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On the analogy between real reductive groups and Cartan motion
groups: a proof of the Connes-Kasparov isomorphism

Alexandre Afgoustidis
CEREMADE, Université Paris-Dauphine

Abstract
Alain Connes and Nigel Higson pointed out in the 1990s that the Connes-Kasparov “conjecture” for the K-
theory of reduced group C∗-algebras seemed, in the case of reductive Lie groups, to be a cohomological echo
of a conjecture of George Mackey concerning the rigidity of representation theory along the deformation from
a real reductive group to its Cartan motion group. For complex semisimple groups, Nigel Higson established
in 2008 that Mackey’s analogy is a real phenomenon, and does lead to a simple proof of the Connes-Kasparov
isomorphism. We here turn to more general reductive groups and use our recent work on Mackey’s proposal,
together with Higson’s work, to obtain a new proof of the Connes-Kasparov isomorphism.

1. Introduction

When G is a second countable locally compact group, the Fell topology on its unitary dual Ĝ is in general
quite wild: studying the topological space Ĝ directly is usually difficult. An indirect approach, that has often
proved fruitful, is to study a suitable completion of the convolution algebra C∞

c (G) of continuous and compactly
supported functions on G. The various completions will be noncommutative algebras, and may be thought of as
noncommutative-geometry replacements for the (not very helpful) space of continuous functions on Ĝ.

We shall be concerned with the reduced C?-algebra of G. Assume the group G to be unimodular and
equipped with a Haar measure. When f is an element of C∞

c (G), convolution with f defines a bounded linear
operator on the Hilbert space L2(G), and that operator has a norm, say ‖ f‖; the reduced C?-algebra C?

r (G) is the
completion of C∞

c (G) with respect to ‖·‖. The spectrum of C?
r (G) is the reduced dual G̃; it gathers the unitary

irreducible representations that are, loosely speaking, necessary to “decompose” the regular representation of G
on L2(G) into irreducibles.

The Baum-Connes conjecture describes the K-theory of C?
r (G), to be thought of as a “non-commutative”

replacement for the Atiyah-Hirzebruch K-theory of G̃ (see [6] for the formulation of the conjecture, and [13]
for the K-theory). Although we will consider only reductive groups and their Cartan motion groups in this paper,
we should mention that the interest of the conjecture partly stems from its generality (it encodes very nontrivial
features of both Lie groups and discrete groups, and the existence of an analogue for groupoids makes it suitable
for the study of foliations), and its deep connections with geometry, index theory and topology.

The Connes-Kasparov isomorphism for connected Lie groups. When G is a connected Lie group, the
conjecture is equivalent with the assertion that the reduced dual of G can be accounted for, at least at the level
of K-theory, with the help of Dirac operators. Suppose K is a maximal compact subgroup of G, and R(K) is
the representation ring of K − whose underlying abelian group is freely generated by the equivalence classes of
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irreducible K-modules. Starting from an irreducible K-module, and after going up to a two-fold covering of G
and K if necessary, one can build an equivariant spinor bundle on G/K and a natural G-invariant elliptic operator
(the Dirac operator) acting on its sections; that operator has an index which can be refined into an element of the
K-theory group K j [C?(G)], where j ≡ dim(G/K) mod 2. This produces a morphism of abelian groups

R(K)
µ−→ K j [C?

r (G)] ( j ≡ dim(G/K) mod 2) (1.1)

called Dirac induction; the Connes-Kasparov conjecture is the statement that µ is an isomorphism, and that the
K-theory group K j [C?

r (G)] is zero when j 6≡ dim(G/K) mod 2. See [6, §4].
When G is reductive, our current understanding of the reduced (or: tempered) dual G̃ is in many respects

complete. As a topological space, G̃ is in addition much more reasonable than the reduced duals studied by the
full-blown Baum-Connes conjecture: it is (roughly speaking) akin to a real affine variety. Yet the reductive case
is an important one: a major source for the formulation of the Baum-Connes conjecture was the Partasarathy-
Atiyah-Schmid realization of the discrete series using Dirac operators (see [17, 5]), and understanding the
reductive case proved to be the key to understanding the case of general Lie groups [7].

Previous proofs for reductive Lie groups. When G is a linear connected reductive group, the Connes-
Kasparov “conjecture” has been a classical result for thirty years. Two proofs have been given, and they are
quite different:
• Antony Wassermann’s short note of 1987 [24] uses the comprehensive knowledge of C?

r (G) extracted by
Arthur [4] from Harish-Chandra’s work; his proof consists in an explicit calculation of the right-hand side of
(1.1) and the arrow therein. This followed earlier treatment of special cases from the same perspective: the
important but simpler case of complex semisimple groups had been covered by Penington and Plymen [18], and
Valette had considered two classes of real groups (see [20, 21]). Wassermann did not provide a more detailed
exposition of his argument, which uses the Knapp-Stein theory of intertwining operators. Clare, Crisp and
Higson recently gave a quite accessible account of the structure of C?

r (G) along Arthur’s lines [8], and should
soon provide related insight on the K-theoretic side.
• Vincent Lafforgue developed in 1998 a deep notion of bivariant KK-theory for group actions on Banach

spaces ([14]; see also [19]). This opened him a way to the Baum-Connes isomorphism that is not only very well-
suited to reductive Lie groups, but also encompasses reductive p-adic groups as well as some discrete subgroups
which had resisted every approach before his. His strategy is almost orthogonal to that of Wassermann, replacing
most of the arsenal of representation theory by a few simple (but far-reaching) facts on the distance to the origin
in G/K and on Harish Chandra’s elementary spherical functions. His framework proved flexible enough to
lend itself to the extensions needed to prove the Connes-Kasparov conjecture when G is an arbitrary Lie group
(with a finite number of connected components): Chabert, Etcherhoff and Nest proved the Connes-Kasparov
conjecture in 2003 [7] by using the decomposition of any such Lie group as a semidirect product of a reductive
and a nilpotent group, and Mackey’s theory for the representations of group extensions [15].

Lie group deformations and the Mackey analogy. A third way to the Connes-Kasparov conjecture has long
been suspected to exist, should one dig deeply enough in the theory of group deformations (or contractions in
the classical terminology of Inönü and Wigner [12]).

