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Abstract

We define Letac-Wesolowski-Matsumoto-Yor (LWMY) functions as decreasing
functions from (0,∞) onto (0,∞) with the following property: there exist indepen-
dent, positive random variables X and Y such that the variables f(X + Y ) and
f(X) − f(X + Y ) are independent. We prove, under additional assumptions, that
there are essentially four such functions. The first one is f(x) = 1/x. In this case,
referred to in the literature as the Matsumoto-Yor property, the law of X is gener-
alized inverse Gaussian while Y is gamma-distributed. In the three other cases, the
associated densities are provided. As a consequence, we obtain a new relation of
convolution involving gamma distributions and Kummer distributions of type 2.

Keywords: Gamma distribution; generalized inverse Gaussian distribution; Matsumoto-
Yor property; Kummer distribution.

1 Introduction

Many papers have been devoted to the generalized inverse Gaussian (GIG) distributions
since their definition by Good (1953)(see for instance Barndorff-Nielsen and Halgreen
(1977), Letac and Seshadri (1983), Vallois (1989), Vallois (1991)).
The GIG distribution with parameters µ ∈ R, a, b > 0 is the probability measure :

GIG(µ, a, b)(dx) =

(
b

a

)µ
xµ−1

2Kµ(ab)
e−

1
2

(a2x−1+b2x)1(0,∞)(x)dx (1.1)

where Kµ is the classical McDonald special function.
1) Let us stress the close links between GIG, gamma distributions and the function

f0(x) = 1/x (x > 0).
a) The family of GIG distributions is invariant under f0: we can easily deduce from

(1.1) that the image of GIG(µ, a, b) by f0 is GIG(−µ, b, a).
b) Barndorff-Nielsen and Halgreen (1977) proved:

GIG(−µ, a, b) ∗ γ(µ,
b2

2
) = GIG(µ, a, b), µ, a, b > 0 (1.2)

1
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where γ(µ, b2/2)(dx) = b2µ

2µΓ(µ)
xµ−1 exp− b2

2
x1(0,∞)(x)dx.

Therefore if X ∼ GIG(−λ, a, a) and Y ∼ γ(λ, a2/2) are independent r.v.’s then

X
(d)
= f0(X + Y ). (1.3)

Letac and Seshadri (1983) proved that (1.3) characterizes GIG distributions of the type
GIG(−λ, a, a).

c) Almost sure realizations of (1.2) have been given by Bhattacharya and Waymire
(1990) in the case µ = 1

2
, Vallois (1991) for any µ > 0 by means of a family of transient

diffusions and Vallois (1989, theorem on p.446) in terms of random walks.
2) The so-called Matsumoto-Yor property is the following: let X and Y be two inde-

pendent r.v.’s such that

X ∼ GIG(−µ, a, b), Y ∼ γ(µ, b2/2), (µ, a, b > 0). (1.4)

Then

U :=
1

X + Y
= f0(X + Y ), V :=

1

X
− 1

X + Y
= f0(X)− f0(X + Y ) (1.5)

are independent and
U ∼ GIG(−µ, b, a), V ∼ γ(µ, a2/2). (1.6)

The case a = b was proved by Matsumoto and Yor (2001) and a nice interpretation of
this property via Brownian motion was given by Matsumoto and Yor (2003). The case
µ = −1

2
of the Matsumoto-Yor property can be retrieved from an independence property

established by Barndorff-Nielsen and Koudou (1998) (see Koudou, 2006).
Letac and Wesolowski (2000) proved that the Matsumoto-Yor property holds for any
µ, a, b > 0 and characterizes the GIG distributions. More precisely, consider two inde-
pendent and non-Dirac positive r.v.’s X and Y such that U and V defined by (1.5) are
independent, then there exist µ, a, b > 0 such that (1.4) holds.

The origin of this paper is to understand the link between the function f0 : x 7→ 1/x
and the GIG distributions in the Matsumoto-Yor property.

Obviously, the Matsumoto-Yor property can be reexpressed as follows: the image of
the probability measure (on R2

+) GIG(−µ, a, b) ⊗ γ(µ, b2/2) by the transformation Tf0 :
(x, y) 7→ (f0(x+y), f0(x)−f0(x+y)) is the probability measure GIG(−µ, b, a)⊗γ(µ, a2/2).
This formulation of the Matsumoto-Yor property joined with the Letac and Wesolowski
result lead us to determine the triplets (µX , µY , f) such that

a) µX , µY are probability measures on (0,∞),
b) f : (0,∞)→ (0,∞) is bijective and decreasing,
c) if X and Y are independent r.v.’s such that X ∼ µX and Y ∼ µY then the r.v.’s

