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Introduction

If X, Y are two real positive and independent random variables and if f : ]0, ∞[→]0, ∞[ is a decreasing and bijective function, define U := f (X + Y ) and V := f (X)f (X + Y ). For f (x) = 1/x, if X follows a generalized inversed Gaussian (GIG) distribution and if Y has a gamma distribution with a suitable matching of the parameters, then U and V are independent. This fact, partially observed in [START_REF] Matsumoto | An analogue of Pitman's 2M -X theorem for exponential Wiener functional, Part II: the role of the generalized inverse Gaussian laws[END_REF] and completely proved in [START_REF] Letac | An independence property for the product of GIG and gamma laws[END_REF], is known in the recent literature as the Matsumoto-Yor property. Furthermore, it characterizes the product of GIG and gamma laws, as shown in [START_REF] Letac | An independence property for the product of GIG and gamma laws[END_REF].

In [START_REF] Koudou | Independence properties of the Matsumoto-Yor type[END_REF], other independence properties of the Matsumoto-Yor type have been proved, by observing that there are essentially four possible functions f , and characterizations of the corresponding laws have been given under the assumptions of existence and smoothness of densities (see also [START_REF] Koudou | Which distributions have the Matsumoto-Yor property? To appear in Electronic Communications in Probability[END_REF], where these assumptions have been slightly relaxed). For f (x) = log(1 + x) -log x the corresponding independence property states the following: if X, Y are independent random variables such that the law of is a Kummer law

K (2) (a, b, c)(dx) := Cx a-1 (1 + x) -a-b e -cx 1 (0,∞) (x)dx, a, c > 0, b ∈ R (C is the normalizing constant) and such that the law of Y is the gamma distribution γ(b, c)(dx) = c b Γ(b)
x b-1 e -cx 1 (0,∞) (x)dx, then the random variables

U := 1 + 1 X+Y 1 + 1 X , V := X + Y (1.1) are independent. Moreover, U ∼ Beta(a, b) and V ∼ K (2) (a+b, -b, c) where Beta(a, b)(dx) = Γ(a + b) Γ(a)Γ(b) x a-1 (1 -x) b-1 1 {0<x<1} dx.
The Kummer and gamma distributions exist also as distributions on the set of positive definite matrices (the Wishart distribution in the gamma case), and matrix versions exist for the GIG-gamma Matsumoto-Yor property (see Letac and Weso lowski, 2000 and Massam and Weso lowski, 2006). Therefore, a natural question is whether the independence of the random variables U and V defined by (1.1) still holds if X and Y are r × r random matrices (of course, one has to formulate U and V as matrices, see (2.4)). We prove that the answer is affirmative. Although the proof only relies on a Jacobian calculation, the framework of matrices makes it non-trivial.

In Section 2 we state the result after a recall of the definition of matrix Kummer, Wishart and beta distributions. Section 3 is devoted to the proof and Section 4 to a short discussion.

The result

Let r ≥ 1 be an integer. Denote by M r the Euclidean space of r × r real symmetric matrices, and by I the unit element of M r . Consider the inner product A, B = tr(AB) on M r . Let M + r be the cone of positive definite matrices in M r . For Σ ∈ M + r and b ∈ {0, 1 2 , 1, 3 2 , . . . , r-1 2 } ∪ ( r-1 2 , ∞), the Wishart distribution γ(b, Σ) (see for instance Letac and Weso lowski, 2000 and Massam and Weso lowski, 2006) is defined as the law of a random matrix Y valued in the closure of M + r , with Laplace transform

IE(e σ,Y ) = det Σ det(Σ -σ) b , Σ -σ ∈ M + r . If b > r-1
where Γ r is the multivariate gamma function defined for any complex number z with Re(z)

> (r -1)/2 by Γ r (z) = π r(r-1)/4 r j=1 Γ z - j -1 2 .
For α, β > r-1 2 , the beta distribution Beta(α, β) (also called matrix variate beta of type I, see [START_REF] Nagar | Matrix-variate Kummer-beta distributions[END_REF] on

M + r is Beta(α, β)(du) = Γ r (α + β) Γ r (α)Γ r (β) (det u) α-r+1 2 (det(I -u)) β-r+1 2 1 U (u) du, (2.2) 
where U is the set of matrices u in M + r such that

I -u ∈ M + r . For a > r-1 2 , b ∈ R, Σ ∈ M + r , the matrix Kummer distribution on M + r is defined by K(a, b, Σ)(dx) = 1 Γ r (a)ψ(a, a -b + r+1 2 ; Σ) (det x) a-r+1 2 (det(I+x)) b exp(-Σ, x )1 M + r (x) dx, (2.
3) where ψ is the confluent hypergeometric function of second kind with matrix argument (see Joshi and Joshi, 1985, formula (2)). This distribution is called in the literature (see e. g. [START_REF] Gupta | Matrix-variate Kummer-Dirichlet distributions[END_REF] the Kummer-Gamma distribution or the Kummer distribution of type II. In this paper we concisely call it the Kummer distribution.

