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Introduction

Many papers have been devoted to the generalized inverse Gaussian (GIG) distributions since their definition by [START_REF] Good | The population frequencies of species and the estimation of population parameters[END_REF](see for instance [START_REF] Barndorff-Nielsen | Infinite divisibility of the Hyperbolic and generalized inverse Gaussian distribution[END_REF], [START_REF] Letac | A characterization of the generalized inverse Gaussian distribution by continued fractions[END_REF], [START_REF] Vallois | Sur le passage de certaines marches aléatoires planes au-dessus d'une hyperbole quilatère[END_REF], [START_REF] Vallois | La loi Gaussienne inverse généralisée comme premier ou dernier temps de passage de diffusion[END_REF]). The GIG distribution with parameters µ ∈ R, a, b > 0 is the probability measure :

GIG(µ, a, b)(dx) = b a µ x µ-1 2K µ (ab) e -1 2 (a 2 x -1 +b 2 x) 1 (0,∞) (x)dx (1.1)
where K µ is the classical McDonald special function.

1) Let us stress the close links between GIG, gamma distributions and the function f 0 (x) = 1/x (x > 0).

a) The family of GIG distributions is invariant under f 0 : we can easily deduce from (1.1) that the image of GIG(µ, a, b) by f 0 is GIG(-µ, b, a). where γ(µ, b 2 /2)(dx) = b 2µ 2 µ Γ(µ) x µ-1 exp -b 2 2 x 1 (0,∞) (x)dx. Therefore if X ∼ GIG(-λ, a, a) and Y ∼ γ(λ, a 2 /2) are independent r.v.'s then

X (d) = f 0 (X + Y ).
(1.3) [START_REF] Letac | A characterization of the generalized inverse Gaussian distribution by continued fractions[END_REF] proved that (1.3) characterizes GIG distributions of the type GIG(-λ, a, a). c) Almost sure realizations of (1.2) have been given by [START_REF] Bhattacharya | Stochastic Processes with Applications[END_REF] in the case µ = 1 2 , [START_REF] Vallois | La loi Gaussienne inverse généralisée comme premier ou dernier temps de passage de diffusion[END_REF] for any µ > 0 by means of a family of transient diffusions and [START_REF] Vallois | Sur le passage de certaines marches aléatoires planes au-dessus d'une hyperbole quilatère[END_REF], theorem on p.446) in terms of random walks.

2) The so-called Matsumoto-Yor property is the following: let X and Y be two independent r.v.'s such that X ∼ GIG(-µ, a, b), Y ∼ γ(µ, b 2 /2), (µ, a, b > 0).

(1.4)

Then

U := 1 X + Y = f 0 (X + Y ), V := 1 X - 1 X + Y = f 0 (X) -f 0 (X + Y ) (1.5)
are independent and U ∼ GIG(-µ, b, a), V ∼ γ(µ, a 2 /2).

(

The case a = b was proved by [START_REF] Matsumoto | An analogue of Pitman's 2M -X theorem for exponential Wiener functional, Part II: the role of the generalized inverse Gaussian laws[END_REF] and a nice interpretation of this property via Brownian motion was given by [START_REF] Matsumoto | Interpretation via Brownian motion of some independence properties between GIG and gamma variables[END_REF]. The case µ = -1 2 of the Matsumoto-Yor property can be retrieved from an independence property established by Barndorff-Nielsen and Koudou (1998) (see [START_REF] Koudou | A link between the Matsumoto-Yor property and an independence property on trees[END_REF]. [START_REF] Letac | An independence property for the product of GIG and gamma laws[END_REF] proved that the Matsumoto-Yor property holds for any µ, a, b > 0 and characterizes the GIG distributions. More precisely, consider two independent and non-Dirac positive r.v.'s X and Y such that U and V defined by (1.5) are independent, then there exist µ, a, b > 0 such that (1.4) holds.

The origin of this paper is to understand the link between the function f 0 : x → 1/x and the GIG distributions in the Matsumoto-Yor property.

Obviously, the Matsumoto-Yor property can be reexpressed as follows: the image of the probability measure (on

R 2 + ) GIG(-µ, a, b) ⊗ γ(µ, b 2 /2) by the transformation T f 0 : (x, y) → (f 0 (x+y), f 0 (x)-f 0 (x+y)) is the probability measure GIG(-µ, b, a)⊗γ(µ, a 2 /2).
This formulation of the Matsumoto-Yor property joined with the Letac and Wesolowski result lead us to determine the triplets (µ

