
HAL Id: hal-01284209
https://hal.science/hal-01284209

Submitted on 7 Mar 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Reducing the error in biomass estimates strongly
depends on model selection

Nicolas Picard, Faustin Boyemba Bosela, Vivien Rossi

To cite this version:
Nicolas Picard, Faustin Boyemba Bosela, Vivien Rossi. Reducing the error in biomass esti-
mates strongly depends on model selection. Annals of Forest Science, 2015, 72 (6), pp.811-823.
�10.1007/s13595-014-0434-9�. �hal-01284209�

https://hal.science/hal-01284209
https://hal.archives-ouvertes.fr


Annals of Forest Science (2015) 72:811–823
DOI 10.1007/s13595-014-0434-9

LETTER TO THE EDITOR

Reducing the error in biomass estimates strongly depends
on model selection

Nicolas Picard · Faustin Boyemba Bosela ·
Vivien Rossi

Received: 11 April 2014 / Accepted: 16 October 2014 / Published online: 21 November 2014
© INRA and Springer-Verlag France 2014

Abstract
• Key message Improving the precision of forest biomass
estimates requires prioritizing the different sources of
errors. In a tropical moist forest in central Africa, the
choice of the allometric equation was found to be the
main source of error.
• Context When estimating the forest biomass at the land-
scape level using forest inventory data and allometric mod-
els, there is a chain of propagation of errors including the
measurement errors, the models’ prediction error, the error
due to the model choice, and the sampling error.
• Aims This study aims at comparing the contributions of
these different sources of error to the total error, to prioritize
them, and improve the precision of biomass estimates.
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• Methods Using a 9-ha permanent sample plot in a moist
forest near Kisangani in the Democratic Republic of Congo
and seven competing allometric models, we estimated the
contributions of the different sources of error to the total
error of the per hectare biomass estimate, for plot sizes
ranging from 0.04 to 1 ha.
• Results When there was no a priori on which model being
the best and for 1-ha plots, the error due to the model choice
was the largest source of error (76 % of the total error).
Using weights to combine the predictions of the different
models into a single ensemble prediction strongly reduced
this error.
• Conclusion Collecting training data sets on tree biomass
at many sites would be needed to improve the precision of
forest biomass estimates in central Africa.
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1 Introduction

Estimating forest carbon stocks in an accurate, precise
and verifiable way is a current challenge for forest-based
projects to attenuate greenhouse gas emissions, such as
REDD+ projects (Angelsen et al. 2012). Estimating forest
carbon stocks from the plot to the national level involves a
combination of techniques, from field measurement to
remote sensing, that are mutually dependent (Gibbs et al.
2007). At the tree level, direct biomass measurement con-
sists in felling, drying and weighing trees. Because these
measurements are costly, labour-intensive and above all
destructive, they cannot be used at the forest level, thus
entailing the use of biomass allometric equations to convert
forest inventory data into biomass estimates. Allometric
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equations are statistical models that predict the biomass of
a tree from other dendrometrical characteristics (such as
diameter, height, wood density) that are easier to measure
and non-destructive. Several authors have highlighted that
current knowledge on allometric equations in tropical rain
forests needs improvement to get precise and accurate esti-
mates of carbon stocks (Basuki et al. 2009; Djomo et al.
2011; Alvarez et al. 2012; Ngomanda et al. 2014).

When using a field inventory of plots and allometric
equations, landscape-level estimates of forest carbon stocks
have an error (as defined by GOFC-GOLD 2012 and in
line with the IPCC 2006 guidelines) that can be broken
into two main components (Cunia 1987; Chave et al. 2004;
Wagner et al. 2010; van Breugel et al. 2011): (i) sampling
error, that is dependent on landscape heterogeneity, plot size
and shape, and the number of plots, and (ii) model error
which follows from the differences between the true plot
biomass values and the model predictions. Optimizing the
sampling design so as to minimize the sampling error is the
goal of the forest inventory planning. The model error, in
turn, can be broken into three main components (Chave et al.
2004; van Breugel et al. 2011; Molto et al. 2013): (iii) the
error due to the choice of the allometric equation, (iv) the
prediction error of the allometric equation, and (v) the error
on the predictors of the allometric equations, i.e. measure-
ment errors for dendrometrical variables such as diameter or
height, or estimation errors for species-specific traits such as
wood density. Finally, the prediction error (iv) breaks down
into two components: (iv-a) the error due to the uncertainty
on the model’s parameter values, and (iv-b) the residual
error of the model. While the former is a sampling-type
error that can be squeezed down by increasing the number of
observations used to fit the model, the latter represents the
inter-tree variability and is not reducible at tree level unless
additional predictors are included in the model.