We now state the result of the present paper.

Theorem 2.1 Consider a, b, Σ such that a > r-1 2 , b -a > r-1 2 and Σ ∈ M + r .
Let X and Y be two independent random matrices valued in M + r . Assume that X follows the Kummer distribution K(a, b, Σ) and Y the Wishart distribution γ(ba, Σ). Then, the random matrices

U := [I + (X + Y ) -1 ] 1/2 [I + X -1 ] -1 [I + (X + Y ) -1 ] 1/2 , V := X + Y (2.4)
are independent. Furthermore, U ∼ Beta(a, ba) and V ∼ K(b, a, Σ).

3 Proof

For x, y ∈ M + r define u := [I + (x + y) -1 ] 1/2 [I + x -1 ] -1 [I + (x + y) -1 ] 1/2 , v := x + y. (3.1) 
Observe that, since x and y are positive definite matrices, it is also the case for u, v and Iu. (It is obvious for u and v. To check it for Iu, one can write

I -u = [I + (x + y) -1 ] 1/2 [I + (x + y) -1 ] -1 -[I + x -1 ] -1 [I + (x + y) -1 ] 1/2
and use the fact that if A and B are positive definite matrices such that A -B is positive definite, then B -1 -A -1 is positive definite). Therefore, the transformation

T : (x, y) → (u, v) maps M + r × M + r to U × M + r .
It is clearly bijective. We now compute the Jacobian of T -1 .

The Jacobian

It is convenient to write T = T 2 • T 1 , where T 1 : M + r × M + r → U × M + r and T 2 : U × M + r → U × M + r are defined by T 1 (x, y) = (w, z) := [I + x -1 ] -1 , x + y and T 2 (w, z) = (u, v) := [I + z -1 ] 1/2 w[I + z -1 ] 1/2 , z . We have (x, y) = T -1 1 (w, z) = [w -1 -I] -1 , z -[w -1 -I] -1 (3.2) and (w, z) = T -1 2 (u, v) = [I + v -1 ] -1/2 u[I + v -1 ] -1/2 , v . (3.3) Lemma 3.1 The Jacobian of the transformation T -1 is J(u, v) = det(I + v) r+1 2 det(I + v -uv) -r-1 det v r+1 2 .
(3.4) PROOF: We compute the Jacobian of T -1 via the Jacobians J (u,v)→(w,z) and J (w,z)→(x,y) . J (u,v)→(w,z) is the determinant of the differential of T -1 2 at (u, v). This differential is a linear endomorphism of M r × M r which, by (3.3), can be writen as D E 0 Id Mr where E does not need to be computed and D is the differential of the function u → [I + v -1 ] -1/2 u[I +v -1 ] -1/2 for fixed v. Thus, J (u,v)→(w,z) equals det D (we use the same notation for the determinant of a matrix and the determinant of a linear operator). According to [START_REF] Muirhead | Aspects of Multivariate Statistical Theory[END_REF], Theorem 2.1.7, we have

det D = det[I + v -1 ] -1/2 r+1 = det[I + v -1 ] -r+1 i.e. J (u,v)→(w,z) = det[I + v -1 ] -r+1 2 . (3.5) 
Let us now compute J (w,z)→(x,y) . By (3.2), we have x = [w -1 -I] -1 so that the differential G(w) of x with respect to w is the linear map

h → [w -1 -I] -1 w -1 hw -1 [w -1 -I] -1 on M r . Its determinant is, again by Muirhead (1982), equal to det(G(w) = det [w -1 -I] -1 w -1 r+1 = det(I -w) -(r+1) .
Thus, by (3.2), we have

J (w,z)→(x,y) = det G(w) 0 H Id Mr = det(G(w) = det(I -w) -(r+1) (3.6)
where no detail is needed about H. It follows from (3.5)and (3.6) that

J(u, v) = J (u,v)→(w,z) J (w,z)→(x,y) = det[I + v -1 ] -r+1 2 det(I -w) -(r+1) . (3.7) We have det[I + v -1 ] = det v -1 det(I + v). (3.8)
Since det(I + AB) = det(I + BA) for any symmetric matrices A and B, we write

det(I -w) = det I -[I + v -1 ] -1/2 u[I + v -1 ] -1/2 = det I -u[I + v -1 ] -1 = det I -uv[I + v] -1 = det(I + v) -1 det(I + v -uv).
(3.9) Substituting ( 3.8) and (3.9) in (3.7) we obtain (3.4).

