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Abstract – The exact solution, via transfer matrix, of the simple one-dimensional lattice Coulomb
gas (1d LCG) model can reproduce peculiar features of ionic liquid capacitors, such as overscreen-
ing, layering, and camel- and bell-shaped capacitance curves. Using the same transfer matrix
method, we now compute the bulk properties of the 1d LCG in the constant voltage ensemble.
We unveil a phase diagram with rich structure exhibiting low-density disordered and high-density
ordered phases, separated by a first-order phase transition at low temperature; the solid state at
full packing can be ordered or not, depending on the temperature. This phase diagram, which
is strikingly similar to its three-dimensional counterpart, also sheds light on the behaviour of the
confined system.

Ionic liquids have intriguing properties when used in
capacitors. These include self-organisation in alternating
positively and negatively charged layers close to a charged
surface [1–4], overscreening of the surface charge [5] and
camel- and bell-shaped capacitance curves depending on
temperature [6]. The first attempt to explain these fea-
tures was based on a model with electrostatic interac-
tions and steric repulsion treated at the mean-field level.
This treatment successfully predicted the camel- and bell-
shaped capacitance curves [7,8], however additional terms
are required to explain the layering [9]. Later, a 1d lattice
model was solved exactly, showing that electrostatic inter-
action and steric repulsion alone can qualitatively repro-
duce the observed features [10,11]. A continuum version of
the one-dimensional model, modeling the ions as charged
rods, showed a better qualitative agreement with exper-
imental electrode separation-pressure curves [12]. How-
ever, in this case, an exact solution was not found, and
a numerical computation is only possible for small sys-
tems. All these studies of one-dimensional systems focused
on the capacitor behaviour while their bulk properties re-
mained unexamined. We now extend this analysis to the
bulk system with the rationale that the understanding of
bulk properties may potentially provide valuable insight
into the behaviour of small systems.

The basic ingredients of ionic liquids, electrostatic in-
teraction and steric repulsion, are incorporated in the re-
stricted primitive model (charged hard spheres), the phase
diagram of which has been extensively studied and is now
well established [13–20]. It features a phase coexistence
between a low-density gas and a high-density ordered liq-
uid at low temperature, a Néel line of second-order tran-
sitions at larger temperatures, and a solid phase at high
density. The lattice version of this model (LRPM) im-
plements the steric exclusion by allowing at most one ion
per site. Its phase diagram has the same structure as its
continuous counterpart, but also exhibits significant dif-
ferences stemming from the fact that the lattice facilitates
organisation [20–29]. The bulk properties of RPM and
LRPM are thus well understood, but the link with the pe-
culiar behaviour of an ionic liquid capacitor remains to be
made.

Here, we use the exact transfer matrix solution of
the one-dimensional LRPM (or one-dimensional lattice
Coulomb gas) developed in refs. [10,11] in the context
of a fluid capacitor to compute its bulk phase diagram.
We show that, remarkably, this simple model produces a
rich phase diagram showing striking similarities to its 3d
counterpart. Specifically, we find that the charge density
oscillations observed close to a charged surface correspond
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Fig. 1: (Colour online) Notations for the one-dimensional lat-
tice Coulomb gas: sites can either be empty, host a cation (red)
or an anion (blue). Electrodes bear charges −Q and Q.

to an ordered bulk phase, and the abrupt change of the
capacitance at the point of zero charge [11] of an ionic
liquid capacitor corresponds to a first-order bulk phase
transition.

Model. – We begin by defining the one-dimensional
lattice Coulomb gas model, shown in fig. 1. The ions are
confined between an anode at ia = �−(N + 1)/2� and a
cathode at ic = �(N + 1)/2�; N sites are thus available.
Each site i ∈ (ia, ic) can be empty (si = 0), host a cation
(si = 1) or an anion (si = −1). In the constant charge
ensemble, the cathode and anode bear a charge Q ∈ R+

and −Q, respectively. The grand partition function can
be written as

Ξ =
∑
(si)