Improving the precision and accuracy of landscape-level
estimates of carbon stocks requires reducing the errors at
each level of this chain of error propagation. For instance,
Hunter et al. (2013) quantified the impact on the precision of
biomass prediction of the measurement error of tree height.
Nevertheless, not all sources of error equally contribute to
the total error at the end of chain, and it is important to diag-
nose which sources of error contribute the most to address
them in priority. Most studies so far have highlighted that
the error due to model choice was prominent (Melson et al.
2011). van Breugel et al. (2011) compared the error due to
the model choice, the error due to the uncertainty on the
model’s parameters and the sampling error to predict the for-
est biomass at the landscape level in Panama. Molto et al.
(2013) compared the error due to the model choice and the
error on the predictors of the allometric equations to pre-
dict the biomass at the tree and plot levels in French Guiana.
Gonzalez et al. (2014) compared the error due to the model

choice and the error on the predictors of the allometric
equations to predict the forest biomass at the landscape
level in Peru. All these authors consistently concluded that
the error due to the model choice was the most important
source of error. However, none of these studies integrated
the whole chain of propagation of errors to prioritize the
different sources of error at the landscape-level.

Failing to integrate the whole chain of propagation of
errors may also result in underestimated confidence inter-
vals, which may lead to misleading results. Lewis et al.
(2013) and Kearsley et al. (2013) estimated the biomass
at the landscape level as if the biomass allometric equa-
tion was exact, with no associated model error. On the
contrary, Cohen et al. (2013) took account of both the sam-
pling error and of the model error, and showed that the
latter significantly contributed to the variability of the per
hectare biomass estimate at the landscape level. Consid-
ering only the sampling error and disregarding the model
error results in undervalued confidence intervals for the per
hectare biomass.

Recent development in biomass models has argued
that the biomass allometry based on diameter and height
was universal (i.e. valid across species and bioclimatic
zones), local variations stemming from variations in the
height:diameter relationship (Chave et al. 2014). Combined
with the fact that forest inventory data include diameter
but not height, this approach leads to height models inte-
grated into two-entries biomass models (Banin et al. 2012;
Feldpausch et al. 2012). Nevertheless, plugging height mod-
els into biomass models also means that the errors of the
former propagate into the latter (Fortin and DeBlois 2010).
The choice of the height model may also strongly influence
the biomass estimate, as recently shown by Kearsley et al.
(2013) whose reevaluation of the height:diameter relation-
ship in central Congo basin led to a lower estimate of carbon
stocks.

In this study, we decomposed the whole chain of prop-
agation of errors when estimating the forest biomass at the
landscape level to assess the relative contribution of the
different sources of error. The per hectare biomass was
estimated for a tropical moist forest in eastern Democratic
Republic of Congo. Seven allometric equations, among the
most commonly used for central African forests and includ-
ing two-entries biomass equations with an integrated height
model, were used to assess the error due to the model choice.

2 Materials and methods

2.1 Study area

The study was carried out in the Yoko forest reserve
(0◦17’44”N, 25◦18’50”E), 30 km South of Kisangani in the
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Oriental province of the Democratic Republic of Congo, and
in the Yangambi reserve (0◦46’48”N, 24◦27’25”E), 100 km
West of Kisangani (Boyemba Bosela 2011). The climate in
this area is equatorial of the Af-type (Köppen-Geiger classi-
fication), with an average annual rainfall of 1750 mm and a
mean temperature of 25 ◦ C. The relief consists of a plateau
interrupted with rivers. Soils are oxisoils that are typical of
the central Congo basin. The Yoko forest is moist semide-
ciduous forest, with Scorodophlœus zenkeri and Pericopsis
elata as typical species, but also includes large patches of
monodominant evergreen Gilbertiodendron dewevrei forest.
The area of the Yangambi forest that we considered consists
of former abandoned plantations (plantation date between
1937 and 1974), with the current dominant species being the
planted ones. Althought the Yoko and the Yangambi forests
differ in their species composition and history, they belong
to the same bioclimatic forest type that is, in the current state
of knowledege, the only factor that guides the choice of an
allometric equation in central Africa.

2.1.1 Forest inventory data

In April 2009, a 300 m × 300 m permanent sample plot was
set up in the Yoko forest and all trees with diameter at breat
height (dbh) ≥ 10 cm were inventoried. Their dbh, species
and spatial coordinates were measured. This 9-ha plot was
divided into K = 9 1-ha plots and each 1-plot was consid-
ered as a sampling unit. Because biomass exhibits positive
spatial autocorrelation (Keller et al. 2001; Chave et al. 2003;
Wagner et al. 2010), these K units are not true independent

replicates. However, we considered the spatial autocorrela-
tion at a spatial lag of 100 m to be small enough to consider
these pseudo-replicates as acceptable.

2.1.2 Biomass data

We used tree biomass data collected at Yangambi by Ebuy
Alipade et al. (2011) as a training data set to balance existing
biomass allometric equations. This data set includes 12 trees
from three species. We also used the dbh:height relationship
fitted by Kearsley et al. (2013) at Yangambi to convert two-
entries allometric equations (depending on height and dbh)
into single-entry equations (depending on dbh alone). It is
a Mitscherlisch equation fitted to 487 trees between 10 and
125 cm dbh, with a residual standard deviation of 4.221 m:

H = a − b exp(−cD) (1)

where D is tree dbh (in cm), H is height (in m), a = 36.4 m
is the maximum asymptotic height, b = 31.7 m is the dif-
ference between maximum and minimum height, and c =
0.0221 cm−1 is the shape parameter of the curve. For all
subsequent calculations, we used an average wood density
of 0.6 g cm−3 (Chave et al. 2005; Henry et al. 2010).