Suppose G is a connected reductive Lie group, K is a maximal compact subgroup, and write G0 for the
semidirect product K n (g/k) associated to the adjoint action of K on g/k (here g and k denote the Lie algebras
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of G and K). Then there is a "continuous" family of groups (Gt)t∈R which interpolates between G1 := G and
G0 (see §2.1 below). This deformation gives rise to a continuous field {C?(Gt)}t∈R of algebras; Alain Connes
and Nigel Higson observed in the late 1980s and early 1990s (see [10], [6, §4], [9, §II.10.β ]) that the Connes-
Kasparov conjecture is equivalent with the fact that this field has constant K-theory.

As Connes and Higson insisted, this meant that the Connes-Kasparov isomorphism could be the noncommutative-
geometric counterpart of an intriguing rigidity phenomenon occurring at the level of representation theory; in
fact, the reformulation of the Connes-Kasparov conjecture in terms of deformations echoed enthusiastic obser-
vations by G. W. Mackey [16] on a possible relationship between the representation theories of G and G0 when
G is a semisimple Lie group. Mackey had conjectured that in the reductive case, there were deep-rooted, though
surprising, analogies between G̃ and Ĝ0 = G̃0. Connes and Higson’s observations strongly invited to view the
isomorphism (1.1) a simple K-theoretic reflection of these analogies, roughly indicating that G̃ and G̃0 share
algebraic-topological invariants (see [6], §4). As Connes put it ([9], § II.10.δ ):

It is of course desirable to find direct proofs of the surjectivity of [the Baum-Connes assembly map]. In
that respect the ideas developed by Mackey in [16], or in the theoretical physics literature on deformation
theory, should be relevant.

Connes and Higson had crafted precise tools to do so in 1990, to be recalled below (see §2.1). But Mackey’s con-
jecture lay dormant for a long time; only recently did it become clear that the strategy imagined by Connes and
Higson can be pursued for any reductive group. Going through that path is the aim of the present paper.

Higson’s work on complex semisimple groups. About ten years ago, Higson decided to re-examine the
connections between Mackey’s observations and K-theory in the case of complex semisimple groups [11]. For
that special class of reductive groups, he proved the existence of a natural bijection between the reduced duals G̃
and G̃0; the representation-theoretic properties of the bijection revealed the structures of C?

r (G0) and C?
r (G) to

be close enough to lead to a surprisingly simple proof of the Connes-Kasparov conjecture. When G is a complex
semisimple group, the following statement summarizes his analysis of the structure of the field {C?(Gt)}t∈R.

Theorem A. Consider the family (Gt)t∈R of Lie groups.

(i) For every t in R (including t = 0), the partition of G̃t according to lowest K-types determines a dense
filtration It [1]⊂ It [2]⊂ . . .⊂ It [p]⊂ . . .⊂C∗r (Gt) of the reduced C∗-algebra C∗r (Gt) by closed ideals. The
filtration at t is the specialization of a dense filtration I [1]⊂ . . .⊂I [p]⊂ . . .⊂ C of the C∗-algebra of
sections of the continuous field {C?(Gt)}t∈R.

(ii) For every p in N, the subquotient field C [p] =I [p+1]/I [p] is strongly Morita-equivalent with a constant
field (of commutative algebras).

Using part (i) and the cohomological nature of K-theory, the Connes-Kasparov isomorphism then appears as an
easy consequence of the rigidity statement in (ii).

This way to the Connes-Kasparov conjecture does takes one through the fine structure of representation
theory: the filtration is defined in representation-theoretic terms, and the rigidity statement in (ii) reflects a very
peculiar behavior of matrix elements (of principal series representations) along the deformation. But rather than
using representation theory for a direct calculation of (1.1), it expresses the Connes-Kasparov phenomenon as
a K-theoretic reflection of the structural analogy between C?(G) and C?(G0) induced by the correspondence
between G̃ and G̃0. An appealing feature of this approach is that only simple and quite general facts about
K-theory are needed, and that no K-theory group need be written down explicitly.
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Contents of this paper. When G is a real reductive group, we recently described a natural bijection between G̃
and G̃0 [2]. We will here prove that the Connes-Kasparov isomorphism for real reductive Lie groups can indeed
be deduced in a relatively elementary manner from the representation-theoretic properties of that bijection,
using the C∗-algebraic ideas and methods due to Higson and Connes.

The representation theory of general reductive Lie groups is more complicated than that of complex semisim-
ple groups: for instance, the existence of the discrete series (and with it the need for the bulk of Harish-Chandra’s
work) is a specific feature of the real case. The proof of Theorem A in Higson’s work on complex groups ac-
cordingly rests on representation-theoretic facts which, on the surface, may look quite special to the complex
case. It may therefore seem surprising that Theorem A above should be obtained for real reductive groups in
much the same way as it can for complex groups; yet that is exactly what will happen. We will see that the
difficulties that one could expect to occur for real groups, ranging from the non-uniqueness of lowest K-types
to the necessity of tracing the collapse of some matrix elements of discrete series representations (of reductive
subgroups) along the deformation, are reflected precisely enough in the properties of the Mackey-Higson bijec-
tion for real groups that the complications cancel out as the contraction is performed. Thus, the present work
will not necessitate new ingredients on the C?-algebra side − most ideas in [11] (and a great many technical
lemmas) will turn out to be usable without any conceptual change, and it should be very clear that all steps of
our proof are either due to Higson or strongly inspired by his work. The properties of the Mackey-Higson bi-
jection recalled in §2.2 do of course draw from several important sources, which include the Knapp-Zuckerman
classification of irreducible tempered representations and Vogan’s work on lowest K-types.

Acknowledgments. I am very grateful to Daniel Bennequin, Nigel Higson and Georges Skandalis for their
help and support. A first version of this work appeared in Chapter 8 of my Ph.D. thesis [1], prepared at Université
Paris-7 under the guidance of Daniel Bennequin.

2. Background and notations

2.1. The deformation field; Connes and Higson’s deformation interpretation of the assembly map (1.1)

Let G be a linear connected reductive group. We fix a maximal compact subgroup K, write g and k for the Lie
algebras of G and K, and let g = k⊕ p be the corresponding Cartan decomposition of g. The Cartan motion
group G0 is the semidirect product G0 = K np associated with the adjoint action of K on p.

For every nonzero real number t, we define a group Gt by using the global diffeomorphism

ϕt : K×p→ G

(k,v) 7→ k expG(tv)

to endow the set K× p with the product law which turns ϕt into an isomorphism. Thus, for every t ∈ R, the
group Gt is equal as a topological space with K×p.

