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Abstract
This chapter is dedicated to the simulation of composite forming processes. It con-
cerns numerical methods for molding, at the different material scales, involving mul-
tiphysics analysis. From the different possible numerical techniques, we focus on a
stabilized finite element method for the resolution of the continuum equations (mass,
momentum and energy conservation), in an Eulerian framework, with a level-set ap-
proach for interface displacement treatment. Internal variables, such as the reticulation
rate or fiber fraction and orientation may be computed using models defined through
ordinary differential equations. Examples at the process scale, but also at the compos-
ite inner structure scales illustrate the capabilities of such numerical techniques.
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1 Introduction

In recent years, the use of composite materials has been widely diffused and continues
to evolve in the aeronautics, the aerospace and the automotive industries. Most of the
composites used are composed of an organic matrix and fiber reinforcements, ensur-
ing a certain level of physical properties, designed taking into account the material’s
anisotropy, with a large weight reduction when compared to traditionally used metal-
lic alloys. Thermoplastic or thermoset may be used as resins, whereas one may have
glass, carbon, or even natural-based fibers.
To produce composite parts, processes may be more generally grouped into three cat-
egories [1, 2]. The first one concerns short fiber reinforced matrices, involving fiber
transport with resin flow, as a non-Newtonian suspension being injected into a closed
mold or through a die. The second one involves highly viscous thermoplastics or
thermosets resins containing continuous or long discontinuous fibers, as well as high
fiber content rate. In this case, the reinforcement and the resin are heated and deform
together under an applied (compression) stress to form the required composite shape
like, for example, in compression molding of Sheet Molding Compounds. Finally, the
third category concerns porous media processes, when the reinforcement is composed
of continuous fiber networks or textiles placed in a (closed or open) mold into which
a low viscosity resin is injected or placed, heated and compressed, in such a way that
it impregnates the fibrous architecture.
Complex multiphysics phenomena, strongly coupled, arise in these different pro-
cesses: short fibers orient, interact and may aggregate; preforms are compressed and
may locally be subject to large deformations; the fluid flows in a medium that has very
high anisotropic features, undergoing simultaneously thermal and chemical solicita-
tions. Control of the process, in all the cases, remains difficult, and inner properties
like local fiber fraction and orientation, or residual stresses, strongly vary as a function
of process conditions. Numerical techniques may bring answers when comprehension
of what happens during the process is difficult, may provide quantitative values for the
influence of the different process parameters, allowing its improvement, enhancing its
productivity and reducing the development time.

2 Multiscale, multiphysics and multidomain modeling

Modeling of composite forming (and in particular when the resin is at the liquid state)
is thus very complex and may include simulating the preforming and the flow pro-
cessing stages. Preforming includes draping, braiding or fiber placement and has also
been object of the development of specific numerical applications, like in [3, 4], not
illustrated in this chapter. In the last decades, there has been also a huge progress on
simulation of the flow step, with different codes simulating the process, at different
scales.
To develop numerical models, one needs to first decide what is the scale of descrip-
tion of the physical mechanisms to study: microscopic, mesoscopic or macroscopic
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(Fig.1). At the microscopic scale, one distinguishes each fiber and resin flow is com-
puted. It may induce fiber motions, important, for example, in the comprehension of
the rheological behavior of suspensions. For continuous fibers assembled in tows, the
mesoscopic scale includes not only the study of the resin flow between the tows, but
also impregnating them. Most often, the tow is considered as an homogeneous porous
media. This dual scale structure is important, since one needs to ensure that the resin
fully saturates the inter-tow spaces, but also intra-tow ones, to prevent the appearance
of macro or micro voids. At the macroscopic scale, an homogeneous equivalent me-
dia being injected or compressed is considered, and simulation occurs for the forming
of the whole part. Even if this last is the one of interest for industrial and process
development purposes, material parameters and models may be very complex, with
data difficult to obtain experimentally. Then, it is useful to couple simulation at all
scales: at lower levels, one gets closer to what experiences the material and less inner
or homogenized properties are necessary.

(a) (b)

Figure 1: Spatial scales for composites: (a) fiber suspensions, with a macroscopic
or part scale and a microscopic one, composed of the resin and chopped fibers (b)
continuously reinforced composites, with a macroscopic scale, a mesoscopic (tow)
scale, and a microscopic (fiber) scale.

At all scales, the same general continuum mechanics approach is used and detailed in
the following. Mass, momentum and conservation equations are solved and consti-
tutive laws and internal variables evolution depend on the scale and on the observed
phenomena. Flow equations and classical thermo-rheological-kinetical coupling are
illustrated in the next section.
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2.1 Flow equations

Let us consider the flow of a fluid around a bundle of rigid fibers (chopped or con-
tinuous), thus placing ourselves at the microscopic scale. The injected resin may be
considered as a Newtonian or non-Newtonian incompressible fluid and the follow-
ing Navier-Stokes equations, coupled to an appropriate set of boundary conditions,
describe the fluid flow: 

ρf (
∂~v

∂t
+ ~v · ∇~v)−∇ · σ = ρ~g

∇ · ~v = 0

σ = 2 ηfε(~v)− pI

ε(~v) =
1

2

[
∇~v +t ∇~v

]
(1)

with ~v the resin velocity, p the pressure, ρ the resin density, ηf the dynamic viscosity
of the resin, σ the stress tensor, ε(~v) the strain rate tensor and I the identity tensor. In
most cases, injection pressures and velocities imply that inertia and gravity terms may
be neglected, leading to the Stokes equations. This set of equations needs then to be
coupled to a solid behavior model to take into account fiber motion or displacement.
Fig.2 shows an example of flow computation of a Newtonian resin between a network
of rigid static fibers, to illustrate the type of attended results, at the fiber scale.