U = f(X + Y ) and V = f(X)− f(X + Y ) are independent.
Unfortunately we have not been able to solve this question without restriction. Our

method can be applied provided that f is smooth and µX and µY have smooth density
functions (see Theorem 3.1 for details). After long and sometimes tedious calculations we
prove (cf Theorem 2.2) that there are only four classes F1, . . . ,F4 of functions f such that
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Tf keeps the independence property. Then, for any f ∈ Fi, 1 ≤ i ≤ 4 we have been able
to give the corresponding distributions of X and Y and the related laws of U and V (for
F2, F3 and F4 see Theorems 2.4, 2.14 and Remark 2.5). The first class F1 = {α/x; α > 0}
corresponds to the known case f = f0. This case is dealt with in Appendix 5.1 where
we recover, under stronger assumptions, the result of Letac and Wesolowski that the
only possible distributions for X and Y are GIG and gamma respectively. The proof
of Letac and Wesolowski is completely different from ours since the authors made use
of Laplace transforms and of a characterization of the GIG laws as the distribution of
a continued fraction with gamma entries. We have not been able to develop a proof
as elegant as theirs. The reason is that, with f = f0 we have algebraic properties (for
instance continued fractions), while these properties are lost if we start with a general
function f .

It is worth pointing out that one interesting feature of our analysis is an original
characterization of the families of distributions {βα(a, b, c); a, b, α > 0,, c ∈ R} and the
Kummer distributions {K(2)(a, b, c); a, c > 0,, b ∈ R} (see (2.14) and (2.29) respectively).
The Kummer distributions appear as the law of some random continued fractions (see
Marklov et al, 2008, p.3393 mentioning a work by Dyson (1953) in the setting of random
matrices).

As by-products of our study we obtain new relations of convolution. For simplicity we
only detail the case of Kummer distributions of type 2:

K(2)(a, b, c) ∗ γ(b, c) = K(2)(a+ b,−b, c). (1.7)

Obviously, this relation is similar to (1.2).
Inspired by the result of Letac and Wesolowski (2000) and Theorem 2.6, one can ask,

for future work, whether a characterization of Kummer distributions could be obtained
by an ”algebraic” method.

As recalled in the above item c), there are various almost sure realizations of (1.2)
and of the convolution coming from the Matsumoto-Yor property. One interesting open
question derived from our study would be to determine a r.v. Z with distribution K(2)(a+
b,−b, c) which can be decomposed as the sum of two explicit independent r.v.’s X and Y
such that X ∼ K(2)(a+ b,−b, c) and Y ∼ γ(b, c).

The paper is organized as follows. We state our main results in Section 2. In Section
3 we give a key differential equation involving f and the log densities of the independent
r.v.’s X and Y such that f(X + Y ) and f(X)− f(X + Y ) are independent (cf Theorem
3.1). Based on this equation we prove (cf Theorem 3.9) that there are only four classes
of such functions f . The theorems stated in Section 2 are proved in Section 4. However,
one technical proof has been postponed in Appendix.

2 Main results

Definition 2.1 Let f : (0,∞)→ (0,∞) be a decreasing and bijective function.
1) Associated with f let us consider the transformation

Tf : (0,∞)2 → (0,∞)2
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(x, y) 7→ (f(x+ y), f(x)− f(x+ y)). (2.8)

The transformation Tf is one-to-one and if f−1 is the inverse of f , then

(Tf )
−1 = Tf−1 . (2.9)

2) Let X and Y be two independent and positive random variables. Let us define

(U, V ) = Tf (X, Y ) = (f(X + Y ), f(X)− f(X + Y )). (2.10)

f is said to be a LWMY function with respect to (X, Y ) if the random variables U and V
are independent. f is said to be a LWMY function if it is a LWMY function with respect
to some random vector (X, Y ).

One aim of this paper is to characterize LWMY functions. Let us introduce

f1(x) =
1

ex − 1
, x > 0, (2.11)

g1(x) = f−1
1 (x) = ln

(
1 + x

x

)
, x > 0 (2.12)

and, for δ > 0,

f ∗δ (x) = log

(
ex + δ − 1

ex − 1

)
, x > 0. (2.13)

Theorem 2.2 Let f : (0,∞) → (0,∞) be decreasing and bijective. Under some addi-
tional assumptions (see Theorem 3.1, (3.7) and(3.8)), f is a LWMY function if and only
if, either f(x) = α

x
or f(x) = 1

α
f1(βx) or f(x) = 1

α
g1(βx) or f(x) = 1

α
f ∗δ (βx) for some

α, β, δ > 0.

Remark 2.3 1) The four classes of LWMY functions are F1 = {α/x; α > 0},
F2 = { 1

α
f1(βx); α, β > 0}, F3 = { 1

α
g1(βx); α, β > 0}, F4 = { 1

α
f ∗δ (βx); α, β > 0}.

2) It is clear that if f is a LWMY function, then the functions f−1 and x 7→ 1
α
f(βx), α, β >

0 are LWMY functions.
3) The image of F2 by the map f 7→ f−1 is F3. The functions x 7→ α/x and fδ are

involutive.
In the sequel we focus on the three new cases : either f = f1 or f = g1 or f = f ∗δ and

in each case we determine the laws of the related random variables.