X , µ Y , f ) such that a) µ X , µ Y are probability measures on (0, ∞), b) f : (0, ∞) → (0, ∞) is bijective and decreasing, c) if X and Y are independent r.v.'s such that X ∼ µ X and Y ∼ µ Y then the r.v.'s U = f (X + Y ) and V = f (X) -f (X + Y ) are independent.
Unfortunately we have not been able to solve this question without restriction. Our method can be applied provided that f is smooth and µ X and µ Y have smooth density functions (see Theorem 3.1 for details). After long and sometimes tedious calculations we prove (cf Theorem 2.2) that there are only four classes F 1 , . . . , F 4 of functions f such that T f keeps the independence property. Then, for any f ∈ F i , 1 ≤ i ≤ 4 we have been able to give the corresponding distributions of X and Y and the related laws of U and V (for F 2 , F 3 and F 4 see Theorems 2.4, 2.14 and Remark 2.5). The first class F 1 = {α/x; α > 0} corresponds to the known case f = f 0 . This case is dealt with in Appendix 5.1 where we recover, under stronger assumptions, the result of Letac and Wesolowski that the only possible distributions for X and Y are GIG and gamma respectively. The proof of Letac and Wesolowski is completely different from ours since the authors made use of Laplace transforms and of a characterization of the GIG laws as the distribution of a continued fraction with gamma entries. We have not been able to develop a proof as elegant as theirs. The reason is that, with f = f 0 we have algebraic properties (for instance continued fractions), while these properties are lost if we start with a general function f .

It is worth pointing out that one interesting feature of our analysis is an original characterization of the families of distributions {β α (a, b, c); a, b, α > 0, , c ∈ R} and the Kummer distributions {K (2) (a, b, c); a, c > 0, , b ∈ R} (see (2.14) and (2.29) respectively). The Kummer distributions appear as the law of some random continued fractions (see Marklov et al, 2008, p.3393 mentioning a work by [START_REF] Dyson | The dynamics of a disordered linear chain[END_REF] in the setting of random matrices).

As by-products of our study we obtain new relations of convolution. For simplicity we only detail the case of Kummer distributions of type 2:

K (2) (a, b, c) * γ(b, c) = K (2) (a + b, -b, c). (1.7) 
Obviously, this relation is similar to (1.2).

Inspired by the result of [START_REF] Letac | An independence property for the product of GIG and gamma laws[END_REF] and Theorem 2.6, one can ask, for future work, whether a characterization of Kummer distributions could be obtained by an "algebraic" method.

As recalled in the above item c), there are various almost sure realizations of (1.2) and of the convolution coming from the Matsumoto-Yor property. One interesting open question derived from our study would be to determine a r.v. Z with distribution K (2) (a+ b, -b, c) which can be decomposed as the sum of two explicit independent r.v.'s X and Y such that X ∼ K (2) (a + b, -b, c) and Y ∼ γ(b, c).

The paper is organized as follows. We state our main results in Section 2. In Section 3 we give a key differential equation involving f and the log densities of the independent r.v.'s X and Y such that f (X + Y ) and f (X) -f (X + Y ) are independent (cf Theorem 3.1). Based on this equation we prove (cf Theorem 3.9) that there are only four classes of such functions f . The theorems stated in Section 2 are proved in Section 4. However, one technical proof has been postponed in Appendix.

Main results

Definition 2.1 Let f : (0, ∞) → (0, ∞) be a decreasing and bijective function.

1) Associated with f let us consider the transformation

T f : (0, ∞) 2 → (0, ∞) 2 (x, y) → (f (x + y), f (x) -f (x + y)). (2.8)
The transformation T f is one-to-one and if f -1 is the inverse of f , then

(T f ) -1 = T f -1 .
(2.9)

2) Let X and Y be two independent and positive random variables. Let us define

(U, V ) = T f (X, Y ) = (f (X + Y ), f (X) -f (X + Y )). (2.10)
f is said to be a LWMY function with respect to (X, Y ) if the random variables U and V are independent. f is said to be a LWMY function if it is a LWMY function with respect to some random vector (X, Y ).

One aim of this paper is to characterize LWMY functions. Let us introduce

f 1 (x) = 1 e x -1
, x > 0, (2.11)

g 1 (x) = f -1 1 (x) = ln 1 + x x , x > 0 (2.12)
and, for δ > 0, 

f * δ (x) = log e x + δ -1 e x -1 , x > 0. ( 2 
(x) = α x or f (x) = 1 α f 1 (βx) or f (x) = 1 α g 1 (βx) or f (x) = 1 α f * δ (βx) for some α, β, δ > 0. Remark 2.3 1) The four classes of LWMY functions are F 1 = {α/x; α > 0}, F 2 = { 1 α f 1 (βx); α, β > 0}, F 3 = { 1 α g 1 (βx); α, β > 0}, F 4 = { 1 α f * δ (βx); α, β > 0}.
2) It is clear that if f is a LWMY function, then the functions f -1 and x → 1 α f (βx), α, β > 0 are LWMY functions.