2.2 Biomass allometric models

To estimate the error due to the model choice, seven allomet-
ric equations were considered, including two pantropical
equations and five equations from central Africa (Table 1).
All models except those of Dorisca et al. were fitted

Table 1 Allometric equations to assess the error due to model choice

Reference Country No. Expression σ n Dmin Dmax

Chave et al. (2005) Pantropical II.3 ρ exp [−1.499 + 2.148 ln D+ 0.356a 1504 5 156

0.207(ln D)2 − 0.0281(ln D)3
]

Chave et al. (2005) Pantropical I.5 0.0509 × ρD2H 0.316a 1349 5 156

Dorisca et al. (2011) Cameroon 5 ρ × (
11.1956 + 0.040326D2H

)
0.374b 51 10 134

Dorisca et al. (2011) Cameroon 2 ρ × (325.5573 − 47.2984D+ 0.254c 55 10 134

2.2942D2
)

Fayolle et al. (2013) Cameroon 2 ρ exp [−1.183 + 1.940 ln D+ 0.188a 138 5 192

0.239(ln D)2 − 0.0285(ln D)3
]

Ngomanda et al. (2014) Gabon 5 exp [−4.060 + 4.062 ln D− 0.330a 101 12 109

0.228(ln D)2 + 1.431 ln ρ
]

Ngomanda et al. (2014) Gabon 11 exp
[−2.568 + 0.952 ln(D2H)+ 0.292a 101 12 109

1.189 ln ρ
]

In all these equations, the predicted quantity is the tree aboveground biomass in kg, D is dbh in cm, H is height in m and ρ is wood density in
g cm−3. The number (No.) is the model number in the publication. σ is the residual standard error of the model. n is the number of observations
used to fit the model. Dmin and Dmax are the minimum and maximum dbh (in cm) in the data set used to fit the model. The expressions of the
equations include the correction factor for back-transformation when the model was fitted to log-transformed data
aResidual of log-transformed data
bThe standard deviation of residuals is σD2.2

cThe standard deviation of residuals is σD2.15
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to aboveground dry biomass (as defined by the IPCC;
Eggleston et al. 2006). Dorisca et al.’s models were fitted
to total tree volume, which can be converted into biomass
by multiplying it by wood density. No correction factor for
foliage was applied in this case. All models were particular
cases of the following general expression:

f
(
B/ρμ

)=α+βf (D)+γ [f (D)]2+δ[f (D)]3+λf
(
D2H

)

(2)
where f is a transformation of variables (either the identity
function or the logarithm), B is tree aboveground dry
biomass (in kg), ρ is wood density (in g cm−3) and
α, β, γ, δ, λ, μ are the model coefficients. Polynomial mod-
els (i.e. with f being the identity function) were fitted by
generalized least squares regression using a power model for
the residual variance, to account for the heteroscedasticity
of residuals. Log-transformed models (i.e. with f being the
logarithm) were fitted by ordinary least squares regression.
In that case, the back-transformation induced a bias that was
corrected using a correction factor exp(σ 2/2), where σ is
the residual standard error.

Four models used only dbh and wood density as pre-
dictors (i.e. λ = 0), whereas three models further included
tree height as a predictor. Because tree height was not mea-
sured at Yoko, it was predicted using (1). Plugging (1) into
(2) means that biomass was predicted from dbh and wood
density only.

2.3 Error propagation

2.3.1 Sampling error

At the South-East corner of each 1-ha plot, square sub-
plots with side s (in hm) were located, with s = 0.2, 0.4,
0.6, 0.8 and 1 hm. The per-hectare biomass Bk(s) for the
kth subplot (k = 1, . . ., K) with side s was computed from
the collection of trees inventoried in this subplot. The sam-
pling error for a subplot with side s was computed as:∑K

k=1[Bk(s) − B(s)]2/K , where B(s) = ∑K
k=1 Bk(s)/K is

the mean per-hectare biomass of the K subplots with side s.

2.3.2 Error due to the model choice

Each biomass allometric model m gave an estimate Bm of
the tree biomass. Let πm be the weight associated with
model m, giving its probability to the best among the ensem-
ble of allometric equations (so that

∑
m πm = 1). The

estimate of tree biomass according to the ensemble of mod-
els was B̄ = ∑

m πmBm, and the error due to the model
choice was

∑
m πm(Bm − B̄)2. Without further data, all

models were equally likely to be the best, which meant
πm = 1/M, where M = 7 was the number of models in the
ensemble.

Given a training data set, Bayesian Model Averaging
(BMA) can be used to estimate the weights πm (Li et al.
2008; Picard et al. 2012). BMA assumes that there is an
unknown “true” model, and that the deviations between
each model m of the ensemble and this “true” model can
be described by a Gaussian distribution. Thus, the distribu-
tion of tree biomass according to BMA is the mixture of
M Gaussian distributions:

∑
m πm φ(B; Bm, σmD2), where

φ(·; μ, σ) is the density of the Gaussian distribution with
mean μ and standard deviation σ . The standard error of
the deviation between model m and the true model was
assumed to increase proportionally to the square dbh. The
training data set at Yangambi was used to estimate the pos-
terior probabilities πm and the standard deviations σm (see
Appendix A for details on the estimation method).