2.1 The cases f = g1 and f = f1

a) Recall the definition of the gamma distribution γ(λ, c)(dx) = cλ

Γ(λ)
xλ−1e−cx1(0,∞)(x)dx, (λ, c >

0) and the beta distribution Beta(a, b)(dx) = Γ(a+b)
Γ(a)Γ(b)

xa−1(1−x)b−11{0<x<1}dx, (a, b > 0).

Consider (see for instance Ng and Kotz, 1995, or Nagar and Gupta, 2002 and references
therein) the Kummer distribution of type 2 :

K(2)(a, b, c) := α(a, b, c)xa−1(1 + x)−a−be−cx1(0,∞)(x)dx, a, c > 0, b ∈ R (2.14)
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where α(a, b, c) is a normalizing constant.
Associated with a couple (X, Y ) of positive r.v.’s consider

(U, V ) := Tf1(X, Y ) =

(
1

eX+Y − 1
,

1

eX − 1
− 1

eX+Y − 1

)
. (2.15)

In Theorems 2.4 and 2.6 below we suppose that all r.v.’s have positive and twice
differentiable densities.

First we consider the case f = f1. We determine the distributions of X and Y such
that f1 is a LWMY function associated to (X, Y ).

Theorem 2.4 1) Consider two positive and independent random variables X and Y . The
random variables U and V defined by (2.15) are independent if and only if the densities
of Y and X are respectively

pY (y) =
Γ(a+ b)

Γ(a)Γ(b)
(1− e−y)b−1e−ay1{y>0} (2.16)

pX(x) = α(a+ b, c,−a)e−(a+b)x(1− e−x)−b−1

exp

(
−c e−x

1− e−x

)
1{x>0}. (2.17)

where a, b and c are constants such that a, b, c > 0 and α(a + b, c,−a) is the constant
of Equation (2.14). Thus the law of Y is the image of the Beta(a, b) distribution by the
transformation z ∈ (0, 1) 7→ − log z ∈ (0,∞), while the law of the variable f1(X) is
K(2)(a+ b,−b, c) (cf Equation (2.14)).

2) If 1) holds then U ∼ K(2)(a, b, c) and V ∼ γ(b, c).

The proof of Theorem 2.4 will be given in Section 4.

Remark 2.5 Since g1 = f−1
1 , Remark 2.3 and Theorem 2.4 imply that the r.v.’s asso-

ciated with the LWMY function g1 are the r.v.’s U and V distributed as in item 2. of
Theorem 2.4.

b) As suggest identities (2.16) and (2.17) it is actually possible to simplify the state-
ment of Theorem 2.4. Since Tg1 = T−1

f1
, then

(X, Y ) = Tg1(U, V ) =

(
log

(
1 + U + V

U + V

)
, log

(
1 + U

U

)
− log

(
1 + U + V

U + V

))
. (2.18)

As shows (2.18) it is useful to introduce

(U ′, V ′) =

(
1 + 1

U+V

1 + 1
U

, U + V

)
. (2.19)

Obviously the correspondence (U, V ) 7→ (U ′, V ′) is one-to one:

(U, V ) =

(
U ′V ′

V ′ + 1− U ′V ′
,
V ′(V ′ + 1)(1− U ′)
V ′ + 1− U ′V ′

)
. (2.20)
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Furthermore, (X, Y ) can be easily expressed in terms of (U ′, V ′):

X = log(1 + 1/V ′) and Y = − logU ′. (2.21)

Since it is easy to determine the density function of φ(ξ) knowing the density function of
a r.v. ξ, where φ is differentiable and bijective, then Theorem 2.4 and its analogue related
to f = g1 (cf Remark 2.5) are equivalent to Theorem 2.6 below.

Theorem 2.6 a) Let U ′ and V ′ be two positive and independent random variables. The
r.v.’s U and V defined by (2.20) are independent if only if there exist some constants a,
b, c such that

U ′ ∼ Beta(a, b) and V ′ ∼ K(2)(a+ b,−b, c). (2.22)

If one of these equivalent conditions holds, then U ∼ K(2)(a, b, p) and V ∼ γ(b, c).
b) Let U and V be two positive and independent random variables. The r.v.’s U ′ and

V ′ defined by (2.19) are independent if only if there exist some constants a, b, c such that

U ∼ K(2)(a, b, c) and V ∼ γ(b, c). (2.23)

Under (2.23), U ′ ∼ Beta(a, b) and V ′ ∼ K(2)(a+ b,−b, c).

Let us formulate an easy consequence of Theorem 2.6.

Theorem 2.7 For any a, b, c > 0, the transformation (u, v) 7→ (
1+ 1

u+v

1+ 1
u

, u + v) maps the

probability measure K(2)(a, b, c)⊗ γ(b, c) to the probability measure Beta(a, b)⊗K(2)(a+
b,−b, c). In particular:

K(2)(a, b, c) ∗ γ(b, c) = K(2)(a+ b,−b, c). (2.24)

Remark 2.8 Note that (2.24) may be regarded as an analogue of (1.2).