3) The image of F 2 by the map f → f -1 is F 3 . The functions x → α/x and f δ are involutive.

In the sequel we focus on the three new cases : either f = f 1 or f = g 1 or f = f * δ and in each case we determine the laws of the related random variables.

The cases

f = g 1 and f = f 1 a) Recall the definition of the gamma distribution γ(λ, c)(dx) = c λ Γ(λ) x λ-1 e -cx 1 (0,∞) (x)dx, (λ, c > 0) and the beta distribution Beta(a, b)(dx) = Γ(a+b) Γ(a)Γ(b) x a-1 (1-x) b-1 1 {0<x<1} dx, (a, b > 0)
. Consider (see for instance Ng and Kotz, 1995, or Nagar and Gupta, 2002 and references therein) the Kummer distribution of type 2 :

K (2) (a, b, c) := α(a, b, c)x a-1 (1 + x) -a-b e -cx 1 (0,∞) (x)dx, a, c > 0, b ∈ R (2.14)
where α(a, b, c) is a normalizing constant. Associated with a couple (X, Y ) of positive r.v.'s consider

(U, V ) := T f 1 (X, Y ) = 1 e X+Y -1 , 1 e X -1 - 1 e X+Y -1 . (2.15)
In Theorems 2.4 and 2.6 below we suppose that all r.v.'s have positive and twice differentiable densities.

First we consider the case f = f 1 . We determine the distributions of X and Y such that f 1 is a LWMY function associated to (X, Y ).

Theorem 2.4 1) Consider two positive and independent random variables X and Y . The random variables U and V defined by (2.15) are independent if and only if the densities of Y and X are respectively

p Y (y) = Γ(a + b) Γ(a)Γ(b) (1 -e -y ) b-1 e -ay 1 {y>0} (2.16) p X (x) = α(a + b, c, -a)e -(a+b)x (1 -e -x ) -b-1 exp -c e -x 1 -e -x 1 {x>0} .
(2.17)

where a, b and c are constants such that a, b, c > 0 and α(a + b, c, -a) is the constant of Equation (2.14). Thus the law of Y is the image of the Beta(a, b) distribution by the transformation z ∈ (0, 1) → -log z ∈ (0, ∞), while the law of the variable f 1 (X) is

K (2) (a + b, -b, c) (cf Equation (2.14)). 2) If 1) holds then U ∼ K (2) (a, b, c) and V ∼ γ(b, c).
The proof of Theorem 2.4 will be given in Section 4.

Remark 2.5 Since g 1 = f -1 1 , Remark 2.3 and Theorem 2.4 imply that the r.v.'s associated with the LWMY function g 1 are the r.v.'s U and V distributed as in item 2. of Theorem 2.4. b) As suggest identities (2.16) and (2.17) it is actually possible to simplify the statement of Theorem 2.4. Since

T g 1 = T -1 f 1 , then (X, Y ) = T g 1 (U, V ) = log 1 + U + V U + V , log 1 + U U -log 1 + U + V U + V . (2.18)
As shows (2.18) it is useful to introduce

(U , V ) = 1 + 1 U +V 1 + 1 U , U + V . (2.19) Obviously the correspondence (U, V ) → (U , V ) is one-to one: (U, V ) = U V V + 1 -U V , V (V + 1)(1 -U ) V + 1 -U V . (2.20)
Furthermore, (X, Y ) can be easily expressed in terms of (U , V ):

X = log(1 + 1/V ) and Y = -log U . (2.21)
Since it is easy to determine the density function of φ(ξ) knowing the density function of a r.v. ξ, where φ is differentiable and bijective, then Theorem 2.4 and its analogue related to f = g 1 (cf Remark 2.5) are equivalent to Theorem 2.6 below.

Theorem 2.6 a) Let U and V be two positive and independent random variables. The r.v.'s U and V defined by (2.20) are independent if only if there exist some constants a, b, c such that

U ∼ Beta(a, b) and V ∼ K (2) (a + b, -b, c). (2.22)
If one of these equivalent conditions holds, then U ∼ K (2) (a, b, p) and V ∼ γ(b, c). b) Let U and V be two positive and independent random variables. The r.v.'s U and V defined by (2.19) are independent if only if there exist some constants a, b, c such that

U ∼ K (2) (a, b, c) and V ∼ γ(b, c).
(2.23)

Under (2.23), U ∼ Beta(a, b) and V ∼ K (2) (a + b, -b, c).
Let us formulate an easy consequence of Theorem 2.6.