In order to give a precise meaning to the field of C∗-algebras to be considered below, we equip the dis-
joint union

G :=
⊔
t∈R

Gt
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with the smooth manifold structure for which the bijection

G → G0∪
(
G×R×

)
(2.1)

γ ∈ Gt 7→

{
γ if t = 0

(ϕt(γ), t) if t 6= 0

is turned into a diffeomorphism when G0∪(G×R×) is equipped with the smooth structure described in section
6.2 of [11]. There is a natural smooth family of measures on K× p giving a Haar measure for each group Gt ,
t ∈R. We can consider the reduced C? algebra of each Gt for the corresponding Haar measure; the field

{C?
r (Gt)}t∈R

is then a continuous field of C?-algebras (with our choice of smooth structure on G , this follows from Lemma
6.13 in [11]). We will consider

C := C? algebra of continuous sections of the restriction of {C?
r (Gt)} to [0,1]. (2.2)

The evaluation maps at t = 0 and t = 1 induce C?-algebra morphisms from C to C?
r (G0) and C?

r (G), respectively,
and in turn these induce two homomorphisms α0 : K (C )→K (C?

r (G0)) and α1 : K (C )→K (C?
r (G1)). Because

the field {C?(Gt)}t∈]0,1] (with t = 0 excluded) is trivial, α0 is an isomorphism. Now, the composition

α1 ◦α
−1
0 : K (C?(G0))→ K (C?(G)) (2.3)

has an important connection with the Connes-Kasparov conjecture (see [6, p. 24]). Because G0 = K n p is an
extension of K by a vector abelian group, the equivariant Bott periodicity theorem yields a natural isomorphism
between K j(C?(G0)) and R(K) for j ≡ dim(G/K) mod 2, while K j(C?(G0)) = 0 for j 6≡ dim(G/K) mod 2.
Viewed through the isomorphism between K j(C?(G0)) and R(K), the map α1 ◦α

−1
0 in (2.3) is none other than

the assembly map (1.1):

Theorem 2.1 (Connes and Higson, 1990 [10]). The Connes-Kasparov assembly map (1.1) is an isomorphism if
and only if the map α1, induced by evaluation at t = 1, is an isomorphism too.

2.2. Construction and properties of the Mackey-Higson correspondence

Lowest K-types. Let G be a linear reductive group with all Cartan subgroups abelian (see [23, §0.1]; if G is
linear connected reductive, then all its Cartan subgroups are abelian). Fix a maximal compact subgroup K in
G, a Cartan subalgebra t of the Lie algebra k and a system ∆+ of positive roots for the pair (kC, tC). Form the
corresponding half-sum ρc of positive roots; it is an element of the vector space dual t? of t. Any choice of
symmetric nondegenerate bilinear form on g that is negative-definite on k and positive-definite on p determines
a Euclidean norm on t?. For every class λ in K̂, we write ‖λ‖K̂ for the distance in t? between the ∆+-highest
weight of λ and −2ρc. The magnitude function ‖·‖K̂ determines a partial order on K̂, which depends neither on
the choice of T nor on that of ∆+.

Every irreducible tempered representation π of G or G0 comes with a (finite) set of lowest K-types: these
are the elements of K̂ that occur in the decomposition of the restriction π|K into irreducibles and are minimal
(among the K-types that occur in π|K) for the above ordering.

5



Proposition 2.2. (a) If π is an irreducible tempered representation of G, then every lowest K-type of π occurs
with multiplicity one in the restriction π|K .

(b) If π0 is a unitary irreducible representation of G0, then every lowest K-type of π0 occurs with multiplicity
one in the restriction (π0)|K .

Part (a) is a fundamental result of Vogan (proved in [23]; see also [22]); for (b), see [2], Corollary 4.3.

The Mackey-Higson bijection (see [2]). We return to our linear connected reductive group G. Suppose
χ ∈ p? is a linear functional on p and µ is an irreducible representation of the stabilizer Kχ of χ in K (for the
coadjoint action of K on p?).
• The pair (χ,µ) can be used to produce a unitary irreducible representation of G0, the induced represen-

tation
M0(χ,µ) = IndG0

Kχnp(µ⊗ eiχ).

• The same pair can be used to define a tempered irreducible representation of G, as well.
Write Lχ for the centralizer of χ in G (for the coadjoint action). It turns out that there exists a parabolic
subgroup Pχ = Lχ Nχ of G with Levi factor Lχ . Write Lχ = Mχ Aχ Nχ for the Langlands decomposition
of Pχ . The group Mχ admits Kχ as a maximal compact subgroup; it is usually disconnected, but all
its Cartan subgroups are abelian. The representation µ of Kχ determines a unique irreducible tempered
representation of Mχ : among the tempered irreducible representations of Mχ with real infinitesimal char-
acter 1, there is one and only one which admits µ as a lowest Kχ -type (and then µ is its only lowest
Kχ -type). We write VMχ

(µ) for it and define a representation of G as

M(χ,µ) = IndG
Mχ Aχ Nχ

(VMχ
(µ)⊗ eiχ ⊗1).

That representation is irreducible and tempered [2, Theorem 3.3(a)].
Mackey’s early work on semidirect products shows that every representation in Ĝ0 = G̃0 is of the form M0(χ,µ)

for some (χ,µ); it turns out that the class of M(χ,µ) in G̃ depends only on the class of M0(χ,µ) in Ĝ0 = G̃0,
so the correspondence M0(χ,µ)↔M(χ,µ) induces a map M : G̃0→ G̃.

Theorem 2.3 ([2], Theorem 3.3). The map M : G̃0→ G̃ is a bijection between the reduced duals of G0 and G.

Proposition 2.4 ([2], Proposition 4.1). The correspondence M : G̃0→ G̃ preserves lowest K-types.

2.3. Notations on matrix coefficients

We recall some notations and elementary results which we will need to take up from [11]. Suppose G is
a connected unimodular Lie group, K is a compact subgroup, s is a smooth function on K and f is a smooth
and compactly supported function on G. Choose a Haar measure on G and define two convolutions between
s and f ,

s ?
K

f = g 7→ 1
Vol(K)

∫
K

s(k) f (k−1g)dk , f ?
K

s = g 7→ 1
Vol(K)

∫
K

f (kg)s(k−1)dk. (2.4)

1. An irreducible tempered representation has real infinitesimal character if and only if it occurs as an irreducible summand in a
representation of the form IndG

MAN(τ⊗1), where MAN is a cuspidal parabolic subgroup of G and τ is a discrete series representation of M.
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These are two smooth and compactly supported functions on G.
Now suppose K is any compact Lie group, K1 is a closed subgroup, (V,τ) is an irreducible representation of

K with orthonormal basis {vα}α=1,...,dim(V ), and W is a K1-invariant irreducible subspace of V . Write eαβ for
the matrix element k 7→ dim(V )〈τ(k)vβ ,vα〉 (this is a smooth function on K). When vα and vβ both lie in W ,
write dαβ for k 7→ dim(W )〈τ(k)vβ ,vα〉; the restriction of dαβ to K1 is a matrix element of (W,τ||K1). Then the
Schur-Weyl orthogonality relations yield

eαβ ?
K

eβγ = eαγ ;

dαβ ?
K1

eβγ = eαγ = dαβ ?
K1

eβγ (2.5)

(for the second equality, it is to be assumed that vα , vβ and vγ lie in W ). We also note that eαβ (k) = eβα(k−1)

for all k (the bar denotes complex conjugation).

