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Abstract The standard efficient testing procedures in the Generalized Inverse
Gaussian (GIG) family (also known as Halphen Type A family) are likelihood
ratio tests, hence rely on Maximum Likelihood (ML) estimation of the three
parameters of the GIG. The particular form of GIG densities, involving mod-
ified Bessel functions, prevents in general from a closed-form expression for
ML estimators, which are obtained at the expense of complex numerical ap-
proximation methods. On the contrary, Method of Moments (MM) estimators
allow for concise expressions, but tests based on these estimators suffer from
a lack of efficiency compared to likelihood ratio tests. This is why, in recent
years, trade-offs between ML and MM estimators have been proposed, result-
ing in simpler yet not completely efficient estimators and tests. In the present
paper, we do not propose such a trade-off but rather an optimal combination
of both methods, our tests inheriting efficiency from an ML-like construction
and simplicity from the MM estimators of the nuisance parameters. This goal
shall be reached by attacking the problem from a new angle, namely via the
Le Cam methodology. Besides providing simple efficient testing methods, the
theoretical background of this methodology further allows us to write out ex-
plicitly power expressions for our tests. A Monte Carlo simulation study shows
that, also at small sample sizes, our simpler procedures do at least as good
as the complex likelihood ratio tests. We conclude the paper by applying our
findings on two real-data sets.
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1 Introduction.

The Generalized Inverse Gaussian (hereafter GIG) distribution with parame-
ters p ∈ R, a > 0, b > 0 has density

fp,a,b(x) := c(p, a, b)xp−1e−(ax+b/x)/2, x > 0, (1)

with normalizing constant

c(p, a, b) :=
(a/b)p/2

2Kp(
√
ab)

where Kp is the modified Bessel function of the third kind. The parameters
a and b regulate both the concentration and scaling of the densities, the for-
mer via

√
ab and the latter via

√
b/a, while the parameter p bears no precise

statistical meaning. This is why some authors rather use the parameterization
θ =
√
ab and η =

√
b/a, but we stick here to a and b. The GIG family has been

proposed in Good (1953), although Halphen (1941) had already previously dis-
cussed such distributions, which is why in some articles one speaks of Halphen
Type A distributions instead of GIG distributions (see Seshadri 1999). GIG
distributions enjoy several nice probabilistic features such as, e.g., the equiv-
alence X ∼ GIG(p, a, b) ⇐⇒ 1

X ∼ GIG(−p, b, a) (see Barndorff-Nielsen and
Halgreen 1977, where some convolution properties and infinite divisibility are
pointed out). These distributions have been used in the modelization of di-
verse phenomena such as, for instance, waiting time (Jørgensen 1982), neural
activity (Iyengar and Liao 1997), or, most importantly, hydrologic extreme
events (see Chebana et al. 2010 and references therein). The GIG family also
contains several well-known sub-models such as the Gamma distribution (for
b = 0 and p > 0), the reciprocal Gamma distribution (for a = 0 and p < 0),
the hyperbolic distribution (for p = 0), the reciprocal inverse Gaussian (here-
after RIG) distribution (for p = 1

2 ) and the Inverse Gaussian (hereafter IG)
distribution (for p = − 1

2 ).
While numerous papers address probabilistic aspects of GIG distributions,

relatively few articles discuss their statistical properties. The cornerstone ref-
erence in this respect is Jørgensen (1982, Chapter 4-7), complemented by the
stream of literature on general Halphen distributions (of which the GIG or
Halphen A is one of three representatives), see e.g. Perreault et al. (1999a,b)
or Chebana et al. (2010). Regarding hypothesis testing, the standard tools are
likelihood ratio tests based on maximum likelihood (ML) estimation of the
parameters both under the null and without constraints. Despite being the
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most efficient procedures, ML-based methods suffer from computational com-
plexity as in general no closed-form solutions exist for the likelihood equations
in the GIG case (especially when all three parameters are estimated jointly).
Improved numerical methods for ML estimation have been put forward by,
e.g., Perreault et al. (1999b) and Lemonte and Cordeiro (2011). As alternative
to the complex ML estimation, Fitzgerald (2000) has given exact expressions
for method of moments (MM) estimators, which are thus analytically simple,
but tests based on them suffer from a lack of efficiency compared to likeli-
hood ratio tests. In order to find a trade-off between efficiency and simplicity,
Chebana et al. (2010) propose mixtures of ML and MM estimation.

In the present paper, our aim is not a such a trade-off but rather an optimal
combination of both approaches, the resulting tests inheriting efficiency from
an ML-like construction and simplicity from MM estimation of the nuisance
parameters under the null (no further non-null estimation will be required).
We shall achieve this by having recourse to the Le Cam methodology, whose
first step consists in showing that GIG distributions satisfy the Uniform Local
Asymptotic Normality (ULAN) property. With this key property in hand, we
build optimal test procedures for any null hypothesis involving one or more of
the parameters p, a and b, the nuisance parameters remaining unspecified. The
resulting test statistics resemble Rao score (or Lagrange Multiplier) statistics,
hence are as efficient as the ML-based likelihood ratio tests, but improve on
the Rao score tests by the fact that the nuisance parameters need not be ML-
estimated under the null, but can be exactly calculated as MM-estimators. Yet
another attractive feature of the Le Cam approach consists in the fact that
we are able to calculate the power of our tests against sequences of contiguous
alternatives.

The paper is organized as follows. In Section 2, we derive the ULAN prop-
erty for GIG(p, a, b) models and the ensuing crucial asymptotic linearity. In
Section 3 we show how to construct optimal tests for the null hypothesis
H0 : p = p0 against H 6=1 : p 6= p0, determine their asymptotic behavior both
under the null and under a sequence of contiguous alternatives and write out
explicitly the asymptotic powers. In Section 4, we then particularize our find-
ings to p0 = −1/2, corresponding to testing for IG sub-models within GIG
models (which yields for free a testing procedure for RIG distributions as
X ∼ IG(a, b)⇐⇒ 1

X ∼ RIG(b, a)). A Monte Carlo simulation study allows us
to investigate the finite-sample behavior of our tests. We then use, in Section 6,
our procedures in order to analyze two real-data examples. A brief outlook on
future research is provided in Section 7. Finally, an Appendix collects the
technical proofs.
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2 The ULAN property and asymptotic linearity of general
GIG(p, a, b) models.