2.3.3 Prediction error

Error due to the uncertainty on the model’s coefficients.
Computing the error that follows from the uncertainty on
the values of the models’ coefficients requires knowing
the variance matrices of the estimator of these coefficients.
Unfortunately, these variance matrices are rarely given in
publications, and the original data used to fit the model
are rarely available to compute them. At best, the variance
(or confidence interval) of the estimate is given separately
for each coefficient α, β, . . . , μ, a, b, c (Dorisca et al.
2011; Fayolle et al. 2013; Ngomanda et al. 2014), but
this is not even always the case (e.g. Chave et al. 2005;
Kearsley et al. 2013). As often with polynomial regres-
sion (on log- or non-transformed data), the estimates of the
model coefficients are strongly correlated, and approximat-
ing the variance matrix of the estimator of α, β, . . ., by the
diagonal matrix with diagonal elements Var(α̂), Var(β̂), . . . ,
may strongly inflate the prediction error.

Therefore, to compute the error due the uncertainty on
the models’ coefficients, we used an approximate Monte
Carlo method based on the simulation of the data set used
for model fitting. This Monte Carlo method is defined
by pseudo-algorithms 1 and 2 for models (1) and (2),
respectively.
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By repeating the Monte Carlo procedure J times, J out-
comes of the coefficients are obtained, whose empirical
distribution approximates the distribution of the coefficients
estimator. The distribution of the Monte Carlo outcomes is
not exactly the same as the distribution of the estimated
coefficients because the design matrix of the original data
used to fit the model is not the same as the design matrix of
the simulated data set. Yet, we assume that the main features
of the data set were captured by the simulation method.

Residual error The residual errors of models (1) and (2)
were also computed using a Monte Carlo method, by adding
a random error to the models’ predictions. This method is
defined by pseudo-algorithms 3 and 4 for models (1) and
(2), respectively.

2.3.4 Errors on the model predictors

Tree dbh and height are measured and thus have a mea-
surement error. Specific wood density is estimated from the

literature and also has an associated estimation error. In this
study, we disregarded the estimation error of wood density
and focused on the measurement error associated with dbh
and height. Dbh was assumed to be measured with a 0.5 %
error (i.e. to the nearest centimetre for a tree dbh of 1 m),
see pseudo-algorithm 5. Because tree height was actually
not measured at Yoko but predicted from (1), measurement
error on height was included as an additional residual error
of model (1). Using the results of Hunter et al. (2013), mea-
surement error on height was assumed to have a Gaussian
distribution with mean zero and standard deviation 7.3 m
(pseudo-algorithm 6).

2.3.5 Total error

The total error in the estimate of the per-hectare biomass
was obtained by combining all the sources of errors previ-
ously listed, and was computed as:

S2
tot(s) = 1

KJ

K∑

k=1

M∑

m=1

J∑

j=1

πm

[
Bkmj (s) − B(s)

]2
(3)

where Bkmj (s) was the per-hectare biomass for subplot
k = 1, . . . , K with side s predicted using model m = 1, . . . ,
M at iteration j= 1, . . . , J of the Monte Carlo algorithm, and
B(s) = ∑

k

∑
j

∑
m πmBkmj (s)/(KJ ) was the mean per-

hectare biomass. The subplot biomass Bkmj was computed
using pseudo-algorithm 7.

All computations were performed using the R software
(Development Core Team 2005). For the Monte Carlo
algorithm, J = 5,000 iterations were performed.

The different sources of error did not contribute to the
total error in the same way. Whereas the sampling error
and the error due to the model choice were computed as
between-level variances for a modal variable (i.e. the plot
and the model, respectively), the prediction error and the
error on the model predictors were obtained as additional
noise by a Monte Carlo method. Therefore, the total error
(3) could be partitioned using the decomposition of the
total sum of squares in two-way analysis of variance for a



816 N. Picard et al.

balanced model, where the plot and the model played
the role of the explanatory variables, and the prediction
error and the error on the model predictors jointly corre-
sponded to the residual error of this analysis of variance
(see Appendix B for details on this error decomposition).
This partition of the total error resulted in an additional error
term, namely the interaction between the plot and the allo-
metric equation. This terms follows from the fact that the
difference in predicted tree biomass between two allomet-
ric equations depends on tree dbh. Therefore, the difference
in predicted plot biomass between two allometric equations
depends on the tree size distribution within the plot.