δ0,
P

i si
μ
P

i |si| exp

⎛
⎝ 1

4T

∑
i,j

|i − j|sisj

⎞
⎠, (1)

where the index i runs over (ia, ic), except in the argument
of the exponential where the sum includes the electrodes,
with sia = −Q and sic = Q. In what follows, we use a
unit charge, unit lattice spacing, and unit Boltzman con-
stant: the only free parameters are thus the fugacity μ
and the temperature T . Electroneutrality is enforced via
the Kronecker δ. If the electrodes can exchange charges
to maintain a potential difference ΔV between them, the
relevant ensemble is the constant voltage ensemble. In this
ensemble, the grand partition function is given by [11]

Ξ̂ΔV =
∫ ∞

−∞
exp(QΔV )ΞQdQ. (2)

Transfer matrix solution. – The model defined
above is exactly solvable using a Hubbard-Stratonovitch
transformation, which allows the rewriting of the parti-
tion function via the transfer matrix formalism [10,11].
The constant charge partition function thus reads

Ξ = 〈ψb|KN |ψb〉, (3)

where the vector ψb is a function and the transfer matrix
K is a linear integral operator defined on functions in R:

ψb,k = exp
(
− k2

4T

)
δ(k − Q) (4)

Kkl = exp
(
−k2 + l2

4T

)

× (δ(k − l) + μ[δ(k − l + 1) + δ(k − l − 1)]). (5)

The moments of the density can be computed using the
cation (+) and anion (−) density operators defined as

R±,kl = μ exp
(
−k2 + l2

4T

)
δ(k − l ± 1). (6)

The charge and occupancy operators are given by R =
R+−R− and Ro = R++R−, respectively. In the following,
we will be interested in the average density and the charge-
charge correlation function, which are given by

〈|si|〉 = Ξ−1〈ψb|Ki−ic−1RoK
ia−i−1|ψb〉, (7)

〈sisj〉 = Ξ−1〈ψb|Ki−ic−1RKj−i−1RKia−j−1|ψb〉. (8)

In the thermodynamic limit, N → ∞, the maxi-
mal eigenvalue λ∗ of the transfer matrix and its associ-
ated eigenvector ψ∗ dominate, we can thus write KN ∼
λ∗N |ψ∗〉〈ψ∗| and it follows that:

Ξ ∼ λ∗N |〈ψb|ψ∗〉|2, (9)
〈|si|〉 → λ∗−1〈ψ∗|Ro|ψ∗〉 = ρ, (10)

〈sisj〉 → λ∗−(j−i+1)〈ψ∗|RKj−i−1R|ψ∗〉 = ρcj−i, (11)

where we have defined the average occupancy ρ and charge
correlation function ci.

The transfer matrix K and density operators R±
(eqs. (5), (6)) map the subspaces Eθ = {ψk, k ∈ Z + θ},
where θ ∈ [0, 1), onto themselves. Hence, for each θ, a dis-
crete (but still infinite) matrix can be associated with the
transfer matrix restricted to the subspace Eθ, Kθ = K|Eθ

.
For constant charges ±Q on the electrodes, the boundary
vector is given by eq. (4), and only the subspace EQ−�Q�
is explored. This means that the eigenvalue (and corre-
sponding eigenvector) entering eqs. (9)–(11) is actually the
maximal eigenvalue of KQ−�Q�, which we denote λ∗

Q−�Q�
(it is positive from the Perron-Frobenius theorem). This
dependence of the bulk behaviour of the system on the
boundary conditions of a finite system is related to the
θ-vacua encountered in quantum field theory [30].

On the other hand, in the constant voltage ensemble,
the partition function (eq. (2)) obviously involves all the
possible boundary charges. As a consequence, the maxi-
mal eigenvalue λ∗ which enters eqs. (9)–(11) is the maxi-
mal eigenvalue of the full transfer matrix K. The charges
Q ∈ Z + θ such that λ∗

θ = λ∗ are said to be “selected” (we
also say that a value of θ is selected).