Let X1, . . . , Xn be i.i.d. observations following the GIG(p, a, b) distribution
with density (1), and consider the GIG-parametric model

P(n)
GIG :=

{
P

(n)
p,a,b : p ∈ R, a ∈ R+

0 , b ∈ R+
0

}
,

where P
(n)
p,a,b stands for the joint distribution of (X1, . . . , Xn). The ULAN prop-

erty of the GIG(p, a, b) model is achieved in the following result, whose proof
is given in the Appendix.

Theorem 21 Let ϑϑϑ = (p, a, b)′ for any p ∈ R, a ∈ R+
0 and b ∈ R+

0 . Then,

for any ϑϑϑ(n) = (p(n), a(n), b(n))′ = ϑϑϑ+O(n−1/2) and for any bounded sequence

τττ (n) = (τ
(n)
1 , τ

(n)
2 , τ

(n)
3 )′ ∈ R3 such that a(n) + n−1/2τ

(n)
2 > 0 and b(n) +

n−1/2τ
(n)
3 > 0, the family of probability distributions P(n)

GIG satisfies

Λ
(n)

ϑϑϑ(n)+n−1/2τττ(n)/ϑϑϑ(n) := log(dP
(n)

ϑϑϑ(n)+n−1/2τττ(n)
/dP

(n)

ϑϑϑ(n))

= (τττ (n))′∆∆∆(n)(ϑϑϑ(n))− 1

2
(τττ (n))′Γ (ϑϑϑ)τττ (n) + oP(1) (2)

and ∆∆∆(n)(ϑϑϑ(n))
L→ N3(000,Γ (ϑϑϑ)), both under P

(n)

ϑϑϑ(n) as n→∞, where

∆∆∆(n)(ϑϑϑ) :=


∆

(n)
p (ϑϑϑ)

∆
(n)
a (ϑϑϑ)

∆
(n)
b (ϑϑϑ)

 :=
1√
n

n∑
i=1


∂pc(p,a,b)
c(p,a,b) + log(Xi)
∂ac(p,a,b)
c(p,a,b) −

Xi
2

∂bc(p,a,b)
c(p,a,b) −

1
2Xi



=
1√
n

n∑
i=1

 1
2 log(a/b)− ∂p logKp(

√
ab) + log(Xi)

p
2a − ∂a logKp(

√
ab)− Xi

2

− p
2b − ∂b logKp(

√
ab)− 1

2Xi


and

Γ (ϑϑϑ) :=

Γp,p(ϑϑϑ) Γp,a(ϑϑϑ) Γp,b(ϑϑϑ)
Γp,a(ϑϑϑ) Γa,a(ϑϑϑ) Γa,b(ϑϑϑ)
Γp,b(ϑϑϑ) Γa,b(ϑϑϑ) Γb,b(ϑϑϑ)

 ,

with

Γp,p(ϑϑϑ) := ∂2
pp logKp(

√
ab), Γa,a(ϑϑϑ) :=

p

2a2
+ ∂2

aa logKp(
√
ab),

Γb,b(ϑϑϑ) := − p

2b2
+ ∂2

bb logKp(
√
ab), Γp,a(ϑϑϑ) := − 1

2a
+ ∂2

ap logKp(
√
ab),

Γp,b(ϑϑϑ) :=
1

2b
+ ∂2

bp logKp(
√
ab) and Γa,b(ϑϑϑ) := ∂2

ab logKp(
√
ab).

In other words, the family P(n)
GIG is ULAN at ϑϑϑ with central sequence ∆∆∆(n)(ϑϑϑ)

and corresponding Fisher information matrix Γ (ϑϑϑ).
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The central idea of the Le Cam theory is the concept of convergence
of statistical models (experiments in the Le Cam vocabulary). Quoting Le
Cam (1960), “the family of probability measures under study can be approx-
imated very closely by a family of a simpler nature”. The key ingredient in
this approximation is the ULAN property, from which we can deduce that
(see Le Cam and Yang 2000, page 89 for details) our GIG-parametric model

P(n)
GIG is locally (around (p, a, b)′) and asymptotically (for large sample sizes)

equivalent to a simple Gaussian shift model. Intuitively, this is due to the fact
that the likelihood ratio expansion (2), up to the remainder terms, looks like
the likelihood ratio of a Gaussian shift model

Pϑϑϑ :=
{

Pτττ,ϑϑϑ = N3 (ΓΓΓ (ϑϑϑ)τττ ,ΓΓΓ (ϑϑϑ)) |τττ ∈ R3
}

with a single observation which we denote as ∆∆∆. This means that all power
functions that are implementable in the local GIG experiments are the power
functions that are possible in the Gaussian shift experiment. In view of these
considerations, it follows that asymptotically optimal tests in our local models
can be derived by analyzing the Gaussian limit model, for which the most effi-
cient procedures are well-known. The detailed construction is described in the
next section. We conclude the present section by writing down an immediate
consequence of the ULAN property, namely the following asymptotic linearity
property of the central sequence:

∆∆∆(n)
(
ϑϑϑ+ n−1/2τττ (n)

)
= ∆∆∆(n)(ϑϑϑ)−ΓΓΓ (ϑϑϑ)τττ (n) + oP(1), (3)

as n → ∞, under P
(n)

ϑϑϑ(n) . This asymptotic linearity, combined with the ULAN
property, forms the basis for our hypothesis test statistics, as it reveals us
the behavior of the central sequence when ϑϑϑ = (p, a, b) is replaced with some

estimator ϑ̂ϑϑ
(n)

. As we shall show in details in the next section, for root-n con-
sistent estimators satisfying some mild regularity assumption, we can replace

τττ (n) in (3) with n1/2(ϑ̂ϑϑ
(n)
− ϑϑϑ), yielding

∆∆∆(n)

(
ϑ̂ϑϑ

(n)
)

= ∆∆∆(n)(ϑϑϑ)−ΓΓΓ (ϑϑϑ)n1/2(ϑ̂ϑϑ
(n)
− ϑϑϑ) + oP(1)

as n → ∞ under P
(n)

ϑϑϑ(n) . This nice asymptotic equality will be put to use in
what follows.

