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Abstract

For a positive integer r, let I denote the r × r unit matrix. Let X and Y

be two independent r × r real symmetric and positive definite random matrices.
Assume that X follows a Kummer distribution while Y follows a non-degenerate
Wishart distribution, with suitable parameters. This note points out the following
observation: the random matrices U := [I + (X + Y )−1]1/2[I + X

−1]−1[I + (X +
Y )−1]1/2 and V := X +Y are independent and U follows a matrix beta distribution
while V follows a Kummer distribution. This generalizes to the matrix case an
independence property established in Koudou and Vallois (2010) for r = 1.

Keywords: Wishart distribution; Matsumoto-Yor property; Matrix Kummer distribu-
tion; Matrix Beta distribution.

1 Introduction

If X, Y are two real positive and independent random variables and if f : ]0,∞[→]0,∞[
is a decreasing and bijective function, define U := f(X + Y ) and V := f(X)− f(X + Y ).
For f(x) = 1/x, if X follows a generalized inversed Gaussian (GIG) distribution and if
Y has a gamma distribution with a suitable matching of the parameters, then U and
V are independent. This fact, partially observed in Matsumoto and Yor (2001) and
completely proved in Letac and Weso lowski (2000), is known in the recent literature
as the Matsumoto-Yor property. Furthermore, it characterizes the product of GIG and
gamma laws, as shown in Letac and Weso lowski (2000).

In Koudou and Vallois (2010), other independence properties of the Matsumoto-Yor
type have been proved, by observing that there are essentially four possible functions f ,
and characterizations of the corresponding laws have been given under the assumptions
of existence and smoothness of densities (see also Koudou and Vallois, 2011, where these
assumptions have been slightly relaxed). For f(x) = log(1 + x)− log x the corresponding
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independence property states the following: if X, Y are independent random variables
such that the law of is a Kummer law

K(2)(a, b, c)(dx) := Cxa−1(1 + x)−a−be−cx1(0,∞)(x)dx, a, c > 0, b ∈ R

(C is the normalizing constant) and such that the law of Y is the gamma distribution

γ(b, c)(dx) =
cb

Γ(b)
xb−1e−cx1(0,∞)(x)dx, then the random variables

U :=
1 + 1

X+Y

1 + 1
X

, V := X + Y (1.1)

are independent. Moreover, U ∼ Beta(a, b) and V ∼ K(2)(a+b,−b, c) where Beta(a, b)(dx) =
Γ(a + b)

Γ(a)Γ(b)
xa−1(1 − x)b−11{0<x<1}dx.

The Kummer and gamma distributions exist also as distributions on the set of positive
definite matrices (the Wishart distribution in the gamma case), and matrix versions exist
for the GIG-gamma Matsumoto-Yor property (see Letac and Weso lowski, 2000 and Mas-
sam and Weso lowski, 2006). Therefore, a natural question is whether the independence
of the random variables U and V defined by (1.1) still holds if X and Y are r× r random
matrices (of course, one has to formulate U and V as matrices, see (2.4)). We prove that
the answer is affirmative. Although the proof only relies on a Jacobian calculation, the
framework of matrices makes it non-trivial.

In Section 2 we state the result after a recall of the definition of matrix Kummer,
Wishart and beta distributions. Section 3 is devoted to the proof and Section 4 to a short
discussion.

2 The result

Let r ≥ 1 be an integer. Denote by Mr the Euclidean space of r × r real symmetric
matrices, and by I the unit element of Mr. Consider the inner product 〈A,B〉 = tr(AB)
on Mr. Let M+

r be the cone of positive definite matrices in Mr.
For Σ ∈ M+

r and b ∈ {0, 1
2
, 1, 3

2
, . . . , r−1

2
} ∪ ( r−1

2
,∞), the Wishart distribution γ(b,Σ)

(see for instance Letac and Weso lowski, 2000 and Massam and Weso lowski, 2006) is
defined as the law of a random matrix Y valued in the closure of M+

r , with Laplace
transform

IE(e〈σ,Y 〉) =

(

det Σ

det(Σ − σ)

)b

, Σ − σ ∈ M+
r .