Theorem 2.7 For any a, b, c > 0, the transformation (u, v) → (

1+ 1 u+v 1+ 1 u , u + v) maps the probability measure K (2) (a, b, c) ⊗ γ(b, c
) to the probability measure Beta(a, b) ⊗ K (2) (a + b, -b, c). In particular:

K (2) (a, b, c) * γ(b, c) = K (2) (a + b, -b, c).
(2.24)

Remark 2.8 Note that (2.24) may be regarded as an analogue of (1.2).

The case

f = f * δ
Recall that f * δ has been defined by (2.13). Due to the form of f * δ , a change of variables allows to simplify the search of independent r.v.'s X and Y such that the two components of T f * δ (X, Y ) are independent. For any decreasing and bijective function f : (0, ∞) → (0, ∞) we define

f (x) = exp{-f (-log x)}, x ∈ (0, 1), (2.25) T m f (x, y) = f (xy), f (x) f (xy) , x, y ∈ (0, 1). ( 2 

.26)

Observe that f is one-to-one from (0, 1) onto (0, 1), T m f is one-to-one from (0, 1) 2 onto (0, 1) 2 and

T m f -1 = T m f -1 .
(2.27) Definition 2.9 Let X and Y be two independent and (0, 1)-valued random variables. We say that a decreasing and bijective function f : (0, 1) → (0, 1) is a multiplicative LWMY function with respect to (X, Y ) if the r.v.'s U m := f (XY ) and V m := f (X) f (XY ) are independent.

Remark 2.10 For any random vector (X, Y ) in (0, ∞) 2 we consider X = e -X , Y = e -Y . Then f is a LWMY function with respect to (X, Y ) if and only if f is a multiplicative LWMY function with respect to (X , Y ).

The change of variable x = e -x is very convenient since the function

φ δ (x) := f * δ (x) = 1 -x 1 + (δ -1)x , x ∈ (0, 1) (2.28)
is homographic. Note that f * δ : (0, 1) → (0, 1) is bijective, decreasing and equal to its inverse. First, let us determine the distribution of the couple (X , Y ) of r.v.'s such that φ δ is a multiplicative LWMY function with respect to (X , Y ).

For a, b, α > 0 and c ∈ R consider the probability measure

β α (a, b; c)(dx) = k α (a, b; c)x a-1 (1 -x) b-1 (αx + 1 -x) c 1 (0,1) (x)dx. (2.29) Note that if c = 0, then β α (a, b; c) = Beta(a, b).
Theorem 2.11 Let X and Y be two independent random variables valued in (0, 1). Consider

(U m , V m ) = T m φ δ (X , Y ) = 1 -X Y 1 + (δ -1)X Y , 1 -X 1 + (δ -1)X 1 + (δ -1)X Y 1 -X Y for fixed δ > 0.
Then, U m and V m are independent if and only if there exist a, b, λ > 0 such that

X ∼ β δ (a + b, λ; -λ -b), Y ∼ Beta(a, b). ( 2 

.30)

If this condition holds, then

U m ∼ β δ (λ + b, a; -a -b), V m ∼ Beta(λ, b).
(2.31)

In the case δ = 1, Theorem 2.11 takes a very simple form.

Proposition 2.12 Let X and Y be two independent random variables valued in (0, 1). Remark 2.13 When X ∼ Beta(a + b, λ) and Y ∼ Beta(a, b) it can be proved that U m and V m are independent using the well-known property: if Z and Z are independent, Z ∼ γ(a, 1) and Z ∼ γ(b, 1) then R := Z Z+Z and Z + Z are independent and R ∼ Beta(a, b) and Z + Z ∼ γ(a + b, 1) (see for instance [START_REF] Yor | Une extension markovienne de l'algèbre des lois béta-gamma[END_REF]).

Then U m = 1 -X Y , V m = 1 -X 1 -X Y are independent if
According to Remark 2.10, f * δ is a LWMY function with respect to (X, Y ) if and only if φ δ is a multiplicative LWMY function with respect to (X , Y ) = (e -X , e -Y ). Therefore, a classical change of variables allows to deduce that Theorem 2.11 is equivalent to Theorem 2.14 below: Theorem 2.14 1) Consider two positive and independent random variables X and Y . The random variables

U = f * δ (X + Y ), V = f * δ (X) -f * δ (X + Y )
are independent if and only if the densities of Y and X are respectively

p Y (y) = Γ(a + b) Γ(a)Γ(b) (1 -e -y ) b-1 e -ay 1 {y>0} (2.32) p X (x) = k δ (a + b, λ, -λ -b)e -(a+b)x (δe -x + 1 -e -x ) -λ-b ×(1 -e -x ) λ-1 1 x>0 (2.33)
where a, b > 0 , λ ∈ R and k δ (a + b, λ, -λ -b) is the normalizing factor (cf (2.29)). Thus e -Y is Beta(a, b) distributed and e -X is β δ (a + b, λ, -λ -b) distributed.

