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The paper presents numerical and experimental investigations of the existence of two different physical mech-
anisms as principal origin of cloud cavitation shedding. The two mechanisms are the re-entrant jet formed at
the cavity closure region and the shock wave propagation due to the condensation of vapor structures. The
experimental observations of these phenomena are done at a fixed Reynolds number of about 1.2 × 105 by
means of a high-speed camera on a transparent horizontal Venturi nozzle with 18◦/8◦ convergent/divergent
angles, respectively. A wavelet analysis is applied with several cavitation numbers in order to associate some
image series to the occurrence frequencies of the two shedding mechanisms. In complement, a numerical
model is performed in order to access to a 3D representation of the different phenomena. The compressible
Navier-Stokes equations coupled with the Homogeneous Equilibrium Mixture Model are solved with a Finite
Volume solver based on Moving Least Squares approximations. A snapshot Proper Orthogonal Decomposi-
tion technique is applied on both numerical and experimental results. The energy levels of different modes
from numerical and experimental data are found to be in a good agreement. Instantaneous pressure peaks
of the order of 10 bar, associated with erosive condensation shock wave, are numerically identified. The
3D numerical simulations reveal also that side-entrant jet flow is partially responsible for the re-entrant jet
influence on the cloud cavitation shedding.

Keywords: Cavitation Shedding, Re-entrant Jet, Condensation Shock Wave, Numerical Simulations, HEM,
POD, Wavelet, Venturi

I. INTRODUCTION

Cavitation is the vapor formation inside a liquid due to
a pressure drop. This phenomenon is observed in various
technical applications in different engineering fields. The
cavitation is responsible for issues like erosion1, noise and
vibrations2 which can lead to a malfunctioning of various
turbo-machines3, for instance impellers4. The cavitation
occurrence has a negative effect on the proper functioning
of a hydraulic system and different cavitation controlled
systems5,6 can be implemented to reduce these negative
aspects. However, there are some cases where it can have
an extremely positive effect such as drag reduction of sub-
marine vehicles7. Indeed, the supercavitating structure
covers the immersed body and makes it slip through the
liquid8, which results in a extremely rapidly moving ob-
ject but with some instabilities. Therefore, it is of crucial
importance for one to understand the physics behind the
multiphase flow, in order to reduce the negative effect or
increase its positive one.

Unsteady cloud cavitation shedding has been widely
studied experimentally during past decades for different
geometries such as hydrofoil profiles9–11, spheres6 or Ven-
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turi nozzles5,12,13. These studies tend to show that this
unsteadiness is due to a frothy re-entrant jet reaching
back the cavity. For small cavities, this re-entrant jet
thickness is in the order of the cavity thickness and an
adverse pressure peak tends to stabilize the cavity clo-
sure. It results in a closed cavity where the re-entrant jet
generates a stable vapor/liquid mixed cavity. For bigger
cavities, the adverse pressure gradient at cavity closure is
decreased enough in order that the re-entrant jet reaches
the top of the cavity and, as a result, cuts the vapor
phase in two, the downstream partial cavity being next
advected by the flow. Pham et al.10 find a correspon-
dence between the re-entrant jet and the cloud shedding
occurrence. As a result, the repeatability of the process
can be characterized by the shedding cycle9,11 and a fre-
quency fs. Recently Ganesh et al.14 proved experimen-
tally with X-ray measurements that the shedding mech-
anism may not be governed only by the re-entrant jet,
but also by the propagation of vapor-shock waves in the
bubbly mixture which occurs at a frequency fw. These
two shedding mechanisms can be influenced by some fea-
tures such as scale effects and aspect-ratio investigated
by Dular et al.13 which can have multiple influences on
the cavity dynamic (as the creation of a side-entrant jet
for small but wide Venturi nozzles).

The data acquired in these studies permits to access
to valuable 2D outcomes of the cavity dynamic (cavity
length, shedding frequencies) for a large array of pressure
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and velocity conditions. However numerical simulations
(particularly in 3D) are necessary to validate the different
mechanisms described before and to capture some cavity
dynamics hardly perceptible with experimental observa-
tions. In this context, Decaix et al.15 studied numerically
the behavior of cloud cavitation developing along a Ven-
turi type nozzle by a compressible one-fluid model. In
the same manner Chen et al.16 did a numerical and ex-
perimental study of unsteady sheet and cloud cavitation
flows in a convergent-divergent nozzle. Dittakavi et al.17

and Charriere et al.18 separately studied the turbulence
interaction and different turbulence models in a series of
large eddy simulations in a Venturi nozzles. It has been
proven that the major source of vorticity is the collapse of
the vapor structures which also results in the formation
of hair-pin vortex structures. All of the studies show dif-
ferent aspects of a periodic cycling which can take place
in the case of a Venturi nozzle.

The purpose of the present study is multifold. Firstly,
the double Venturi nozzle geometry allows the observa-
tion and exploration about the symmetry of the sheet
cavities at the top and bottom walls, as well as their cou-
pling under the influence aspect ratio and of the interac-
tion between the advected structures. Secondly, the pa-
per puts forward experimental and numerical evidences
of the presence of the re-entrant jet, side-entrant jet and
condensed shock waves in the cloud cavitation shedding
regime.

The article is organized into four major sections. Sec-
tion II presents both the experimental setup and the
numerical modeling. Section III deals with the results
and discussions. The article ends by concluding remarks
given in Sec. IV.

II. EXPERIMENTAL SETUP AND
NUMERICAL MODELING

A. Experimental setup

The experiments were conducted in a hydrodynamic
loop of the DynFluid Laboratory fully described in a pre-
vious work of Tomov et al.19. As a reminder, the loop
consists of two tanks of 150 L capacity each connected by
cylindrical pipe with inner diameter of 40 mm. Between
the two tanks is placed the test section, represented in
Fig. 1, consisting in two transparent horizontally sym-
metrical Venturi profiles with converging/diverging an-
gles of 18◦ and 8◦, respectively.

The throat height is Hthroat = 10 mm and the width is
constant all along the test section and is equal to 10 mm.

FIG. 1. Venturi nozzle geometry at scale

In the present study, lengths are expressed with non-
dimensional values X? = x

Hthroat
whereas the Reynolds

is defined at the Venturi throat with Hthroat and the ref-
erence velocity Vref = 12 m.s−1 corresponding to the
mean velocity at the throat section, since it is the place
where the flow regime changes its nature. The experi-

mental cavitation number is defined as σ =
(Pref−Pvap)

1
2ρV

2
ref

where Pref is measured at X? = −6 from the inlet of the
Venturi section. The value of σ is corrected removing
3% in order to take into account the real pressure at the
throat. One can refers to the precedent study of Tomov
et al.19 for further information about the experimental
set-up characteristics and the uncertainties of measure-
ments. It is difficult to perfectly match the experimental
and numerical values of the cavitation number. As a
result, the pressure at the outlet section of the Venturi
nozzle Pout is also expressed for numerical simulations
such as the work of Schnerr et al.20.

Clearly visible peaks in a frequency spectrum are gen-
erally related to spatial structures, which dispose with
some characteristic dimension. The issue of universal def-
inition of a Strouhal number in cavitation is not straight-
forward. It has been addressed, discussed and a proposal
for its unification has been given by Dular et al.21. In the
present paper, the choice is made to define the Strouhal
number as St = fHthroat

Vref
with f corresponding to a fre-

quency of occurrence of a shedding feature.

B. Numerical modeling

1. Physical Model

The cavitating flows involve a very large variety of
physical phenomena with different spatial and temporal
scales. Typical examples are bubble or cloud vapor dy-
namics and non-equilibrium thermodynamics. As a re-
sult, it is difficult to fully resolve all scales, nevertheless
the current state of the art of the computers. Therefore,
the modeling of each phase (liquid, vapor or mixture)
present in the multiphase cavitating flow is of crucial im-
portance for the good representation of the physics of the
flow.

