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Note: Void effects on eddy current distortion in two-phase liquid metal
M. Kumar,1,2 Ph. Tordjeman,1,a) W. Bergez,1 and M. Cavaro2
1Université de Toulouse, Institut de Mécanique des Fluides de Toulouse, Allée du Professeur Camille Soula,
31400 Toulouse, France
2CEA, Cadarache, DEN/DTN/STCP/LIET, Building 202, 13108 St Paul Lez Durance, France

A model based on the first order perturbation expansion of magnetic flux in a two-phase liquid
metal flow has been developed for low magnetic Reynolds number Rem. This model takes into
account the distortion of the induced eddy currents due to the presence of void in the conducting
medium. Specific experiments with an eddy current flow meter have been realized for two periodic
void distributions. The results have shown, in agreement with the model, that the effects of velocity
and void on the emf modulation are decoupled. The magnitude of the void fraction and the void
spatial frequency can be determined from the spectral density of the demodulated emf.

Characterization of void fraction in two-phase liquid
metal is a challenging issue in many applications. The
measurement of void fraction in liquid metal is a notoriously
difficult problem because these materials are opaque,
aggressive, often very hot, and inaccessible. For example,
the presence of bubbles in the primary loop of a sodium
cooled fast nuclear reactor modifies the neutronic and heat
transfer properties of flow, which is a cause of concern
from the safety point of view.1 In metallurgy, bubbles and
non metallic impurities decrease the efficiency of heating by
induction and change dramatically the mechanical properties
of the manufactured products.2 On the other hand, bubbles
manifest also in natural magnetohydrodynamics flows, as
observed in geophysics earth’s outer core or in interstellar
medium.3 In recent years, we have seen a renewed interest in
techniques based on Faraday induction4,5 and Lorentz force6

for flow measurements.7 From a theoretical point of view,
the distortion of the induced eddy currents by the presence
of void is an open problem.8 In this paper, we propose a
perturbative theory that allows us to develop a methodology
to characterize the void fraction using a standard sensor.9,10

We consider a moving two phase liquid metal with a
void fraction α and a characteristic velocity U. The medium
is assumed to flow through a primary coil P, which is
excited by an AC current I = I0 cosωt. The perturbation of
the induced magnetic flux due to the Faraday and Lorentz
force effects is measured by two secondary coils (S1 and S2)
placed coaxially on either sides of the primary coil. This
corresponds to a standard configuration in flow measurement
with the advantage to minimize external noise and, in our
case, to amplify the distortion due to void fraction. The model
consists to calculate the void fraction contribution to the
emf difference between the two secondary coils ∆V . In this
problem, the magnetic Reynolds number Rem is defined by
the penetration depth of the magnetic field in the medium as
the characteristic length (δ =


2

σµ0ω
): Rem = σµ0Uδ, where

σ is the electrical conductivity of the medium and µ0 is
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the magnetic permeability of vacuum. At low Rem (diffusion
dominates advection in magnetic flux transport equation), the
amplitude of the net flux crossing coils S1 and S2 is given at
first order by

φ =


B⃗ · d⃗s = φ0 + Remφu + φα(t), (1)

where φ0 is the average flux in the absence of motion due
to Faraday effects, φu is the average flux due to Lorentz
force effects, and φα is the perturbation of the total flux
due to the dispersed phase. This last term has its origin
in the perturbation of the eddy currents in presence of the
non-conducting dispersed phase and is related to the induction
effects to first order. In case of periodic distribution of the
dispersed phase, this term can be expanded in Fourier series,

φα(t) = ψα cos(ωαt + θ) + · · ·, (2)

where the amplitude ψα depends on the volume fraction α and
ωα characterizes the spatial distribution (ωα = Ukα, where kα
is the spatial frequency of dispersed phase). In this analysis,
ωα ≪ ω. One notes that φ0 = 0 for ideally well balanced
S1 and S2. Magnetic field in the medium results from the
coupling between the Maxwell-Faraday and the Maxwell-
Ampere equations, considering that the eddy currents in
the conducting media in motion are J⃗ = σ(E⃗ + U⃗ × B⃗).
Consequently, the magnetic field in the medium has two
contributions, one in phase and one in quadrature with I
(B⃗(t) = B⃗∥ cosωt + B⃗⊥ sinωt), which leads to a total flux
also with both components. ∆V is given by differentiating
with time the flux between S1 and S2: ∆V 2 = ∆V 2

∥ + ∆V 2
⊥.