2) If 1. holds then the densities of U and V are respectively

p U (u) = k δ (λ + b, a; -a -b)e -u(λ+b) (1 -e -u ) a-1 ×(1 + (δ -1)e -u ) -a-b 1 u>0 , (2.34) p V (v) = e -λv (1 -e -v ) b-1 1 v>0 .
(2.35)

We skip the proof of Theorem 2.14 since it is similar to that of Theorem 2.4.

The set of all possible "smooth" LWMY functions

The following theorem gives a functional equation linking LWMY functions to the related densities.

Theorem 3.1 Let X and Y be two independent and positive random variables whose densities p X and p Y are positive and twice differentiable. Define φ X = log p X and φ Y = log p Y . Consider a decreasing function f : (0, ∞) → (0, ∞), three times differentiable. Then f is a LWMY function with respect to (X, Y ) if and only if

φ X (x) -φ X (x) f (x) f (x) + φ Y (y)f (x) 1 f (x) - 1 f (x + y) +φ Y (y) f (x) f (x) + 2(f (x)) 2 -f (x)f (x) f (x) 2 = 0, x, y > 0. (3.1)
Proof : Let g = f -1 and (U, V ) = T f (X, Y ). By formula (2.9), (X, Y ) = T g (U, V ). X and Y being independent, the density of (U, V ) is

p (U,V ) (u, v) = p X (g(u + v)) p Y (g(u) -g(u + v)) |J(u, v)|1 u,v>0 (3.2) 
where J is the Jacobian of the transformation T f . One gets

|J(u, v)| = g (u + v)g (u), then p (U,V ) (u, v) = p X (g(u + v)) p Y (g(u) -g(u + v)) g (u + v)g (u). (3.3)
The variables U and V are independent if and only if the function

H = log p (U,V ) satisfies ∂ 2 H ∂u∂v = 0. By Equation (3.3) we obtain ∂ 2 H ∂u∂v = φ X (x)[g (f (x))] 2 + φ X (x)g (f (x)) -φ Y (y)g (f (x)) [g (f (x + y)) -g (f (x))] -φ Y (y)g (f (x)) + g g -(g ) 2 (g ) 2 (f (x)) (3.4)
where x = g(u + v) and y = g(u) -g(u + v). Differentiating three times the relation

g(f (x)) = x, we obtain g (f (x)) = -f (x) f (x) 3 and g (f (x)) = -f (x)f (x)-3f (x) 2 f (x) 5 . As a result, g g -(g ) 2 (g ) 2 (f (x)) = 2f (x) 2 -f (x)f (x) f (x) 4 . (3.5) 
Therefore, ∂ 2 H ∂u∂v = 0 leads to (3.1). We restrict ourselves to smooth LWMY functions f , i.e. satisfying f : (0, ∞) → (0, ∞) is bijective and decreasing, (3.6) f is three times differentiable, (3.7)

F (x) = n≥1 a n x n , ∀x > 0. (3.8)
where F := 1/f . According to (3.6), f (0 + ) = -∞. This implies F (0 + ) = 0 and explains why the series in (3.8) starts with n = 1. The goal of this section is to prove half of Theorem 2.2: if f is a smooth LWMY function, then f belongs to one of the four classes F 1 , . . . , F 4 introduced in Remark 2.3. First, we characterize in Theorem 3.2 all possible functions F . Second, we determine the associated functions f (see Theorem 3.9). Theorem 3.2 Suppose that f is a smooth LWMY function and that the assumptions of Theorem 3.1 are satisfied.

1. If F (0 + ) = 0, then a 2 < 0 and

F (x) = a 2 2 6a 4 cosh x 12a 4 a 2 -1 if a 4 < 0 a 2 x 2
otherwise.

(3.9)

2. If F (0 + ) = 0, then

F (x) = a 1 a 2 3a 3 cosh x 6a 3 a 1 -1 + a 1 a 1 6a 3 sinh x 6a 3 a 1 if a 1 a 3 > 0 a 1 x + a 2 x 2 otherwise.
(3.10)

Remark 3.3 Unsurprisingly, the case F (x) = a 2 x 2 corresponds to f (x) = -1 a 2 1 
x , i.e. the case considered by Matsumoto-Yor and Letac-Wesolowski.

Throughout this subsection we suppose that f satisfies (3.6)- (3.8) and that the assumptions of Theorem 3.1 are fulfilled. For simplicity of statement of results below we do not repeat these conditions.