The compressible Navier - Stokes equations written in
cartesian coordinates without a source terms are given in
their conservative form in Eq. 1.
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∂U

∂t
+

∂

∂x

(
Fx(U)− FVx (U)

)
+

∂

∂y

(
Fy(U)− FVy (U)

)
+

∂

∂z

(
Fz(U)− FVz (U)

)
= 0 (1)

U = (ρ ρu ρv ρw ρE)
T

(2)


Fx(U) =

(
ρu (ρu2 + p) ρuv ρuw (ρE + p)u

)T
Fy(U) =

(
ρu ρuv (ρv2 + p) ρvw (ρE + p)v

)T
Fz(U) =

(
ρu ρuv ρvw (ρw2 + p) (ρE + p)w

)T (3)


FVx (U) = (τxx τxy τxz (uτxx + vτxy + wτxz − qx))

T

FVy (U) = (τyx τyy τyz (uτyx + vτyy + wτyz − qy))
T

FVz (U) = (τzx τzy τzz (uτzx + vτzy + wτzz − qz))T
(4)
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)
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(
∂v

∂z
+
∂w

∂y

)
,

(5)

The conservative variables are expressed in Eq. 2 and
the inviscid fluxes Fx(U), Fy(U), Fz(U) are given in
Eq. 3. The viscous fluxes FVx , FVy , FVz are expressed
in Eq. 4. In the above written equations, ρ stands for
density, p for pressure and u, v, w are the velocity com-
ponents. The viscous stresses are expressed in Eq. 5,
where µ is the viscosity.

The heat fluxes are represented by Fourier’s law:

qx = −λ∂T
∂x

, qy = −λ∂T
∂y

, qz = −λ∂T
∂z

(6)

where T is denoted temperature and λ is the thermal
conductivity.

The compressible Navier–Stokes equations are coupled
with the Homogeneous Equilibrium Model (HEM) which
was initially presented by Saurel et al.22 The HEM model
accounts for the mass, momentum, as well as the energy
equations in the case of the homogeneous mixture flow.
In the zones of cavitation, the conservation equations lose
locally their hyperbolic nature and become elliptic. In
order to deal with this issue, equations of state describe
each phase separately. As a result, two phases keep their
own thermodynamic properties23. The use of this model
supposes the existence of a local thermodynamic equi-
librium, therefore the liquid and vapor phase pressures
are considered equal to the saturation vapor pressure,
pv = pl = psat(T ), as well as the temperature of the

two phases in the mixture, Tv = Tl = T . The model
does not take into account any relative motion between
phases. The void fraction ratio (α) calculation is based
on the values of the saturation densities for the liquid
and vapor phases. The void fraction ratio is first defined,
followed by the equations of mixture density and mass
conservation.

α =
ρ− ρl.sat(T )

ρv.sat(T ) − ρl.sat(T )
(7)

The mixture density ρ =
∑
ρkαk is solution of Eq. 1,

k being the phase indicator. From a numerical point
of view, the major difficulty in cavitating flows lies in
the proper treatment of two very different regions. The
first one is the low-density pure vapor phase and the sec-
ond one is high density the nearly incompressible liquid.
Moreover, a special care must be taken for the transition
mixture region, which is not always clearly distinguished.
As a result, each of the liquid and vapor pure phases are
described by a proper set of Equations of States (EoS).
The fluid saturation properties are taken from Schmidt
et al.24.
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2. Conservation system closure - Phases EoS

EoS liquid phase

The liquid phase is firstly described with EoS. The
pressure of the liquid phase is governed by the modified
Tait equation of state, where K0 and N are constants22.
The formulation considers the liquid phase as a saturated
component of the multiphase flow.

p = K0

[(
ρ

ρl,sat(T )

)N
− 1

]
+ Psat(T ) (8)

Where K0 = 3.3 × 108 Pa and N = 7.15 for water.
The temperature relation can be expressed in terms of
the specific energy T = e−el0

Cvl
+ T0, e being internal en-

ergy, el0 = 617 J.kg−1 is internal energy at reference
temperature T0 = 273.15 K and Cvl = 4180 J.kg−1.K−1

is the liquid specific heat at constant volume. Vogel–
Fulcher–Tammann’s law25–27 gives the dynamic viscosity
formulation:

µl = A× 10B/(T−C) (9)

In the case of water A = 2.414 × 10−5 Pa.s, B = 247.8
K and C = 140.0 K. Thermal conductivity of water is
considered constant and it is taken λl = 0.6 W.m−1.K−1.

The formulation of the speed of sound is derived from
the hypothesis that the acoustic pressure fluctuations can
be neglected in comparison with the cavitation pressure.
Equation 10 gives the speed of sound in pure liquid. More
information about its derivation is given in Appendix A.

c2l =
N(p− psat(T ) +K0)

ρ
+

p

ρ2Cvl

(
∂psat(T )

∂T
− N(p− psat(T ) +K0)

ρl,sat(T )

∂ρsat(T )

∂T

)
(10)

EoS vapor phase

The EoS for the vapor phase are described below. The
main hypothesis behind the vapor phase is its consid-
eration as a perfect gas, hence the following relation is
applied:

p = (γ − 1) ρe (11)

The temperature equation is written in terms of the
latent heat of vaporization Lv(T0) = 2.753 × 106 J.kg−1

at temperature T0 = 273.15 K as T = e−el0−Lv(T0)
Cvv

+ T0,

Cvv = 1410.8 J.kg−1.K−1 being vapor specific heat at

constant volume. The dynamic viscosity formulation is
given by Sutherland’s28 law.

µv = µref

(
T

Tref

)3/2
Tref + S

T + S
(12)

Sutherland’s constants for water are: µref = 18.27 ×
10−3 Pa.s, Tref = 291.15 K, S = 861.11 K. The thermal
conductivity of vapor is a function of temperature and is
given by Dincer et al.29 as follows:

λv =

4∑
i=0

aiT
i (13)

where a0 = −7.967996 × 10−3, a1 = 6.881332 × 10−5,
a2 = 4.49046 × 10−8, a3 = −9.099937 × 10−12, a4 =
6.173314× 10−16.

Since the vapor is treated as a perfect gas, the speed
of sound is given by the known relation:

c2v =
γp

ρ
(14)

where γ = 1.327 for water vapor, ρ and p are solution
of Eq. 1.

Mixture closure equations and phase transition

As mentioned above, the basic hypothesis is that the
fluid is in a local thermodynamic equilibrium, hence, at
the mixture zone the pressure and temperatures are the
same for each phases. To manage mass transfers between
phases and therefore the choose of EoS of each phase to
compute temperature, pressure and the other thermody-
namics properties, an explicit phase transition algorithm
based on densities is used. It starts by considering all
the variables at the previous time step given by solving
Eq. 1, if density is lower than the vapor saturation den-
sity then the phase is pure vapor, α = 1, EoS of vapor
is used. If density is higher than liquid saturation den-
sity then the phase is pure liquid, α = 0, modified Tait
EoS is used. And finally, if density is between the two
phases saturation densities then α is given by Eq. 7 and
temperature is computed by solving e = εev + (1− ε)el, ε
being vapor mass fraction, the internal energies ev and el
are given by EoS of vapor and liquid, respectively, given
above. The phase transition algorithm is presented in
details in Appendix B. Since the next time step temper-
ature is computed for each phase using the procedure
described above, other parameters can be derived such
as the mixture viscosity,

µm =
1

ε
µv

+ 1−ε
µl

(15)
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and mixture thermal conductivity λm which is com-
puted the same way.

One of the advantages of the used approach is that
it takes into consideration the physical variations of the
pressure since the compressibility of each phase is taken
into account. The EoS properly describe the physics of
each phase and no modifications of the speed of sound
are to be considered (no preconditioning issues are re-
tained). This last point is crucial for the restitution of
the real behavior of likely condensation shock waves de-
scribed further in this paper. On the other hand, the
speed of sound drastically varies from phase to other and
need to be correctly modeled in the mixture phase. In-
deed, the flow presents very low Mach numbers in the
pure liquid phase, intermediate in the pure vapor phase
and is supersonic in the mixture phase, the sound veloc-
ity being very low. In our case, it is expressed following
the Wood’s relation30:

1

ρc2m
=

α

ρv,sat(T )ρc2v
+

1− α
ρl,sat(T )c2l

(16)

Equation 16 takes into consideration the phase transi-
tion through the vapor fraction ratio α. The same for-
mulation has been recently used by Saurel et al.31 in the
case of a cavitating boiling and evaporating flows.