(a) (b)

Figure 2: Illustration of resin flow computation across an array of unidirectional
fibers: (a) flow path and (b) velocity norm distribution [5].

To establish conservation equations at the mesoscopic or macroscopic scales, averages
or semi-analytic homogenization may be used, leading to two general cases.
In the first one, fibers are chopped, remain rather short and its concentration when im-
pregnated by the fluid is dilute or semi-dilute. Then, the overall media being injected
in a part (at the macroscopic scale) can be considered has an homogeneous fluid, with
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a stress tensor that may be decomposed in a fluid f and a fiber s (anisotropic) contri-
butions σ = σf +σs, where σf is defined as in Eq.(1) This last means that one needs to
follow, during part forming, the local evolution of fiber orientation and fraction. More
details will be given in throughout an illustration in Sec.3.4.1.
In the second one, fibers are gathered in yarns composing a textile reinforcement or
chopped but assembled in a dense mat, and the pore scale is very small when com-
pared with the flow length scale. In this case, Darcy’s law [6] is the most used to model
flow through this porous media, and is established by performing a volume average of
the Navier-Stokes equations describing the flow at the microscopic scale, supposing
that the solid skeleton composing the reinforcement is static and non-deformable, and
that the porous media is saturated. It is given by

ηfK
−1~q +∇p = 0 (2)

Here, ~q is the discharge rate, such that ~q = φ~v, where φ is the fluid volume fraction, or
porosity. The permeability, K, is a tensor for an anisotropic porous media. In the case
of unidirectional fibers packing, if the z axis of the coordinate system is taken in the
same direction as the fiber axis, the permeability tensor can be then written as follows:

K =

K⊥1 0 0
0 K⊥2 0
0 0 K‖

 (3)

with K⊥1 and K⊥2 the transverse permeability of the packing and K‖ the permeability
along the fiber axis.
Several articles use the Brinkman’s equations [7] instead of Darcy’s law to describe
this type of flow, by generalizing Navier-Stokes equations supposing the flow of a
Newtonian fluid through a swarm of fixed particles and writing:

ηfK
−1~q −∇ · [2ηeε(~v)] +∇p = 0 (4)

where ηe is the effective viscosity, which may be different from ηf . One advantage
of Eq. 4 is that it is an extension of the Stokes equation. Thus, numerical tools
developed for this latter may be used in the Brinkman’s case with a small amount of
implementations. However, its physical domain of validity is very restricted (small
fiber concentrations, when φ → 1, corresponding to very large permeabilities), and
theoretical analysis shows that it yields to ηe = ηf [8]. Nevertheless, the Brinkman
form will be preserved in the following, since it allows to treat numerically both Stokes
and Darcy cases, by considering extreme values of K and ηe. Sec.3.4.2 shows an
example of flow on one of these cases.

2.2 Thermal-rheological-kinetical coupling

Liquid forming processes involve more complex physical phenomena than ”just” solv-
ing a fluid (and solid) mechanics problem. In fact, modeling these processes involves
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studying the coupling between this problem, the thermal one and, for some resins,
like thermosets, the polymerization or degree of curing reaction. In fact, resin cure af-
fects its viscosity, which modifies the flow pattern. Higher viscosities imply also more
pressure and higher deformation and motion of the fiber reinforcement, that changes
the permeability, influencing the resin flow. Temperature affects directly the rheology,
changing the viscosity and modifying the reinforcement geometry by thermal dilata-
tion. In addition, polymerization impacts thermal transfer, since curing is exothermal,
producing heat, which also accelerates the reaction.
The temperature, governed by the energy conservation equation, depends of the heat
transfer by conduction in the resin, fibers and with the mold, the viscous dissipation
(which may often be neglected) and on the heat released by the chemical reaction
(function of the reaction kinetics). Let us suppose that one wishes to study directly the
homogenized composite media. This will allow us to establish a general form of the
energy equation). Then, the heat equation in the absence of viscous dissipation, of the
convection-diffusion-reaction type, is written as follows:

ρcp(
∂T

∂t
+ ~v · ∇T )−∇ · (λ∇T ) = Hαf(α) (5)

Here, ρ and cp are, respectively, the composite density and specific heat, whereas λ
is the thermal conductivity, which is, for an anisotropic media, also a tensor. All are
dependent on the fiber fraction and the latter most often on other inner geometrical
parameters, such as orientation. The source term corresponds to the polymerization or
cure reaction and is a function of the cure enthalpy,Hα, and of the cure rate, f(α). The
evolution of the degree of cure α is obtained by solving a simple advection equation
with a source term, the cure rate:

∂α

∂t
+ ~v · ∇α = f(α) (6)

Here, α is the degree of cure and f(α) is function of the cure kinetics model chosen.
One of the most general and widely used is the Kamal and Sourour model [9], that has
the form

f(α) =

[
k1 exp(

E1

RT
) + k2 exp(

E2

RT
)αm

]
(1− α)1−n (7)

and where ki, m, n are material parameters, whereas Ei are activation energies. The
degree of cure and the temperature affect the viscosity, in opposite senses. More
generally, η = η0g(~v) · g(T ) · g(α). Dependence on ~v through the strain rate tensor is
taken into account through purely viscous models for classical non-Newtonian resins,
and the influence of temperature may be governed by Arrhenius law [10]:

g(T ) = exp

[
Ea
R

(
1

T
− 1

Tref
)

]
(8)
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where Ea is the activation energy, R the universal gas constant and Tref the reference
temperature. Finally, the degree of cure implies a modification of the viscosity ac-
cording to, for example, a percolation model, which is widely used for epoxy resins
[11],

g(α) = (1− α

αgel
)p (9)

where αgel is the extent of the reaction at the percolation threshold (the gel point) and
p is the percolation exponent, both material properties to be identified experimentally.
The reference temperature Tref is usually the glass transition temperature Tg, influ-
enced by the cure kinetics (when vitrification occurs) and that may be modeled using
the DiBenedetto model [12]

Tg = T 0
g +

(T 1
g − T 0

g )κα

1− (1− κ)α
(10)

where T 0
g and T 1

g are glass transition temperature values of the uncured and fully cured
resin, and κ is an adjustable structure dependent parameter. To illustrate what type of
computations use these features, we consider the overmolding of an electrical part
with an epoxy resin, Fig.3 [13].

(a) (b)

Figure 3: Numerical results obtained in overmolding of an electrical part with an
epoxy resin: (a) comparison of experimental end of fill positions and numerical pre-
dictions for two different filling configurations; (b) temperature (left) and degree of
curing (right) at the end of filling (above) and at the end of the post-filling (below)
stages [13].
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2.3 Orientation and structure development during processing

Short or long fiber resin reinforced polymers are mostly applied in injection or com-
pression molding. In particular, injection molding induces an oriented layered struc-
ture for this type of composites, where orientation depends on the flow pattern. For
example, in the vicinity of the injection gate, the material’s flow front adopts a radial
flow extension which is divergent and one gets a transverse orientation compared to
the flow direction. Far from the gate, the shear rate is weaker and fibers preserve a
state of orientation close to the initial one. Solidification occurring near the wall con-
tributes to the formation of a frozen-in oriented layer. Near this layer, the shear rate is
very important and fibers orient in the flow direction. Beyond the ones referred, other
parameters influence the orientation state such as the injection speed or the holding
pressure [14, 15, 16].
At the macroscopic scale, the most general descriptor of an oriented state is the proba-
bility distribution function of the orientation, ψ(~p, t), that represents the probability to
find, at time t, a fiber with axis oriented in the direction of the unit vector ~p. Computa-
tion of ψ can be performed using the Fokker and Plank equation [17], but this quantity
is difficult to handle numerically, and thus not commonly used. Other authors [18]
introduced the second order a2 (and more) orientation tensors, expressed as a function
of ψ and ~p, as a quantitative measure of the orientation state, such that:

a2 =

∫
~p

ψ(~p, t)~p⊗ ~p (11)

a4 =

∫
~p

ψ(~p, t)~p⊗ ~p⊗ ~p⊗ ~p (12)

a2 is symmetrical and positive definite, and its trace is equal to 1. For a random
orientation, its diagonal terms are equal to 1/3 and, for a random planar orientation, to
1/2. For a perfect orientation in the direction i, aii = 1, and the other values are zero.
Lipscomb [19] combined Jeffery [20] and Fokker and Plank equations to represent
the evolution of the second order orientation tensor by a convection-reaction equation,
containing also a fourth order tensor, which can be expressed as a function of the
second order one using a closure approximation. Folgar and Tucker [21] extended the
previous model to take into account the interaction between fibers. They obtained

∂a2

∂t
+ ~v · ∇a2 = ωa2 − a2ω + β(εa2 + a2ε− 2ε : a4) + 2Ci|ε|(I − 3a2) (13)

where ω is the vorticity tensor, β is a function of the fiber’s aspect ratio, |ε| is the
equivalent strain rate and Ci an empirical constant, named usually the interaction co-
efficient. Experimental data has shown that, for concentrated suspensions, kinetics of
orientation is much slower than the one predicted by Folgar and Tucker’s model. More
recently, other authors introduced modified versions such as the reduced strain closure
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model [22], the anisotropic rotary diffusion model [23] or a model taking into account
fiber-fiber interactions [24]. Most theories have derived the following expression for
the stress tensor [25]:

σ = −pI + 2ηf [ε+Npε : a4 +Ns(εa2 + a2ε)] (14)

where Np and Ns are parameters depending on the fluid’s viscosity, fiber aspect ratio,
orientation and concentration. A review is given in [14].
Fig.4(a), (b) and (c) illustrate, for a complex geometry and at the end of the filling
stage, the principal components of a2 [15, 16]. It allows a precise knowledge of the
fiber orientation distribution everywhere in the part and, starting from this orientation
distribution, we may deduce the thermo-elastic properties of the part.
As a first constitutive law, one may use a linear anisotropic thermo-elastic relation
(supposing that each point of the part cools from T to T0):