Recall that φ Y is the logarithm of the density of Y . Let us introduce

h := φ Y (3.11) Lemma 3.4 1.
There exists a function λ : (0, ∞) → R such that

F (x + y) = λ(x) -h(y)F (x) h (y) + F (x). (3.12)
2. F satisfies 

F (y) = λ(0 + ) -h(y)F (0 + ) h (y) . ( 3 
c(x) = h(y) F (x) F (x) + h (y) 1 F (x) (F (x + y) -F (x))
where c(x) depends only on x. Multiplying both sides by F (x) and taking the y-derivative

leads to 0 = F (x)h (y) + [F (x + y) -F (x)]h (y) + h (y)F (x + y).
Fix x > 0. Then θ(y) := F (x + y) is a solution of the differential equation in y:

0 = F (x)h (y) + (θ(y) -F (x))h (y) + h (y)θ (y). (3.14) 
A solution of the related homogeneous equation in y is ρ h (y) where ρ is a constant. It is easy to prove that y → -F (x)h(y) + F (x)h (y) solves (3.14). Thus, the general solution of (3.14) is

θ(y) = 1 h (y) [λ(x) -F (x)h(y) + F (x)h (y)] .
Since θ(y) = F (x + y), (3.12) follows.

According to (3.8), F (0 + ) and F (0 + ) exist. Therefore, taking the limit x → 0 + in (3.12) implies both the existence of λ(0 + ) and relation (3.13).

The following lemma shows that the function F (and thus f ) solves a self-contained equation in which h, and thereby the densities of X and Y , are not involved. Lemma 3.6 F solves the delay equations :

F (x + y) = F (y)[λ(x) -h(y)F (x)] λ(0 + ) -h(y)F (0 + ) + F (x) (x, y > 0) (3.15) F (x + y) = F (y) + F (0 + ) F (y) [F (x + y) -F (x)] -F (x) (x, y > 0). (3.16)
Proof: By (3.13) we have

h (y) = λ(0 + ) -h(y)F (0 + ) F (y) .
Equation (3.15) then follows by rewriting Equation (3.12) and replacing h (y) with the expression above. We differentiate (3.15) in y and use the fact that λ(0 + ) -h(y)F (0 + ) = h (y)F (y) to obtain :

F (x + y) = [F (y) + F (0 + )] λ(x) -h(y)F (x) F (y)h (y) -F (x).
By (3.12) we have λ(x)-h(y)F (x)

F (y)h (y) = F (x+y)-F (x) F (y)
and this gives (3.16).

Remark 3.7 We can see (3.16) as a scalar neutral delay differential equation. Indeed, set t = x + y and consider y > 0 as a fixed parameter. Then (3.16) becomes:

F (t) = a(F (t) -F (t -y)) -F (t -y), t ≥ y, (3.17) 
where a := F (y)+F (0 + ) F (y)

. Replacing F (t) in (3.17) with e at G(t) leads to:

G (t) + e -ay G (t -y) + 2ae -ay G(t -y) = 0, t ≥ y. (3.18) 
Equation (3.18) is called a neutral delay differential equation (cf for instance, Section 6.1, in Györi and Ladas, 1991). These equations have been intensively studied but the authors only focused on the asymptotic behaviour of the solution as t → ∞. Unfortunately, these results give no help to solve explicitly either (3.16) or (3.18).

Lemma 3.8 For all integers k ≥ 0 and l ≥ 1, we have Proof of Theorem 3.2 We only prove item 1. The proof of item 2. is similar. Since a 1 = F (0 + ) = 0, we necessarily have a 2 = 0. Indeed, if a 2 = 0 then, by (3.21) with k = 1, we would have -3a 2 3 -4a 2 a 4 = 0, i.e. a 3 = 0, and using again (3.21) with k = 3 would imply a 4 = 0 and finally a k = 0 for every k ≥ 0, which is a contradiction because, by definition, F = 1/f does not vanish.

l-1 m=0 (l -2m + 1)C k l-m+1+k a l-m+1+k a m = (l -2)(k + 1)a k+1 a l + a 1 a l+k C k l+k , (3.19) 
C k k+3 a k+3 a 1 = (k + 1)a k+1 a 3 , (3.20) 2C k k+4 a k+4 a 1 + C k k+3 a k+3 a 2 -C k k+2 a k+2
So, we have a 1 = 0 and a 2 = 0. Equation (3.20) with k = 1 reads 4a 4 a 1 = 2a 2 a 3 , which implies a 3 = 0. Applying (3.20) to k = 2n provides, by induction on n, a 2n+1 = 0 for every n ≥ 0.