3 Construction of efficient testing procedures.

Based on our findings of the previous section, we shall describe in the present
section how to tackle hypothesis testing problems in a way as efficient as
likelihood ratio tests but with test statistics whose expressions can be explicitly
written down, taking advantage of the exact MM expressions. We focus here
on the construction of testing procedures for the null hypothesis H0 : p = p0
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against H 6=1 : p 6= p0 for p0 ∈ R. This will be done in two steps: first, we
assume that the nuisance parameters (here a and b) are known, and second,
we consider them as unknown and hence they need to be estimated. Of course,
the construction below is by no means restricted to the parameter p and can be
used for hypothesis tests about a and b, about any of the vectors (p, a)′, (p, b)′

and (a, b)′, and even about the vector (p, a, b)′. The latter case is evidently the
simplest, as the aforementioned second step will not be needed.

Step 1: the nuisance parameters a and b are known

In this scenario, it suffices to read the ULAN property only in the parameter
p, and no asymptotic linearity is needed. By analogy with the Gaussian shift
experiment, the optimal testing procedure for p = p0 against p 6= p0 consists
in rejecting the null at asymptotic level α whenever the absolute value of the
test statistic

Q(n)
p0 (a, b) :=

∆
(n)
p (p0, a, b)√
Γp,p(p0, a, b)

=
n−1/2

∑n
i=1

(
1
2 log(a/b)− (∂p logKp(

√
ab))|p=p0 + log(Xi)

)
√

(∂2
pp logKp(

√
ab))|p=p0

exceeds the α/2-upper quantile zα/2 of a standard Gaussian distribution. We

give at the end of the current section simplified forms for ∂p logKp(
√
ab) and

∂2
pp logKp(

√
ab). The validity of this test, which we denote φ

(n)
p0 (a, b), and its

optimality follow from the more general result in Theorem 31 below. As stated
there, optimality is to be understood in the sense that our test is asymptotically
maximin, a property derived from the Gaussian limit experiment. For the sake
of clarity, we recall that a test φ∗ is called maximin in the class Cα of level-α
tests for H0 against H1 if (i) φ∗ has level α and (ii) the power of φ∗ is such
that

inf
P∈H1

EP[φ∗] ≥ sup
φ∈Cα

inf
P∈H1

EP[φ].

Step 2: the nuisance parameters a and b are unknown

This situation is clearly the less specific and more realistic one, but of course
also more complicated. Indeed, since both a and b are unknown, we need to es-
timate them and plug the corresponding estimators â(n) and b̂(n) into the test

statistic Q
(n)
p0 (a, b) to yield Q

(n)
p0 (â(n), b̂(n)). However, such a replacement can-

not be achieved without care, and its asymptotic effects need to be calculated.
A first observation can be made by looking at the information matrix ΓΓΓ (ϑϑϑ).
Would ΓΓΓ (ϑϑϑ) be block-diagonal (in the sense that no correlation exists between

the blocks p and (a, b)′), then the substitution of (â(n), b̂(n))′ for (a, b)′ would
have no influence, asymptotically, on the behavior of the central sequence

∆
(n)
p (ϑϑϑ). However, this is obviously not the case here, and consequently a local
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perturbation of a or b has the same asymptotic impact on ∆
(n)
p (ϑϑϑ) as a local

perturbation of p around p0. It follows that the cost of not knowing the true
values of the nuisance parameters a and b is strictly positive; the stronger the
correlation between the central sequences in p and (a, b)′, the larger that cost.

From this short discussion on the information matrix, it becomes clear that
a more desirable central sequence for p would enjoy this block-diagonality, in
other words, we need a “decorrelated” central sequence. This decorrelation
takes into account the aforementioned cost of not knowing a and b and is
achieved by the so-called efficient central sequence for p

∆(n)eff
p (ϑϑϑ)

:= ∆(n)
p (ϑϑϑ)− Cov(∆(n)

p (ϑϑϑ), (∆(n)
a (ϑϑϑ), ∆

(n)
b (ϑϑϑ)))

(
Var((∆(n)

a (ϑϑϑ), ∆
(n)
b (ϑϑϑ))′)

)−1

(∆(n)
a (ϑϑϑ), ∆

(n)
b (ϑϑϑ))′

= ∆(n)
p (ϑϑϑ)−

(Γp,a(ϑϑϑ), Γp,b(ϑϑϑ))

(
Γb,b(ϑϑϑ) −Γa,b(ϑϑϑ)
−Γa,b(ϑϑϑ) Γa,a(ϑϑϑ)

)
(∆

(n)
a (ϑϑϑ), ∆

(n)
b (ϑϑϑ))′

Γa,a(ϑϑϑ)Γb,b(ϑϑϑ)− (Γa,b(ϑϑϑ))2
.

This efficient central sequence is obtained by projecting ∆
(n)
p (ϑϑϑ) onto the sub-

space orthogonal to (∆
(n)
a (ϑϑϑ), ∆

(n)
b (ϑϑϑ))′, which ensures that the new efficient

central sequence ∆
(n)eff
p (ϑϑϑ) is asymptotically uncorrelated with the central se-

quences corresponding to a and b. The Fisher information quantity associated

with ∆
(n)eff
p (ϑϑϑ) is given by

Γ effp,p (ϑϑϑ) := Γp,p(ϑϑϑ)−
(Γp,a(ϑϑϑ), Γp,b(ϑϑϑ))

(
Γb,b(ϑϑϑ) −Γa,b(ϑϑϑ)
−Γa,b(ϑϑϑ) Γa,a(ϑϑϑ)

)
(Γp,a(ϑϑϑ), Γp,b(ϑϑϑ))′

Γa,a(ϑϑϑ)Γb,b(ϑϑϑ)− (Γa,b(ϑϑϑ))2

=
detΓΓΓ (ϑϑϑ)

Γa,a(ϑϑϑ)Γb,b(ϑϑϑ)− (Γa,b(ϑϑϑ))2
.