σ(T0) = C(a2, T0) [ε(T0)− α(a2, T0)∆T ] (15)

Components of both the stiffness tensorC and the dilatation tensor α can be expressed,
according to [26], as a function of the components of a2 and a4:

Cijkl = b1aijkl + b2(aijδkl + aklδij) + b3(aikδjl + ailδjk + ajkδil + ajlδik)
+b4δikδkl + b5(δikδjl + δilδjk)

(16)

αij = P1aij + P2δij (17)

The different constants bi are identified for an unidirectional composite using, for
example, Mori-Tanaka homogenization theory [27], being the stiffness tensor of the
composite C expressed as a function of the stiffness tensors of the matrix, Cm, and of
the fiber Cf . In the same way, parameters P1 and P2 can be expressed as a function of
the longitudinal and transverse thermal dilatation coefficients, α1 and α2.
Fig.4 shows, for the previous example, the distribution of the elastic modulus in the
different directions, computed from the stiffness tensor, and using the described semi-
analytic methodology [15, 16].

3 Advanced numerical techniques and macroscale sim-
ulations

For multiphase and multiphysics flows as those encountered in the referred processes,
either with short or textile reinforcements, different numerical techniques have been
proposed to solve the conservation equations, coupled to the constitutive ones. The
most popular ones are the finite difference method (FDM) [28], the finite element
method (FEM) [29, 30, 31, 32, 14], the boundary element method (BEM) [33, 34, 35,
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(a) (b) (c)

(d) (e) (f)

Figure 4: Illustration of fiber orientation and elastic modulus calculation on a proto-
type part (courtesy of Schneider Electric), where the material used was a glass fiber
reinforced polycarbonate, with 20% fiber content, showing the results on half of the
geometry. Distribution of the different diagonal components of a2 at the end of the
filling stage: (a) a11, flow direction, with the injection gate represented on the right
(b) a22, height direction (c) a33, width direction (d) E11 (e) E22 and (f) E33 [16].

36], the smooth particle hydrodynamics (SPH) method [37], as well as reduced order
methods [38, 39]. Review of the literature for injection molding (mostly used for short
fiber composites) may be found in [32] and for liquid composite molding of continu-
ous reinforcements in [40]. Even if computational cost may be greater, finite elements
remain the most popular solution due to its capability to handle complex geometries
and are the ones used and described in this section.
In most cases, the resin does not completely fill the cavity at the beginning of the
process and it is necessary to simulate an impregnation or injection step, in particular
to determine void formation and vent placement. This mold filling simulation is a
typical problem of a moving boundary (fluid-air interface) with the computed velocity
field. To solve it, one may find in the literature two main approaches: the computa-
tion on a moving domain or an Eulerian framework, where there is one computational
domain composed of all the phases; the displacement of the phases as well as their
deformations, which is a Lagrangian computation of the velocity field, meaning gen-
erally that there is one computational domain per phase. Numerical simulation is still
strongly dependent on the meshing capabilities of complex geometries and one of the
drawbacks of Lagrangian approaches is that it often constrains the enforcement of the
boundary or interface meshes in the volume mesh. This task becomes more and more
difficult since, due to domain deformation, remeshing is required at almost each time
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step.
In Eulerian methods, the whole domain contains all the phases (fluid, air, mold, ...)
and boundaries are represented in an implicit way. It means that the boundary is not
given anymore by a surface mesh or any explicit representation but implicitly by a
scalar field which value can be accessed anywhere in the domain. Two representative
methods using such a field are the Volume Of Fluid (VOF) [41] and the level-set [42]
methods. In the following, a modified version of the latter will be detailed [43].

3.1 Implicit boundaries

To solve conservation equations in an Eulerian framework, one needs to define ma-
terial properties everywhere in the computational domain. To detail this multiphase
context and as a matter of simplification, let us consider a domain ω totally included
in the larger one, Ω, being Γ = δω the boundary of ω. η, ρ, K or λ, among others,
are heterogeneous fields, defined by their values inside and outside ω. In fact, these
properties are discontinuous from one phase to the other, and may be represented in a
general way as a variable field ξ within the mesh and through a function H , such that

ξ = ξωH + ξΩ\ω(1−H) (18)

whereH is an Heaviside function, usually equal to 0 outside ω and 1 inside (Fig.5(b)).
Dealing with such discontinuity is not affordable by any standard numerical method
and a smooth transition around the interface has been proposed [43].

(a) d̄(x,Γ) (b) H(x) (c) uε(x, ε) (d) mesh

Figure 5: Phase functions used to describe, in an implicit way, the different phases of
implicit boundaries computation. In this exemple, two phases are present [44].