The residual error term of the analysis of variance could
further be decomposed by alternatively switching on/off in
the Monte Carlo algorithm each contributing source of error.
By default, in Algorithm 7, all sources of error are switched
on. The uncertainty on the coefficients of the H:D model
could be switched off by replacing pseudo-algorithm 1 with:
set ã = a, b̃ = b, c̃ = c. The uncertainty on the coef-
ficients of the allometric model could be switched off by
replacing pseudo-algorithm 2 with: set α̃m = αm, β̃m = βm,
. . . , λ̃m = λm. The residual error of the H:D model or the

measurement error on height could be switched off by
replacing pseudo-algorithm 3 or 6 with: set Ĥ = H . The
residual error of the allometric models could be switched off
by replacing pseudo-algorithm 4 with: set X̂m = Xm. The
measurement error on dbh could be switched off by replac-
ing pseudo-algorithm 5 with: D̂ = D. The difference in
total error when a particular source of error was switched on
and when it was switched off gave the contribution of this
source of error to the total error.

3 Results

3.1 Biomass estimate based on 1-ha sampling plots

There was strong disagreement among the allometric equa-
tions on the estimate of the aboveground biomass (Fig. 1a–
g). Two models (Dorisca et al.’s model 5 and Ngomanda
et al.’s model 11) brought low estimates (minimum value:
251 tonne ha−1). Two models (Chave et al.’s model II.3 and
Fayolle et al.’s model 2) brought high estimates (maximum
value: 442 tonne ha−1). The three remaining models brought
intermediate estimates. The two models that brought low
estimates used D2H as a predictor of tree biomass, whereas
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Fig. 1 Estimate of the aboveground biomass at Yoko, DRC, according
to different estimation methods based on 1-ha sampling plots (the dot
indicates the estimate; the whiskers show the 95 % confidence interval;
the value given on top of the upper whisker is the ratio of the ampli-
tude of the 95 % confidence interval to the estimate). Tree biomass is
computing using a Chave et al.’s model II.3, b Chave et al.’s model I.5,
c Dorisca et al.’s model 5, d Dorisca et al.’s model 2, e Fayolle et al.’s
model 2, f Ngomanda et al.’s model 5, g Ngomanda et al.’s model 11,
h and j the mean of all aforementioned models with equal weights,
i and k the mean of all aforementioned models with BMA weights. In
a–i, all sources of errors are included; in j–k, only the sampling error
is included
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the two models that brought high estimates did not used tree
height as a predictor, thus confirming that Kearsley et al.’s
height model predicts smaller tree stature than that implied
by allometric equations based on dbh alone.

There were also major differences among allometric
equations in the precision of the biomass estimate. The less
precise estimate, obtained with Dorisca et al.’s model 5
(Fig. 1c), had an amplitude of its 95 % confidence inter-
val that was nearly equal to the biomass estimate. For this
model, the main source of error (62 % of the square error in
biomass) was the uncertainty on the model coefficients. For
most equations, the amplitude of the 95 % confidence inter-
val of the biomass estimate was approximately 30 % of the
estimate (Fig. 1a, b, e–g).

Because the different allometric equations brought con-
trasted biomass estimates, combining these estimates into
a single one using the mean resulted in a large error due
to the model choice. As a consequence, the 95 % confi-
dence interval of this mean estimate across models was
also large and had an amplitude that equalled 88 % of
the biomass estimate (Fig. 1h). Estimating the biomass
as the mean of the predictions of the different models
supposes that we have no a priori knowledge of the rel-
evance of each model. Alternatively, BMA can be used
to balance the prediction of each model. Using the train-
ing data set on tree biomass at Yangambi, BMA resulted
in contrasted weights across models (Table 2). One single
model, namely Chave et al.’s model I.5, largely outper-
formed all other models. As a consequence, the weighted
mean estimate of biomass (using the BMA weights) was
almost the same as the estimate obtained with Chave et al.’s
model I.5 (Fig. 1i). Moreover, the error due to the model
choice was almost null when weighting the models with
the BMA weights, so that the confidence interval of the
biomass mean with BMA weights was almost the same as

Table 2 Bayesian model averaging of seven allometric equations
(see Table 1) using a training data set of tree biomass collected at
Yangambi, DRC

Model πm σm

Chave et al. (2005) II.3 < 0.01 0.359

Chave et al. (2005) I.5 > 0.99 0.322

Dorisca et al. (2011) 5 < 0.01 0.451

Dorisca et al. (2011) 2 < 0.01 0.441

Fayolle et al. (2013) 2 < 0.01 0.369

Ngomanda et al. (2014) 5 < 0.01 0.424

Ngomanda et al. (2014) 11 < 0.01 0.423

πm is the BMA weight of model m. σm (in kg cm−2) is the coefficient
such that the standard error of the deviation in biomass between model
m and the true model for a tree of dbh D equals σmD2

that of Chave et al.’s model I.5 (compare Fig. 1b and i),
and was much narrower than that of the biomass mean with
equal weights (compare Fig. 1h and i).

When estimating the biomass as the mean across mod-
els (with equal weights), the choice of the model was the
largest source of error. As a consequence, when disre-
garding this error and focusing on the sampling error (i.e.
the between-plot variability), the precision of the estimate
greatly increased. Thus, the amplitude of the 95 % confi-
dence interval dropped from 88 % to 31 % of the biomass
estimate when considering sampling as the only source of
errors (compare Fig. 1h and j). On the contrary, when esti-
mating the biomass as a weighted mean across models
(using the BMA weights), the error due to the model choice
became negligible. As a consequence, the amplitude of the
95 % confidence interval was little different whether one
considered all sources of error (Fig. 1i) or only the sampling
error (Fig. 1k).