Therefore, Equation (3.21) reduces to (k+3)(k+2)(k+1)a k+3 a 2 = 12(k+1)a k+1 a 4 , (k ≥ 0). i.e. a k+3 = 12a 4 a 2 1 (k+3)(k+2) a k+1 . This leads to

a 2k = 12a 4 a 2 k-1 2 (2k)! a 2 , k ≥ 1. (3.23) 
Then, F (x) = a 2 x 2 if a 4 = 0 and if a 4 = 0 we have

F (x) = k≥1 12a 4 a 2 k-1 2 (2k)! a 2 x 2k .
If a 4 a 2 < 0, then

F (x) = a 2 2 6a 4 cos x -12a 4 a 2 -1 . This implies F (2π -12a 4 a 2 ) = 0 which is impossible since F (x) = 1/f (x) < 0. Consequently, F (x) = a 2 2 6a 4 cosh x 12a 4 a 2 -1 .
Now, in each case of Theorem 3.2 we compute the function f associated with F via the relation F = 1/f . We do not detail the calculations since they reduce to get a good primitive of 1/F . Recall that we restrict ourselves to functions f satisfying (3.6)-(3.8) and work under the assumptions of Theorem 3.1. . This proves (2.16). To find the density of X we come back to Equation (3.1) and compute each of its terms.

Theorem 3.9 1. If F (x) = a 2 x 2 then f (x) = 1 a 2 x . 2. If F (x) = α(cosh βx -1), α, β > 0, then f (x) = 2 αβ f 1 (βx). 3. If F (x) = a 1 x + a 2 x 2 then f (x) = -1 a 1 g 1 ( a 2 a 1 x). 4. If F (x) = a 1 a 2 3a 3 cosh x 6a 3 a 1 -1 + a 1 a 1 6a 3 sinh x 6a 3 a 1 then f (x) = - 1 βγ log e βx + δ -1 e βx -1 , 
where α = a 1 a 2 3a 3 , β = 6a 3 a 1 and γ = a 1 a 1 6a 3 . 4 
We have f (x) = -e x (e x -1) 2 , f (x) = e 2x +e x (e x -1) 3 , f (x) = -e 3x +4e 2x +e x (e x -1) 4 , so that f (x) f (x+y) = e -y (e x+y -1) 2 (e x -1) 2

and f (x) f (x) = -e x +1 e x -1 . Calculations yield 2(f (x)) 2 -f (x)f (x) f (x) 2 = e 2x + 1 (e x -1) 2 . (4.2) Moreover, -φ Y (y) f (x) f (x) + φ Y (y) f (x) f (x + y) -1 = (c 1 -λ)e 2x -c 1 (e x -1) 2 . ( 4.3) 
Equation (3.1) can then be writen, using (4.2) and (4.3):

φ X (x) + e x + 1 e x -1 φ X (x) = (c 1 -λ -1)e 2x -c 1 -1 (e x -1) 2 .
Then h 0 := φ X solves is a particular solution of (4.4). Therefore, the solution of (4.4) is

h 0 (x) + e x + 1 e x -1 h 0 (x) = (c 1 -λ -1)e 2x -c 1 -1 (e x -1) 2 . ( 4 
h(x) = (c 1 -λ -1)e x + (c 1 + 1)e -x + K 4 sinh 2 ( x 2 )
for some constant K. This implies

φ X (x) = c 1 + 1 + (2c 1 -λ + K)e x (e x -1) 2 - (λ + 2)e x e x -1 . 
As a consequence, there exists a constant δ such that

φ X (x) = (c 1 + 1)x - (2c 1 -λ + K)e x e x -1 -(λ + 2) log(e x -1) + δ. Thus p X (x) = N e (c 1 +1)x (e x -1) -λ-2 exp -2c 1 -λ+K e x -1 1 {x>0} . Recall that a = -c 1 and b = λ + 1. With c = 2c 1 -λ + K one gets (2.17). More information on the constant N is obtained by observing that if we set V = f 1 (X) = 1 e X -1 , then the density of V is f V (w) = N (w + 1) -a w a+b-1 exp{-cw}1 {w>0} ,
i.e. the law of V is K (2) (a + b, -b, c) (cf Equation (2.14)). We have g 1 (u) = -1 u(u+1) . A computation of Jacobian, together with (2.16) and (2.17), imply, for u, v > 0, p (U,V ) (u, v) = p X log u + v + 1 u + v p Y log (u + 1)(u + v) u(u + v + 1)

× 1 u(u + 1)(u + v)(u + v + 1)
.

Then we get that p (U,V ) (u, v) is the product of a function of u and a function of v and this gives item 2. of Theorem 2.4.