3. Numerical framework

Finite volume solver: The used finite volume solver
is based on Moving Least Squares32,33 (FV-MLS) ap-
proximations. This approach is somewhat different that
the usual approach of high-order (≥ 2) finite volume
schemes. The usual approach is pragmatic and “bottom-
up” . Starting from an underlying piecewise constant
representation, a discontinuous reconstruction of the field
variables is performed at the cell level. The FV-MLS
method starts from a high-order and highly regular rep-
resentation of the solution, obtained by means of Moving
Least-Squares approximation, and it is well suited for
general, unstructured grids. This approach is directly
suitable for the discretization of elliptic/parabolic equa-
tions and high order spatial terms. For equations with a
predominantly hyperbolic character, the global represen-
tation is broken locally, at the cell level, into a piecewise
polynomial reconstruction, which allows to use the pow-
erful finite volume technology of Godunov-type schemes
(e.g. Riemann solvers, limiters). A linear reconstruction
is used implying a second order space accuracy in our case
associated to a Vankatakrishnan slope limiter to manage
shocks discontinuities induced by supersonic regimes (see
the following section). The reader is kindly referred to
works of Nogueira et al.33,34 and Khelladi et al.32 for
more details concerning this numerical method.

Low Mach number handling: The disparities between
the values of speed of sound into the flow phases are

very high. Indeed, the speed of sound is approxima-
tively equal to 1500 m.s−1 for the liquid (α = 0), 400
m.s−1 for the vapor (α = 1) and around 4 m.s−1 in the
mixture (α = 0.5). As a result, the compressibility ef-
fects based on the Mach number vary in respect to the
zone of calculation. Therefore, this issue should be taken
into consideration when dealing with numerical flux at
very low and very high Mach number calculations. It is
widely known that it is difficult to solve the compressible
equations for very low Mach numbers using ”standard”
numerical flux (Roe, Rusanov,...) due to the induced
numerical dissipation on the prediction of the pressure,
p ∼ M rather than p ∼ M2. In addition, for an explicit
time schemes this induces very small time steps (very
restrictive CFL condition). Using preconditioning tech-
niques35 may overcome these limitations, unfortunately,
this implies to modify implicitly the pressure wave prop-
agation dynamics (speed of sound) in the liquid phase
which is not suitable in view of the demonstrations pro-
jected in the following developments. Consequently, in
the present paper, the code does not use any precondi-
tioning. In such a way the authors estimate that the
code simulates a better physical behavior of each of the
flow phases. A drawback is the need of a very small time
step which in our case is around 10−7s using a first order
explicit Euler time scheme31.

Approximate Riemann solver: As mentioned above,
the finite volume solver should deal with a large range
of wave propagation regimes due to the phase transi-
tion mechanisms. The used approximate Riemann solver
should then be able to support all-speed regimes. A re-
cent work done by Nogueira et al.36 demonstrates that
increasing space order of accuracy to 4th or 5th space or-
ders in addition to the use of a fix of the dissipation term
(function of Mach number) of Roe or Rusanov approxi-
mate Riemann solvers, for instance, may extend their use
to all-speed regimes. For some pragmatic reasons related
to the nature of the present investigation, the second or-
der space of accuracy is estimated sufficient. For this
reason a modified Simple Low dissipative AUSM solver
(SLAU) is used in the present case. The AUSM fam-
ily solvers are based on the splitting of numerical flux
term into convective and pure pressure one. The convec-
tive part is decomposed following the procedure proposed
by Shima et al37. The mathematical development is be-
yond the scope of the present paper. For more details the
reader is kindly referred to the work of Kitamura et al.38.

Turbulence handling: In general, a sub-grid scales
(SGS) model in a Large-Eddy Simulation (LES) oper-
ates on a range of scales that is resolved by discretiza-
tion schemes. As a result of that, the truncation error of
the scheme and the SGS model are mutually linked. The
numerical approaches where SGS model and discretiza-
tion scheme are merged, are called implicit LES (iLES)
methods39. ILES approach is used in this work. Indeed,
to highlight the targeted physical mechanisms related to
cloud cavitation shedding and because of the properties
of FV-MLS scheme, no turbulence model is used explic-
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itly. Turbulence is taken implicitly into consideration
through the definition of an adequate number of points in
the stencil and the use of appropriate MLS-kernel func-
tion parameters in each spatial direction according to
Nogueira et al.34,40. A description of the choice of the
best values of stencil morphology and the best kernel pa-
rameters are beyond the scope of this paper. For more
details and explications, as well as benchmark results,
one is kindly referred to references 32–34, and 40.

Computational domain: The computational domain is
the axisymmetrical Venturi duct presented in Fig. 1 with
18◦/8◦ convergent/divergent angles, respectively. Its to-
tal length is L = 470mm. The inlet to throat section ratio
is equal to 3. In accordance with experiments, the inlet
water temperature is T∞ = 300 K. The saturation vapor
pressure in operating conditions is taken Pvap ≈ 2200
Pa. Due to the compressibility of phases, the compu-
tational domain is extended (once upstream and once
downstream) in longitudinal direction. Velocity inlet and
pressure outlet absorbing boundary conditions presented
by Schnerr et al.20 are imposed in order to evacuate the
non-physical upfront coming pressure waves. The flow
velocity at the inlet section (Vin) is set to 4 m.s−1 and
the pressure outlet (Pout) is taken equal to 50 kPa. Ta-
ble I summarizes the boundary conditions.

Vin Pout Pref T∞ Re σ
(m.s−1) (kPa) (kPa) (K)
4 50 85 300 1.2× 105 1.15

TABLE I. Boundary conditions

The 3D computational domains consists of almost
3.1 × 105 tetrahedral cells. The mesh density is not
constant along the computational domain. The conver-
gent/divergent region (≈ 20% of the overall volume) of
the nozzle concentrates almost 80% of the total grid size.
This can be considered as sufficient since it presents a
pressure loss ratio of approximatively 10% compared to
a half grid size and approximatively 2% difference with
a 1.75 times larger one (the retained grid is taken as
a reference). Depending on the position and the flow
regime (time) the local dimensionless wall distance y+

at the throat region (convergent/divergent) varies from
20 for the lowest value to 300 for the highest value lo-
cated generally upstream and downstream to the throat
zone, which according to the authors is sufficient regard-
ing to the cavitation vapor dimensions and the induced
flow structures. Moreover, mass flow rate can be consid-
ered as conserved. Indeed, the mean time mass flow rate
loss between the inlet and outlet computational domain
boundaries is lower than 0.1%.

C. Post-processing and analysis tools

In order to reveal and explore the cavitation phe-
nomenon, a large quantity of experimental and numerical
data ought to be generated. As a result, there is a great
need to dispose with specific post-processing techniques,
such as Proper Orthogonal Decomposition (POD) and
wavelet method, which will enable one to extract the
synthetic information. This data will be essential to un-
derstand, to explore the physical behavior of the flow.

1. Proper Orthogonal Decomposition

Therefore, a POD analysis, based on the intensity of
the absorbed light passing through the Venturi nozzle in
a series of consecutively taken by a high speed camera
images (an experimental data already available in Dyn-
Fluid Laboratory) and on instantaneous snapshots from
numerical simulations, seems to be a reasonable choice.

From a mathematical point of view, the POD is a
transformation diagonalizing a given matrix by bring-
ing it into a canonical form, by using a singular value
decomposition. More precisely, the POD provides an op-
timal basis for the model decomposition of an ensemble of
data obtained either by experiments or numerical simula-
tions41. The gathered information is decomposed into an
ensemble of functions, often called empirical eigenfunc-
tions or empirical basis functions, or empirical orthogo-
nal functions. As a result of the optimality of the con-
vergence in terms of a kinetic energy of the POD eigen-
functions, only a small number of modes are necessary to
represent the dynamical evolution of the fluid flow. For
instance, such a decomposition provides an efficient way
of capturing the dominant components in the case of a
cavitation flow42. Large scale structures, which contain
the big part of the kinetic energy of the flow, may be
detected and further selected for a reconstruction of the
flow dynamics43.