3. Distinguished subquotients of the reduced C?-algebras

3.1. Subquotients of the reductive group’s algebra

3.1.1. Ideals associated with a set of lowest K-types

We return to studying our linear connected reductive group G and maximal compact subgroup K. Define a set

Classes ⊂
{

finite subsets of K̂
}

by declaring that a finite subset C of K̂ lies in Classes when there exists an irreducible tempered representation
of G whose set of lowest K-types is exactly C . Note that in this case, ‖·‖K̂ (from §2.2) takes the same value on
all the elements of C .

We will associate a subquotient of the reduced C∗-algebra C?
r (G) to every class in Classes . Later on it will be

convenient that the family subquotients obtained in this way be associated to an increasing sequence of ideals
in C?

r (G), so let us choose first a linear ordering

Classes = {C1,C2, . . .}

in such a way that
• if the value of ‖·‖K̂ on Cp is (strictly) smaller than that on Cq, then p < q,
• if the values of ‖·‖K̂ on Cp and Cq agree but the number of elements in Cp is (strictly) larger than that in

Cq, then p < q.
For every class λ in K̂, we fix an irreducible K-module Vλ with equivalence class λ , and write 〈·, ·〉 for

a K-invariant inner product on it. Any choice of nonzero vector v in an irreducible K-module with class λ

determines a matrix element

pv
λ

: K→ C (3.1)

k 7→ 〈v,λ (k−1)v〉.

Convolution with this matrix element, as in (2.4), yields an element in the multiplier algebra of C?
r (G). We can
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then define a closed ideal in C?
r (G) by setting

J[p] =
⋂

λ∈Cp

C?
r (G)pv

λ
C?

r (G),

and obtain an increasing family (I[p])p∈N of ideals by setting I[p] = J[1]+ · · ·+J[p] for each p. We will study
the subquotients

C[p] = I[p+1]/I[p].

The algebras J[p] and C[p] depend on a choice of vector v = vλ for each λ ∈ K̂, which will be made explicit in
§3.1.4. But their spectra do not depend on that choice. They are locally closed subsets of Ĝ:

(a) The spectrum of J[p] is the set of irreducible tempered representations of G whose restriction to K contains
every class in Cp.

(b) The spectrum of C[p] is the set of irreducible tempered representations of G whose set of lowest K-types is
exactly Cp.

A consequence of (a) is that the union
⋃

p∈N
I[p] is dense in C?(G). Thus, the family (I[p])p∈N is a filtration of

C?
r (G) with dense image.

3.1.2. Morita-equivalence with a commutative algebra

Fix a class λ in K̂ and suppose π is an irreducible tempered representation of G, acting on a Hilbert space H ,
containing λ as a lowest K-type. Every vector v in the K-isotypical subspace H λ of H determines a matrix
element pv

λ
, as in (3.1); the results of §2.3 show that pv

λ
defines a projection in the multiplier algebra of C[p].

Because the K-type λ occurs with multiplicity one in π (Proposition 2.2), the induced projection π(pv
λ
) of H

has rank one.
This makes the idempotent pv

λ
quite special, and gives precise information about the representation-theoretic

structure of the subquotient C[p].

Lemma 3.1 (Lemma 6.1 in [11]). Let C be a C∗-algebra and p be a projection in the multiplier algebra of C.
Assume that for every irreducible representation π of C, the operator π(p) is a rank-one projection. Then

(i) CpC = C;

(ii) pCp is a commutative C∗-algebra;

(iii) the spectrum Ĉ is a Hausdorff locally compact space;

(iv) Let C0(Ĉ) be the algebra of continuous functions on Ĉ that vanish at infinity. The map a 7→ â from pCp
to C0(Ĉ) defined by

∀π ∈ Ĉ, π(a) = â(π)π(p)

is an isomorphism of C∗-algebras.

3.1.3. Some precisions on the subquotient’s spectrum

Part of Lemma 3.1 says that the spectrum of C[p] is a locally compact Hausdorff space. We can give a somewhat
concrete picture for that space using the classification of irreducible tempered representations.
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Some additional notations will be necessary. Fix a maximal abelian subalgebra a in p. Choose a family
P1, . . . ,Pr of nonconjugate cuspidal parabolic subgroups in G, with one member in the family for each conjugacy
class of cuspidal parabolic subgroups; arrange the choice so that in the Langlands decomposition MiAiNi of
Pi, the Lie algebra ai is contained in a. Anticipating a later need for further notation, we will write Mp

i for
expG (mi∩p) and recall that, with the obvious notations for the Lie algebras, the Iwasawa map from K ×
(mi∩p)×ai×ni to G is a diffeomorphism.

Now, for each i in {1, . . . ,r}, write Ki for the maximal compact subgroup K ∩Mi in Mi and fix a linear
ordering K̂i = {λ1,λ2, . . .} in such a way that if ‖λn‖K̂i

< ‖λm‖K̂i
, then n < m. By discrete parameter, we will

henceforth mean a couple (i,n) with i in {1, . . . ,r} and n in N.

Lemma 3.2. Fix an element C of Classes . There exists a discrete parameter (i0,n0) and a subset â[p] of a?i0 such
that
• VMi0

(µn0) is a discrete series or nondegenerate limit of discrete series representation of Mi0 ,
• Every irreducible tempered representation of G whose set of lowest K-types equals C is equivalent to

exactly one of the
IndG

Mi0 Ai0 Ni0

[
VMi0

(µn0)⊗ eiχ
]
,χ ∈ â[p].

• For every χ in â[p], the parabolic subgroup Pχ of §2.2 satisfies Pχ ⊃Pi0 (in fact Mχ ⊃Mi0 , while Aχ ⊂Ai0
and Nχ ⊂ Ni0 ).