3.2 Immersed subdomains and regularisation

From the previous description, one may say that ω is immersed into Ω. To represent
ω, an implicit function has been chosen, being the immediate candidate the signed
distance function, Fig.5(a):
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d̄(x,Γ) =

{
d(x,Γ) if x ∈ ω
−d(x,Γ) if x /∈ ω (19)

Reciprocally, the interface is completely defined by the zero value of the distance func-
tion, and the knowledge of ω is ensured by the definition of this function everywhere
in Ω. From d̄, one may calculate the Heaviside function, Fig.5(b), by:

H(d̄) =

{
1 if d̄(x,Γ) ≥ 0
0 if d̄(x,Γ) < 0

(20)

The Heaviside function enables to separate strictly the domains, but the counterpart
is that it reintroduces the discontinuity which has been left by the use of an implicit
function. The following implicit function:

uε = u(d, ε) = ε tanh(
d

ε
) (21)

enables the introduction of a thick interface which thickness is related to the parameter
ε. Moreover, uε approximates d and we recover Γ from it, for whatever ε. Then, a
smoothed Heaviside function can be introduced as well by:

Hε =
1

2
(1 +

uε
ε

) (22)

3.3 Multiphase flow and thermokinetical numerical resolution

Let us come back to the resolution of the conservation equations, and firstly the flow
ones, under the Brinkman form, Eq.(4). For the case of a resin impregnating a porous
media (one fluid, f , entering the cavity and air, a, venting it), material properties are
controlled by the thickness parameter ε, such that

η = ηfHε + ηa(1−Hε)
K = KfHε +Ka(1−Hε)

(23)

Brinkman’s problem may be solved using a mixed finite element method [45]. The
authors proposed a stabilized formulation which approximates ~v and p with finite di-
mensional spaces of continuous piecewise polynomials, such that ~vh|K ∈ P 1(K)d and
ph|K ∈ P 1(K), ∀K ∈ K. It enriches the velocity space with a space of bubbles (the
finer scale), using a polynomial function of order one, with a value equal to unity at the
center of the element and vanishing at its boundary. The enrichment performed stabi-
lizes the formulation for both the limit Stokes and the Darcy cases, with a modification
of bubble stabilization for both regions, to be compatible with stability and unicity of
the solution conditions. The element contribution to the linear system arising can be
written, in the matrix form [45]:
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[
Avv − Avb(A−1

bb )tAvb Avp − Avb(A−1
bb )tAbp

tAvp −t Abp(A−1
bb )tAvb −tAbp(A−1

bb )tAbp

] [
V
P

]
=

[
Fv
P

]
(24)

In what concerns the solution of the energy equation, as well as the ODE representing
the evolution of the different internal variables (like α or a2), these are generally equa-
tions of the convection-diffusion-reaction type. Classical techniques generate numeri-
cal instabilities, while diffusion problems may cause oscillations during the treatment
of thermal shocks.
To avoid stability difficulties due to convection, some techniques have been developed
that behave well on highly convective problems but are limited by their tendency to
denature the solution. Techniques to avoid oscillations during the treatment of thermal
shocks are well-known: one must adapt the mesh size or the time step in the direction
of the gradient. To be optimal on the solution of the two issues, two different stabi-
lization techniques are widely used in the literature: the SUPG (Streamline Upwind
Petrov Galerkin Method [46]) and the RFB (Residual Free Bubbles [47]) method.
In all the cases, the proposed formulation leads to the resolution of a sparse linear sys-
tem, which represents an important fraction of the overall simulation time. To solve
it, the PETSc library [48] may be used, with a classical preconditionned (ILU, Block
Jacobi,...) iterative method of the Krylov type (Conjugate Residual or GMRES).

3.4 Composite forming simulation illustrations

3.4.1 Compression molding

Compression molding is a high-volume, high-pressure method which is suitable for
molding complex and high performing parts. Thermosets (mainly) or thermoplastics
may be compression molded in different types of reinforcements, like unidirectional
fabrics, woven textiles, random mats or chopped fibers. The use of composite mate-
rials like Sheet Molding Compounds (SMC), which are compressed, has increased in
the last years, in particular in the automotive industry.
In the literature, several authors have modeled compression molding, but assuming
important hypothesis: a 2 − 1/2D model; a dilute regime for fiber concentration; de-
coupling between cure, temperature and flow; no anisotropy effects, in particular in
the thermal conductivity; perfect contact between the SMC and the mold (and between
the different layers of SMC). More recently, 3D simulations involving full coupling
have been shown [49], with an illustration given in Fig.6. In this case, a Sheet Mold-
ing Compound has been compressed. At the beginning, several layers where cut and
disposed in three different packs. Before curing begins to influence flow, one observes
the high deformation and the flow of the samples, under heating conditions. On the
right, complexity of the orientation obtained is plotted at the end of the compression.
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(a)

(b)

Figure 6: Simulation of SMC compression molding using Rem3D software [50]: (a)
evolution of the material inside the cavity (b) orientation distribution at the end of
filling, represented by the eigenvecteurs of a2 multiplied by its respective eigenvalues.
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3.4.2 Resin transfer molding