The coherent structures are described by the determin-
istic function which best correlates on average with the
gathered data set of observations u (data should not nec-
essary be taken at the same physical parameters, for in-
stance at the same Reynolds number44). This can be in-
terpreted as the search of function ϕ that has the largest
mean square projection on the observations. The eigen-
functions ϕ are chosen in order to maximize the average
projection of a data field u on ϕ. In order to include the
statistics the following expression ought to be maximized:

max
ϕ∈L2([0,1])

〈
| (u, ϕ) |2

〉
‖ϕ‖2

(17)

where |.| is the modulus, and 〈.〉 may be a spatial or
a temporal averaging operation and ‖.‖ is the L2 norm

defined as ‖f‖2 =
∫ 1

0
|f (x) |2dx. Maximizing the nomi-

nator of Eq.17 in some average sense (spatial, temporal)
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while keeping the constraint ‖ϕ‖2 = 1 leads to the func-
tional:

J [ϕ] =
〈
‖ (u, ϕ) ‖2

〉
− λ

(
‖ϕ‖2 − 1

)
(18)

The choice of the average operator is crucial for the ap-
plication of the POD analysis. The upper functional is
true for all variations ϕ+ δψ ∈ L2, δψ ∈ R:

d

dδ
J [ϕ+ δψ] |δ=0 = 0. (19)

We can then obtain the integral equation of Fredholm:∫ 1

0

〈u (x)u∗ (x′)〉ϕ (x′) dx′ = λϕ (x) . (20)

For more details about the full mathematical develop-
ment, one is kindly referred to the PhD thesis of Bren-
ner45. The eigenfunctions {ϕj} produce the optimal ba-
sis derived from Eq. 20 using the averaged autocorrela-
tion function R (x, x′) = 〈u (x)u∗ (x′)〉. According to the
Hilbert theory, one can assume there is an infinity of or-
thogonal eigenfunctions associated to the eigenvalues, as
a result of the diagonal decomposition of the autocorre-
lation function. Since the averaged autocorrelation func-
tion is R(x, x

′
) ≥ 0, and Eq. 17 admits a solution equal to

the largest eigenvalue of the problem, the eigenvalues λj
take the following order λj ≥ λj+1 ≥ 0. Each data field u
may be reconstructed by using the modal decomposition

of eigenfunctions ϕj , as u (x) =
∞∑
j=1

ajϕj (x), where aj is

a reconstruction coefficient defined as 〈aja∗k〉 = δjkλj . In
the case where one has information regarding the velocity
field, the eigenvalues represent twice the average kinetic
energy of each mode ϕj . In such a way, the first eigenval-
ues correspond to the most energetic modes, hence the
most energetic structures. In order to improve the post-
processing algorithm and computational time, a snapshot
POD method has been used by Sirovich46. In the classi-
cal POD method , the operator 〈.〉 stands for a temporal

average and R(x, x
′
) stands for a spatial correlation ten-

sor. The use of a snapshot POD makes the size of the
eigenvalue problem to be equal to the number of treated
images N using 〈.〉 as a spatial average and a two-point

temporal correlation one C(t, t
′
) instead of the spatial

correlation in the classic method. In a general manner,
when the number of spatial points of data is much greater
than the number of treated images, the snapshot POD
reduces considerably the necessary computational time
for post-processing. As a result, in the present study, the
snapshot POD approach will be preferred.

2. Wavelet Method Analysis

Wavelet analysis is usually used to decompose time
signals into time-frequency space allowing to determine
dominant modes of variability through time and, as a re-
sult, to associate a dynamic phenomenon to his frequency

of occurrence. This method, mainly used in geophysics
studies, is particularly adapted to detect near-periodic
phenomena as cloud cavitation shedding.

This method, more powerful than classical signal
analysis method such as Windowed Fourrier Transform
(WTF), has the advantage to be relatively accurate in
time frequency localization and also scale independent.
Kjeldsen et al.47 are the first to propose the wavelet anal-
ysis as a relevant method to measure shedding mecha-
nisms. Brandner et al.48 performed a wavelet analysis
in order to extract frequencies of cloud cavitation shed-
ding from a cavity induced by a jet in a cross-flow. In the
present paper, the wavelet method developed by Torrence
et al.49 is applied to extract the frequencies of appear-
ance of two cloud shedding phenomena which can occur
simultaneity. A quick presentation of the method applied
to image analysis is developed thereafter.

The method is based on a continuous non-orthogonal
wavelet function Ψ0 which is used in order to perform
a complex wavelet transform Wn on a signal scalar serie
xn. After normalization, Wn can be expressed as:

Wn(s) =

N−1∑
n′=0

xn′

√
δt

s
Ψ∗0

[
(n′ − n)δt

s

]
(21)

where s is the wavelet scale, which determine the
method precision, δt is the time between two images, N
is the number of images and (∗) indicates the complex
conjugate.

The choice of the function Ψ0 is here of primordial
importance and might be adapted to the study. In the
case of image analysis, where the main goal is to extract
frequencies of occurrence of some phenomena, a Mor-
let 6 function is usually used6,48,49. The Morlet base,
which represents a plane wave modulated by a Gaussian
(Fig. 2), is expressed in the time domain analytically as
a function Ψ0 of η, the non-dimensional time,

Ψ0(η) = π−1/4eiω0ηe−η
2/2 (22)

whereas the associated function in the frequency do-
main, obtained by the Fourrier transform of Ψ0, can be
written as a function of the frequency ω:

Ψ̂0(sω) = π−1/4H(ω)e−(sω−ω0)
2/2 (23)

where ω0 is a non-dimensional frequency constant
(taken to be 6 for Morlet base49) and H(ω) is a heaviside
step function. Both functions are represented below in
figure 2.

As a result, using the discrete Fourier transform x̂k of
the discrete sequence of images xn (where k = 0...N − 1
is the frequency index) and based on equation 21 and 23,
the wavelet transform can be written in Fourrier space:

Wn(s) =

N−1∑
k=0

x̂k

√
2πs

δt
Ψ̂∗0(sωk)eiωkδt (24)
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FIG. 2. Morlet wavelet base representation in time domain
(left) and in corresponding frequency domain (right). The left
plot give the real part (solid) and the imaginary part (dashed)
for a wavelet scale s = 10δt. (From Torrence and Compo49)

The wavelet transform on the image sequences is esti-
mated with the equation 24 in Fourrier space in order to
improve the time calculation. Therefore a Wavelet power
spectrum |Wn(s)|2 can be computed and normalized with
the variance σ2. As a result the wavelet method is able
to estimate the peaks of Power Spectral Densities (PSD)
associated to occurrence frequencies of events and even
identify the images corresponding in the sequence.

III. RESULTS AND DISCUSSION

A. Experimental identification of the presence
of two shedding mechanisms

In the present study a cavitation regime where two
unsteady shedding mechanisms coexist, called “tran-
sitory” according to Ganesh50, is investigated. This
regime, studied for a fixed Reynolds number of 1.2×105,
is observable in the present paper for a small range of cav-
itation numbers between 1.23 and 1.45. Image sequences,
acquired at 1000 frames per second during 3 seconds, are
post-processed with normalization and detection of grey
levels5,19.

Classically, the cavity closure length is detected with
the maximum of standard deviation on the images5. An
example of closure detection with image standard devia-
tion is given in Fig. 3. As a result, the non-dimensional
transposed length L? along the divergent Venturi slope
is given in Fig. 4 for top and bottom Venturi nozzles.