The second point identifies the spectrum of C[p] with â[p] as a set; we shall see that when â[p] is equipped
with the topology that it inherits from Euclidean space, the identification becomes a homeomorphism.

Example. When G = SL(2,R), the spherical principal series representations with nonzero continuous param-
eter have the same lowest K-type as the (irreducible) spherical principal series representation with continuous
parameter zero (the K-type is the trivial one). The nonspherical principal series representation with nonzero
continuous parameter have two distinct lowest K-types, and the nonspherical principal series representation
with continuous parameter zero is reducible and splits into the two limits of discrete series representations. The
other irreducible tempered representations are in the discrete series. So in each case, â[p] is either a closed
half-line, an open half-line or a single point.

In general â[p] consists of an open Weyl chamber in a subspace of a, together with part of one of its walls, and
that part-of-wall is itself stratified analogously until one reaches a minimal dimension (which might be nonzero).

Proof of Lemma 3.2. For every π in Ĝ, we use double induction from the Mackey-Higson parametrization of
G̃ in Theorem 2.3, the Knapp-Zuckerman classification of representations, and basic structure theory, to obtain
the existence of an element χ of a? and a discrete parameter (i(χ),n(χ)) such that
• VMi(χ)(µn(χ)) is a discrete series or nondegenerate limit of discrete series representation,

• the representation π is equivalent with IndG
Mi(χ)Ai(χ)Ni(χ)

[
VMi(χ)(µn(χ))⊗ eiχ

]
,

• the parabolic subgroup Pχ contains Pi(χ).
Now if π = M(χ,µ) and π ′ = M(χ ′,µ ′) are representations in G̃ which have the same lowest K-types, Vo-
gan’s work shows that the discrete parameters (i(χ),n(χ)) and (i(χ ′),n(χ ′)) must be the same (see e.g. [2],
Lemma 4.2). Write (i0,n0) for the discrete parameter shared by all representations in G̃ whose set of lowest
K-types is C . Then every representation in G̃ whose set of lowest K-types is C is equivalent with one of the
IndG

Mi0 Ai0 Ni0

[
VMi0

(µn0)⊗ eiχ
]
,χ ∈ a?i0 . Lemma 3.2 follows from this and from the uniqueness properties in the

9



Knapp-Zuckerman classification.

3.1.4. An explicit formula for the isomorphism in Lemma 3.1.

In this subsection, we fix a class C = Cp in Classes and write (i0,n0) for the discrete parameter attached to C by
Lemma 3.2. We fix an element χ in â[p]; this determines a representation π in the spectrum of C[p]. In order to
exploit the structural information provided by Lemma 3.1, we will need to give a concrete form to the transform
â(π) that occurs there.

We fix one K-type λp in the class Cp. Since p will remain fixed until the end of section 3.1, we will usually
remove the subscript p from λ .

Picking a carrier Hilbert space V n0 for a representation σn0 of Mi0 whose equivalence class is VMi0
(µn0),

write H
χ

i0,n0
for the Hilbert space carrying IndG

Mi0

[
VMi0

(µn0)⊗ eiχ
]

in the usual induced picture: the comple-
tion of{

ξ : G smooth−→
comp. supp.

V n0 | ξ (gman) = a−iχ−ρ
σn0(m)−1

ξ (g) for (g,m,a,n) ∈ G×Mi0 ×Ai0 ×Ni0

}

in the norm associated to the inner product 〈ξ1,ξ2〉 =
∫

K
〈ξ1(k),ξ2(k)〉V n0 dk. In the above equation, ρ is the

half-sum of positive roots for (g,ai0) in the ordering defined by Ni0 .
Write πn0χ for the usual morphism from G to the unitary group of H

χ

i0,n0
: for every g in G and ξ in H

χ

i0,n0
,

πn0χ(g)ξ is the map x 7→ ξ (g−1x).
Inside the carrier space V n0 for σn0 , consider the Ki0 -isotypical subspace W which corresponds to the Ki0 -

type µn0 . Upon decomposing the λ -isotypical K-invariant component in H
χ

i0,n0
, say V , into Ki0 -invariant parts,

Frobenius reciprocity says the Ki0 -type µn0 appears exactly once. Fix a K-equivariant identification between the
corresponding Ki0 -irreducible subspace and W , write ṽ for the vector in the λ -isotypical subspace V which the
identification assigns to any v in W . Now, choose an arbitrary nonzero vspec in W , and introduce as in (3.1) a
matrix coefficient of our irreducible K-module of type λ as

pλ = pvspec
λ

= k 7→ 〈ṽspec,πn0χ(k)ṽspec〉 (3.2)

This is our choice of v in (3.1); henceforth we shall assume that it is this matrix element that is chosen in the defi-
nition of J[p] and C[p]. Note that the smooth function on K which we just defined does not depend on χ .

The projection πn0χ(pλ ) has rank one. To make Lemma 3.1 explicit, we now imitate Higson’s analysis of
the complex semisimple case, and use the calculations he made in [11] for the Cartan motion group rather than
complex semisimple groups.

A first step is to identify the range of πn0χ(pλ ). Choose a basis {vα}i=1,...,d(µn0 )
for W in such a way that one

of its vectors, say vα0 , is the vspec that occurs in (3.2). Define a function from K to W as

ζn0χ : k 7→
d(µn0 )

∑
α=1
〈πn0χ(k)ṽα , ṽspec〉vα =

1
d(λ )

d(µn0 )

∑
α=1

eα0α(k)vα , (3.3)

where we used the notations of §2.3 and wrote d(λ ) and d(µn0) for the dimensions of Vλ and W , respectively.

10



We can obtain a vector in the representation space H
χ

i0,n0
by extending ζn0χ to G, setting

ξn0χ(kmpan) =
d(λ )1/2

vol(K)1/2d(µn0)
1/2 e−iχ−ρ(a)∑

α

〈πn0χ(k)ṽα , ṽα0〉 ·σn0(m
p)−1 [vα ] .

Lemma 3.3. The operator π(pλ ) on H
χ

i0,n0
agrees with the orthogonal projection on ξn0χ .

This is easily proved using the formula for the action of K and the inner product on the representation space,
and a repeated application of the Schur-Weyl orthogonality relations. Now put

f̂ [p] : â[p]→ C

χ 7→
∫

G
f (g)〈ξn0χ ,πn0χ(g)ξn0χ〉 (3.4)

as soon as f is a smooth and compactly supported function on G. If pλ ?K
f ?