For each θ, the transfer matrix Kθ has infinite dimen-
sion, so that a cut-off kc has to be introduced on its in-
dices in order to diagonalise it numerically. The spectrum
of Kθ=0 for T = 10 and μ = 1 is shown in fig. 2; increasing
the number of modes beyond kc 
 5 increases the density
of eigenvalues around 0, but does not change the maxi-
mal (and minimal) eigenvalues, neither the spectral gap
between the first and second eigenvalues. This rapid con-
vergence with the cutoff is due to the rapid decay of the
transfer matrix coefficients with the indices (see eq. (5)).
The accuracy of the evaluation is better than the standard
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Fig. 2: (Colour online) Spectrum of the transfer matrix Kθ=0

as a function of the numerical cutoff kc for T = 10, μ = 1.
The 2kc + 1 eigenvalues corresponding to each value of kc are
plotted along the corresponding y-axis and are colour coded,
blue denoting the smallest and red the largest. One clearly sees
the relative insensitivity of λ∗ to kc for kc > 5.
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Fig. 3: (Colour online) Dependence of the maximal eigenvalue
λ∗

θ on θ at T = 0.25 (top) and T = 0.2 (bottom) around a
value of the fugacity μ where the selected θ goes from 0 to
1/2 (top: μ ∈ {1.122, 1.123, 1.12404664, 1.125, 1.126}; bottom:
μ ∈ {1.324, 1.325, 1.32559787, 1.326, 1.327}). For T = 0.25 the
selected value of θ goes continuously from 0 to 1/2 while the
transition is sharp for T = 0.2.

precision of Python, 10−15, for the cut-off kc = 25 used
throughout the manuscript.

The relations λ∗
θ = λ∗

−θ and λ∗
θ = λ∗

1+θ mean that θ = 0
and 1/2 are stationary points of λ∗

θ with respect to θ.
Numerically, we find that integer (θ = 0) or half-integer
(θ = 1/2) boundary charges correspond to the maximal

Fig. 4: (Colour online) Phase diagram in the density-
temperature plane. Blue dotted lines delineate regions of inte-
ger (θ = 0) and half-integer (θ = 1/2) selected charges. Solid
blue lines delineate the coexistence regions. Red triangles de-
note the onset of charge oscillation, i.e., ordering. The solid
phase at ρ = 1 is ordered for θ = 1/2 (gray lines, os) and
disordered for θ = 0 (ds).

value of λ∗
θ almost everywhere. Curves of λ∗

θ are shown
for values of the fugacity close to a transition in fig. 3.
Depending on the shape of these curves, the selected θ
can either change continuously (e.g., for T = 0.25) or dis-
continuously (e.g., for T = 0.2); the latter corresponds,
as we shall see, to a first-order phase transition. On the
contrary, no such transition exists in the constant charge
ensemble. We are interested in the bulk phase transitions
that may take place in the system, so that we restrict our
study to the constant voltage ensemble; in the thermody-
namic limit, bulk averages do not depend on the imposed
voltage (see eqs. (10), (11)). Note that the occurrence of
the free energy minima at θ = 0 for low-density systems
and θ = 1/2 for high-density systems can be partially
explained by mapping the model here onto a discrete in-
terface model [11].

Density. – When the selected charges switch discontin-
uously between integers and half-integers, as the fugacity
increases, the density changes discontinuously (from ρa to
ρb). At imposed density, this discontinuity becomes a co-
existence region for ρ ∈ [ρa, ρb]. Coexistence should be
understood in the statistical sense: the statistical state
of the system is a combination of low- and high-density
states. In this region, the maximal eigenvalue λ∗ of the
transfer matrix and the pressure p = T log(λ∗) do not de-
pend on the density. The density-temperature phase dia-
gram, shown in fig. 4, displays three coexistence regions.
The main one, at low temperature, is reminiscent of the
one present in the RPM [17]. The one at higher temper-
ature along the same transition line and the one around
T 
 1, ρ 
 0.8 are more exotic.

Spatial organisation. – Spatial organisation of the
charge is encoded in the charge correlation function ci.
The correlation function is shown in fig. 5 for several den-
sities and temperatures; it may decay monotonically or
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Fig. 5: (Colour online) Charge correlation function as a func-
tion of the distance. Top: T = 1 and ρ ∈ {0.1, 0.7, 0.9}; inset:
focus on ρ ∈ {0.7, 0.9} at large distance. Bottom: T = 0.1 and
ρ ∈ {0.1, 0.9, 0.99}.

with oscillations. We focus on the long-distance decay to
understand these two behaviours.

The long-distance behaviour of the correlation func-
tion can be investigated by keeping only the two maximal
eigenvalues of K (in absolute value), λ∗ and λ2, corre-
sponding to the eigenvectors ψ∗ and ψ2, respectively:

ci ∼
i→∞

〈ψ∗|R
(
λ∗i−1|ψ∗〉〈ψ∗| + λi−1

2 |ψ2〉〈ψ2|
)
R|ψ∗〉

λ∗i+1ρ
.