Considering the first terms in O(Rem) (Rem ≪ 1),

∆V 2 ≈ ω2

⟨φ0|φ0⟩ + ⟨ψα |ψα⟩

2
+ 2⟨φ0|ψα⟩ cos(ωαt + θ)

+
⟨ψα |ψα⟩

2
cos(2ωαt + 2θ)

+ 2Rem [⟨φ0|φu⟩ + ⟨φu |ψα⟩ cos(ωαt + θ)]

. (3)

In this formula, φi is defined as a vector, φi =
�
φi, ∥, φi,⊥

�
.

⟨φi |φ j⟩ represents the scalar product between the two vectors

http://dx.doi.org/10.1063/1.4932990
http://dx.doi.org/10.1063/1.4932990
http://dx.doi.org/10.1063/1.4932990
http://dx.doi.org/10.1063/1.4932990
http://dx.doi.org/10.1063/1.4932990
http://dx.doi.org/10.1063/1.4932990
http://dx.doi.org/10.1063/1.4932990
http://dx.doi.org/10.1063/1.4932990
http://dx.doi.org/10.1063/1.4932990
http://crossmark.crossref.org/dialog/?doi=10.1063/1.4932990&domain=pdf&date_stamp=2015-10-09


FIG. 1. Design of the experimental set up. P, S1, and S2 are, respectively,
the primary and the two secondary coils.

i and j. In RHS of Equation (3), the four first terms correspond
to the dominant components in Fourier expansion of ∆V 2 and
the last terms are the perturbations induced by motion. In
Equation (3), only the amplitudes of φ0 and ψα appear at zero
order, and ⟨φu |φu⟩ being a second order term in Rem does
not appear. The terms ⟨φ0|ψα⟩, ⟨φ0|φu⟩, and ⟨φu |ψα⟩ represent
the coupling effects of Faraday induction, Lorentz force,
and dispersed phase. The Fourier analysis of the ∆V 2 signal
allows to determine these components and particularly the
term ⟨ψα |ψα⟩, which is expected to characterize the influence
of the dispersed phase.

We have developed specific experiments to validate this
theoretical approach. A moving Eddy Current Flow Meter
(ECFM)11 assembly was designed (Fig. 1). It consists of three
coils (P, S1, and S2) of diameter 40 mm each and length
30 mm for P and 20 mm for S1 and S2, with copper winding
of 70 turns for P and 50 for S1 and S2. ECFM is fixed on a
uniaxial displacement controller, which can move at velocity,
U = 10−3 − 1 m/s. The conducting fluid is modeled by an
aluminium rod along which the ECFM moves (see Fig. 1).
Three aluminium rods (of diameter 38.5 mm) were used in the
experiments: a plain rod which represents single phase liquid
metal (α = 0%) and two rods with grooves (α = 0.3% and
α = 6.9%), which represent two-phase liquids. The grooves
were machined at the rod surface with a period of 18.00 mm
and 16.85 mm, a depth 0.38 mm and 4.23 mm, and a
width 1.4 mm and 3.00 mm, respectively. The advantage
of this system is that the geometric void fraction α is
exactly known and there are no problems of liquid metal
circulation. The experiment was realized at room temperature
for which the electrical conductivity of the aluminium rod is
σ = 3.8 × 107 S/m. We use a lockin amplifier (HF2LI-MF,
Zurich Instruments) to excite the primary coil at 3142 rad/s
(δ ≈ 3.7 mm) and 6283 rad/s (δ ≈ 2.6 mm). The amplitude
of current intensity for all the experiments is in the range
of 200–400 mA. All the experimental results are given for a
normalized intensity amplitude of 1 A. Moreover, we have
checked that the current remains constant within 0.1% during
an experiment. The voltage induced in S1 and S2 is measured
by the lockin amplifier. In the experiments, the phase of the
primary current is taken as reference. ∆V is demodulated with
the lockin amplifier in order to determine the components in
phase and in quadrature. For each measurement, the ECFM

FIG. 2. Typical demodulated voltage difference of the two secondary coils,
∆V measured vs time for α = 0.3% atω = 3142 rad/s andU = 0.1 m/s (inlay:
U = 0.001 m/s).

was translated back and forth several times. Experiments
with this system are very reproducible because the system
is highly deterministic. Finally, we have verified that the
electromagnetic background noise is not significant at these
frequencies.