For further information about efficient central sequences (or efficient score
functions) and their associated efficient information matrices, we refer the
reader to Bickel et al. (1993, Chapter 2) or van der Vaart (1998, Chapter 25).

Now that we have derived this decorrelated efficient central sequence and
its information matrix, it becomes of interest to establish their asymptotic
linearity. This is achieved in the following Proposition, whose proof heavily
relies on the asymptotic linearity (3).

Proposition 31 For any ϑϑϑ = (p, a, b)′ ∈ R × (R+
0 )2, and for any bounded

sequence τττ (n) = (0, τ
(n)
2 , τ

(n)
3 )′ ∈ {0} × R2 such that a + n−1/2τ2

(n) > 0 and

b+ n−1/2τ3
(n) > 0, we have that, under P

(n)
ϑϑϑ and as n→∞,

∆(n)eff
p (ϑϑϑ+ n−1/2τττ (n)) = ∆(n)eff

p (ϑϑϑ) + oP(1) (4)

and
Γ effp,p (ϑϑϑ+ n−1/2τττ (n)) = Γ effp,p (ϑϑϑ) + oP(1). (5)
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The proof is deferred to the Appendix. As explained at the end of the
previous section, the idea behind this asymptotic linearity result consists in

using respectively a + n−1/2τ
(n)
2 = â(n) and b + n−1/2τ

(n)
3 = b̂(n), that is,

τ
(n)
2 = n1/2(â(n)−a) and τ

(n)
3 = n1/2(b̂(n)−b). Both sequences remain bounded

if the estimators â(n) and b̂(n) are root-n consistent, a very natural requirement.
However, in order to perform this replacement (which is not evident as the

non-random sequences τ
(n)
1 and τ

(n)
2 are replaced with random sequences), one

more condition needs to be imposed on the estimators, and this is summarized
in the following

Assumption A. The sequence of estimators â(n) and b̂(n) is (i) root-n

consistent (i.e., n1/2(â(n)−a) = OP(1) and n1/2(b̂(n)− b) = OP(1) as n→∞,

under P
(n)
p,a,b) and (ii) locally asymptotically discrete, meaning that, for all

a, b ∈ R+
0 and all c > 0, there exists an M = M(c) > 0 such that the number of

possible values of â(n) and b̂(n) in intervals of the form {t ∈ R : n1/2|t−a| ≤ c}
and {t ∈ R : n1/2|t− b| ≤ c} is bounded by M , uniformly as n→∞.

It should be noted that Assumption A(ii) is a purely technical requirement,
with little practical implications (for fixed sample size, any estimator indeed
can be considered part of a locally asymptotically discrete sequence; see Le
Cam and Yang 2000). This condition is however essential as it precisely allows

to replace τ
(n)
2 with n1/2(â(n)−a) and τ

(n)
3 with n1/2(b̂(n)−b) in (4) and (5) by

Lemma 4.4 in Kreiss (1987), where such replacements have been theoretically
worked out in detail. Using this fact in combination with Slutsky’s Lemma,
we have the following crucial result.

Proposition 32 Let Assumption A hold and fix p0 ∈ R. Then, defining

Q(n)eff
p0 (a, b) =

∆
(n)eff
p (p0, a, b)√
Γ effp,p (p0, a, b)

,

we have that
Q(n)eff
p0 (â(n), b̂(n))−Q(n)eff

p0 (a, b) = oP(1) (6)

under P
(n)
p0,a,b

as n→∞.

This finally enables us to derive the optimal testing procedure for H0 : p = p0

against H 6=1 : p 6= p0 when the nuisance parameters a and b are unknown. This

test, which we denote φ
(n)
p0 (â(n), b̂(n)), rejects the null hypothesis at asymptotic

level α whenever the absolute value of the test statistic Q
(n)eff
p0 (â(n), b̂(n)) ex-

ceeds zα/2, with â(n) and b̂(n) satisfying Assumption A. In the next theorem,

we formally establish the validity of this test (behavior of Q
(n)eff
p0 (â(n), b̂(n))

under the null), its asymptotic distribution under a sequence of local alterna-
tives and its optimality features; of course, the results also cover the case of

the easier test φ
(n)
p0 (a, b).
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Theorem 31 Fix p0 ∈ R and suppose that â(n) and b̂(n) satisfy Assump-
tion A. Then

(i) the test statistic Q
(n)eff
p0 (â(n), b̂(n)) is asymptotically standard normal under⋃

a∈R+
0

⋃
b∈R+

0
P

(n)
p0,a,b

;

(ii) for any a ∈ R+
0 and any b ∈ R+

0 , Q
(n)eff
p0 (â(n), b̂(n)) is asymptotically nor-

mal with mean τ1

√
Γ effp,p (p0, a, b) and variance 1 under P

(n)

p0+n−1/2τ
(n)
1 ,a,b

,

where τ
(n)
1 ∈ R is a bounded sequence and τ1 := limn→∞ τ

(n)
1 ;

(iii) the test φ
(n)
p0 (â(n), b̂(n)), which rejects the null hypothesis H0 :=

⋃
a∈R+

0

⋃
b∈R+

0
P

(n)
p0,a,b

whenever |Q(n)eff
p0 (â(n), b̂(n))| > zα/2, has asymptotic level α under H0

and is locally and asymptotically maximin for testing H0 : p = p0 against

H 6=1 :=
⋃
a∈R+

0

⋃
b∈R+

0

⋃
p 6=p0 P

(n)
p,a,b.