One can notice that the evolution of cavity length as a
function of the pressure follows the expectations brought
by the literature5,12,21,50. A wavelet method, developed
later in this paper, is applied on cavity closure lines to ex-
tract shedding frequencies supposedly associated to the
re-entrant jet fs and to the condensation shock wave fw.
The evolution of these two frequencies as a function of
σ is plotted in Fig. 4. A typical spectrum showing the
presence of two peaks is plotted in Fig. 5. As previ-
ously observed with the position of cavity closure, the
two frequencies of shedding appears to follow a certain
symmetry on both sides of Venturi nozzles. A low fre-
quency (about 10Hz), which might correspond to the con-
densation shock wave phenomenon, appears to increase

FIG. 3. Standard deviation of the normalized images for a
sequence taken at σ = 1.31. The dotted line divides the study
domain in two (top and bottom Venturi nozzle) and the full
line, placed at the cavity closure which is almost the same for
top and bottom nozzles (L? ' 4.05), is the line for which the
grey level is studied for shedding frequency calculations

FIG. 4. (Colour online) (Top): Unidimensional sheet cavity
length closure L? = L/Hthroat according to the cavitation
number σ. Comparison between top (red triangles) and bot-
tom (blue circles) Venturi nozzles. (Bottom): Condensation
shock wave (closed symbols) and re-entrant jet (open sym-
bols) shedding frequencies derived from high-speed imaging.
Comparison between top (red triangles) and bottom (blue cir-
cles) Venturi nozzles

slowly with the pressure whereas the re-entrant jet shed-
ding frequency increases also with the pressure but a
lot faster, quadrupling the frequency between σ = 1.23
and σ = 1.45. An explanation would be that the re-
entrant jet is highly influenced by the cavity size, the phe-
nomenon occurring with more difficulty for longer cavi-
ties. For low cavitation numbers (σ = 1.20 and 1.23), a
difference between top and bottom Venturi sides can be
noticed.

In order to highlight the two shedding mechanisms,
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FIG. 5. (Color online) Time series of grey level taken at cavity closure between 460 and 560 ms of the image sequence for
σ = 1.23 and corresponding wavelet transformation for (a) top and (b) bottom Venturi nozzles. Power spectral density is
obtained from the wavelet transformation (normalized by the variance). The re-entrant jet shedding identification corresponds
to the last image of Fig. 10 taken at 512 ms whereas the vapor-shock wave, taken at 520 ms corresponding to the beginning of
the associated shedding cycle, is presented in Fig. 17

the choice is made to focus the present study on the
extreme case, that is σ = 1.23 where a lot of dynam-
ics and features might be encountered. Indeed this case
has the advantage to deal with cavities of big size where
shedding mechanisms might be easier to observe. More-
over, in this case, the condensation shock wave seems to
be a phenomenon particularly pronounced and both nu-
merical and experimental investigations might give more
relevant results.

Wavelet method, is used in the experimental case
σ = 1.23 where the two shedding phenomena are clearly
observed. The method is applied following the steps
given thereafter. First, the images are divided in two in
order to study separately the top and the bottom Ven-
turi nozzles. Secondly, according to Danlos et al.5, the
evolution of grey level is studied at the cavity closure,
where standard deviation on the image sequence is max-
imum, selecting the vertical line going through this point
as presented in Fig. 3. Finally wavelet Power Spectral
Densities (PSD) |Wn|2 is calculated from the grey level
signals as well as the wavelet transform. Wavelet analy-

sis results about the shedding mechanisms, illustrated in
Figs. 10 and 17, are exposed in Fig. 5.

As a result, frequencies of shedding phenomena can be
identified with corresponding wavelet PSD peaks. The
cloud cavitation due to re-entrant jet, for which a cycle
is highlighted in Fig.10, presents the lower PSD peak at
a frequency fs = 47.2 Hz for the bottom Venturi and
fs = 46.7 Hz for the top Venturi nozzle. Meanwhile, the
shedding induced by the vapor-shock wave, which is illus-
trated in Fig. 17, occurs at a frequency fw = 9.5 Hz on
both sides. The different outcomes obtained with image
analysis and their uncertainty (by evaluating the effect
of image processing and the wavelet method) such as fre-
quencies of shedding, wavelet PSD peaks ratio associated
RPSD = |Wn(fw)|2/|Wn(fs)|2 and cavity closure length
along the Venturi profile are reported in Table II.

One can notice looking either grey level signals, wavelet
transforms (Fig. 5) or shedding frequencies that there
clearly exists a symmetry of the upper and down cavities
as concluded previously by Tomov et al.51. The bubbly
shock wave appears to be in that case the dominant mode
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of cloud shedding in comparison with the re-entrant jet.
However in this particular case, where cavities are long
enough, the symmetry seems to begin to break. Indeed,
as previously noticed, a difference between top and bot-
tom Venturi cavity lengths and re-entrant jet frequencies
can be seen. The 2D observations do not permit to in-
terpret this symmetry break-up. On the other hand, 3D
simulations could reveal such a dynamical feature.

B. Comparison of global features with POD
techniques

This section presents the application of the POD on
series of vapor fraction consecutive images taken from
the numerical simulations. The POD is used as a com-
plementary technique to study the different cavitation
regimes. The side view images are taken at three differ-
ent equally spaced locations on the Venturi nozzle: the
front, the middle and the back. For each location a total
number of 1200 images are extracted. By definition, the
optimal basis is given by the eigenfunctions ϕj of Eq. 20.
In the present study u(x) is the vapor fraction, hence the
eigenfunctions ϕj play the role of a “weight” for the re-
construction of the flow. Moreover, if u(x) represents a
velocity field, ϕj would have been a kinetic energy.

A convergence study allows to determine the number of
snapshots necessary to validate the decomposition. Fig-
ure 6 presents the contribution of the first four modes j
in the reconstruction of instantaneous images obtained
by the decomposition of N = 1200 snapshots.

The analysis shows that N = 900 snapshots are suffi-
cient for the decomposition to obtain converged results.
As a result, the same curves for N = 900 for the back
face at σ = 1.15 will not be presented. All the modes are
calculated for N = 900. For more details regarding the
post processing technique the reader is kindly referred to
the works of Danlos et al.42 and Tomov et al.51.

One can notice the peaks at the energy contributions
in Fig. 6 at the vicinity of N = 300, 500 and 700 snap-
shots, which might correspond to the instants of con-
densed shocks that are taking place. It can be seen in
the energy decay for mode 0, that the number of im-
ages between the second and third peaks are almost con-
stant, which is not the case for the first one. One possi-
ble explanation is the fact that the first condensed shock
takes place after the cavity reaches its full length. This is
clearly not the case once the shock waves start to propa-
gate and influence the production of vapor at the Venturi
nozzle.

Bottom Venturi Top Venturi Uncertainty
fs (Hz) 47.2 48.7 ±4%
fw (Hz) 9.5 9.5 ±4%
L? 8.16 7.65 ±2%
RPSD 4.76 3.90 −

TABLE II. Experimental results for σ = 1.23
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FIG. 6. Convergence study for case (a) applied for the back
surface of the Venturi nozzle for the first four modes j in
the reconstruction of instantaneous images obtained by the
decomposition of N = 1200 snapshots. It can be seen that
the energy contribution of the 4th mode is almost negligible
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FIG. 7. (Color online) (Left): POD on side view images at
superimposed numerical data, (Right): POD on side view
images from experimental data

In order to compare the experimental and numerical
POD modes, one would need to deal with superimposed
side view numerical snapshots, nevertheless the relatively
small number of cavitation cycles data gathered from the
simulations. According to the authors, the vapor struc-
tures may not necessarily lay in the same spatial plane,
as it is the case in experimental side views.

As a result, Fig. 7 illustrates POD modes of numeri-
cally superimposed snapshots and experimental ones. It
can be observed that the lengths of the cavitation va-
por are comparable for modes 0. Moreover, the advected
vapor structures are symmetrically spread for both cou-
ples of modes 1 and 2. One can notice the likelihood
for the vapor characteristic length to be in the range of
6Hthroat to 7Hthroat for the numerical case and 7Hthroat

to 8Hthroat for the experimental one.
In order to take into consideration the possible 3D ef-

fects, the first four modes extracted from numerical data
are presented in Fig. 8 for σ = 1.15. The values of the
energy contributions per mode and per plane are given
in Table III. It can be seen that the values per mode
are comparable for all of the cases. A brief discussion
about the POD application on numerical data is firstly
provided, followed by a discussion on the experimental
POD modes.