If b > r−1
2

(we refer to this case as the non-degenerate case), the Wishart distribution
γ(b,Σ) has a density:

γ(b,Σ)(dy) =
(det Σ)b

Γr(b)
(det y)b−(r+1)/2 exp(−〈Σ, y〉)1M+

r

(y) dy, (2.1)

2



where Γr is the multivariate gamma function defined for any complex number z with
Re(z) > (r − 1)/2 by

Γr(z) = πr(r−1)/4

r
∏

j=1

Γ

(

z −
j − 1

2

)

.

For α, β > r−1
2

, the beta distribution Beta(α, β) (also called matrix variate beta of
type I, see Nagar and Gupta, 2002) on M+

r is

Beta(α, β)(du) =
Γr(α + β)

Γr(α)Γr(β)
(det u)α− r+1

2 (det(I − u))β− r+1

2 1U(u) du, (2.2)

where U is the set of matrices u in M+
r such that I − u ∈ M+

r .
For a > r−1

2
, b ∈ R, Σ ∈ M+

r , the matrix Kummer distribution on M+
r is defined by

K(a, b,Σ)(dx) =
1

Γr(a)ψ(a, a− b+ r+1
2

; Σ)
(det x)a− r+1

2 (det(I+x))b exp(−〈Σ, x〉)1M+
r

(x) dx,

(2.3)
where ψ is the confluent hypergeometric function of second kind with matrix argument
(see Joshi and Joshi, 1985, formula (2)). This distribution is called in the literature (see
e. g. Gupta et al, 2001) the Kummer-Gamma distribution or the Kummer distribution of
type II. In this paper we concisely call it the Kummer distribution.

We now state the result of the present paper.

Theorem 2.1 Consider a, b,Σ such that a > r−1
2

, b − a > r−1
2

and Σ ∈ M+
r . Let X

and Y be two independent random matrices valued in M+
r . Assume that X follows the

Kummer distribution K(a, b,Σ) and Y the Wishart distribution γ(b− a,Σ).
Then, the random matrices

U := [I + (X + Y )−1]1/2[I +X−1]−1[I + (X + Y )−1]1/2, V := X + Y (2.4)

are independent. Furthermore, U ∼ Beta(a, b− a) and V ∼ K(b, a,Σ).

3 Proof

For x, y ∈ M+
r define

u := [I + (x+ y)−1]1/2[I + x−1]−1[I + (x+ y)−1]1/2, v := x+ y. (3.1)

Observe that, since x and y are positive definite matrices, it is also the case for u, v and
I − u. (It is obvious for u and v. To check it for I − u, one can write

I − u = [I + (x+ y)−1]1/2
(

[I + (x+ y)−1]−1 − [I + x−1]−1
)

[I + (x+ y)−1]1/2

and use the fact that if A and B are positive definite matrices such that A−B is positive
definite, then B−1 −A−1 is positive definite). Therefore, the transformation

T : (x, y) 7→ (u, v)

maps M+
r ×M+

r to U × M+
r . It is clearly bijective. We now compute the Jacobian of

T−1.
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3.1 The Jacobian

It is convenient to write T = T2 ◦ T1, where T1 : M+
r × M+

r → U × M+
r and T2 :

U ×M+
r → U ×M+

r are defined by

T1(x, y) = (w, z) :=
(

[I + x−1]−1, x+ y
)

and
T2(w, z) = (u, v) :=

(

[I + z−1]1/2w[I + z−1]1/2, z
)

.