K
pλ = f , then πn0χ( f ) is proportional

to πn0χ(pλ ), and given the definition of πn0χ( f ), we see that πn0χ( f ) = f̂ [p](χ) πn0χ(pλ ). This is a first step in
making Lemma 3.1 explicit. The explicit form for f̂ [p] to be given below will prove that it is continuous and
vanishes at infinity as a function of χ , so we can summarize the above in the following statement (compare
Lemma 6.10 in [11]).

Proposition 3.4. By associating, to any smooth and compactly supported function f on G such that pλ ?K
f ?

K
pλ =

f , the element f̂ [p] of C0(â[p]), one obtains a C?-algebra isomorphism between pλ C[p]pλ and C0(â[p]).

As promised just after Lemma 3.2, this identifies the spectrum of C[p] with â[p] homeomorphically.

It will be important later on to have a completely explicit formula for f̂ [p], so we now record a closed form for
(3.4), to be used in section 4 below.

Given α,β in {1, . . . ,d(µn0)}, define a function of χ ∈ â[p]:

f̂ p
α,β (χ) =

Vol(K)

d(λ )

∫
Ni0

dn
∫

Ai0

da aiχ+ρ

∫
Mp

i0

dm

(
f ?

Ki0

dα0α ?
Ki0

dβα0

)
(nam)〈vβ ,σn0(m

−1) [vα ]〉. (3.5)

Lemma 3.5. The element f̂ [p] of C0(â[p]) can be expressed as

f̂ [p] =
1

d(µn0)

d(µn0 )

∑
α,β=1

f̂ p
α,β .

Proof: We expand (3.4), closely following the calculations on page 15 of [11]. We start from the fact that

〈ξn0χ ,πn0χ(g)ξn0χ〉 =
∫

K
〈ξµn0 χ(k) , ξµn0 χ(g−1k)〉dk; after a change of variables g← g−1k, and inserting the

11



necessary normalizations to have the eαβ appear, we find

f̂ [p](χ) =
∫

G

(∫
K

f (kg−1)〈ξµn0 χ(k),ξµn0 χ(g)〉dk
)

dg

=
∫

G

(∫
K

f (kg−1)
1

Vol(K)1/2d(λ )1/2d(µn0)
1/2 ∑

α

eα0α(k)〈vα ,ξµn0 χ(g)〉dk
)

dg

=

(
1

Vol(K)d(λ )1/2d(µn0)

)1/2

∑
α

∫
G

Vol(K)
(

eαα0 ?K
f
)
(g−1)〈vα ,ξµn0 χ(g)〉dg

=
1

d(λ )d(µn0)
∑
α,β

∫
Nχ

dn
∫

Aχ

da
∫

Mp
χ

dm
∫

K
du (eαα0 ?K

f )(n−1a1m−1u−1)eα0β (u)〈vα ,σ(m−1)vβ 〉a−iχ−ρ .

Hence,

f̂ [p](χ) =
Vol(K)

d(λ )d(µn0)
∑
α,β

∫
Nχ

dn
∫

Aχ

da a−iχ−ρ

∫
Mp

χ

[
eαα0 ?K

f ?
K

eα0β

]
(n−1a−1m−1)〈vα ,σ(m−1)vβ 〉.

To relate this to the quantities f̂ p
α,β of (3.5), we need to have the dαβ enter the formula in place of the eαβ . We

use the orthogonality relations (2.5) to observe that

eαα0 ?K
f ?

K
eα0β = dαα0 ?

Ki0

(
eα0α0 ?K

f ?
K

eα0α0

)
?

Ki0

dα0β = dαα0 ?
Ki0

(
pλ ?

K
f ?

K
pλ

)
?

Ki0

dα0β .

Because of our hypothesis on f , this is actually equal to dαα0 ?
Ki0

f ?
Ki0

dα0β .

To get two convolutions on the right of f instead of one on each side of f , we shorten the above formula by
writing Γ

n0
αβ

(m) for 〈vα ,σ(m−1)vβ 〉, and we use the structure properties of the parabolic subgroup Pi0 , along
with the fact that χ is Kχ -invariant (hence Ki0 -invariant because of the last assertion in Lemma 3.2), to obtain∫

Ni0

dn
∫

Ai0

da a−iχ−ρ

∫
Mp

i0

[
dαα0 ? f ?dα0β

]
(n−1a−1m−1)Γ

n0
αβ

(m) =∫
Ni0

dn
∫

Mp
i0

dmΓ
n0
αβ

(m)
∫

Ki0

dk1

∫
Ki0

dk2

∫
Ai0

da a−iχ−ρ dαα0(k1) f (k−1
1 n−1m−1a−1k2)dα0β (k2) =∫

Ni0

dn
∫

Mp
i0

dmΓ
n0
αβ

(m)
∫

Ki0

dk1

∫
Ki0

dk2

∫
Ai0

da a−iχ−ρ dαα0(k1) f (n−1m−1a−1k−1
1 k2)dα0β (k2) =∫

Ni0

dn
∫

Ai0

da a−iχ−ρ

∫
Mp

i0

[
f ?dαα0 ?dα0β

]
(n−1a−1m−1)Γ

n0
αβ

(m)

(the stars are now convolutions over Ki0 ; between the first and second line, we used the fact that Mi0 centralizes
Ai0 ; between the second and third line, we used the fact that Ki0 is contained in Mi0 , and thus leaves Ai0 invari-
ant and normalizes Ni0 , to perform the change of variables m← k−1

1 mk1, n← k−1
1 nk1, a← k−1

1 ak1). The last
quantity is that which appears in (3.5): this proves the lemma.
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3.2. Subquotients of the motion group’s algebra

Taking up the notations of sections 2.3 and 3.1.1, define a closed ideal in the reduced C? algebra C?
r (G0) by

setting, as before,
J0[p] =

⋂
λ∈Cp

C?
r (G0)pλC?

r (G0),

and a subquotient of C?
r (G0) by setting

C0[p] =
(
J0[1]+ · · ·+J0[p]

)
/
(
J0[1]+ · · ·+J0[p−1]

)
.

As before, the spectrum of C0[p] is the set of unitary irreducible representations of G0 whose set of lowest
K-types is exactly Cp. Because the Mackey-Higson bijection preserves lowest K-types (Proposition 2.4), we
know that the spectrum of C0[p] can be identified as a set with â[p].