2.2 The case f = f ∗δ

Recall that f ∗δ has been defined by (2.13). Due to the form of f ∗δ , a change of variables
allows to simplify the search of independent r.v.’s X and Y such that the two components
of Tf∗δ (X, Y ) are independent.
For any decreasing and bijective function f : (0,∞)→ (0,∞) we define

f(x) = exp{−f(− log x)}, x ∈ (0, 1), (2.25)

Tmf (x, y) =

(
f(xy),

f(x)

f(xy)

)
, x, y ∈ (0, 1). (2.26)

Observe that f is one-to-one from (0, 1) onto (0, 1), Tmf is one-to-one from (0, 1)2 onto
(0, 1)2 and (

Tmf
)−1

= Tmf−1 . (2.27)
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Definition 2.9 Let X and Y be two independent and (0, 1)-valued random variables.
We say that a decreasing and bijective function f : (0, 1) → (0, 1) is a multiplicative

LWMY function with respect to (X, Y ) if the r.v.’s Um := f(XY ) and V m := f(X)
f(XY )

are
independent.

Remark 2.10 For any random vector (X, Y ) in (0,∞)2 we consider X ′ = e−X , Y ′ =
e−Y . Then f is a LWMY function with respect to (X, Y ) if and only if f is a multiplicative
LWMY function with respect to (X ′, Y ′).

The change of variable x′ = e−x is very convenient since the function

φδ(x) := f ∗δ (x) =
1− x

1 + (δ − 1)x
, x ∈ (0, 1) (2.28)

is homographic.
Note that f ∗δ : (0, 1)→ (0, 1) is bijective, decreasing and equal to its inverse.
First, let us determine the distribution of the couple (X ′, Y ′) of r.v.’s such that φδ is a
multiplicative LWMY function with respect to (X ′, Y ′).

For a, b, α > 0 and c ∈ R consider the probability measure

βα(a, b; c)(dx) = kα(a, b; c)xa−1(1− x)b−1(αx+ 1− x)c1(0,1)(x)dx. (2.29)

Note that if c = 0, then βα(a, b; c) = Beta(a, b).

Theorem 2.11 Let X ′ and Y ′ be two independent random variables valued in (0, 1).
Consider

(Um, V m) = Tmφδ(X
′, Y ′) =

(
1−X ′Y ′

1 + (δ − 1)X ′Y ′
,

1−X ′

1 + (δ − 1)X ′
1 + (δ − 1)X ′Y ′

1−X ′Y ′

)
for fixed δ > 0.
Then, Um and V m are independent if and only if there exist a, b, λ > 0 such that

X ′ ∼ βδ(a+ b, λ;−λ− b), Y ′ ∼ Beta(a, b). (2.30)

If this condition holds, then

Um ∼ βδ(λ+ b, a;−a− b), V m ∼ Beta(λ, b). (2.31)

In the case δ = 1, Theorem 2.11 takes a very simple form.

Proposition 2.12 Let X ′ and Y ′ be two independent random variables valued in (0, 1).
Then

Um = 1−X ′Y ′, V m =
1−X ′

1−X ′Y ′
are independent if and only if there exist a, b, λ > 0 such that

X ′ ∼ Beta(a+ b, λ) and Y ′ ∼ Beta(a, b).

If one of these conditions holds, then Um ∼ Beta(λ+ b, a) and V m ∼ Beta(λ, b).
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Remark 2.13 When X ′ ∼ Beta(a+ b, λ) and Y ′ ∼ Beta(a, b) it can be proved that Um

and V m are independent using the well-known property: if Z and Z ′ are independent,
Z ∼ γ(a, 1) and Z ′ ∼ γ(b, 1) then R := Z

Z+Z′
and Z + Z ′ are independent and R ∼

Beta(a, b) and Z + Z ′ ∼ γ(a+ b, 1) (see for instance Yor, 1989).

According to Remark 2.10, f ∗δ is a LWMY function with respect to (X, Y ) if and only if
φδ is a multiplicative LWMY function with respect to (X ′, Y ′) = (e−X , e−Y ). Therefore, a
classical change of variables allows to deduce that Theorem 2.11 is equivalent to Theorem
2.14 below:

Theorem 2.14 1) Consider two positive and independent random variables X and Y .
The random variables U = f ∗δ (X + Y ), V = f ∗δ (X) − f ∗δ (X + Y ) are independent if and
only if the densities of Y and X are respectively

pY (y) =
Γ(a+ b)

Γ(a)Γ(b)
(1− e−y)b−1e−ay1{y>0} (2.32)

pX(x) = kδ(a+ b, λ,−λ− b)e−(a+b)x(δe−x + 1− e−x)−λ−b

×(1− e−x)λ−11x>0 (2.33)

where a, b > 0 , λ ∈ R and kδ(a+ b, λ,−λ− b) is the normalizing factor (cf (2.29)). Thus
e−Y is Beta(a, b) distributed and e−X is βδ(a+ b, λ,−λ− b) distributed.