Part (iii) of Theorem 31 provides the theoretical proof of efficiency of our

test φ
(n)
p0 (â(n), b̂(n)), which is thus as efficient as the likelihood ratio test φLR

p0 .

However, the advantage of φ
(n)
p0 (â(n), b̂(n)) over φLR

p0 lies in its simplicity, as no
ML estimation is required here since any root-n consistent estimators for a
and b can be used. Hence we opt for their MM estimators, whose expressions,

due to Fitzgerald (2000), are given by â
(n)
MM :=

θ̂
(n)
MM

η̂
(n)
MM

and b̂
(n)
MM := θ̂

(n)
MMη̂

(n)
MM

where

η̂
(n)
MM :=

√
X̄−1s2 − X̄(X̄X̄−1 − 1)

X̄(s−1)2 − X̄−1(X̄X̄−1 − 1)

and

θ̂
(n)
MM :=

2

(
1

η̂
(n)
MM

X̄ − η̂(n)
MMX̄−1

)
1

(η̂
(n)
MM)2

s2 − (η̂
(n)
MM)2(s−1)2

with X̄ = 1
n

∑n
i=1Xi, s

2 = 1
n

∑n
i=1(Xi−X̄)2, X̄−1 = 1

n

∑n
i=1

1
Xi

and (s−1)2 =
1
n

∑n
i=1( 1

Xi
− X̄−1)2. Thus, in fine, the computationally simple yet efficient

test we propose is φ
(n)
p0 := φ

(n)
p0 (â

(n)
MM, b̂

(n)
MM) which rejects the null hypothesis

at asymptotic level α whenever the absolute value of

Q(n)
p0 := Q(n)eff

p0 (â
(n)
MM, b̂

(n)
MM) =

∆
(n)eff
p (p0, â

(n)
MM, b̂

(n)
MM)√

Γ effp,p (p0, â
(n)
MM, b̂

(n)
MM)

exceeds zα/2. One-sided tests of the form H0 : p = p0 against H>1 : p > p0 or
H<1 : p < p0 are of course readily constructed along the same lines and their
asymptotic behavior is as well regulated by Theorem 31.

As mentioned in the Introduction, a welcomed feature of the Le Cam
approach lies in the fact that it enables us to derive explicit power expres-

sions under sequences of local alternatives of the form P
(n)

p0+n−1/2τ
(n)
1 ,a,b

for any
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a, b ∈ R+
0 , with τ

(n)
1 a bounded sequence with limit τ1. These powers are eas-

ily determined via Part (ii) of Theorem 31, as the latter provides us with the

asymptotic distribution of Q
(n)eff
p0 (â(n), b̂(n)) under that sequence of local al-

ternatives. Denoting by Φ the cumulative distribution function of the standard

Gaussian distribution, the asymptotic power of φ
(n)eff
p0 (â(n), b̂(n)) is given by

1− Φ
(
zα/2 − τ1

√
Γ effp,p (p0, a, b)

)
+ Φ

(
−zα/2 − τ1

√
Γ effp,p (p0, a, b)

)
,

and by

1− Φ
(
zα − τ1

√
Γ effp,p (p0, a, b)

)
and Φ

(
−zα − τ1

√
Γ effp,p (p0, a, b)

)

in the respective one-sided tests against H>1 : p > p0 and H<1 : p < p0.

We conclude this section by providing more user-friendly expressions for
the entries of the Fisher information matrix ΓΓΓ (ϑϑϑ). For j taking values in {p−
3, p− 2, p− 1, p, p+ 1}, consider the integrals

Ij :=

∫ ∞
0

up exp

(
−1

2
(au+ b/u)

)
du,

Mj :=

∫ ∞
0

up log(u) exp

(
−1

2
(au+ b/u)

)
du,

Nj :=

∫ ∞
0

up−1(log(u))2 exp

(
−1

2
(au+ b/u)

)
du.

For the sake of readability, we omit writing Ij(a, b), Mj(a, b) and Nj(a, b) and
tacitly assume that each integral depends on a and b. The entries of the matrix
ΓΓΓ (ϑϑϑ) can be written as

Γp,p(ϑϑϑ) =
Np
Ip−1

−
(
Mp−1

Ip−1

)2

, Γp,a(ϑϑϑ) = −1

2

(
Mp

Ip−1
− IpMp−1

I2
p−1

)
,

Γp,b(ϑϑϑ) = −1

2

(
Mp−2

Ip−1
− Mp−1Ip−2

I2
p−1

)
, Γa,b(ϑϑϑ) =

1

4

(
1− IpIp−2

I2
p−1

)
,

Γa,a(ϑϑϑ) =
1

4

(
Ip+1 − I2

p

)
, and Γb,b(ϑϑϑ) =

1

4

(
Ip−3 − I2

p−2

)
.

This way of writing the information matrix renders its calculation easier in
programs such as R or MATHEMATICA; the R code is available from the
authors upon request.
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4 Efficient tests for (R)IG sub-models within the GIG model.

The most important sub-model nested by the GIG family is the inverse Gaus-
sian distribution, obtained for p = − 1

2 . The IG distribution with its two posi-
tive parameters a and b has been introduced to the statistical community by
Tweedie (1945, 1956, 1957) and has since been revealed to be quite convenient
in modeling and analyzing observations that are right-skewed and positive
(see Seshadri 1999). Among the numerous domains of application figure fields
such as cardiology, demography, finance, hydrology or pharmacokinetics. For
references which give illustrative applications of the IG distribution, we quote
Chhikara and Folks (1989), Seshadri (1993) as well as Seshadri (1999). One
further reason for the popularity of the IG are the many similarities, in terms of
statistical properties, between the Gaussian and the inverse Gaussian families,
as pointed out e.g. by Mudholkar and Tian (2002). As its reciprocal distribu-
tion, the RIG of course benefits from this popularity and has also awakened
the interest of the statistical community (see, e.g., Scaillet 2004).