The multiplicity-one property in Proposition 2.2(b) means that Lemma 3.1 is still applicable: the subquotient
C0[p] is thus Morita-equivalent with the algebra of continuous functions, vanishing at infinity, on its spectrum
− viewed as a topological space. To make that the analogy between C0[p] and C[p] more precise, the next step
is to identify the spectrum of C0[p] with â[p] not only as a set, but also as a topological space, writing down
an analogue of Proposition 3.4. The explicit calculations in Higson’s work are actually sufficient for this, so
instead of imitating the results of section 5.3 of [11], we shall invoke them.

For every χ in â[p], Lemma 3.2 and Proposition 2.4 show that there is exactly one element µp,χ in K̂χ for
which the set of lowest K-types of the G0 representation M0(χ,µp,χ) (defined in §2.2) is exactly Cp. Let us
write W̃ for a carrier vector space of µp,χ .

Viewing χ as an element of p? which vanishes on the orthogonal of aχ , we realize M0(χ,µp,χ) as the
completion H0 of{

ξ : G0
smooth−→

comp. supp.
W̃
∣∣ ξ (gkx) = µp,χ(k)−1

χ(x)−1
ξ (g) for (k,x,g) ∈ Kχ ×p×G0

}
in the norm induced by the scalar product between restrictions to K. We write π0

χ,µ for the G0-action on induced
by left translation.

At this point, we cast a look backwards to the situation for reductive groups. We can view the λp-isotypical
subspace V of the G-representation H

χ

i0,n0
as a K-module, and restrict it to Kχ ; it must then contain the Kχ -

type µ with multiplicity one: the class of πn0,χ in G̃ is the representation M(χ,µp,χ) defined in §2.2, and the
argument at the beginning of §3.1.4 can be repeated. This makes it possible to pin down a distinguished unit
vector ζp,χ in H0 by copying the definition of ζn0χ (with the K-module W of §3.1.4 replaced by the current,
isomorphic, K-module W̃ ).

Recall from the multiplicity-one property in Proposition 2.2 that the projection π0
χ,µ(pλ) has rank one. Hig-

son proved in [11, Lemma 5.8] that the range of that orthogonal projection is the line generated by ζp,χ . If we set

f̂ (χ) =
vol(K)

d(λ )

∫
p

f (x)ei〈χ,x〉dx (3.6)

when f is a smooth function on G0 with compact support, then the condition pλ ?
K

f ?
K

pλ = f leads to the

equality
π

0
χ,µ( f ) = f̂ (χ) π

0
χ,µ(pλ);
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see [11], Lemma 6.12.
Now, we know from Lemma 3.1 that if we view â[p] as the spectrum of C0[p] and equip it with the cor-

responding (locally compact and Hausdorff) Fell topology, then f̂ becomes a continuous function of χ that
vanishes at infinity. But of course f̂ is the ordinary Fourier transform of f (up to a multiplicative constant),
so it is also a continuous function on â[p] when the latter is equipped with the topology inherited from that of
Euclidean space. We can thus summarize the situation with the following statement.

Proposition 3.6. By associating, to any smooth and compactly supported function f on G0 such that pλ ?K
f ?

K
pλ ,

the element f̂ of C0(â[p]), one obtains a C?-algebra isomorphism between pλ C0[p]pλ and C0(â[p]).

We note that the transform at χ involves, on the G0-side, the representation π0
χ,µ , and on the G-side the

representation πn0χ . These two do correspond to one another in the Mackey-Higson bijection, so Propositions
3.4 and 3.6 together have the following consequence.

Corollary 3.7. Fix a class C ∈ Classes of lowest K-types, write G̃[C ] (resp. Ĝ0[C ]) for the set of irreducible
tempered representations of G (resp. unitary irreducible representations of G0) whose set of lowest K-types is
exactly C . The Mackey-Higson bijection of Theorem 2.3 induces a homeomorphism between Ĝ0[C ] and G̃[C ].

4. Deformation of the reduced C?-algebra and subquotients

We now come back to the contraction family (Gt)t∈R. For every t > 0, going through the constructions of
§3.1 yields a Gt -invariant analogue of Proposition 3.4. Does this furnish a way to view Propositions 3.6 and 3.4
as deformations of one another?

There is an obvious difference between the transforms that occur in the two results. On the reductive side, the
explicit formula in Lemma 3.5 involves, in a somewhat delicate way, the behavior away from K of some matrix
elements of the discrete series (or limit of discrete series) representation σn0 from §3.1.4. On the Cartan motion
group side, a striking (and perhaps unexpected) feature of §3.2 is that the transform in Proposition 3.6 does not
involve any contribution of the discrete parameter n0 (except for the global dimension factor d(λ )).

In spite of this difference, we will see that the transforms do deform onto one another as the contraction
is performed. The rigidity phenomenon in Theorem A(ii) thus appears to be related to the collapse of the
“discrete-series-away-from-K” terms as we perform the contraction to the Cartan motion group. Although we
will need only elementary arguments below, this collapse does call to mind the phenomena occurring at the
level of geometric realizations that we studied in [3] (see §3.1 there for the discrete series case). As announced,
we will here again follow [11] closely (see §6.2 and 6.3 there).

4.1. Subquotients of the continuous field and their spectra

Consider the continuous field C from (2.2); as before, for all p in N, we let J [p] be the ideal
⋂

λ∈Cp

C pλ C of

C , set I [p] = J [1]+ . . .J [p], so that the family (I [p])p∈N is a dense filtration of C . We fix some p in N
(and accordingly, a discrete parameter (i0,n0)) and study the subquotient C [p] = I [p+1]

/
I [p] of C .

The spectrum of C [p] can be identified with â[p]× [0,1] as a set. Indeed, the algebra Z of continuous
functions on the closed interval [0,1] lies in the center of the multiplier algebra of C [p], so that if Z(t) is the
subalgebra of functions which vanish at t, the spectrum of C [p] can be identified as a set with the disjoint union
over t of the spectra of the quotient algebras C [p]/(Z(t)C [p]) − with each t, we need only associate the subset
of Ĉ [p] whose elements are the representations that restrict to zero on Z(t)C [p] . But for fixed t, the algebra
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C [p]/(Z(t)C [p]) is isomorphic with the subquotient of the group algebra C?
r (Gt) that corresponds to the class

Cp, and the spectrum of that subquotient can be identified with â[p]; this proves our claim.
To proceed further, we need to see how the spectrum of C [p] can be identified with â[p]× [0,1] as a topolog-

ical space. Suppose f is a smooth and compactly supported function on the manifold G of §2.1. For each t > 0,
collect the the ingredients for a Gt -equivariant version of the transform that appears in Lemma 3.5:

(i) Write ft for the restriction of f to a smooth and compactly supported function on Gt . Write Mi0,tAi0,tNi0,t

for the cuspidal parabolic subgroup subgroup ϕ
−1
t Pi0 of Gt , and note that it comes with an ordering on the

ai0,t -roots and an associated half-sum ρt of positive roots. In fact, we have ρt = tρ (see [3], Lemma 3.12).