3.2 Error partition among error sources

The total square error in biomass decreased with the size of
the sample plot (Fig. 2a and c). This decrease was slower
than n, where n = (100/s)2 (where s is the side of the sam-
ple plot in metres) is the number of plots to sample to get
a cumulated sampled area of 1 ha. In other words, the total
sum of squares divided by n was smaller for plots with area
0.04 ha and increased till plots with area 1 ha (not shown
here to save space). Even if the total error decreased with
plot size, not all sources of error depended in the same way
on plot size. The sampling error, the residual error and the
plot-model interaction decreased with plot size. On the con-
trary, the error due to the model choice and the error due to
the uncertainty on the coefficients were almost independent
of the plot size (Fig. 2a and c). As a consequence, the rel-
ative contribution of each source of error to the total errror
changed with plot size (Fig. 2b and d).

When there was no a priori on which model being the
best, so that the model predictions were combined into a
single ensemble prediction using equal weights, the relative
contribution of the error due to the model choice increased
from 9 % to 76 % as plot size increased from 0.04 ha to
1 ha (Fig. 2b). Meanwhile, the relative contribution of the
sampling error decreased in about the same proportion.
Therefore, the sampling error was the largest source of error
for small plots (it accounted for 70 % of the total error for
plots of 0.04 ha) whereas the error due to the model choice
was the largest source of error for large plots (it accounted
for 76 % of the total error for plots of 1 ha). When using
equal weights for the models, the proportion of error cor-
responding to the residual error decreased when plot size
increased (from 15 % to 4 % for a plot size from 0.04 ha to
1 ha; Fig. 2b), whereas the proportion of the error due to
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Fig. 2 Partition of the error
among the different sources of
error when estimating the per
hectare forest biomass at Yoko,
DRC, for a sampling plot with
side 20, 40, 60 and 80 m. The
predictions of the seven
allometric equations are
combined into a single ensemble
prediction using a, b equal
weights, or c, d BMA weights.
The part of each source of error
is shown as a, c its contribution
to the total sum of squares, or as
b, d its proportion of the total
error (the proportion is typed
when >8 %)
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the uncertainty on the coefficients increased (from 2 % to
11 %). For all plot sizes, the plot-model interaction and the
measurement error contributed very little to the total error
as compared to the other sources of error (Fig. 2a and b).

When the model predictions were weighted using the
BMA weights, the pattern of error partition changed (Fig. 2c
and d). Because the BMA weights were concentrated on a
single model (Chave et al.’s model I.5), the error partition
basically was the one obtained when using this model alone
to predict biomass. As a consequence, the error due to the
model choice and the plot-model interaction became negli-
gible with respect to the other sources of error. For all plot
sizes, sampling error was the largest source of error (repre-
senting 65–84 % of the total error depending on plot size),
followed by the residual error, then the measurement error
(Fig. 2c, d).

4 Discussion

4.1 Error due to the model choice

When using 1-ha sample plots (the most common size for
permanent plots in central Africa, see Lewis et al. 2013)
and when all models were a priori equally likely, the error

due to the model choice was the greatest source of error at
Yoko. It represented three-quarters of the total error. This
result is consistent with the conclusions of other studies who
compared the contributions of errors along part or the whole
of the chain of propagation of errors (Melson et al. 2011;
van Breugel et al. 2011; Molto et al. 2013; Gonzalez et al.
2014), and thus does not seem to be specific to the Yoko
forest. It implies that the model choice is the source of
error to address at first to improve the precision of biomass
estimates at the landscape-level. This source of error can
be tackled by increasing the number of sites where tree
biomass measurements are performed. Few data need to be
collected at each site, because data are primarily needed as
training data to perform BMA and rank models, and not as
calibration data to fit new allometric equations. When mod-
els’ predictions can be balanced using weights that represent
the probability for the model to be the best, the error due to
the model choice is reduced.

Therefore, it is also important to correctly estimate the
weight associated with each model. A model that is locally
unrealistic must be assigned a small weight so that it does
not contribute much to the ensemble prediction. BMA is a
useful technique that is commonly used in climate forecast
(Raftery et al. 2005; Smith et al. 2009) but probably remains
underused in forestry (Li et al. 2008; Picard et al. 2012).
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As an alternative, one may use model selection (Massart
2007), which requires assessing the risk of oracles. On the
basis of the training data collected at Yangambi, a single
model outperformed all other models. Selecting a single
model does not seem to be the usual outcome of BMA (Li
et al. 2008; Picard et al. 2012). More often, several models
contribute to the ensemble prediction. Single model out-
weighing could result from a fortuitous overlap between the
training data set used for BMA and the data set used to fit
one the models of the BMA ensemble. However, the out-
performing equation here integrated Chave et al.’s biomass
equation depending on height and Kearsley et al.’s model for
height, thus rendering this explanation implausible. More
likely, it resulted from the very small size (12 trees) of the
training data set at Yangambi.