(12)
The system is neutral, 0 = 〈s0〉 = 〈ψ∗|R|ψ∗〉/λ∗, and R is
antisymmetric, so that

ci ∼
i→∞

−|〈ψ2|R|ψ∗〉|2

λ∗2ρ

(
λ2

λ∗

)i−1

. (13)

Note that this relation breaks down if 〈ψ2|R|ψ∗〉 = 0; in
this case the largest eigenvalue such that the correspond-
ing eigenvector ψeig satisfies 〈ψ∗|R|ψeig〉 �= 0 should be
considered. If λ2 < 0 (i.e., λ2 is the minimal eigenvalue
of K) and 〈ψ2|R|ψ∗〉 �= 0, the correlation function os-
cillates. We find numerically that this last condition is
never satisfied in the phase θ = 0, but is satisfied in the
phase θ �= 1/2 at large enough density. The charge oscil-
lations are seen in fig. 5 for T = 1 and ρ = 0.7 (θ = 1/2
for this density, while θ = 0 for ρ ∈ {0.1, 0.9}) and for
T = 0.1 and ρ ∈ {0.9, 0.99}. We denote the onset of
charge oscillation, and thus organisation, by red triangles
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Fig. 6: (Colour online) Long-range charge order as a function
of temperature for ρ = 1. The inset is a zoom on the T > 1
region, where a small long-range order exists.

in the phase diagram, fig. 4. The correlation length is
given by ξ = log(|λ∗/λ2|)−1, which appears to diverge as
the density approaches 1 (see fig. 5 for T = 0.1). This is
investigated later using an expansion around ρ = 1.

Dense packing limit. – The dense packing limit
ρ → 1 corresponds to μ → ∞. In this limit, some an-
alytical results may be obtained from the properties of
K̄ = K/μ and R̄± = R±/μ; the eigenvalues now refer
to eigenvalues of K̄. First, we focus on the case of dense
packing, i.e., ρ = 1, where the system is in a solid state.
From the eigenvector ψ∗, we construct the vector ψ− with
components (ψ−)k = (−1)�k�ψ∗

k. From K̄kl(−1)�l� =
−(−1)�k�K̄kl, we deduce that K̄|ψ−〉 = −λ∗|ψ−〉: −λ∗

is also an eigenvalue of K̄. Hence λ2 = −λ∗ in eq. (13),
and we get

ci ∼
i→∞

∣∣〈ψ−|R̄|ψ∗〉
∣∣2

λ∗2 (−1)i. (14)

The parameter ω(T ) = λ∗−2
∣∣〈ψ−|R̄|ψ∗〉

∣∣2 characterises
the long-range charge order. It depends only on tem-
perature. If ω(T ) > 0, the system is an ordered solid.
The long-range charge order is plotted in fig. 6: it is zero
for θ = 0 and non-zero for θ = 1/2, although it decays
rapidly with increasing temperature; the ordered and dis-
ordered solid regions are shown in the phase diagram,
fig. 4. While ordered and disordered solid regions exist
in the RPM [15,17,19], the peculiar dependence on the
temperature is specific to the one-dimensional system con-
sidered here. Finally, we note that the limits N → ∞ and
ρ → 1 do not commute. Taking ρ → 1 first, −λ∗ should
be included in eqs. (9)–(11). Here, we take the thermody-
namic limit at ρ < 1 and then take the limit ρ → 1.

Next, we show that the long-range charge order is nec-
essarily zero for θ = 0. For θ = 0 and θ = 1/2, the
transfer matrix K̄kl is even (i.e., K̄−k,−l = K̄k,l), so that
the maximal eigenvector ψ∗

k is also even. On the other
hand, the function k �→ (−1)�k� is even for θ = 0 and odd
for θ = 1/2, and so is (ψ−)k. Finally, the operator R̄ is
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odd: R̄−k,−l = −R̄k,l. Putting these relations together im-
plies that 〈ψ−|R̄|ψ∗〉 = 0 for θ = 0: there is no long-range
order and the system is in the disordered solid phase. On
the other hand, long-range order can occur for θ = 1/2,
and more generally for θ �= 0.