Appendix

5.1 Proof of Lemma 3.8

We have F (x + y)F (y) = Note that if l = 0, both sides of (5.11) vanish, therefore we may suppose in the sequel that l ≥ 1. For m = l + 1 we have mC k l-m+k+1 a l-m+1+k a m = (l + 1)a k a l+1 . Thus, Equation (5.11) reads For m = l we have (l -2m + 1)C k l-m+1+k a l-m+1+k a m = (1 -l)(k + 1)a k+1 a l . Consequently Equation (5.13) may be written as follows: 

  b) Barndorff-Nielsen and Halgreen (1977) proved: GIG(-µ, a, b) * γ(µ, b 2 2 ) = GIG(µ, a, b), µ, a, b > 0 (1.2)
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 1322 Theorem Let f : (0, ∞) → (0, ∞) be decreasing and bijective. Under some additional assumptions (see Theorem 3.1, (3.7) and(3.8)), f is a LWMY function if and only if, either f

  and only if there exist a, b, λ > 0 such that X ∼ Beta(a + b, λ) and Y ∼ Beta(a, b). If one of these conditions holds, then U m ∼ Beta(λ + b, a) and V m ∼ Beta(λ, b).
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 1335 Remark Suppose that we have been able to determine F . Then, h = φ Y solves the linear ordinary differential equation (3.13) and can therefore be determined. The remaining function φ X is obtained by solving Equation (3.1).Proof of Lemma 3.4 : Using ( 3.11) and F = 1/f in Equation (3.1), we obtain

  a 3 -2(k + 1)a k+1 a 4 = 0,(3.21) whereC p n = n! (n-p)!p! .Proof: Obviously Equation (3.16) is equivalent to:F (x + y)F (y) = F (y)F (x + y) -F (y)F (x) -F (y)F (x) + F (0 + )F (x + y) -F (0 + )F (x). (3.22) Using the asymptotic expansion (3.8) of F we can develop each term in (3.22) as a series with respect to x and y. Then, identifying the series on the right-hand side and the left-hand side we get (3.19)-(3.21). The details are provided in Appendix.

Proof of Theorem 2. 4 0 M ( 1 - 1 0( 1 -

 40111 Recall that φ Y = log p Y , h = φ Y and F (0 + ) = 0. It is easy to deduce from (3.13) that there exist constants λ and c 1 such that h(y) = λf (y) + c 1 , i.e. h(y) = λe y e y -1 + c 1 -λ. This implies the existence of a constant d such that φ Y (y) = λ log(e y -1) + (c 1 -λ)y + d. Setting M = e d , we have by integration, for all y > 0,p Y (y) = M (1 -e -y ) λ e c 1 y . (4.1) To give more information on the normalizing constant M , one observes, for a = -c 1 and b = λ + 1, that ∞ e -y ) b-1 e -ay dy = M u) b-1 u a-1 du which implies that a > 0, b > 0 and M = Γ(a+b) Γ(a)Γ(b)

. 4 )

 4 Note that x → K 4 sinh 2 (x/2) solves (4.4) with the right-hand side equal to 0, and x → (c 1 -λ-1)e x +(c 1 +1)e -x 4 sinh 2 (x/2)

F

  na n a m C k n-1 y n+m-1-k .Setting l = m + n -1 -k for fixed m givesF (x + y)F (y) = k≥0,l≥0 x k y l l m=0 (l -m + 1 + k)C k l-m+k a l-m+1+k a m .(5.5)By the same method we haveF (y)F (x + y) = a l-m+1+k a m . (5.6)As for the two other terms of (3.22) we getF (y)F (x) = k≥0,l≥0a k a l+1 (l + 1)x k y l (5.7)F (x)F (y) = k≥0,l≥0 a k+1 a l (k + 1)x k y l . (0+ )F (x + y) = a 1 n≥0 a n (x + y) n = a 1 k,l≥0a l+k C k l+k x k y l , (5.9)F (0 + )F (x) = a 1 k≥0 a k x k . (5.10) Identifying the coefficient of x k y l in (3.22) and using (5.5) to (5.10) we have, for k ≥ 0 and l ≥ 0: l m=0 (l -m + 1 + k)C k l-m+k a l-m+1+k a m = -(l + 1)a k a l+1 -(k + 1)a k+1 a l + l+1 m=0 mC k l-m+k+1 a l-m+1+k a m +a 1 a l+k C k l+k -a 1 a k 1 l=0 . (5.11)

  m + 1 + k)C k l-m+k a l-m+1+k a m = -(k + 1)a k+1 a l + l m=0 mC k l-m+k+1 a l-m+1+k a m +a 1 a l+k C k l+k .(5.12)But one finds by a calculation using the definition that(l -m + 1 + k)C k l-m+k -mC k l-m+1+k = (l -2m + 1)C k l-m+1+k ,so that Equation (5.12) is equivalent to l m=0 (l -2m + 1)C k l-m+1+k a l-m+1+k a m = -(k + 1)a k+1 a l + a 1 a l+k C k l+k .(5.13)

  2m + 1)C k l-m+1+k a l-m+1+k a m -(l -1)(k + 1)a k+1 a l = -(k + 1)a k+1 a l + a 1 a l+k C l l+k which implies (3.19). (3.20) and (3.21) follow by applying (3.19) to l = 3 and l = 4 respectively.
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