2) If 1. holds then the densities of U and V are respectively

pU(u) = kδ(λ+ b, a;−a− b)e−u(λ+b)(1− e−u)a−1

×(1 + (δ − 1)e−u)−a−b1u>0, (2.34)

pV (v) = e−λv(1− e−v)b−1 1v>0. (2.35)

We skip the proof of Theorem 2.14 since it is similar to that of Theorem 2.4.

3 The set of all possible “smooth” LWMY functions

The following theorem gives a functional equation linking LWMY functions to the related
densities.

Theorem 3.1 Let X and Y be two independent and positive random variables whose
densities pX and pY are positive and twice differentiable. Define φX = log pX and φY =
log pY . Consider a decreasing function f : (0,∞) 7→ (0,∞), three times differentiable.
Then f is a LWMY function with respect to (X, Y ) if and only if

φ′′X(x)− φ′X(x)
f ′′(x)

f ′(x)
+ φ′′Y (y)f ′(x)

(
1

f ′(x)
− 1

f ′(x+ y)

)
+φ′Y (y)

f ′′(x)

f ′(x)
+

2(f ′′(x))2 − f ′′′(x)f ′(x)

f ′(x)2
= 0, x, y > 0. (3.1)
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Proof : Let g = f−1 and (U, V ) = Tf (X, Y ). By formula (2.9), (X, Y ) = Tg(U, V ).
X and Y being independent, the density of (U, V ) is

p(U,V )(u, v) = pX(g(u+ v)) pY (g(u)− g(u+ v)) |J(u, v)|1u,v>0 (3.2)

where J is the Jacobian of the transformation Tf . One gets |J(u, v)| = g′(u + v)g′(u),
then

p(U,V )(u, v) = pX(g(u+ v)) pY (g(u)− g(u+ v)) g′(u+ v)g′(u). (3.3)

The variables U and V are independent if and only if the function H = log p(U,V )

satisfies ∂2H
∂u∂v

= 0. By Equation (3.3) we obtain

∂2H

∂u∂v
= φ′′X(x)[g′(f(x))]2 + φ′X(x)g′′(f(x))

−φ′′Y (y)g′(f(x)) [g′(f(x+ y))− g′(f(x))]

−φ′Y (y)g′′(f(x)) +
g′′′g′ − (g′′)2

(g′)2
(f(x)) (3.4)

where x = g(u + v) and y = g(u) − g(u + v). Differentiating three times the relation

g(f(x)) = x, we obtain g′′(f(x)) = − f ′′(x)
f ′(x)3

and g′′′(f(x)) = −f ′′′(x)f ′(x)−3f ′′(x)2

f ′(x)5
. As a

result,
g′′′g′ − (g′′)2

(g′)2
(f(x)) =

2f ′′(x)2 − f ′′′(x)f ′(x)

f ′(x)4
. (3.5)

Therefore, ∂2H
∂u∂v

= 0 leads to (3.1). �
We restrict ourselves to smooth LWMY functions f , i.e. satisfying

f : (0,∞)→ (0,∞) is bijective and decreasing, (3.6)

f is three times differentiable, (3.7)

F (x) =
∑
n≥1

anx
n, ∀x > 0. (3.8)

where F := 1/f ′.
According to (3.6), f ′(0+) = −∞. This implies F (0+) = 0 and explains why the series in
(3.8) starts with n = 1.

The goal of this section is to prove half of Theorem 2.2: if f is a smooth LWMY
function, then f belongs to one of the four classes F1, . . . ,F4 introduced in Remark 2.3.
First, we characterize in Theorem 3.2 all possible functions F . Second, we determine the
associated functions f (see Theorem 3.9).

Theorem 3.2 Suppose that f is a smooth LWMY function and that the assumptions of
Theorem 3.1 are satisfied.

1. If F ′(0+) = 0, then a2 < 0 and

F (x) =

{
a2
2

6a4

(
cosh

(
x
√

12a4

a2

)
− 1
)

if a4 < 0

a2x
2 otherwise.

(3.9)
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2. If F ′(0+) 6= 0, then

F (x) =

{
a1a2

3a3

[
cosh

(
x
√

6a3

a1

)
− 1
]

+ a1

√
a1

6a3
sinh

(
x
√

6a3

a1

)
if a1a3 > 0

a1x+ a2x
2 otherwise.

(3.10)

Remark 3.3 Unsurprisingly, the case F (x) = a2x
2 corresponds to f(x) = − 1

a2

1
x
, i.e. the

case considered by Matsumoto-Yor and Letac-Wesolowski.

Throughout this subsection we suppose that f satisfies (3.6)-(3.8) and that the as-
sumptions of Theorem 3.1 are fulfilled. For simplicity of statement of results below we do
not repeat these conditions.