For the production of structural composites, one of the most promising routes is resin
transfer molding (RTM). In this process, the reinforcement is laid in the mold cavity
after which the mold closes. Once the textile has been enough heated, resin is injected
from one or several gates. Consolidation occurs before the mold opens.
Several variations of this process exist. One of the most used, in particular for very
large parts, is infusion: when the clamping forces required to keep the mold closed are
very high, a plastic film is used as an upper mold and vacuum is imposed, so that the
resin is injected. One other variation is HP-RTM, high pressure resin transfer molding,
used to produce parts with very high fiber volume fraction, i.e. very low permeability,
enabling a reasonable injection time [51].
HP-RTM (and also Compression RTM, C-RTM) simulation and experiments have
been studied in [51] using the above described finite element method. The first test
carried out was the injection of a resin into a small disk and a comparison between
analytic and numerical solutions was made, Figs.7(a) and (b), showing a good agree-
ment. In what concerns temperature, a strong gradient appears near the injection gate,
and a strong skin flow phenomenon is developed, as seen in Figs.7(c) and (d). Tem-
perature difference between a simulation made with or without thermo-rheo-kinetical
coupling is also illustrated, showing its importance since, in this last case, skin flow
does not occur.

3.5 Parallel mesh adaptation and high performance computing

Solutions obtained, for multiphase flows with very different properties, converge to-
wards a sharp or exact interface solution when ε → 0. This means that the proposed
methodology is based on generating a thickness ε small enough so that computations
are accurate. Since to represent uε one needs also several layers of elements within ε,
this may only be attained using anisotropic adaptive meshing and parallel implemen-
tations.

3.5.1 Automatic anisotropic adaptation

Anisotropic mesh adaptation enables to capture discontinuities or gradients of the so-
lution in flow, thermal, kinetical situations [52, 43], with a good accuracy at a very low
extra number of elements. Building unstructured anisotropic meshes may be based on
local mesh modifications, using a metrics field to redefine the lengths [53] and a re-
cently developed procedure optimal in terms of remeshing is here described.
Let N be a finite set of node numbers and K a mesh topology or a set of elements
that provides the element-node connectivity. Let us consider only the mesh topologies
composed of simplex elements (triangles, tetrahedra,...), K being a d-simplex (d is the
spatial dimension) composed of D = d + 1 vertices. The mesh generator described
adapts an initial mesh by iteratively modifying and optimizing it locally [53]. This
technique consists in the improvement of the quality of local cavities composed of
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(a) injection (b) pressure

(c) velocity norm

(d) temperature

Figure 7: Simulation of resin transfer molding using Rem3D software [50]: (a) evo-
lution of the material inside the cavity (b) pressure evolution throughout filling (c)
velocity norm in a thickness cut (d) temperature in a thickness cut, with or without
thermo-rheo-kinetical coupling [51].
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clusters of elements by remeshing. Two principles are enforced: the minimal volume,
which gets the conformity of the mesh, with no element overlaps; the geometrical
quality distribution, ensuring that, if the minimal volume provides several possible
cavity re-triangulations, then the one chosen is such that it provides the best worst
element. The geometrical quality, Q(K), is evaluated for each element K and varies
from 0 (worst) to 1 (best quality). It depends on MK , the metric of the element K,
which is thus the information needed by the mesher to generate a new mesh.
Construction of M may be done using the interpolation error analysis on a solution
field, for example, u, which may be a velocity, a phase function or other variable, or a
vector containing all. Following [52], let us define the edge vector as ~X ij = ~Xj − ~X i,
connecting nodes i and j, and the edge length distribution tensor at i as

X i =
1

|Γ(i)|
∑
j∈Γ(i)

~X ij ⊗ ~X ij (25)

where Γ(i) represents the nodes that share an edge with i. It may be established that
the metrics computed at the node is: M i = 1

d
(X i)−1.

Let us suppose that one wishes to generate a new mesh that equidistributes in each
edge a constant target interpolation error, etarget. It has been previously shown [54]
that this target error can be directly linked to a fixed number of nodes N (which may
also be related with the available CPU power), etarget = etarget(N). An a posteriori
interpolation error analysis states that the error along an edge ij on the solution field
u, eij , is eij = ∇uij · ~X ij , where ∇uij = ∇uj − ∇ui, nodal gradients in i and j
obtained with a gradient recovery procedure [52].
The optimal stretch factor, sij that must be applied to Xij to attain etarget may now be
used to compute the target metric given to the mesher, which allows the new mesh
(sequential) generation:

sij =
etarget(N)

eij
and M̃ i =

1

d
[

1

|Γ(i)|
∑
j∈Γ(i)

(sij)2 ~X ij ⊗ ~X ij]−1 (26)

An illustration of the type of result obtained in adaptation around one or several layers
of fibers is illustrated in Fig.8, where one may observe the mesh density around the
tows in (a) and (c) or the accuracy in the representation of the interface in (b).

