose in ascus
mother cells. d Individualization
of cytoplasm and cell wall around
the two haploid nuclei just after
the meiotic division in ascus
mother cells. e Ascogenous tissue
with plurinucleate ascospores in
ascus mother cell
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T. melanosporum ascocarps in controlled conditions, and har-
vesting ascocarps by digging is disruptive and damaging to
this very fragile connection. Observing ascocarps in con-
trolled conditions will be essential to describe this fragile
physical link.

5 Conclusions

In recent years, major questions concerning the life cycle of
T. melanosporum have been answered: characterization of the
two mating types, highlighting of heterothallism, prevalence
of sexual reproduction on vegetative propagation, exclusion
of one mating type by the other one on ectomycorrhizas and
dependency of ascocarps from their host for carbon allocation.

However, many aspects of T. melanosporum life cycle re-
main unsolved. One of these pending questions is related to
mitotic spores. They have been discovered in other Tuber spe-
cies but not in T. melanosporum. However, several indicators
support both their existence and their role as spermatia. We
make the assumption that mycelia of both mating types present
in the soil of trees producing truffles are able to survive in the
soil for several years by vegetative propagation or in association
with orchids, Cistus or any adventitious plants. These mycelia
can then produce spermatia to ensure sexual propagation. In
turn, spermatia themselves could survive in the soil for extended
periods. This is the most plausible scenario to explain the sta-
bility of ascocarp production in patches where one mating type
has been excluded on ectomycorrhizas.

While Tuber ascogonia have not been sufficiently de-
scribed, their existence is more than probable, which would
explain the unbalance between maternal and paternal tissues

in young ascocarps. We have yet to determine whether
spermatia are mitospores or antheridia.

Many other aspects of the T. melanosporum life cycle re-
main unsolved: competitive mechanisms between
ectomycorrhizal mating types, factors involved in ascocarp ini-
tiation, the nature of the link between ascocarps and mycorrhi-
zas, and atmospheric nitrogen fixation. A comprehensive un-
derstanding of these aspects of the T. melanosporum life cycle
would lead to a better management of black truffle orchards.
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Glossary

Antheridium Male structure producing male
gametes.

Antherozoids Male gametes produced by the
antheridium.

Ascocarp Fruiting body of fungi from the
Ascomycota phylum in which asci are
formed.

Gametophyte

Fertilization

Plasmogamy

Karyogamy

Ascogonium MAT1-1 Antheridium MAT1-1Ascogonium MAT1-2 Antheridium MAT1-2

Mycorrhizas
MAT1-1

Meiose

n ascospores 

MAT1-1 MAT1-2
Mycorrhizas

MAT1-2

n + n ascogenous tissue =
sporophyte

Ascocarp

n + n sporophyte 
+

n maternal
gamétophyte

ascospore 
dispersion

n gametophytic maternal
tissue

vegetative
propagation
of spermatia

Antherozoid

Fig. 6 Hypothetical life cycle of
T. melanosporum
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Ascogenous tissue n+n tissue formed from the
ascogonium after fertilization by
antherozoids. After plasmogamy, the
cells are dikaryotic with one nucleus
coming from the female element and
the other from the male element.

Ascogonium Female structure.
Ascospores Haploid sexual spores or meiospores

formed in asci.
Ascus An elongated tube-shaped or spherical

sac in which ascospores are formed.
Haploid
heterothallic

Fungi in which the two Mat genes are
never present in the same haploid strain.
They require two strains of different
mating type to mate.

Homothallic Fungi having both Mat genes in each
strain. Each haploid strain produces
male and female structures able to
mutually fertilize.

Karyogamy Fusing of the two haploid nuclei.
Mating type Ascomycetes usually exhibit two

mating type genes, Mat1-1 and Mat1-2
encoding transcriptional factors that
play a role both in the recognition
between strains of different mating type
and during meiosis, by controlling the
production of pheromones and their
receptors.

Plasmogamy Fusion of two haploid cells of opposite
mating types without fusion of the
nuclei.

Pseudohomothallic Fungi requiring two strains to mate, but
the nuclei that result from meiosis are
organized so that each mating type is
present in each ascospore.

Spermatia Haploid spores able to act as male
elements. Conidia, which are asexual
spores, can behave as spermatia.
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