In view of its relevance, we particularize now our findings from the previous
section to p0 = −1/2, the IG sub-model. Thanks to the previously stated
property of GIG laws, RIG(b, a) is the law of 1/X if X ∼ IG(a, b), hence we
shall obtain for free as well a test for p0 = 1/2. Under the IG model, the

MM estimates of the parameters a and b admit the nice expressions â
(n)
MM =

1
X̄(X̄X̄−1−1)

and b̂
(n)
MM = X̄

X̄X̄−1−1
, which happen to correspond with the ML

estimates (see Seshadri 1999, page 7, a result dating back to Tweedie 1957).
Further simplifications arise in the Fisher information matrix ΓΓΓ (ϑϑϑ) as

Γa,b(−1/2, a, b) =
−1

4
√
ab
, Γa,a(−1/2, a, b) =

√
ba−3/2

4

and

Γb,b(−1/2, a, b) =
1

2b2
+

√
ab−3/2

4
.

Next, denote by u, v and w, respectively, the values of the second derivatives
∂2
pp logKp(

√
ab), ∂2

pa logKp(
√
ab) and ∂2

pb logKp(
√
ab) at p = −1/2. We then

have

ΓΓΓ (−1/2, a, b) =

 u v − 1
2a w + 1

2b

v − 1
2a

√
ba−3/2

4 − 1
4
√
ab

w + 1
2b −

1
4
√
ab

1
2b2 +

√
ab−3/2

4

 ,

yielding Γa,a(−1/2, a, b)Γb,b(−1/2, a, b)− (Γa,b(−1/2, a, b))2 = 1
8(ab)3/2

and

Γ effp,p (−1/2, a, b) = u−(2av−1)2

(
1√
ab

+
1

2

)
−(2av−1)(2bw+1)−1

2
(2bw+1)2.

The expression of Γ effp,p (−1/2, a, b) can be calculated efficiently using the inte-
gral expressions of the entries of ΓΓΓ (ϑϑϑ) given at the end of the previous section.
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Regarding the efficient central sequence, we find

∆(n)eff
p (−1/2, a, b) =

1√
n

n∑
i=1

(
log(Xi)−

M−3/2

I−3/2
+Ri(a, b)

)
,

with

Ri(a, b) = Xi

[
v

(
2a

√
a

b
+ a2

)
+ wab−

√
a

b

]
+

1

Xi
(wb2 + vab)

−va(3 + 2
√
ab)− wb(1 + 2

√
ab) + 1.

Quite interestingly, if a and b are replaced with their MM (or ML) estimates,

one gets
∑n
i=1Ri(â

(n)
MM, b̂

(n)
MM) = 0, so that

∆(n)eff
p (−1/2, â

(n)
MM, b̂

(n)
MM) =

1√
n

n∑
i=1

(
log(Xi)−

M̂−3/2

Î−3/2

)
,

where Î−3/2 = I−3/2(â
(n)
MM, b̂

(n)
MM) and M̂−3/2 = M−3/2(â

(n)
MM, b̂

(n)
MM). Summing

up, the optimal test φ
(n)
−1/2 rejects at asymptotic level α the null hypothesis

of an IG(a, b) model in favor of a general GIG(p, a, b) model with p 6= −1/2
whenever the test statistic

|Q(n)
−1/2| :=

∣∣∣ 1√
n

∑n
i=1

(
log(Xi)−

M̂−3/2

Î−3/2

)∣∣∣√
Γ effp,p (−1/2, â

(n)
MM, b̂

(n)
MM)

exceeds zα/2.

5 Monte Carlo simulation study.

In this section we study the finite-sample behavior of our testing procedures.
More precisely, we focus on testing for IG sub-models within the GIG family as
described explicitly in Section 4, and we assess the performance of our optimal

test φ
(n)
−1/2 by comparing it to the likelihood ratio test φ

(n)
LR . The Monte Carlo

simulation study has been conducted on R.
We start by investigating in how far the level constraint is met under the

null hypothesis. To this end, we have generated N = 10, 000 independent
samples of varying small sample sizes n = 100, 50 and even 30 and for distinct

values of the parameters a and b, and run both tests φ
(n)
−1/2 and φ

(n)
LR at the

α = 5% level. The results are summarized in Table 1. We see that for each
choice of couple (a, b), the level is well maintained by our test when n = 100
and n = 50 (although, of course, less well for 50 than for 100 observations).
Regarding the very small sample size n = 30, it still gives rise to acceptable
levels, although some values are very low. This shows that, even for (very)

small sample sizes, φ
(n)
−1/2 meets the nominal level constraint, especially when
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Size n = 100 n = 50 n = 30
(a, b) (1, 5) (3, 3) (3, 2) (1, 5) (3, 3) (3, 2) (1, 5) (3, 3) (3, 2)

φ
(n)
−1/2

0.0443 0.0440 0.0452 0.0407 0.0407 0.0414 0.0370 0.0350 0.0368

φ
(n)
LR 0.0403 0.0388 0.0398 0.0294 0.0278 0.0314 0.0187 0.0162 0.0171

Table 1 Rejection frequencies (out of N = 10, 000 replications) of our optimal test φ
(n)
−1/2

and of the likelihood ratio test φ
(n)
LR under three distinct null hypotheses IG(1, 5), IG(2, 2)

and IG(3, 2) and, in each setting, for three different sample sizes n = 100, 50 and 30. The
nominal level is α = 0.05.

compared to the likelihood ratio test φ
(n)
LR which attains the level not as well

as our novel test.
Now, the level constraint being checked, we compare the power of our test

φ
(n)
−1/2 to the likelihood ratio test φ

(n)
LR for small and moderate sample sizes

n = 100 and n = 200 and for distinct combinations of parameters (a, b). To
this end, we have once more generated N = 10, 000 independent samples, this
time with p = − 1

2 + (δ − 5) 1
2 for δ = 1, . . . , 9. This choice permits us to test

the power of our test against both higher and lower values of the parameter
of interest. Note that, for δ = 6, we test against the hyperbolic distribution,
whereas for δ = 7 the alternative is of RIG type. The results at the 5% level
are reported in Table 2. We clearly see that the two tests detect the deviation
from the null hypothesis for any combination (a, b), the performance increasing
logically with the sample size. The differences in performance are quite small,
but the more significant differences are always in favor of our test, which is yet
another argument that our simple efficient test supersedes the classical test

φ
(n)
LR .