Density of (U, V )

Denote by f X and f Y the densities of X and Y respectively, and by f (U,V ) the density of (U, V ). Since X and Y are independent,

f (U,V ) (u, v) = f X (x)f Y (y)J(u, v)1 U (u)1 M + r (v) (3.10) 
where (x, y) = T -1 (u, v) and J(u, v) is the Jacobian given by (3.4). Recall that X ∼ K(a, b, Σ) and Y ∼ γ(ba, Σ). By (2.2) and (2.3), denoting by C the product of all constants, (3.10) can be written, for any (u, v)

∈ U × M + r , f (U,V ) (u, v) = C (det x) a-r+1 2 (det(I + x)) -b exp(-Σ, x ) ×(det y) b-a-r+1 2 exp(-Σ, y ) J(u, v) = C (det x) a-r+1 2 (det(I + x)) -b (det y) b-a-r+1 2 × exp(-Σ, x + y ) J(u, v). (3.11) 
In the following lemma we express det x, det y, det(I + x) in terms of u and v.

Lemma 3.2 Consider x, y, u, v such that T (x, y) = (u, v) as in (3.1). Then,

det x = det (I + v -uv) -1 det u det v, (3.12 
)

det(I + x) = det (I + v -uv) -1 det(I + v), (3.13) 
det y = det v det (I + v -uv) -1 det(I + v) det(I -u). (3.14) 
PROOF: By (3.1) we have

x -1 = I + v -1 1/2 u -1 I + v -1 1/2 -I = I + v -1 1/2 u -1 -[I + v -1 ] -1 I + v -1 1/2 ,
which gives

x = I + v -1 -1/2 u -1 -[I + v -1 ] -1 -1 I + v -1 -1/2 . (3.15) Since I + v -1 = v -1 (I + v) we have u -1 -[I + v -1 ] -1 = u -1 (I + v -uv)(I + v) -1 , so that ( 3.15) gives x = v 1/2 (I + v) -1/2 (I + v)(I + v -uv) -1 uv 1/2 (I + v) -1/2 = v 1/2 (I + v) 1/2 (I + v -uv) -1 uv 1/2 (I + v) -1/2 . (3.16)
Taking the determinant we obtain (3.12). The definitions of u and v imply

det u = det(I + v -1 ) det(I + x -1 ) -1 = (det v) -1 det(I + v) det x det(I + x) -1
from which we get det(I + x) = (det u) -1 (det v) -1 det(I + v) det x. Then, (3.13) follows from (3.12).

To obtain (3.14), we use (3.16) to write To complete the proof of the theorem, we plug (3.12), (3.13), (3.14) and (3.4) into (3.11), replace x + y with v and the result follows. Here are the details: for any

y = v -x = v 1/2 Iv 1/2 -v 1/2 (I + v) 1/2 (I + v -uv) -1 u(I + v) -1/2 v 1/2 = v 1/2 I -(I + v) 1/2 (I + v -uv) -1 u(I + v) -1/2 v 1/2 .
(u, v) ∈ U × M + r , f (U,V ) (u, v) = C det(I + v -uv) r+1 2 -a det u a-r+1 2 det v a-r+1 2 × det(I + v -uv) b det(I + v) -b (det v) b-a-r+1 2 det(I + v -uv) a-b+ r+1 2 det(I + v) b-a-r+1 2 det(I -u) b-a-r+1 2 det(I + v) r+1 2 det(I + v -uv) -r-1 det v r+1 2 exp(-Σ, v ) = C det u a-r+1 2 det(I -u) b-a-r+1 2 det v b-r+1 2 det(I + v) -a
from which we see that U and V are independent and follow the laws Beta(a, ba) and K(b, a, Σ) respectively (see (2.2) and (2.3).

Discussion

1. As said in the introduction, the independence property established in the present paper has been proved in the case r = 1 by [START_REF] Koudou | Independence properties of the Matsumoto-Yor type[END_REF], where the converse has been proved too, thus providing a characterization of the product of Kummer and gamma laws under the assumption of existence and smoothness of densities. It is highly likely, although not easy to prove, that this characterization holds also in the case of matrices. Namely, one can make the following conjecture: Let X and Y be two independent random matrices valued in M + r with smooth densities. The random matrices U and V defined by (2.4) are independent if and only if there exist a, b, Σ such that a > r-1

2 , ba > r-1 2 , Σ ∈ M + r and such that X follows the Kummer distribution K(a, b, Σ) and Y the Wishart distribution γ(ba, Σ). 2. The Matsumoto-Yor property has been discovered in a particular case by Matsumoto and Yor (2001) while studying certain exponential functionals of the Brownian motion. An interesting question is whether there exists a stochastic process whose behaviour could be linked to the independence property shown in the present paper in the case r = 1 as well as in the matrix framework.

  As a consequence, det y = det v det I -(I + vuv) -1 u = det v det (I + vuv) -1 (I + vuvu) and (3.14) follows since I + vuvu = (Iu)(I + v).

(we refer to this case as the non-degenerate case), the Wishart distribution γ(b, Σ) has a density:γ(b, Σ)(dy) = (det Σ) b Γ r (b) (det y) b-(r+1)/2 exp(-Σ, y )1 M + r (y) dy,(2.1)