The energy contributions of the first four numerical
modes contribute to almost 100%, as it can be seen from
Table III. For each plane, modes 0 account for slightly

FIG. 8. (Color online) The first four numerical modes for
each plane location at σ = 1.15. The dashed line represents
the horizontal line of symmetry

Plane Mode 0 Mode 1 Mode 2 Mode 3 Total
Front 90.71 7.65 1.21 0.24 99.84
Middle 92.50 6.19 0.94 0.19 99.82
Rear 92.38 6.29 1.05 0.17 99.89
Experiment 89.45 5.75 1.45 0.30 96.95

TABLE III. Energy contributions per mode [%]
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FIG. 9. A back view of the dynamics of the numerical cloud cavitation for σ = 1.15 with a time step of 1 × 10−7s. The
snapshots are taken with a time interval of 10 ms

more than 90% and modes 1 contribute with values of the
order of 6 to 7%. Those values are higher than the level
of 1%, which was reported by Danlos et al.42 as a sign of
the presence of a cloud cavitation. A similar observation
can be made for each of modes 2, where the values range
in the vicinity of 1%. The energy contributions of all of
the fourth modes are insignificant. It can be seen from
Fig. 8 that the spatial distribution of mode 0 is almost
symmetrical with respect to the horizontal axis. The
vapor phase stays continuous for the middle plane, which
is not the case for the front one. The explanation lies in
the fact that the side-entrant jet plays an important role
in the flow dynamics near the wall. Its influence is much
less visible in the case of the rear plane. It can be seen
that modes 1 are symmetrically spread in respect to the
horizontal dashed line. The advected vapor is presented
by the dark zones, which have very similar lengths for
the middle and front planes. One can recognize the twist
form of the advected vapor at the rear plane at Y∗ = 6
to Y∗ = 8 for mode 1 (see Fig. 9). Similar dynamical
behavior can be found for modes 2, where a symmetrical
spread is visible for the rear and middle cuts. The most
stable and symmetric flow is the one on the middle plane.

The energy contribution values of the experimental
POD modes are similar to the numerical ones, as it can
be seen from Table III. The energy value for mode 1
is higher than 1% and could be considered as a sigh of
a cloud cavitation existence. The symmetry of the flow

can be clearly observed for all of the modes, which im-
plies synchronous behavior on each side of the Venturi
nozzle. The latter confirms the visual observations from
the instantaneous snapshots. A possible physical inter-
pretation for each of the four modes can be as follows.
Mode 0, as a major contributor to the decomposition, can
be an indicator of an oscillating cavity, if one is not inter-
ested in the other modes. The dark zones from Y∗ = 6
to Y∗ = 8 for mode 1 and from Y∗ = 5 to Y∗ = 7 can be
interpreted as advected vapor structures. The last mode
3 might be seen as the weak interaction between the top
and bottom cavitation vapor before a separation to take
place. A typical representation of such an interaction can
be seen at the instantaneous snapshots for T= 508 and
T= 510 ms in Fig. 10.

To conclude the POD analysis confirms the global sym-
metry of the two sided cavities in both experimental and
numerical data. The number of cycles in experimental
case is higher than in simulations, which leads to more
significant results. However, some 3D effects appears to
have an important role in the two shedding mechanisms
and, as a result, numerical simulations appear to be nec-
essary to illustrate these different features.
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FIG. 10. Normalized instantaneous snapshots from high-speed image series showing the re-entrant jet dynamics for σ = 1.23.
The images are taken in the total sequence between 498 and 512 ms with ∆t = 2 ms. The horizontal symmetry is shown in
white dashed line. The re-entrant jet appears at the same instant on the top and bottom side of the nozzle. It flows upstream
the flow, while creating recirculating vapor zones and a hairpin vortex. It is then advected by the flow and a vapor separation
takes place

C. Re-entrant jet shedding

As previously explained in Sec. II, the re-entrant jet
is a well known shedding mechanism observed9,10,15 and
characterized5,12,50 in several studies. The cycle illus-
trated in Fig. 10 consists of the following steps: first, the
cavity grows from the Venturi throat and a re-entrant jet
appears at the sheet cavity closure. Secondly, it flows

upstream on the wall and eventually cuts the formed va-
por. In general, the re-entrant jet is created by the flow
by an expansion of its closure region. In such a way
and in a combination with the Venturi wall, a stagnation
point is created. The conservation of momentum makes
the fluid to pass beneath the cavity, hence the jet pro-
gresses and results in a vapor separation52. As a result,
a cloud is formed and is further advected. The cloud va-
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por collapses in the divergent Venturi nozzle zone where
the pressure is higher than the one at the throat sec-
tion. In such a way, the cavity length is reduced and
the whole process repeats itself. The repeatability of the
process is characterized by the shedding frequency fs. In
the present section, the re-entrant jet shedding dynam-
ics are pointed out with wavelet grey level analysis (see
Fig. 5). Afterwards, the numerical simulations are in-
troduced and a comparison is made with experimental
data.

Figure 10 shows the multiphase flow dynamics in ex-
perimental conditions for σ = 1.23. A sequence of nor-
malized instantaneous snapshots in Fig. 10 are presented
in order to illustrate the re-entrant jet dynamics. Its de-
velopment can be seen at the closure region on both sides
of the nozzle. The re-entrant jet travels upstream the
flow and it creates two recirculating vapor zones. Fur-
thermore, one can see the clouds cavitation expansion
and the creation of a hairpin vortex. It plays the role
of an interaction between the top and bottom divergent
sides of the nozzle. The re-entrant jet continues to travel
upstream, while the hairpin vortex is advected by the
flow until vapor separation. The wavelet transform as-
sociated to the sequence (Fig. 5) show that the vapor
separation occurring at 512 ms correspond to a peak of
wavelet power spectrum for both Venturi nozzles at a
frequency fs ' 48 Hz (see Table II). As a result, the
re-entrant jet dynamic is well-characterized experimen-
tally in two dimension with a frequency of occurrence fs,
however numerical simulations are required in order to
see possible 3D effects.

The 3D cavitation simulation is presented hereafter.
The Mach number varies from 2.44 × 10−4 to 2.89.
The maximum value of the flow velocity at the Ven-
turi throat is equal to 13.60 m.s−1. Figure 11 repre-
sents the velocities in each spatial direction at T = 20
ms. The presence of the re-entrant jet is well visual-
ized on the left image. The horizontal velocity field is
presented at three different planes at a distance L =
[3Hthroat, 5Hthroat, 8Hthroat]. One can see that the value
of the vertical component of the velocity is symmetri-
cally distributed in respect to the horizontal axis. It is
interesting to note the presence of a side-entrant jet in
the transverse velocity distribution on the right image in
Fig. 11. The transverse plane passing through the top
vapor zone shows that the side-entrant jet has the same
velocity on the near and far sides of the Venturi nozzle.
This is not the case on the bottom, where the velocity
component on the near side is twice the one on the far
side of the nozzle. Such a difference creates an interest-
ing dynamics presented in Fig. 12 wher the evolution of
the vapor phase is presented by a sequence of snapshots.