Recall that φY is the logarithm of the density of Y . Let us introduce

h := φ′Y (3.11)

Lemma 3.4 1. There exists a function λ : (0,∞)→ R such that

F (x+ y) =
λ(x)− h(y)F ′(x)

h′(y)
+ F (x). (3.12)

2. F satisfies

F (y) =
λ(0+)− h(y)F ′(0+)

h′(y)
. (3.13)

Remark 3.5 Suppose that we have been able to determine F . Then, h = φ′Y solves
the linear ordinary differential equation (3.13) and can therefore be determined. The
remaining function φX is obtained by solving Equation (3.1).

Proof of Lemma 3.4 :
Using ( 3.11) and F = 1/f ′ in Equation (3.1), we obtain

c(x) = h(y)
F ′(x)

F (x)
+ h′(y)

1

F (x)
(F (x+ y)− F (x))

where c(x) depends only on x. Multiplying both sides by F (x) and taking the y-derivative
leads to

0 = F ′(x)h′(y) + [F (x+ y)− F (x)]h′′(y) + h′(y)F ′(x+ y).

Fix x > 0. Then θ(y) := F (x+ y) is a solution of the differential equation in y:

0 = F ′(x)h′(y) + (θ(y)− F (x))h′′(y) + h′(y)θ′(y). (3.14)

A solution of the related homogeneous equation in y is ρ
h′(y)

where ρ is a constant. It is

easy to prove that y 7→ −F ′(x)h(y) + F (x)h′(y) solves (3.14). Thus, the general solution
of (3.14) is

θ(y) =
1

h′(y)
[λ(x)− F ′(x)h(y) + F (x)h′(y)] .
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Since θ(y) = F (x+ y), (3.12) follows.
According to (3.8), F (0+) and F ′(0+) exist. Therefore, taking the limit x → 0+ in

(3.12) implies both the existence of λ(0+) and relation (3.13). �
The following lemma shows that the function F (and thus f) solves a self-contained

equation in which h, and thereby the densities of X and Y , are not involved.

Lemma 3.6 F solves the delay equations :

F (x+ y) =
F (y)[λ(x)− h(y)F ′(x)]

λ(0+)− h(y)F ′(0+)
+ F (x) (x, y > 0) (3.15)

F ′(x+ y) =
F ′(y) + F ′(0+)

F (y)
[F (x+ y)− F (x)]− F ′(x) (x, y > 0). (3.16)

Proof:
By (3.13) we have

h′(y) =
λ(0+)− h(y)F ′(0+)

F (y)
.

Equation (3.15) then follows by rewriting Equation (3.12) and replacing h′(y) with the
expression above.
We differentiate (3.15) in y and use the fact that λ(0+) − h(y)F ′(0+) = h′(y)F (y) to
obtain :

F ′(x+ y) = [F ′(y) + F ′(0+)]
λ(x)− h(y)F ′(x)

F (y)h′(y)
− F ′(x).

By (3.12) we have λ(x)−h(y)F ′(x)
F (y)h′(y)

= F (x+y)−F (x)
F (y)

and this gives (3.16). �

Remark 3.7 We can see (3.16) as a scalar neutral delay differential equation. Indeed,
set t = x+ y and consider y > 0 as a fixed parameter. Then (3.16) becomes:

F ′(t) = a(F (t)− F (t− y))− F ′(t− y), t ≥ y, (3.17)

where a := F ′(y)+F ′(0+)
F (y)

. Replacing F (t) in (3.17) with eatG(t) leads to:

G′(t) + e−ayG′(t− y) + 2ae−ayG(t− y) = 0, t ≥ y. (3.18)

Equation (3.18) is called a neutral delay differential equation (cf for instance, Section 6.1,
in Györi and Ladas, 1991). These equations have been intensively studied but the authors
only focused on the asymptotic behaviour of the solution as t→∞. Unfortunately, these
results give no help to solve explicitly either (3.16) or (3.18).

Lemma 3.8 For all integers k ≥ 0 and l ≥ 1, we have

l−1∑
m=0

(l − 2m+ 1)Ck
l−m+1+kal−m+1+kam = (l − 2)(k + 1)ak+1al + a1al+kC

k
l+k, (3.19)

Ck
k+3ak+3a1 = (k + 1)ak+1a3, (3.20)

2Ck
k+4ak+4a1 + Ck

k+3ak+3a2 − Ck
k+2ak+2a3 − 2(k + 1)ak+1a4 = 0, (3.21)

where Cp
n = n!

(n−p)!p! .
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Proof: Obviously Equation (3.16) is equivalent to:

F ′(x+ y)F (y) = F ′(y)F (x+ y)−F ′(y)F (x)−F (y)F ′(x) +F ′(0+)F (x+ y)−F ′(0+)F (x).
(3.22)

Using the asymptotic expansion (3.8) of F we can develop each term in (3.22) as a series
with respect to x and y. Then, identifying the series on the right-hand side and the
left-hand side we get (3.19)-(3.21). The details are provided in Appendix.