We have shown that the correlation length is infinite
in the regions where θ = 1/2 for ρ = 1. Here, we use an
expansion around ρ = 1 to determine its dependence on ρ.
We expand the operators, eigenvalues and eigenvectors as
a function of the small parameter ε = 1/μ. The occupancy
operator is R̄o(ε) = K̄(ε = 0), and the density is given by

ρ(ε) =
〈ψ∗(ε)|K̄(0)|ψ∗(ε)〉

λ∗(ε)
= 1 − ε

λ∗′(0)
λ∗(0)

+ O(ε2). (15)

On the other hand, the correlation length satisfies the
relation

ξ(ε)−1 = log
(
−λ∗(ε)

λ2(ε)

)
= ε

λ∗′(0) + λ′
2(0)

λ∗(0)
+ O(ε2), (16)

where we have used λ2(0) = −λ∗(0). The variation of an
eigenvalue, e.g. λ2, is given by λ′

2 = 〈ψ2|K̄ ′|ψ2〉. Using
that [ψ2(ε = 0)]k = (−1)�k�[ψ∗(ε = 0)]k and K̄ ′(0) =
exp(−k2/[2T ])δ(k− l), we get that λ′

2(0) = λ∗′(0). Insert-
ing this equality in eq. (16) and comparing with eq. (15)
leads to

ξ ∼
ρ→1

1
2 (1 − ρ)−1, (17)

the correlation length is therefore half of the average dis-
tance between vacancies.

Discussion. – In this letter, we have computed ex-
actly the bulk phase diagram of the 1d LCG (or LRPM)
in the constant voltage ensemble (fig. 4). It features a
low-density disordered phase and a high-density ordered
phase, separated by a first-order phase transition at low
temperatures. The solid state at full occupancy may be
charge ordered or charge disordered, depending on the
temperature.

We note that the presence of a phase transition in
our one-dimensional system does not violate the Landau-
Peierls argument since the electrostatic interaction is long
range (or, more precisely, does not decay faster than
1/x2) [31,32]). In the transfer matrix formalism, this ar-
gument is rephrased in the van Hove theorem [33]. For
the theorem to apply, the transfer matrix should be irre-
ducible, which is not the case here because the transfer
matrix can be decomposed on the subspaces Eθ.

Some of the bulk properties observed here may be re-
lated to the capacitor behaviour of the 1d LCG. Firstly,
the discontinuous jump of the capacitance at the point of
zero charge (PZC), noticed in ref. [11], which corresponds
to the transition between camel- and bell-shaped capaci-
tance curves [5,8], is clearly related to the first-order phase
transition that we observe. In the low-density phase, inte-
ger charges are selected, so that the PZC lies in a plateau
of the voltage-charge curve and the differential capacitance
is small. In the high-density phase, half-integer charges

are selected and the PZC lies at the transition between
two plateaus, hence the differential capacitance is large.
Secondly, charge density oscillations were observed in the
constant charge ensemble for non-integer surface charges.
Spatial organisation of the charge at an interface thus cor-
responds directly to charge correlation in the bulk; our
results suggest that charge density oscillations seen at a
charged interface are also present in the constant voltage
ensemble in the regions where half-integer charges are se-
lected in the bulk.

Whether such a close relationship between the bulk and
capacitor properties is also present in more realistic models
remains an open question. Up till now, numerical simu-
lations of ionic liquids at interfaces have not investigated
this question [6]. However, we expect the relationship to
be more subtle in three-dimensional systems than in our
one-dimensional model. For example, the observed layer-
ing where charge oscillates only in the direction orthogonal
to the bounding surface is not directly compatible with the
ordered state of the bulk liquid in three dimensions.

We thank A. C. Maggs for useful discussions about the
properties of the transfer matrix and the van Hove theo-
rem. RP acknowledges support from the ARRS through
the program P1-0055 and from ESPCI ParisTech during
his stay as a visiting Joliot Chair Professor.
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[30] Aizenman M. and Fröhlich J., J. Stat. Phys., 26 (1981)
347.

[31] Landau L. D. and Lifshitz E. M., Statistical Physics,
Course of Theoretical Physics, Vol. 5 (Butterworth-
Heinemann) 1980.

[32] Thouless D. J., Phys. Rev., 187 (1969) 732.
[33] Cuesta J. and Sánchez A., J. Stat. Phys., 115 (2004)

869.

6