4.2 Sampling error

Sampling error remained an important source of error
at Yoko, particularly when plots were small. It can be
addressed using the classical techniques of sampling theory
(Cochran 1977), the first driver of the error being the num-
ber of plots sampled. Sampling error expectedly decreased
when the plot size increased. When optimizing forest inven-
tories, it is commonplace to model this relationship using
a power model (Zeide 1980). At Yoko, using the BMA
weights to combine the models’ predictions and consider-
ing the sampling error alone (without the other sources of
error), the relationship between the coefficient of variation
(CV, in %) of the biomass and the plot area (A, in m2) was:
CV = 1395 ×A−0.546. Therefore, contrary to the total error
that decreased slower than 1/A, sampling error decreased
quicker than 1/A. This result contrasts with what is gen-
erally found, where the exponent of A is generally greater
than −0.5. For instance, Keller et al. (2001) found: CV =
706 ×A−0.350 in Brazilian Amazonia; Chave et al. (2003)
found: CV = 942 ×A−0.45 in Panama; and Wagner et al.
(2010) found: CV = 557 ×A−0.430 in French Guiana. An
exponent smaller than −0.5 like in Yoko implies some regu-
larity in the spatial pattern of biomass, whereas an exponent
greater than −0.5 as is usual implies some clustering in the
spatial pattern of biomass. At a constant effort of sampling
(in terms of total area sampled), the latter means that many
small plots are more efficient than few large plots, whereas
the former means the opposite.

4.3 Plot-model interaction

The error due to the interaction between the plot structure
and the allometric equation is important to estimate emis-
sion factors. The emission factor is the difference in carbon
content between two types of vegetation, and thus represents

the amount of carbon that is emitted or stored when
changing from one type to the other. If the difference in
predicted biomass between two allometric model is inde-
pendent of the plot dbh structure (i.e. no plot-model interac-
tion), and if the same model is used to estimate the emission
factor (i.e. the biomasses of the two types of vegetation
are predicted using the same model), then the estimate of
the emission factor is independent of the model choice.
Therefore, the model choice may have lower impact on the
estimates of the emission factors than on the estimates of the
biomass stocks as soon as the plot-model interaction is low.
The contribution of the plot-model interaction to the total
error was low at Yoko. However, because all sample plots
were taken from a single 9-ha plot with an homogeneous
dbh structure, it is likely that the plot-model interaction
at Yoko was undervalued in comparison to a wider scale.
Sampling independent plots at a landscape level with more
contrasted dbh structures may result in a greater plot-model
interaction than at Yoko.

4.4 Residual error

Like the sampling error, the residual error decreased with
plot size. The residual error in the prediction of individual
tree biomass is about σ = 0.3 on log-transformed varia-
bles (Table 1), which is actually huge considering that it cor-
responds to an approximate relative margin of error at level
95 % (i.e. half the width of the prediction interval at level
95 % divided by the biomass estimate) of sinh(1.96 σ) =
62 %. This residual error at the tree level is levelled off when
randomly accumulating trees: trees with positive residu-
als compensate for trees with negative residuals, and the
precision of prediction of the biomass of the average tree
increases as the number of trees increases. Biomass, like
volume, is likely to present differences among plots (Fortin
and DeBlois 2010; Cohen et al. 2013). However, as long
as this plot effect is not accounted in the allometric model,
increasing the size of the plot is equivalent for the biomass
prediction with accumulating more trees, hence a lower
residual error at the plot level.

Although the residual error was acceptable at the scale of
a 1-ha plot, it may be desirable to reduce it for individual
tree biomass prediction. This may be achieved by intro-
ducing additional predictors in the allometric equations. At
the species level, additional species traits (in addition to
wood density) could be included, especially when a signifi-
cant species effect on model residuals is found (Ngomanda
et al. 2014). At the tree level, additional descriptors of tree
allometry should be found, such as descriptors of crown
architecture. These additional descriptors should remain
simple enough to be routinely collected in large scale forest
inventories.



820 N. Picard et al.

4.5 Remaining sources of error

Measurement errors at Yoko remained small as compared to
the other sources of error, which confirmed previous studies
(Molto et al. 2013; Gonzalez et al. 2014). If measure-
ment techniques should be improved to reduce measurement
errors, then tree height measurement should be addressed at
first (Hunter et al. 2013).

The error due to the uncertainty on the models’ coef-
ficients also remained small at Yoko. This error can be
reduced by increasing the sample size used for model fit-
ting. Chave et al. (2004) showed that increasing sample size
beyond 100 trees did not improve much the precision of plot
biomass prediction.