We have
(x, y) = T−1

1 (w, z) =
(

[w−1 − I]−1, z − [w−1 − I]−1
)

(3.2)

and
(w, z) = T−1

2 (u, v) =
(

[I + v−1]−1/2u[I + v−1]−1/2, v
)

. (3.3)

Lemma 3.1 The Jacobian of the transformation T−1 is

J(u, v) = det(I + v)
r+1

2 det(I + v − uv)−r−1 det v
r+1

2 . (3.4)

PROOF: We compute the Jacobian of T−1 via the Jacobians J(u,v)→(w,z) and J(w,z)→(x,y).
J(u,v)→(w,z) is the determinant of the differential of T−1

2 at (u, v). This differential is a
linear endomorphism of Mr ×Mr which, by (3.3), can be writen as

(

D E
0 IdMr

)

where E does not need to be computed and D is the differential of the function u 7→ [I +
v−1]−1/2u[I+v−1]−1/2 for fixed v. Thus, J(u,v)→(w,z) equals detD (we use the same notation
for the determinant of a matrix and the determinant of a linear operator). According to
Muirhead (1982), Theorem 2.1.7, we have

detD =
(

det[I + v−1]−1/2
)r+1

=
(

det[I + v−1]
)− r+1

2 ,

i.e.
J(u,v)→(w,z) =

(

det[I + v−1]
)− r+1

2 . (3.5)

Let us now compute J(w,z)→(x,y). By (3.2), we have x =
(

[w−1 − I]−1 so that the
differential G(w) of x with respect to w is the linear map

h 7→
(

[w−1 − I]−1w−1hw−1[w−1 − I]−1

on Mr. Its determinant is, again by Muirhead (1982), equal to

det(G(w) = det
(

[w−1 − I]−1w−1
)r+1

= det(I − w)−(r+1).

Thus, by (3.2), we have

J(w,z)→(x,y) = det

(

G(w) 0
H IdMr

)

= det(G(w) = det(I − w)−(r+1) (3.6)
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where no detail is needed about H . It follows from (3.5)and (3.6) that

J(u, v) = J(u,v)→(w,z)J(w,z)→(x,y) =
(

det[I + v−1]
)− r+1

2 det(I − w)−(r+1). (3.7)

We have
det[I + v−1] = det

(

v−1
)

det(I + v). (3.8)

Since det(I + AB) = det(I +BA) for any symmetric matrices A and B, we write

det(I − w) = det
(

I − [I + v−1]−1/2u[I + v−1]−1/2
)

= det
(

I − u[I + v−1]−1
)

= det
(

I − uv[I + v]−1
)

= det(I + v)−1 det(I + v − uv). (3.9)

Substituting ( 3.8) and (3.9) in (3.7) we obtain (3.4). �

3.2 Density of (U, V )

Denote by fX and fY the densities of X and Y respectively, and by f(U,V ) the density of
(U, V ). Since X and Y are independent,

f(U,V )(u, v) = fX(x)fY (y)J(u, v)1U(u)1M+
r

(v) (3.10)

where (x, y) = T−1(u, v) and J(u, v) is the Jacobian given by (3.4). Recall that X ∼
K(a, b,Σ) and Y ∼ γ(b − a,Σ). By (2.2) and (2.3), denoting by C the product of all
constants, (3.10) can be written, for any (u, v) ∈ U ×M+

r ,

f(U,V )(u, v) = C (det x)a− r+1

2 (det(I + x))−b exp(−〈Σ, x〉)

×(det y)b−a− r+1

2 exp(−〈Σ, y〉) J(u, v)

= C (det x)a− r+1

2 (det(I + x))−b(det y)b−a− r+1

2

× exp(−〈Σ, x+ y〉) J(u, v). (3.11)

In the following lemma we express det x, det y, det(I + x) in terms of u and v.