6 Real-data example.

In this section, we analyze two real-data examples in the light of the new test

φ
(n)
−1/2 developed in this paper.

Our first example concerns the traffic data example analyzed in Section
7.3 from Jørgensen (1982). It concerns the length (in seconds) of n = 128
intervals between the times at which vehicles pass a point on a road; these
values correspond to 2.8, 3.4, 1.4, 14.5, 1.9, 2.8, 2.3, 15.3, 1.8, 9.5, 2.5, 9.4,
1.1, 88.6, 1.6, 1.9, 1.5, 33.7, 2.6, 12.9, 16.2, 1.9, 20.3, 36.8, 40.1, 70.5, 2, 8, 2.1,
3.2, 1.7, 56.5, 23.7, 2.4, 21.4, 5.1, 7.9, 20.1, 14.9, 5.6, 51.7, 87.1, 1.2, 2.7, 1,
1.5, 1.3, 24.7, 72.6, 119.8, 1.2, 6.9, 3.9, 1.6, 3, 1.8, 44.8, 5, 3.9, 125.3, 22.8, 1.9,
15.9, 6, 20.6, 12.9, 3.9, 13, 6.9, 2.5, 12.3, 5.7, 11.3, 2.5, 1.6, 7.6, 2.3, 6.1, 2.1,
34.7, 15.4, 4.6, 55.7, 2.2, 6, 1.8, 1.9, 1.8, 42, 9.3, 91.7, 2.4, 30.6, 1.2, 8.8, 6.6,
49.8, 58.1, 1.9, 2.9, 0.5, 1.2, 31, 11.9, 0.8, 1.2, 0.8, 4.7, 8.3, 7.3, 8.8, 1.8, 3.1,
0.8, 34.1, 3, 2.6, 3.7, 41.3, 29.7, 17.6, 1.9, 13.8, 40.2, 10.1, 11.9, 11 and 0.2.
We want to test whether the IG and RIG models fit well the data within the
GIG family. For the null hypothesis of an IG model, our test φ

(n)
−1/2, performed
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δ = 1 δ = 2 δ = 3 δ = 4 δ = 5 δ = 6 δ = 7 δ = 8 δ = 9
(a, b) = (1, 2) and n = 100

φ
(n)
−1/2

0.3252 0.2741 0.1697 0.0781 0.0444 0.0910 0.2206 0.3742 0.4926

φ
(n)
LR 0.3006 0.2505 0.1548 0.0688 0.0406 0.0921 0.2227 0.3762 0.4924

(a, b) = (2, 2) and n = 100

φ
(n)
−1/2

0.2213 0.1754 0.1238 0.0635 0.0429 0.0684 0.1264 0.2141 0.2972

φ
(n)
LR 0.2004 0.1562 0.1116 0.0560 0.0389 0.0668 0.1246 0.2117 0.2933

(a, b) = (4, 2) and n = 100

φ
(n)
−1/2

0.1513 0.1094 0.0811 0.0553 0.0461 0.0541 0.0810 0.1190 0.1716

φ
(n)
LR 0.1330 0.0974 0.0710 0.0476 0.0404 0.0516 0.0759 0.1148 0.1664

(a, b) = (1, 2) and n = 200

φ
(n)
−1/2

0.5757 0.4747 0.3051 0.1271 0.0458 0.1377 0.3926 0.6509 0.7872

φ
(n)
LR 0.5613 0.4584 0.2907 0.1190 0.0435 0.1400 0.3988 0.6538 0.7895

(a, b) = (2, 2) and n = 200

φ
(n)
−1/2

0.4098 0.3007 0.1833 0.0885 0.0484 0.0917 0.2134 0.3910 0.5333

φ
(n)
LR 0.3928 0.2878 0.1714 0.0835 0.0474 0.0923 0.2151 0.3924 0.5339

(a, b) = (4, 2) and n = 200

φ
(n)
−1/2

0.2568 0.1860 0.1178 0.0684 0.0486 0.0684 0.1265 0.2140 0.3088

φ
(n)
LR 0.2426 0.1739 0.1095 0.0634 0.0460 0.0673 0.1254 0.2120 0.3068

Table 2 Rejection frequencies (out of N = 10, 000 replications) of our optimal test φ
(n)
−1/2

and the likelihood ratio test φ
(n)
LR under GIG(− 1

2
+ (δ − 5) 1

2
, a, b) distributions for δ =

1, 2, . . . , 9 and several choices of (a, b) and, in each setting, for two different sample sizes
n = 100 and 200. The nominal level is α = 0.05.

under two-sided form, gives the p-value 0.0642, leading to a light non-rejection
of the IG model, whereas the null of an RIG model is heavily rejected with a
p-value of 1.8232× 10−5. We thus conclude that the latter model does not fit
the data, whereas the IG model can serve as candidate inside the GIG family.
Note that this finding is not in contradiction with the result of Natarajan and
Mudholkar (2004) whose test clearly rejects the IG model for this data set,
because they do not test IG within the GIG family but against other types of
alternatives.

Our second example deals with the repair time data of Section 7.4 in
Jørgensen (1982). The data read 0.2, 0.3, 0.5, 0.5, 0.5, 0.5, 0.6, 0.6, 0.7, 0.7,
0.7, 0.8, 0.8, 1, 1, 1, 1, 1.1, 1.3, 1.5, 1.5, 1.5, 1.5, 2, 2, 2.2, 2.5, 2.7, 3, 3,
3.3, 3.3, 4, 4, 4.5, 4.7, 5, 5.4, 5.4, 7, 7.5, 8.8, 9, 10.3, 22 and 24.5 and corre-
spond to n = 46 active repair times (in hours) for an airborne communication
transceiver. Jørgensen (1982) has concluded on basis of a Kolmogorov-Smirnov
test that the IG model is a good underlying distribution for the repair times.