(ii) Suppose σ t
n0

is an irreducible representation of Mi0,t with equivalence class VMi0 ,t
(µn0); fix a carrier space

V n0
t for σ t

n0
. We choose a basis (vt

a)a∈{1,..., d(µn0 )}
for the Ki0 -isotypical subspace Wt of V n0

t that carries

the lowest Ki0 -type of σ t
n0

, as follows. The composition σ t
n0
◦ϕ
−1
t defines an irreducible tempered repre-

sentation of Mi0 which has real infinitesimal character and lowest Ki0 -type µn0 ; therefore it is equivalent
with σn0 , and there exists a unitary operator ct : V n0 → V n0

t that intertwines σn0 and σ t
n0
◦ϕ
−1
t . Our choice

of basis (vt
a) for Wt is the image under ct of the basis (va)a∈{1,..., d(µn0 )}

for W ⊂ V n0 which we used in
(3.5).

We can now gather the transforms considered in §3.1.1 and §3.2, and define, for every χ in â[p],

f̂ p
a,b(χ, t) =


δa,b

∫
p

f0(x)χ(x)dx (δa,b = Kronecker delta) if t = 0,

∫
Ni0 ,t

dnt

∫
Ai0 ,t

dat aiχ+ρt
t

∫
Mp

i0 ,t

dmt
(

ft ?dα0a ?dbα0

)
(ntatmt)〈vt

b,σ
t
n0
(m−1

t )
[
vt

a
]
〉 if t 6= 0.

(4.1)
Last, we define

f̂ p : (χ, t) 7→
d(µn0 )

∑
a,b=1

f̂ p
a,b(χ, t), (4.2)

a map from â[p]× [0,1] to C.

The rigidity property of the subquotient C [p] announced in Theorem A(ii) boils down to the the fact that this
transform has no singularity at t = 0; that is our next result.

Lemma 4.1. The transform f̂ p of f is a continuous function on â[p]× [0,1].

Proof: We will apply the usual theorems on the continuity of parameter integrals, but must deal with the fact
that the subgroups over which the integrals are taken depend on t. In order to write down (4.1) as an integral

over a space which does not depend on t, we set yi0 for p∩
(
ai0 ⊕mp

i0

)⊥
(the orthogonality is with respect to a

bilinear form like that in §2.2); we call in the Cartan involution θ of g with fixed-point-set k, remark that θ is
also the Cartan involution of gt with fixed-point-set k; we then write, for t > 0,

βt : yi0 → ni0,t

for the inverse of n 7→ n− θ(n). Using exponential coordinates for expGt
(p), remarking that mp

i0
and ai0 are
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dϕt(0)-invariant, and inserting the fact that ρt is none other than tρ , we can rewrite f̂ p
a,b(χ, t) as∫

yi0

dy
∫
ai0

da ei〈χ,a〉 e〈ρ,ta〉
∫
mp

i0

dm
(

f ?dα0a ?dbα0

)(
expGt

(βty)expGt
(a)expGt

(m)
)
〈vt

b,σ
t
n0
(expGt

(m)−1)
[
vt

a
]
〉

for t 6= 0. We now remark that f is a smooth, compactly supported function on G if and only if there is a smooth
and compactly supported function F on K×mp

χ ×aχ ×yχ ×R such that

F(k,m,a,y) =

{
f0(k,m+a+ y) if t = 0,

ft
(
k expGt

(m)expGt
(a)expGt

(βty)
)

if t 6= 0,

where ft is the restriction of f to Gt (compose the diffeomorphism (2.1) with the proof of Lemma 6.17 in [11]).
Once we insert this, as well as the relationship between σ t

n0
and σn0 detailed in point (ii) above, into (4.1), we

can rewrite f̂ p
a,b(χ, t), for every t > 0, as

∫
yi0

dy
∫
ai0

daei〈χ,a〉 e〈ρ,ta〉
∫
mp

i0

dm
[
F ?dα0a ?dbα0

]
(1,m,a,y, t)〈vb,σn0(expG(−tm)) [va]〉.

To check that (4.1) does define a continuous function as soon as f induces an element of C[p], it is now enough
to remember that p = mp

i0
+ ai0 + yi0 and to apply the Lebesgue (dominated convergence) theorem, using the

fact that (va)a=1...dim(W ) is an orthonormal basis for W , and the Schur-Weyl relations on the matrix elements
dαβ .

Combining Lemma 4.1 and the results in §3, we obtain the expected rigidity statement:

Proposition 4.2. If f is a smooth and compactly supported function on G0 and if pλ f pλ = f , then its transfom
f̂ p is a continuous function on â[p]× [0,1], and it vanishes at infinity. This determines an isomorphism of
C?-algebras

pλ C [p]pλ → C0 (â[p]× [0,1]) .

4.2. Proof that the Connes-Kasparov map (1.1) is an isomorphism

We can now prove that the map α1 in Theorem 2.1 is an isomorphism. The argument is not only close to, it is
identical with, that in §7 of [11], so the contents of this section are due to Nigel Higson.

Because the increasing filtration (I [p])p∈N has dense image in C and because K-theory commutes with
direct limits, we need only prove that evaluation at t = 1 yields, for every p, an isomorphism between K (I [p])
and K (I[p]). By standard cohomological arguments, that conclusion will be attained if we prove that evaluation
at t = 1 induces for all p an isomorphism between K (C [p]) and K (C[p]).

At this point, we recall that for fixed p and λ ∈ Cp, the algebras pλ C[p]pλ and C[p] are Morita-equivalent;
therefore the inclusion from pλ C[p]pλ to C[p] induces an isomorphism in K-theory. The problem then reduces
to showing that evaluation at t = 1 induces an isomorphism between K (pλ C [p]pλ ) and K (pλ C[p]pλ ).

We then insert Propositions 4.2 and 3.4 to find that it is enough to prove that evaluation at t = 1 induces an
isomorphism between K (â[p]× [0,1]) and K (â[p]); but that follows from the homotopy invariance of K-theory.
With this the proof that α1 is an isomorphism is complete; the Connes-Kasparov “conjecture” follows.
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