Lemma 3.2 Consider x, y, u, v such that T (x, y) = (u, v) as in (3.1). Then,

det x = det
(

(I + v − uv)−1
)

det u det v, (3.12)

det(I + x) = det
(

(I + v − uv)−1
)

det(I + v), (3.13)

det y = det v det
(

(I + v − uv)−1
)

det(I + v) det(I − u). (3.14)

PROOF: By (3.1) we have

x−1 =
(

I + v−1
)1/2

u−1
(

I + v−1
)1/2

− I

=
(

I + v−1
)1/2 (

u−1 − [I + v−1]−1
) (

I + v−1
)1/2

,
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which gives

x =
(

I + v−1
)−1/2 (

u−1 − [I + v−1]−1
)−1 (

I + v−1
)−1/2

. (3.15)

Since I + v−1 = v−1(I + v) we have u−1 − [I + v−1]−1 = u−1(I + v− uv)(I + v)−1, so that
( 3.15) gives

x = v1/2(I + v)−1/2(I + v)(I + v − uv)−1uv1/2(I + v)−1/2

= v1/2(I + v)1/2(I + v − uv)−1uv1/2(I + v)−1/2. (3.16)

Taking the determinant we obtain (3.12).
The definitions of u and v imply

det u = det(I + v−1) det(I + x−1)−1

= (det v)−1 det(I + v) detx det(I + x)−1

from which we get det(I + x) = (det u)−1(det v)−1 det(I + v) det x. Then, (3.13) follows
from (3.12).

To obtain (3.14), we use (3.16) to write

y = v − x

= v1/2Iv1/2 − v1/2(I + v)1/2(I + v − uv)−1u(I + v)−1/2v1/2

= v1/2
[

I − (I + v)1/2(I + v − uv)−1u(I + v)−1/2
]

v1/2.

As a consequence,

det y = det v det
(

I − (I + v − uv)−1u
)

= det v det
(

(I + v − uv)−1(I + v − uv − u)
)

and (3.14) follows since I + v − uv − u = (I − u)(I + v).

�

To complete the proof of the theorem, we plug (3.12), (3.13), (3.14) and (3.4) into
(3.11), replace x + y with v and the result follows. Here are the details: for any (u, v) ∈
U ×M+

r ,

f(U,V )(u, v) = C
(

det(I + v − uv)
)

r+1

2
−a(

det u
)a− r+1

2
(

det v
)a− r+1

2

×
(

det(I + v − uv)
)b(

det(I + v)
)−b

(det v)b−a− r+1

2

(

det(I + v − uv)
)a−b+ r+1

2
(

det(I + v)
)b−a− r+1

2
(

det(I − u)
)b−a− r+1

2

(

det(I + v)
)

r+1

2
(

det(I + v − uv)
)−r−1(

det v
)

r+1

2 exp(−〈Σ, v〉)

= C
(

det u
)a− r+1

2
(

det(I − u)
)b−a− r+1

2
(

det v
)b− r+1

2
(

det(I + v)
)−a

from which we see that U and V are independent and follow the laws Beta(a, b− a) and
K(b, a,Σ) respectively (see (2.2) and (2.3). �
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4 Discussion

1. As said in the introduction, the independence property established in the present paper
has been proved in the case r = 1 by Koudou and Vallois (2010), where the converse has
been proved too, thus providing a characterization of the product of Kummer and gamma
laws under the assumption of existence and smoothness of densities. It is highly likely,
although not easy to prove, that this characterization holds also in the case of matrices.
Namely, one can make the following conjecture:

Let X and Y be two independent random matrices valued in M+
r with smooth densities.

The random matrices U and V defined by (2.4) are independent if and only if there exist
a, b,Σ such that a > r−1

2
, b − a > r−1

2
, Σ ∈ M+

r and such that X follows the Kummer
distribution K(a, b,Σ) and Y the Wishart distribution γ(b− a,Σ).
2. The Matsumoto-Yor property has been discovered in a particular case by Matsumoto
and Yor (2001) while studying certain exponential functionals of the Brownian motion.
An interesting question is whether there exists a stochastic process whose behaviour could
be linked to the independence property shown in the present paper in the case r = 1 as
well as in the matrix framework.
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