4.6 Implication for the confidence intervals of biomass
estimates

Failing to account for the whole chain of error underes-
timates the biomass variability. Based on 13 1-ha plots,
Kearsley et al. (2013) estimated the aboveground biomass
to be 324 ± 40 (95 % CI) tonne ha−1 at Yangambi, signifi-
cantly different from the estimate of 396 ± 14.3 (95 % CI)
tonne ha−1 given by Lewis et al. (2013) for central African
moist forests. However, neither Kearsley et al. nor Lewis
et al. took account of all sources of errors. They consid-
ered the sampling error as the only source of error. Based
on 9 1-ha plots and using equal weights for all models,
the present study estimated the biomass at Yoko (∼ 100 km
from Yangambi) to be 337 ± 148 tonne ha−1 when account-
ing for all sources of errors (Fig. 1h), and 337 ± 52 tonne
ha−1 when accounting for the sampling error alone (Fig. 1j).
The former estimate is not significantly different from the
African average given by Lewis et al. (2013), whereas the
latter is.

Apart from the residual error and that due to the model
choice, most sources of error in the current study were pre-
sumably undervalued compared to what would be obtained
at a landscape level. Because spatial autocorrelation of
biomass is positive, the estimate of per-hectare biomass
from n contiguous plots is less variable than its estimate
from n independent plots of the same size. Therefore, the
sampling error obtained with the 9 contiguous 1-ha plots at
Yoko is presumably smaller than what would be obtained
with 9 independent 1-ha plots scattered over the landscape.
We already saw that the plot-model interaction was also pre-
sumably undervalued. Because we used a constant wood
density for all species, the measurement error was also
undervalued. Finally, the error due to the uncertainty on the
model’s coefficient was presumably undervalued because
we used a uniform distribution in the simulated data sets of

the Monte Carlo method, whereas original data sets used to
fit (1) and (2) included more small trees than large trees.
Therefore, confidence intervals of aboveground biomass
estimates using independent plots at a landscape level may
even be greater than those reported here.

4.7 Conclusion

Quantifying uncertainty in biomass estimates is a directive
of the IPCC (Eggleston et al. 2006) and, following deci-
sion 4/CP.15 of the UNFCCC (2010), will also apply to the
REDD+ mechanism. Failing to integrate the whole chain of
error when estimating the per-hectare biomass from inven-
tory data and allometric equations may artificially reduce
the width of the confidence interval (Fortin and DeBlois
2010). The choice of the allometric model is a major com-
ponent of the total error. It is maximum when all models
are equally likely. To improve the precision of regional
estimates of aboveground biomass in central Africa, we
recommend to collect many data sets of tree biomass at
many sites, with a moderate number of trees at each site.
Using BMA, such data sets would enable to assign different
weights to the predictions of the different models, and thus
reduce the error due to the model choice.

Appendix A: Estimation method for BMA

Let θ = (π1, . . . , πM, σ1, . . . , σM) be the vector of BMA
parameters to estimate. The BMA equation corresponds to
a finite mixture model (McLachlan and Peel 2000). Estima-
tion is achieved by maximizing the likelihood. As always
with finite mixture models, the likelihood cannot be maxi-
mized analytically but can be maximized numerically using
the EM algorithm (McLachlan and Krishnan 2008). The
EM algorithm introduces “missing data” zmi that are the
posterior probabilities that biomass equation m is the best
model for observation i. The EM algorithm starts with an
initial guess θ(0) of the parameter vector θ and then itera-
tively alternates between two steps. In the E (or expectation)
step, the zmi are estimated given the current guess for the
parameters:

z
(j)
mi =

π
(j−1)
m φ

(
Bi; Bmi, σ

(j−1)
m D2

i

)

∑M
k=1 π

(j−1)
k φ

(
Bi; Bki, σ

(j−1)
k D2

i

)

where Di and Bi are the dbh and biomass of the ith tree
of the training data set, Bmi is the predicted biomass of the
ith tree of the training data set according to model m, and
superscript j refers to the j th iteration of the EM algorithm.
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The M (or maximization) step consists of estimating πm and
σm using as weights the current estimates of zmi :

π
(j)
m = 1

n

n∑

i=1

z
(j)
mi

σ
(j)
m

2 =
∑n

i=1 z
(j)
mi

[
(Bi − Bmi)/D

2
i

]2

∑n
i=1 z

(j)
mi

where n is the number of observations in the training data
set. The E and M steps were iterated until the L1 norm of
θ(j) did not change by more than six decimal places in one
iteration.

Appendix B: Decomposition of the total error

Let Bkmj (s) be the per-hectare biomass for the kth subplot
predicted using model m at the j th iteration of the Monte
Carlo algorithm. Total error (3) breaks into:

S2
tot(s) = 1

K

K∑

k=1

[
Bk••(s) − B(s)

]2 +
M∑

m=1

πm

[
B•m•(s) − B(s)

]2

+ 1

K

K∑
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M∑
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πm

[
Bkm•(s) − Bk••(s) − B•m•(s) + B(s)

]2

+ 1
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πm

[
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(4)

where:

Bk••(s) = 1

J

M∑

m=1

J∑

j=1

πmBkmj (s)

B•m•(s) = 1

KJ

K∑

k=1

J∑

j=1

Bkmj (s)

Bkm•(s) = 1

J

J∑

j=1

Bkmj (s)

The first term in (4) is the sampling error. The second term is
the error due to the model choice. The third term represents
the interaction between the plot and the allometric equa-
tion. The fourth term encompasses all remaining sources of
error, i.e. the prediction error and the error on the model
predictors.
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