3.5.2 Parallel computing

For complex 3D geometries and complex physical laws as the ones concerning com-
posites, parallel computation remains essential. It allows us to run complete simu-
lations with a reasonable precision, inaccessible (for memory and time limits) with
sequential runs. It also makes possible to speed up the simulation run such that the
global computation time will still be acceptable. In the last years, processor’s perfor-
mance has not increased by improving the clock rate but by multiplying the number
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(a) mesh (b) tow/resin interface (c) mesh and uε

Figure 8: Adapted mesh to accurately represent, in an implicit way, the interface
between tows and fluid: (a) mesh (b) isozero value of uε, distance to the fiber/resin
interface and (c) mesh and uε representation [55].

of cores in a CPU. Actual top supercomputers contain several hundreds of thousands
to millions of cores with hundreds of TB to PB of memory. It is thus necessary to
develop fully parallel applications that follow, at least, this multi- core CPU evolution.
Between the existing parallelization techniques, we have chosen to refer those devel-
oped and used in the former and following examples [56]. They are based on the
decomposition of the computational domain into several sub-domains, where each is
affected to one core. In the simulations illustrated above, most of the computation
time is spent on remeshing and on the resolution of several large linear systems.
In what concerns meshing, the chosen parallelization procedure uses the sequential
mesher described before in a massive parallel context, by following an iterative two
successive steps procedure [56]: independent adaptive meshing of each subdomain
with blocked interfaces; constrained repartitioning and interface displacement. Even
if several iterations are done, work per iteration decreases quickly. When a good qual-
ity mesh is obtained, a finite element load-balancing repartitioning step is performed.
All fields defined on the initial mesh may then be mapped on the new one.
For linear system resolution, parallelization has been performed by interfacing the
parallel partitionner with the PETSc library [48] and also by applying a multi-grid
preconditionner. An example illustrating more in detail the capabilities of parallel
computing and the performances of this method is shown in Sec.4.2. It has already al-
lowed solving direct flow simulations on fiber samples that required meshes of around
780 millions of nodes and linear systems of 3.6 billions of unknowns [57].
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4 Determination of equivalent properties and microscale
simulations

To obtain accurate models at the macroscopic scale, one often performs a homoge-
nization step. Semi-analytical homogenization, as the one presented in Sec.2.3, is a
well established and practical method to compute the effective properties of fiber re-
inforced materials, in particular at the solid state.
However, if one wishes to later extend it to the non-linear case (for example, by con-
sidering that the matrix is viscoelastic) or to the flow regime, these methods may not
give enough accuracy. The use of micro-mechanical and micro-rheology finite ele-
ment computations has thus increased in the last decade [58, 59, 60, 61]. In these
computations, properties are obtained by performing finite element simulations on
three dimensional ’Representative Elementary Volumes’ (REV) of the microstructure.
Generating several REVs allows to perform a sensitivity analysis to the topology of
the REV (size, number and spatial distribution of fibers or tows), as well as to the
mechanical or rheological solicitations. From all the numerical techniques used to
generate REVs, direct methods from 3D images will be the focus of this section.

4.1 Generation of representative numerical samples

Recently, imaging techniques, like X-ray tomography, have been used to obtain pre-
cise geometrical and topological information on microstructures, which allowed ex-
traordinary contributions in material science. The passage from the image to a finite
element mesh allows, on one hand, the construction of a numerical representation but,
on the other hand, may also reduce the size of the stored data. The first step (before
building a mesh) is usually to perform the image segmentation, that is, to partition
the image into its multiple objects, so that it becomes easier to analyze it [62]. The
result of this segmentation can be regions of the image where the pixels are similar
with respect to a characteristic or property (like, for example, the density), or extracted
contours. Secondly, a mesh is built from the segmented image by using different tech-
niques.
Recent work [63] proposes a novel technique to simultaneously segment and construct
a finite element mesh, using directly the 3D image data, and applies it to fibrous ma-
terials. For that, the Immersed Image Method is built, which is the interpolation of
the image’s pixel/voxel values (a sort of topographic distance function) on the nodes
of an initial mesh. The obtained field can approximately represent the original image,
depending on the discretization and on the overall number of nodes. Optimization of
the number of necessary nodes can be performed through anisotropic mesh adaptation
using the above described procedure, so that the obtained field accurately represents
the original image. To further progress towards segmentation, the mesh is adapted not
on the interpolated topographic distance function (the pixel/voxel value), but on uε. To
build this function, a reinitialization method has been implemented. This procedure,
coupled to mesh adaptation, allows segmentation but allows also to build up a mesh

19



with a smooth representation of a phase function distribution, usable in the aimed type
of application, Fig.9.

(a) original image (b) d̄(x,Γ)

(c) uε(d, ε) (d) mesh

Figure 9: Illustration of the results obtained for mesh adaptation directly from an
image: (a) original composite image, with 200 × 200 × 220 voxels (b) computed
distance function (c) computed regularized Heaviside function (d) final adapted mesh,
with 50 000 nodes.