As it can be seen at T = 10 ms, the two vapor zones
are clearly symmetrical. One can notice the develop-
ment of the vapor rupture which starts from the Venturi
walls and evolves to the middle section. Such a dynam-
ical behavior has been observed by Schneer et al.20 and
Foeth et al.53 in the case of a hydrofoil and by Dular

FIG. 11. (Color online) Numerical results for σ = 1.15:
horizontal, vertical and transversal velocities distribution at
T = 20 ms. The existence of re-entrant and side-entrant jets
is visible

et al.13 in the case of Venturi nozzles for small but wide
throat sections. This phenomenon can be defined as a
“side-entrant jet”. At T = 20 ms the rupture increases,
but a cloud separation is still not present. The rupture
zones are symmetrical in respect to the horizontal axis.
At T = 30 ms the separation has already taken place
and the two clouds are advected by the flow. One can
note that the vapor starts to follow a spiral trajectory.
The cloud vapor at the upper left corner and the bottom
right one evolve symmetrically and bond with each other
as it is presented at T = 40 ms. In the mean time the
vapor at the throat increases and a new cloud separa-
tion takes place at T = 50 ms. The spiral movement is
again presented at T = 60 ms where the two advected
clouds are about to get into contact. Figure 9 shows a
front view of each of the snapshots in the sequence. It
clearly illustrates the vapor spiral movement. The length
of the clouds before their complete separation is equal to
6.4Hthroat. The two clouds are synchronized and the
separation takes place at the same time on the top and
bottom sides of the Venturi nozzle.
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FIG. 12. Cavitation sequence from numerical simulation for σ = 1.15: Vin = 4 m.s−1, Pout = 50 kPa, time step of 1× 10−7s.
The snapshots are taken with a time interval of 10 ms

D. Condensation shock wave shedding

Under certain flow conditions the cavity is not very
dense and the local speed of sound becomes very small.
As a result, high local Mach numbers can be reached. In
that sense the time scale changes, which inevitably leads
to a change in the flow physics. Low values of the speed
of sound result in a slower propagation of any potential
disturbances in vapor than in liquid. This leads to a
presence of shock waves at the end of the cavity that
can induce a massive cloud cavitation shedding. In the
present section, the condensation shock wave dynamic
is observed and explained with numerical simulations.
Some experimental images are provided as illustrations.

The bubbly shock wave has been studied experimen-
tally with X-ray in the PhD work of Ganesh50. It
has been found that a second type of shedding mecha-
nism, which corresponds to a propagating discontinuity
is present and can affect the vapor cloud shedding of the
Venturi nozzle. Very similar dynamical behavior is ob-
served numerically in the present case study, in the time
frame between 40ms and 50ms illustrated by eight snap-
shots in Fig. 13.

Shortly after T = 40ms, a backward cavity motion is
observed due to the implosion of the first advected vapor
clouds. Indeed, some small quantity of vapor is detached

and suddenly the cavity length starts to contract and de-
creases without any advection or another separation to
take place. The transition is extremely rapid, as it can
be seen in Fig.13, where the time step between snapshots
is taken as 1ms. The contraction process is equally pre-
sented on the top and on the bottom side of the divergent
part of the nozzle. As a result, the decrease of the cavity
length is synchronized and symmetrical in respect to the
horizontal axis. It can be seen that one part of the vapor
cavity starts to detach somewhere at its middle length.
As a result, a separation is present followed by an ad-
vection. Such a dynamical behavior is quite interesting
and corresponds to the one described by Ganesh et al.54

condensed shock dominant shedding mechanism. This
scenario is somehow different compared to the existence
of a stagnation point and the formation of a re-entrant
jet at the rear of the vapor cavity. The liquid is in a
cinematic equilibrium when a re-entrant flow is responsi-
ble for the shedding, while in the present observation the
contraction starts at the moment when the first advected
clouds disappear.
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FIG. 13. Vapor fraction dynamical behavior in the presence of condensed shocks at the cavity closure regions. The ten snapshots
present the time interval starting at T= 40 ms and ending at T= 50 ms

16



FIG. 14. (Color online) Numerical representation for cavi-
tation at σ = 1.15, (a): the divergence of the velocity at
T = 41.25 ms, (b): velocity vector field on two plane cuts
passing through the implosing vapor structure and (c): the
pressure field at T = 50 ms by thirty iso-surfaces. The corre-
sponding snapshots of the vapor volume fraction can be seen
in Fig.13

Figure 14 illustrates the pressure field at the moment
of implosion of the first advected vapor. It can be clearly
seen that a value of 673 kPa is reached at the loca-
tion of the implosion. As a result of the collapse, the
pressure waves are propagated in each direction, which
brakes the spatial development of the vapor phase and it
changes rapidly its dynamical behavior. The contraction
of the vapor phase does not lead to an apex pinch-off
in the presented case study. The same phenomenon is
constantly repeated when the advected vapor structures
collapse down the flow and increase sufficiently the pres-
sure. Four cycles of cavitation shedding are observed.
The length of vapor clouds at the end of the fourth cycle
is drastically reduced compared with their lengths before
the first shedding to take place. At T = 41.25s it is
roughly equal to 6Hthroat, while at the end of the fourth
cycle L is equal to 2Hthroat. The local Mach number at
the spatial location of the collapse for α ≈ 0.1 is of the
order of 1.1 and the local value of the speed of sound de-
creases to 10 m.s−1. These values are consistent with the
data described by Brennen55 and recently experimentally
reported by Ganesh et al.50,54. Moreover, the divergence
of the velocity is a clear indicator of the condensation
process, which takes place. As it was recently pointed
out by Mihatsch et al.56, a negative value of div(u) is
proportional to the vapor production rate, as long as the
thermodynamic state corresponds to a two-phase mix-
ture. Figure 14 presents the instant at T = 41.25 ms,
where a negative div(u) is clearly visible. Neglecting any
dissolved gas content, the surrounding liquid near the
advected vapor structure, accelerates towards its center,
until a condensation is reached as a last stage of the col-

FIG. 15. (Color online) A bottom view of cloud cavitation
from a numerical simulation at σ = 1.15 (left). The pressure,
the vapor fraction, the Mach number and the horizontal flow
velocity are plot in terms of a distance from the nozzle throat
(right). The plots are extracted along a line following the
bottom divergent zone. The two vapor fractions are moving
in opposite directions. The time interval starts at T= 40 ms
and ends at T= 50 ms. The multimedia view corresponds to
the sequence shown in Fig. 13. (Multimedia view)

lapse process. As a result, the pressure increases until a
collapse takes place, as it is shown in Fig. 14. The upper
described dynamics follows closely the one described by
Mihatsch et al.56.

It is interesting to show the spatial evolution of the
pressure wave and the consequence on the vapor frac-
tion, the local Mach number and the horizontal veloc-
ity component, in order to exclude any influence of the
re-entrant jet. Figure 15 illustrates the shedding cavita-
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tion seen from the bottom, as well as the corresponding
evolution of the pressure wave. It can be seen that the
wave moves in an opposite the flow direction. At a cer-
tain moment, the vapor fraction is cut by the wave into
two smaller structures. Each one of them moves into
opposite directions. The Mach number reaches local val-
ues of of the order of 3. The horizontal component of
the flow velocity stays constantly positive which implies
that no re-entrant jet effects are present. For more de-
tails the reader is kindly advised to see the supplemen-
tary material at Fig. 15. A value of 5.02 m.s−1 for the
shock wave velocity propagation is estimated (for a time
period of 3.5 × 10−3s the shock wave moves forward at
1.76 × 10−2m). The obtained velocity has the same or-
der of magnitude and fits in the range of values given by
Ganesh50.

FIG. 16. (Color online) An illustration (not to scale) of the
mechanisms governing the vapor dynamics in the present case
study. The maximum condensation is achieved just before the
vapor structure collapse and the maximum pressure is reached
at the vapor collapse

As a result, the cavity dynamics is governed by three
different phenomena shown in Fig. 16. The first one is
the re-entrant jet, the second one is the side-entrant jet
and the third one is the shock wave due to the collapse
of the advected vapor structures.

FIG. 17. Normalized instantaneous snapshot (taken at t =
520 ms, following the sequence show in Fig. 10) showing
the vapor-shock wave interaction for σ = 1.23. The ex-
istence of sharp edges might be due to the propagation of
condensed shock waves. The vapor fraction experience the
“water-hammer” effect

An experimental illustration of a back-flow propagat-
ing condensed shock wave is shown in Fig. 17. The nor-
malized instantaneous snapshot taken at σ = 1.23 clearly
presents the vapor-shock wave interaction. One can no-
tice the sharp edges at the cavity closure region on both
sides of the Venturi nozzle, as a result of the propagat-
ing wave. At the same instant some small vapor struc-
tures are detached and continue to be advected by the
flow. Very similar sharp edges have been observed also
by Ganesh50 in his PhD work.