�

Proof of Theorem 3.2 We only prove item 1. The proof of item 2. is similar.
Since a1 = F ′(0+) = 0, we necessarily have a2 6= 0. Indeed, if a2 = 0 then, by (3.21)

with k = 1, we would have −3a2
3 − 4a2a4 = 0, i.e. a3 = 0, and using again (3.21) with

k = 3 would imply a4 = 0 and finally ak = 0 for every k ≥ 0, which is a contradiction
because, by definition, F = 1/f ′ does not vanish.

So, we have a1 = 0 and a2 6= 0. Equation (3.20) with k = 1 reads 4a4a1 = 2a2a3,
which implies a3 = 0. Applying (3.20) to k = 2n provides, by induction on n, a2n+1 = 0
for every n ≥ 0.

Therefore, Equation (3.21) reduces to (k+3)(k+2)(k+1)ak+3a2 = 12(k+1)ak+1a4, (k ≥
0). i.e. ak+3 = 12a4

a2

1
(k+3)(k+2)

ak+1. This leads to

a2k =

(
12a4

a2

)k−1
2

(2k)!
a2, k ≥ 1. (3.23)

Then, F (x) = a2x
2 if a4 = 0 and if a4 6= 0 we have

F (x) =
∑
k≥1

(
12a4

a2

)k−1
2

(2k)!
a2x

2k.

If a4a2 < 0, then F (x) =
a2
2

6a4

[
cos
(
x
√
−12a4

a2

)
− 1
]
. This implies F (2π

√
−12a4

a2
) = 0 which

is impossible since F (x) = 1/f ′(x) < 0. Consequently,

F (x) =
a2

2

6a4

[
cosh

(
x

√
12a4

a2

)
− 1

]
. �

Now, in each case of Theorem 3.2 we compute the function f associated with F via the
relation F = 1/f ′. We do not detail the calculations since they reduce to get a good
primitive of 1/F . Recall that we restrict ourselves to functions f satisfying (3.6)-(3.8)
and work under the assumptions of Theorem 3.1.

Theorem 3.9 1. If F (x) = a2x
2 then f(x) = 1

a2x
.

2. If F (x) = α(cosh βx− 1), α, β > 0, then f(x) = 2
αβ
f1(βx).

3. If F (x) = a1x+ a2x
2 then f(x) = − 1

a1
g1(a2

a1
x).
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4. If F (x) =
a1a2

3a3

[
cosh

(
x

√
6a3

a1

)
− 1

]
+ a1

√
a1

6a3

sinh

(
x

√
6a3

a1

)
then

f(x) = − 1

βγ
log

(
eβx + δ − 1

eβx − 1

)
,

where α = a1a2

3a3
, β =

√
6a3

a1
and γ = a1

√
a1

6a3
.

�

4 Proof of Theorem 2.4

Recall that φY = log pY , h = φ′Y and F ′(0+) = 0. It is easy to deduce from (3.13) that
there exist constants λ and c1 such that h(y) = λf(y) + c1, i.e. h(y) = λey

ey−1
+ c1 − λ.

This implies the existence of a constant d such that φY (y) = λ log(ey− 1) + (c1−λ)y+ d.
Setting M = ed, we have by integration, for all y > 0,

pY (y) = M(1− e−y)λec1y. (4.1)

To give more information on the normalizing constant M , one observes, for a = −c1 and
b = λ+ 1, that ∫ ∞

0

M(1− e−y)b−1e−ay dy = M

∫ 1

0

(1− u)b−1ua−1 du

which implies that a > 0, b > 0 and M = Γ(a+b)
Γ(a)Γ(b)

. This proves (2.16).

To find the density of X we come back to Equation (3.1) and compute each of its
terms.

We have f ′(x) = −ex
(ex−1)2

, f ′′(x) = e2x+ex

(ex−1)3
, f ′′′(x) = − e3x+4e2x+ex

(ex−1)4
, so that f ′(x)

f ′(x+y)
=

e−y(ex+y−1)2

(ex−1)2
and f ′′(x)

f ′(x)
= − ex+1

ex−1
. Calculations yield

2(f ′′(x))2 − f ′′′(x)f ′(x)

f ′(x)2
=

e2x + 1

(ex − 1)2
. (4.2)

Moreover,

−φ′Y (y)
f ′′(x)

f ′(x)
+ φ′′Y (y)

(
f ′(x)

f ′(x+ y)
− 1

)
=

(c1 − λ)e2x − c1

(ex − 1)2
. (4.3)

Equation (3.1) can then be writen, using (4.2) and (4.3):

φ′′X(x) +
ex + 1

ex − 1
φ′X(x) =

(c1 − λ− 1)e2x − c1 − 1

(ex − 1)2
.