4.2 Permeability of a composite

With computed velocity and pressure on a porous REV, permeability can be deter-
mined (at the micro or meso scales). For semi-analytic homogenization, three dif-
ferent approaches are most often used: the capillary model; models arising from the
hydrodynamic lubrication theory; the cell model. Hydrodynamic lubrication theory
models suppose the fibrous media as a regular cylinder spacing geometry and com-
pute an analytic solution for the Stokes equations inside this REV. The most popular
one for the transverse permeability of the array of cylinders is Gebart’s expression
[64].
In numerical homogenization, Darcy’s equation, defining permeability is directly con-
sidered. Thus, for at least three principal directions, one must compute
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K = ηf (
〈‖~v‖〉
〈‖∇p‖〉

) (27)

where 〈‖~v‖〉 and 〈‖∇p‖〉 are the averaged velocity and pressure gradient fields for the
considered direction, only computed in the fluid domain.
At the microscopic scale, numerical results can be compared with Gebart’s ones, by
considering a regular array of fibers, as illustrated in [55], for square and triangular
packings. A pressure gradient is imposed from left to right and the normal velocity
in the upper and lower planes is zero. Inside the fibers, velocity is also zero. Fig.10
illustrates a comparison between numerical and semi-analytic results, for different
fiber volume fractions. Overall results show that the computed values are closer to
lubrication model results for a low fiber volume fraction and closer to cell models for
high fiber volume fraction.

(a) (b)

Figure 10: Permeability determination for regular arrays of fibers and comparison
with semi-analytic solutions for (a) a square packing and (b) a triangular packing, for
different volume fraction of fibers [55].

However, fibers may be randomly placed in the fabric and do not generally follow
a strict organized structure (even for the case where one wishes to impose a certain
alignment). To assess the feasibility and capability of the overall procedure, a 3D test
case is presented, Fig.11 [63], which complexity implies that no statistic or equivalent
organized REV reconstruction is possible.
An image (900 × 900 × 220 voxels) issuing from 3D X-Ray tomography [65] con-
cerning the mat-reinforced sample is treated and a phase function equal to 1 inside the
fibres (solid) and 0 in the resin (fluid) phases is built. Finite element resolution of these
equations is done using the above described mixed stabilized finite element method,
with a generated mesh of 5 millions of nodes, from the image. In terms of computa-
tional time, mesh generation, with the overall adaptation procedure, was performed in
3 hours, whereas the Navier-Stokes resolution took only 10 min, on 96 CPUs. Results
detailed in Fig.11 were obtained by imposing a pressure gradient through the sample
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on one direction, and imposing no-velocity in the fibers, showing that: the mesh is
well adapted at the fluid-solid interface; the definition of this interface is very accu-
rate, as illustrated by the isovalue zero of uε; the computed velocity field enhances
well the acceleration in the interstitial spaces.

(a) image (b) metrics

(c) mesh (d) interface

(e) velocity (f) pressure

Figure 11: Permeability determination for a 3D complex sample: (a) original im-
age with 178.2 millions of voxels, (b) von Mises equivalent of the computed metrics
field, (c) final mesh of about 5 millions of nodes, (d) isovalue zero of the regularized
Heaviside, (e) computed velocity and (f) pressure fields [63].
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4.3 Stiffness tensor determination

A discussed previously, direct numerical thermoelastic simulations on REVs also al-
low the determination of the stiffness and dilatation tensors of the sample. Like before,
let us consider a single mesh which contains contains both fibers and matrix, Fig.12(a).
A tied contact between fiber and matrix is supposed, as well as between two inde-
pendent fibers. Knowing the stiffness and the thermal dilatation for fibers and resin,
Eq.18 is used to derive the stiffness and the thermal dilatation everywhere in the REV.
Several elastic thermo-mechanical tests are applied on this REV and numerically ho-
mogenized stiffness and thermal dilatation tensor are obtained. Numerical resolution
of this heterogeneous elastic problem may be performed using a mixed finite element
method [16], with forces imposed on each side of the REV. To avoid the imposition
of periodic boundary conditions, homogenization is performed on a smaller included
REV than the one where computations are done.
This type of computations have been performed by [16], who has shown that one
important issue was the optimization of the number of fibers in the REV in order to
obtain a stabilized result. For unidirectional aligned fibers, Fig.12(b) plots the com-
puted modulus in one of the principal directions, as a function of the number of fibers.
It is compared with Mori-Tanaka semi-analytic result showing that, for the sample
represented, 22 fibers provided a convergent result, using a very fine adapted mesh.

(a) (b)

Figure 12: Stiffness and dilatation tensor determination (a) typical Representative
Elementary Volume: the cube represents the computational domain (meshed) and in
red, the fibre-matrix interface (b) Young modulus as a function of the number of fibres
in the REV (the Mori-Tanaka modulus is 6.21 GPa), for a given mesh size (very fine,
in that case) [16].
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5 Conclusions

In this chapter, we have detailed conservation and constitutive equations involved in
multiphysics, multidomain and multiphase modeling of composites, which may be
either short, long or continuously reinforced. Advanced numerical techniques in-
volved in flow, thermo-rheo-kinetical and structure development computations were
presented. They include: mixed stabilized finite elements; Eulerian approaches and
modified level-set techniques; automatic anisotropic mesh adaptation and parallel
computing. Illustrations from different authors were presented, for forming at the
macroscopic scale and property’s direct numerical homogenization at the macroscopic
or mesoscopic scales. Examples included: short fiber reinforced thermoplastics injec-
tion molding, Sheet Molding Compound compression molding, resin transfer mold-
ing; permeability determination at the microscopic and mesoscopic scales; stiffness
tensor determination. As a conclusion, huge steps forwards have been achieved to con-
sider complex physics in molding simulations, but other advanced phenomena need
to be accounted which will surely induce new mathematical and numerical develop-
ments.
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