The propagation of pressure waves is a rapid phe-
nomenon, which makes it not straightforward for a vi-
sualization. According to Ganesh et al.54, its visibility is
highly dependable on the cavitation number. Moreover,
a sampling frequency of 1 kHz for the high-speed camera
does not necessary guarantee the possibility to properly
capture a complete sequence of images showing an inter-
action between cavitation vapor and pressure waves. As
a result, Fig. 18 shows a shock wave influence on shed-
ding cavitation for a slightly higher σ = 1.31. One can
clearly see that at L = 3.8Hthroat sharp edges are formed
at the cavity closure region. As a result, a synchronized
double vapor detachment is obtained on each side of the
nozzle. It is visible that an upstream propagation of a
shock wave changes the cavitation shedding mechanism.
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FIG. 18. A sequence of normalized instantaneous snapshots from T = 107 ms to T = 113ms showing the vapor-shock wave
interaction for σ = 1.31 at ∆t between the images of 2 ms. The horizontal symmetry is shown in white dashed line. A sharp
edge is visible as a result of the vapor-shock interaction.
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IV. CONCLUSIONS

In the present paper, “transitory” cavitation regime
has been investigated numerically in 3D and experimen-
tally in 2D. For a constant inlet flow, a small range of
cavitation numbers, where two cloud cavitation shedding
mechanisms coexist, has been studied experimentally. A
classical evolution of cavity closure position as a func-
tion of cavitation number has been observed and two
frequencies of cloud shedding, increasing with the cav-
itation number, have been highlighted. The choice has
been made to focus only on one case with a correspond-
ing cavitation number σ = 1.23 in order to study the
dynamics of the two-phase system.

The use of a “full” 3D compressible code is justified
by the fact that the re-entrant jet flow is not the only
observed closure mechanism. Indeed, for σ = 1.15 a side-
entrant jet, hardly observable experimentally, is found to
be responsible for the partial cut of the void fraction. Its
development was found to be symmetrical. A key find-
ing, which was firstly detected in a 3D simulation, is the
influence of the shock waves due to collapses of the vapor
structures. They play the role of sudden “break” for the
spatial development of the vapor clouds. As a result, the
cavity dynamics is governed by three different phenom-
ena, which are the re-entrant jet, the side-entrant jet and
the condensation shock waves. Consequently the symme-
try between the two side cavities can be broken due to
a scale effect resulting in a side-entrant jet. All of these
phenomena have been experimentally observed on image
sequences, and have been identified with a wavelet tech-
nique. Their frequencies of occurrence as well as their
temporal positions are revealed.

The snapshot Proper Orthogonal Decomposition tech-
nique has been used on numerical and experimental data
as a complementary tool for the study of the cavitation
“transitory” regime at σ = 1.15. The three different sec-
tion cuts show very similar results in terms of energy
contributions, but differ in their spatial modal distribu-
tion.The number of cycles in experimental case is higher
than in simulations, which leads to more significant re-
sults. The decomposition into 10 modes and the presen-
tation of the first four is found to be sufficient for the
good representation of the flow behavior. The values of
the energy contribution for all of the modes 1 are supe-
rior to 1%, which implies the presence of cloud cavitation
regime. The POD analysis reveals a clear horizontal sym-
metry of the multiphase flow for the experimental case
and the superposed numerical one.
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Appendix A: Development speed of sound in
liquid

The constant entropy is given in Eq.A1 which after
rewriting in terms of pressure and

c2 =

(
∂p

∂ρ

)
s

(A1)

temperature using Maxwell’s relations, gives:

c2 =
ρ
(
∂h
∂T

)
p(

∂ρ
∂p

)
T

(
∂h
∂T

)
p

+
(
∂ρ
∂T

)
p

[
1− ρ

(
∂h
∂p

)
T

] (A2)

Moreover, the use of Maxwell’s relation Eq.A2 enables us
to write down:

∂cv(T, v)

∂v
= T

∂2p

∂T 2
(A3)

One can also write the internal energy in terms of the
pressure and volume at constants volume and tempera-
ture, respectively as follows:(

∂e

∂T

)
v

= cv(v, T ) (A4)

(
∂e

∂v

)
T

= −t+ T

(
∂p

∂T

)
v

(A5)

If we use the hypothesis that the density of the liquid
is constant, i.e. the liquid is incompressible, as well as
cv (ρ0, T ) to be constant, one can write the formulation
for the speed of sound in the liquid phase:

c2l =
N(p− psat(T ) +K0)

ρ
+

p

ρ2Cvl

(
∂psat(T )

∂T
− N(p− psat(T ) +K0)

ρl,sat(T )

∂ρsat(T )

∂T

)
(A6)

Appendix B: Phase transition algorithm
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Algorithm 1: Phase transition algorithm
Data: ρn, (ρu)n, (ρv)n, (ρw)n, (ρE)n, T n : computed at previous time step
Result: ρn+1, (ρu)n+1, (ρv)n+1, (ρw)n+1, (ρE)n+1 : given by solving Navier-Stokes equations
Compute: en+1 = En+1 − 1

2 ((u
n+1)2 + (vn+1)2 + (wn+1)2);

Initialize: T n+1 = T n;
repeat

(Re)-initialize: T ∗ = T n+1;
Compute: ρl,sat(T ∗) and ρv,sat(T ∗);
if ρn+1 > ρl,sat(T ∗) then

α = 0; /* liquid */
T n+1 = en+1 − el0Cvl + T0

end
if ρn+1 < ρv,sat(T ∗) then

α = 1; /* vapor */
T n+1 = en+1 − el0 −Lv(T0)Cvv + T0

end
if ρv,sat(T ∗) ≤ ρn+1 ≤ ρl,sat(T ∗) then

α = ρn+1 − ρl,sat(T ∗)ρv,sat(T ∗)− ρl,sat(T ∗); /* mixture */
Solve: T n+1 =
ρn+1en+1 −αρv,sat(T n+1)Lv(T0)− ρn+1el0αρv,sat(T n+1)Cvv + (1−α)ρl,sat(T n+1)Cvl + T0

end
until |T n+1 − T ∗| ≤ ε;
/* Computation of other parameters */;
if α = 0 then

pn+1 = K0

[(
ρn+1ρl,sat(T n+1)

)N − 1
]
+ Psat(T n+1);

µn+1 = µref 10
Tref T

n+1−S0;
(cn+1)2 =NP̄ ρn+1 + pn+1(ρn+1)2Cvl

(
Psat(T n+1)T −NP̄ ρl,sat(T n+1)ρl,sat(T n+1)T

)
;

where P̄ = pn+1 − Psat(T n+1) +K0;
end
if α = 1 then

pn+1 = (γ − 1)ρn+1en+1;
µn+1 = µref T n+1 + S0Tref + S0

(
T n+1Tref

)1.5
;

λv = a1T + a2T 2 + a3T 3 + a4T 4;
(cn+1)2 = γpn+1ρn+1;

end
if 0 < α < 1 then

pn+1 = Psat(T n+1);
1
µn+1 =

1−ξ
µn+1l

+ ξ
µn+1v

;

λv = a1T + a2T 2 + a3T 3 + a4T 4;
where,
µn+1l = µl,ref 10

Tl,ref T
n+1−Sl,0 ;

µn+1v = µv,ref T n+1 + Sv,0Tv,ref + Sv,0
(
T n+1Tv,ref

)1.5
;

(cn+1)2 = ρn+1
(
αρv,sat(cn+1v )2 +1−αρl,sat(cn+1l )2

)−1
;

where,
(cn+1l )2 =NP̄ ρn+1 + pn+1(ρn+1)2Cvl

(
Psat(T n+1)T −NP̄ ρl,sat(T n+1)ρl,sat(T n+1)T

)
;

(cn+1v )2 = γpn+1ρn+1;
end

Compute: Hn+1 = En+1 + pn+1

ρn+1
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