Fig. 2 displays a typical demodulated ∆V signal. This
kind of signal can be obtained for in phase and quadrature
components and also for the norm. φ0 is defined as the average
value of the signal when there is very slow motion, typically
U = 10−3 m/s (inlay of Fig. 2). In this case, the Lorentz
force can be neglected. In motion at constant U, the average
value of the signal is translated with a mean amplitude
proportional to Remφu. In presence of grooves (α , 0%),
this signal oscillates around this value. The amplitude of
this oscillation gives ψα. Fig. 3 shows an example of the FFT
spectrum of the difference between ∆V signal and its temporal
average value for α = 6.9% at U = 0.1 m/s and 6283 rad/s.
We observe the first three harmonic peaks in ωα. From the
FFT spectral density, we obtained ωα = 0.35 ± 0.05 rad/s.
This value is in agreement with that calculated from the
geometry of grooves: ωα = 0.37 rad/s. For α = 0.3%, we
measuredωα = 0.35 ± 0.04 for a theoretical valueωα = 0.35.
All the spectra obtained from the experiments validate the
expansion at first order in Rem of the magnetic flux and also
the Fourier series of the void fraction perturbation on eddy
current equations (1) and (2). The amplitude of the peak at
3ωα gives the first residue of Equation (3).

FIG. 3. FFT spectral density of ∥∆V 2∥ vs the modulating pulsation ωM for
α = 6.9% and U = 0.001 m/s at 6283 rad/s.



FIG. 4. Amplitude of the second (a) and first (b) peaks of the spectral
density of ∥∆V ∥2 vs velocity at 3142 rad/s (unfilled markers) and 6283 rad/s
(filled markers): α = 0.3% (�, ■) and (�, �) with low pass filter 24 dB/oct;
α = 6.9% (△, N) and (▽, ▼) with low pass filter 24 dB/oct.

According to this equation, the amplitude of the first
peak is A1 = ω

2 [⟨φ0|ψα⟩ + 2Rem⟨φu |ψα⟩] and the amplitude
of the second peak is A2 = ω

2 ⟨ψα |ψα⟩
2 . We have checked that

the value of
√

2A2/ω is equal to the norm of ψα, which has
been obtained from the direct FFT of φα signal.

Fig. 4(a) compares 2A2 vs velocity for α = 0.3% and
α = 6.9% and for both frequencies, 3142 and 6283 rad/s.
These experiments showed that A2 is independent of the
velocity whatever the frequency and the void fraction. On
the other hand, the magnitude of A2 depends on the void
fraction and the frequency. The experimental data show that√

A2/ω is a constant (within 12% error). Furthermore the
experiments point out that the α dependence of A2 is given by
ψα ∼ αn,n < 1. In the limit of the accuracy, we found n ≈ 0.6
for both frequencies. Comparison with the plain rod shows
that A2 is very sensitive to the presence of void fraction even
at low value of α (α = 0.3%).

For groove depth smaller than δ, the effective void
fraction is αδ ∼ α/δ, and if α is small enough,ψα ∼ α (n = 1).
In this case, we found from the Maxwell’s equations that
ψα ∼ ω0, in agreement with experiments. The experimental
value n ≈ 0.6 corresponds to the case where groove depth is
larger than δ and αδ > α.

The amplitude of A1 vs velocity is shown in Fig. 4(b)
for α = 0.3% and α = 6.9% at both angular frequencies
3142 rad/s and 6283 rad/s. We recall that A1 characterizes
the coupling effects of the void fraction on Faraday induction
and on the Lorentz force. In our first order expansion model,
A1 is linear with ψα. Fig. 4(b) points out that the value of
A1 increases with α, following the same power law relation
ψα ∼ α0.6. For the two frequencies, we observe that A1 is linear
with velocity, coming from the coupling term 2ω2Rem⟨φu |ψα⟩.

Due to the order of magnitude of ⟨φ0|ψα⟩ compared to
2Rem⟨φu |ψα⟩, the velocity effects on A1 is more visible at
low values of A1 in log-log representation. Finally, the exact
concordance between A1 and A2 validates the perturbation
model given by Equation (3).

To further investigate the consistency of ψα dynamics on
A1 and A2, we used a low pass filter at a cutoff frequency
νc = 6.8 Hz. This filter is characterized by an attenuation of
24 dB/oct in signal intensity. Sinceωα ∼ U , the corresponding
critical velocity is around Uc ∼ 10−1 m/s. After Uc, the A1
and A2 values are supposed to decrease in 1/U2 and 1/U4,
respectively. Fig. 4 show that the experimental data verify the
expected dynamics.

In this work, we have calculated the effects of the void
fraction of a two-phase liquid metal flow on the induced
magnetic flux. We have shown that for a periodic void
distribution, the amplitude of the emf difference is modulated
at a frequency ωα characteristic of the distribution and with
an amplitude which is a function of α. We have shown
the interest to analyze the FFT signal of demodulated emf
difference in order to determine the void fraction. This
is possible because the effects of velocity and void are
decoupled. The experiments with a standard ECFM validates
the perturbation approach used in the model. For more realistic
non-periodic void distributions, this approach can still be used
to analyze the void effects on emf signal as long as ωα can be
measured.
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