Then h0 := φ′X solves

h′0(x) +
ex + 1

ex − 1
h0(x) =

(c1 − λ− 1)e2x − c1 − 1

(ex − 1)2
. (4.4)
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Note that x 7→ K
4 sinh2(x/2)

solves (4.4) with the right-hand side equal to 0, and x 7→
(c1−λ−1)ex+(c1+1)e−x

4 sinh2(x/2)
is a particular solution of (4.4). Therefore, the solution of (4.4) is

h(x) =
(c1 − λ− 1)ex + (c1 + 1)e−x +K

4 sinh2(x
2
)

for some constant K. This implies

φ′X(x) = c1 + 1 +
(2c1 − λ+K)ex

(ex − 1)2
− (λ+ 2)ex

ex − 1
.

As a consequence, there exists a constant δ such that

φX(x) = (c1 + 1)x− (2c1 − λ+K)ex

ex − 1
− (λ+ 2) log(ex − 1) + δ.

Thus pX(x) = Ne(c1+1)x(ex − 1)−λ−2 exp
(
−2c1−λ+K

ex−1

)
1{x>0}. Recall that a = −c1 and

b = λ+ 1. With c = 2c1 − λ+K one gets (2.17). More information on the constant N is
obtained by observing that if we set V ′ = f1(X) = 1

eX−1
, then the density of V ′ is

fV ′(w) = N(w + 1)−awa+b−1 exp{−cw}1{w>0},

i.e. the law of V ′ is K(2)(a+ b,−b, c) (cf Equation (2.14)).
We have g′1(u) = − 1

u(u+1)
. A computation of Jacobian, together with (2.16) and (2.17),

imply, for u, v > 0,

p(U,V )(u, v) = pX

(
log

[
u+ v + 1

u+ v

])
pY

(
log

[
(u+ 1)(u+ v)

u(u+ v + 1)

])
× 1

u(u+ 1)(u+ v)(u+ v + 1)
.

Then we get that p(U,V )(u, v) is the product of a function of u and a function of v and
this gives item 2. of Theorem 2.4. �

5 Appendix

5.1 Proof of Lemma 3.8

We have
F ′(x+ y)F (y) =

∑
k≥0

xk
∑

m≥0,n≥1+k

nanamC
k
n−1y

n+m−1−k.

Setting l = m+ n− 1− k for fixed m gives

F ′(x+ y)F (y) =
∑

k≥0,l≥0

xkyl
l∑

m=0

(l −m+ 1 + k)Ck
l−m+kal−m+1+kam. (5.5)
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By the same method we have

F ′(y)F (x+ y) =
∑

k≥0,l≥0

xkyl

(
l+1∑
m=0

mCk
l−m+k+1al−m+1+kam

)
. (5.6)

As for the two other terms of (3.22) we get

F ′(y)F (x) =
∑

k≥0,l≥0

akal+1(l + 1)xkyl (5.7)

F ′(x)F (y) =
∑

k≥0,l≥0

ak+1al(k + 1)xkyl. (5.8)

Consequently,

F ′(0+)F (x+ y) = a1

∑
n≥0

an(x+ y)n = a1

∑
k,l≥0

al+kC
k
l+kx

kyl, (5.9)

F ′(0+)F (x) = a1

∑
k≥0

akx
k. (5.10)

Identifying the coefficient of xkyl in (3.22) and using (5.5) to (5.10) we have, for k ≥ 0
and l ≥ 0:

l∑
m=0

(l −m+ 1 + k)Ck
l−m+kal−m+1+kam = −(l + 1)akal+1 − (k + 1)ak+1al

+
l+1∑
m=0

mCk
l−m+k+1al−m+1+kam

+a1al+kC
k
l+k − a1ak1l=0. (5.11)

Note that if l = 0, both sides of (5.11) vanish, therefore we may suppose in the sequel
that l ≥ 1.
For m = l + 1 we have mCk

l−m+k+1al−m+1+kam = (l + 1)akal+1. Thus, Equation (5.11)
reads

l∑
m=0

(l −m+ 1 + k)Ck
l−m+kal−m+1+kam = −(k + 1)ak+1al +

l∑
m=0

mCk
l−m+k+1al−m+1+kam

+a1al+kC
k
l+k. (5.12)

But one finds by a calculation using the definition that

(l −m+ 1 + k)Ck
l−m+k −mCk

l−m+1+k = (l − 2m+ 1)Ck
l−m+1+k,

so that Equation (5.12) is equivalent to

l∑
m=0

(l − 2m+ 1)Ck
l−m+1+kal−m+1+kam = −(k + 1)ak+1al + a1al+kC

k
l+k. (5.13)
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For m = l we have (l − 2m + 1)Ck
l−m+1+kal−m+1+kam = (1 − l)(k + 1)ak+1al. Conse-

quently Equation (5.13) may be written as follows:

l−1∑
m=0

(l− 2m+ 1)Ck
l−m+1+kal−m+1+kam− (l− 1)(k+ 1)ak+1al = −(k+ 1)ak+1al +a1al+kC

l
l+k

which implies (3.19).
(3.20) and (3.21) follow by applying (3.19) to l = 3 and l = 4 respectively.

�
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