Our test φ
(n)
−1/2 completely agrees with his analysis, with a p-value of 0.4484,

whereas the RIG model is here as well rejected (at the 5% level) with a p-value
of 0.0207.
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7 Future research.

Yet another interesting aspect of the Le Cam methodology consists in the fact
that it allows for constructing a simple efficient estimator for ϑϑϑ = (p, a, b)′,
the so-called one-step estimator. The main idea behind one-step estimation

consists in adding to an existing adequate preliminary estimator ϑ̂ϑϑ
(n)

a quan-
tity depending on a version of the central sequence for ϑϑϑ. More precisely, the
one-step estimator takes on the guise

ϑ̂ϑϑ
(n)

Cam = ϑ̂ϑϑ
(n)

+ n−1/2

(
ΓΓΓ (ϑ̂ϑϑ

(n)
)

)−1

∆∆∆(n)(ϑ̂ϑϑ
(n)

),

where ϑ̂ϑϑ
(n)

= (p̂(n), â(n), b̂(n))′ is a preliminary estimator of ϑϑϑ fulfilling As-
sumption A (we would of course choose the MM estimator). The resulting
estimator combines simplicity with efficiency, as, like the test statistics devel-
oped in this paper, it allows for a closed-form expression but is as efficient
as ML estimators. Establishing the asymptotic behavior of such estimators
and their optimality features, as well as comparing their performance to the
competitors of the literature in a detailed simulation study, is part of ongoing
research.

A Appendix.

Proof of Theorem 21. Establishing the ULAN property of GIG(p, a, b) with respect to all
three parameters p, a, b is quite straightforward since we are not working within a semipara-
metric family of distributions (hence we do not have to deal with an infinite-dimensional
parameter); the problem considered involves a parametric family of distributions with densi-
ties meeting the most classical regularity conditions. In particular, one readily obtains that

(i) (p, a, b) 7→
√
c(p, a, b)xp−1e−(ax+b/x)/2 is continuously differentiable for every x > 0

and (ii) the associated Fisher information matrix is well defined and continuous in p, a and

b. Thus, by Lemma 7.6 of van der Vaart (1998), (p, a, b) 7→
√
c(p, a, b)xp−1e−(ax+b/x)/2 is

differentiable in quadratic mean, and the ULAN property follows from Theorem 7.2 of van
der Vaart (1998). This completes the proof. �

Proof of Proposition 31. It follows from the asymptotic linearity property of the central

sequence given in (3) that, under P
(n)
ϑϑϑ

and for n→∞,

∆∆∆
(n)eff
p

(
ϑϑϑ+ n−1/2(0, τ

(n)
2 , τ

(n)
3 )′

)
= ∆∆∆

(n)eff
p (ϑϑϑ)−PPP (ϑϑϑ)ΓΓΓ (ϑϑϑ)

 0

τ
(n)
2

τ
(n)
3

+ oP(1),

where

PPP (ϑϑϑ) =

(
1,−(Γp,a(ϑϑϑ), Γp,b(ϑϑϑ))

(
Γb,b(ϑϑϑ) −Γa,b(ϑϑϑ)
−Γa,b(ϑϑϑ) Γa,a(ϑϑϑ)

)
/(Γb,b(ϑϑϑ)Γa,a(ϑϑϑ)− (Γa,b(ϑϑϑ))2)

)
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is the projection matrix onto the subspace orthogonal to the central sequences for a and b.
One easily checks that the product PPP (ϑϑϑ)ΓΓΓ (ϑϑϑ) is of the form (·, 0, 0), leading to the announced
asymptotic linearity (4). The other asymptotic equality in probability follows by continuity.
�

Proof of Theorem 31. The statement in Part (i) is easily proved thanks to the asymptotic

linearity in (6) under the null, since ∆
(n)eff
p (p0, a, b) is asymptotically N (0, Γ effp,p (p0, a, b))

under
⋃
a∈R+

0

⋃
b∈R+

0
P
(n)
p0,a,b

by the central limit theorem.

In order to prove the more delicate Part (ii), observe that, under P
(n)
p0,a,b

and for any

bounded sequence τττ (n) = (τ
(n)
1 , τ

(n)
2 , τ

(n)
3 )′ ∈ R3, we see that, as n→∞,(

∆
(n)eff
p (p0, a, b)

Λ
(n)

(p0,a,b)′+n−1/2τττ(n)/(p0,a,b)′

)
L−→ N2

((
0

− 1
2
τττ ′ΓΓΓ (ϑϑϑ)τττ

)
,

(
Γ effp,p (p0, a, b) τ1Γ

eff
p,p (p0, a, b)

τ1Γ
eff
p,p (p0, a, b) τττ ′ΓΓΓ (ϑϑϑ)τ

))
,

where Λ
(n)

(p0,a,b)′+n−1/2τττ(n)/(p0,a,b)′
is the log-likelihood ratio and τττ = limn→∞ τττ (n). We

can then apply Le Cam’s third lemma which implies that ∆
(n)eff
p (p0, a, b) is asymptotically

N
(
τ1Γ

eff
p,p (p0, a, b), Γ

eff
p,p (p0, a, b)

)
under P

(n)

p0+n
−1/2τ

(n)
1 ,a,b

. Since the asymptotic linearity

(6) holds as well under P
(n)

p0+n
−1/2τ

(n)
1 ,a,b

by contiguity, Part (ii) of the theorem readily

follows.
As regards Part (iii), the fact that φ

(n)
p0 has asymptotic level α follows directly from

the asymptotic null distribution given in Part (i), while local asymptotic maximinity is a
consequence of the convergence of the local experiments to the Gaussian shift experiment
(see Le Cam and Yang 2000). �
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